Introduction to Causal Data Analysis and Modeling with Coincidence Analysis

Module 1.4

Top-down vs. Bottom-up Search / the CNA Algorithm

Michael Baumgartner
Prague University of Economics and Business
15 May 2022

Overview

(1) Top-down search
(2) Bottom-up search
(3) The QCA algorithm
(9) The CNA algorithm
(3) Fragmentation
(6) Model interpretation

Alternative algorithms

Two search directions: Top-down

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Two search directions: Top-down

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
A * B * D \rightarrow E \text { ? }
$$

Two search directions: Top-down

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
& A * B * D \rightarrow E ? \\
& A^{*} B * d \rightarrow E \text { ? }
\end{aligned}
$$

Two search directions: Top-down

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$A * B * D \rightarrow E$?
$A * B * d \rightarrow E$?
$E \rightarrow A * B * D+A^{*} b * D+A^{*} b^{*} d+a^{*} B * D+a^{*} b^{*} D$?

Two search directions: Top-down

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$A * B * D \rightarrow E$?
$A^{*} B * d \rightarrow E$?
$E \rightarrow A^{*} B * D+A^{*} b^{*} D+A^{*} b^{*} d+a^{*} B^{*} D+a^{*} b^{*} D ~ ?$
$A^{*} b+D \leftrightarrow E$

Two search directions: Bottom-up

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Two search directions: Bottom-up

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
A \rightarrow E ?
$$

Two search directions: Bottom-up

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
& A \rightarrow E \quad ? \\
& B \rightarrow E \quad ?
\end{aligned}
$$

Two search directions: Bottom-up

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
A & \rightarrow E ? \\
B & \rightarrow E ? \\
A^{*} B & \rightarrow E ?
\end{aligned}
$$

Two search directions: Bottom-up

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
A & \rightarrow E ? \\
B & \rightarrow E ? \\
A * B & \rightarrow E ? \\
E & \rightarrow A * b ?
\end{aligned}
$$

Two search directions: Bottom-up

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
A & \rightarrow E ? \\
B & \rightarrow E ? \\
A * B & \rightarrow E ? \\
E & \rightarrow A * b ? \\
E & \rightarrow D ?
\end{aligned}
$$

Two search directions: Bottom-up

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

A	$\rightarrow E ?$
B	$\rightarrow E ?$
$A * B$	$\rightarrow E ?$
E	$\rightarrow A^{*} b ?$
E	$\rightarrow D ?$
$A^{*} b+D \leftrightarrow E$	

The standard QCA algorithm: Quine-McCluskey optimization (QMC)

Standardly, QCA infers MINUS-formulas from data in two computational phases using QMC:

1. QCA identifies sufficient and necessary conditions in the data;
2. QCA eliminates redundancies from recovered sufficient and necessary conditions by means of Quine-McCluskey optimization (QMC), which itself operates in two phases:
i. QMC eliminates redundancies from sufficient conditions using Boolean distributive laws;
ii. QMC eliminates redundancies from necessary conditions using so-called PI charts.

Phase 1

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 1

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 1

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
A * B * D \rightarrow E
$$

Phase 1

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
A * B * D \rightarrow E
$$

Phase 1

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
A * B * D \rightarrow E
$$

Phase 1

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
A^{*} B * D & \rightarrow E \\
A^{*} b^{*} D & \rightarrow E
\end{aligned}
$$

Phase 1

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
A^{*} B * D & \rightarrow E \\
A^{*} b^{*} D & \rightarrow E \\
A^{*} b^{*} d & \rightarrow E \\
a^{*} B * D & \rightarrow E \\
a^{*} b^{*} D & \rightarrow E
\end{aligned}
$$

Phase 1

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
& A^{*} B * D \rightarrow E \\
& A^{*} b^{*} D \rightarrow E \\
& A^{*} b^{*} d \rightarrow E \\
& a^{*} B * D \rightarrow E \\
& a^{*} b^{*} D \rightarrow E \\
& E \rightarrow A * B * D+A^{*} b^{*} D+A * b * d+a^{*} B * D+a^{*} b^{*} D \\
& \hline A * B * D+A * b^{*} D+A^{*} b^{*} d+a^{*} B * D+a^{*} b^{*} D \leftrightarrow E
\end{aligned}
$$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E	
a	1	1	1	1	
b	1	1	0	0	
c	1	0	1	1	
$\mathrm{~A} * B * D \rightarrow E$					
d	1	0	0	1	
e	0	1	1	1	
e					
f	$* D \rightarrow E$				
f	0	1	0	0	$A * b * E$
g	0	0	1	1	$a^{*} B * D \rightarrow E$
h	0	0	0	0	$a^{*} b^{*} D \rightarrow E$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
A * B * D & \rightarrow E \quad A * D \rightarrow E \\
A * b * D & \rightarrow E \\
A^{*} b * d & \rightarrow E \\
a * B * D & \rightarrow E \\
a * b * D & \rightarrow E
\end{aligned}
$$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{array}{rlr}
A * B * D & \rightarrow E & A * D \rightarrow E \\
A * b * D & \rightarrow E & \\
A * b * d & \rightarrow E & B * D \rightarrow E \\
a * B * D & \rightarrow E & \\
a * b * D & \rightarrow E &
\end{array}
$$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{array}{rlr}
A * B * D \rightarrow E & A * D \rightarrow E \\
A * b * D \rightarrow E & \\
A * b * d \rightarrow E & B * D \rightarrow E \\
a * B * D \rightarrow E & A * b \rightarrow E \\
a * b * D \rightarrow E &
\end{array}
$$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{array}{rr}
A * B * D \rightarrow E & A * D \rightarrow E \\
A * b * D \rightarrow E & b * D \rightarrow E \\
A^{*} b * d \rightarrow E & B * D \rightarrow E \\
a * B * D \rightarrow E & A * b \rightarrow E \\
a * b * D \rightarrow E &
\end{array}
$$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{array}{rr}
A * B * D \rightarrow E & A * D \rightarrow E \\
A * b * D \rightarrow E & b * D \rightarrow E \\
A * b * d \rightarrow E & B * D \rightarrow E \\
a * B * D \rightarrow E & A * b \rightarrow E \\
a * b * D \rightarrow E & a * D \rightarrow E
\end{array}
$$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{array}{rlrl}
A * B * D & \rightarrow E & A * D & \rightarrow E \\
A * b * D & \rightarrow E & b * D & \rightarrow E \\
A * b * d & \rightarrow E & B * D & \rightarrow E
\end{array}
$$

$$
D \rightarrow E
$$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{array}{rl}
A * B * D \rightarrow E & \\
A * D \rightarrow E \\
A * b * D \rightarrow E & b * D \rightarrow E \\
A * b * d \rightarrow E & B * D \rightarrow E
\end{array}
$$

$$
D \rightarrow E
$$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{array}{rrr}
A * B * D \rightarrow E & A * D \rightarrow E & \\
A * b * D \rightarrow E & b * D \rightarrow E & \\
A * b * d \rightarrow E & B * D \rightarrow E & D \rightarrow E \\
a * B * D \rightarrow E & A * b \rightarrow E & A * b \rightarrow E \\
a * b * D \rightarrow E & a * D \rightarrow E &
\end{array}
$$

Phase 2i

Sufficient conditions recovered in phase 1 are freed of redundancies to yield minimally sufficient conditions or so-called prime implicants.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{array}{rrr}
A * B * D \rightarrow E & A * D \rightarrow E & \\
A * b * D \rightarrow E & b * D \rightarrow E & \\
A * b * d \rightarrow E & B * D \rightarrow E & D \rightarrow E \\
a * B * D \rightarrow E & A * b \rightarrow E & A * b \rightarrow E \\
a * b * D \rightarrow E & a * D \rightarrow E & \frac{A * b+D \rightarrow E}{}
\end{array}
$$

Phase 2ii

Necessary conditions recovered in phase 1 are freed of redundancies by means of prime implicants (PI) charts.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
E \rightarrow A^{*} B^{*} D+A^{*} b^{*} D+A^{*} b^{*} d+a^{*} B^{*} D+a^{*} b^{*} D
$$

	$A * B * D$	$A * b^{*} D$	$A * b^{*} d$	$a * B * D$	$a^{*} b^{*} D$
$A * b$	-	\times	\times	-	-
D	\times	\times	-	\times	\times

Phase 2ii

Necessary conditions recovered in phase 1 are freed of redundancies by means of prime implicants (PI) charts.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
E \rightarrow A * b+D
$$

	$A * B * D$	$a^{*} b * D$			
$A * b$	-	\times	\times	-	-
D	\times	\times	-	\times	\times

Phase 2ii

Necessary conditions recovered in phase 1 are freed of redundancies by means of prime implicants (PI) charts.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
E \rightarrow A * b+D
$$

	$A * B * D$	$A * b^{*} D$	$A * b^{*} d$	$a^{*} B * D$	$a^{*} b^{*} D$
$A * b$	-	\times	\times	-	-
D	\times	\times	-	\times	\times

\rightarrow Overall, QCA recovers exactly the sought-after MINUS-formula of E :

$$
A * b+D \leftrightarrow E
$$

The CNA algorithm

CNA infers MINUS-formulas from data δ in four computational phases:

1. CNA identifies a set $\boldsymbol{O}=\left\{O_{1}, \ldots, O_{n}\right\}$ of candidate outcomes in δ.
2. CNA checks single exogenous factor values in δ for sufficiency for each O_{i}, then conjunctions of two, of three, etc. Whenever a conjunction is found to be sufficient it is a minimally sufficient condition (msc) and supersets are not tested anymore.
3. CNA checks single msc identified in phase (2) for necessity for each O_{i}, then disjunctions of two, of three, etc. Whenever a disjunction is found to be necessary it is an atomic solution formula (asf) and supersets are not tested anymore.
4. CNA conjunctively combines the asf identified in phase (3) to complex solution formulas (csf) and eliminates structural redundancies. The result is the set of all complex MINUS-formulas that fit δ.

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
D \rightarrow E
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
D \rightarrow E
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
D \rightarrow E
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
D \rightarrow E
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
D \rightarrow E
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
D \rightarrow E
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
D \rightarrow E
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
D \rightarrow E
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
D & \rightarrow E \\
A^{*} b & \rightarrow E
\end{aligned}
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
D & \rightarrow E \\
A * b & \rightarrow E
\end{aligned}
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
D & \rightarrow E \\
A * b & \rightarrow E
\end{aligned}
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
D & \rightarrow E \\
A^{*} b & \rightarrow E
\end{aligned}
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{aligned}
D & \rightarrow E \\
A^{*} b & \rightarrow E
\end{aligned}
$$

Phase 2

from phase 1: $\boldsymbol{O}=\{E\}$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

D	$\rightarrow E$
$A * b$	$\rightarrow E$
$\operatorname{msc}(E)=D, A * b$	

Phase 3

from phase 2: $\operatorname{msc}(E)=D, A * b$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 3

from phase 2: $\operatorname{msc}(E)=D, A * b$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 3

from phase 2: $\operatorname{msc}(E)=D, A * b$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 3

from phase 2: $\operatorname{msc}(E)=D, A * b$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 3

from phase 2: $\operatorname{msc}(E)=D, A * b$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 3

from phase 2: $\operatorname{msc}(E)=D, A * b$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Phase 3

from phase 2: $\operatorname{msc}(E)=D, A * b$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
E \rightarrow A^{*} b+D
$$

Phase 3

from phase 2: $\operatorname{msc}(E)=D, A * b$

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1
e	0	1	1	1
f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\begin{array}{r}
E \rightarrow A^{*} b+D \\
\operatorname{asf}(E)=A * b+D \leftrightarrow E
\end{array}
$$

\rightarrow Overall, CNA recovers exactly the sought-after MINUS-formula of E :

$$
A * b+D \leftrightarrow E
$$

Fragmentation (limited diversity)

The top-down approach has problems with non-ideal data.

	A	B	D	E	
a	1	1	1	1	
b	1	1	0	0	
c	1	0	1	1	$A * B * D \rightarrow E$
d	1	0	0	1	$A * b * D \rightarrow E$
e	0	1	1	1	$A * b^{*} d \rightarrow E$
f	0	1	0	0	
g	0	0	1	1	$a^{*} B * D \rightarrow E$
h	0	0	0	0	$a^{*} b^{*} D \rightarrow E$

Fragmentation (limited diversity)

The top-down approach has problems with non-ideal data.

	A	B	D	E	
a	1	1	1	1	
b	1	1	0	0	
c	1	0	1	1	$A * B * D \rightarrow E$
d	1	0	0	1	$A * b^{*} D \rightarrow E$
					$A * b * d \rightarrow E$
f	0	1	0	0	
g	0	0	1	1	
h	0	0	0	0	$a^{*} b^{*} D \rightarrow E$

Fragmentation (limited diversity)

The top-down approach has problems with non-ideal data.

	A	B	D	E	
a	1	1	1	1	
b	1	1	0	0	
c	1	0	1	1	$A * B * D \rightarrow E$
d	1	0	0	1	$A * b * D \rightarrow E$
f	0	1	0	0	$A * b * d \rightarrow E$
g	0	0	1	1	
h	0	0	0	0	$a * b * D \rightarrow E$

Fragmentation (limited diversity)

The top-down approach has problems with non-ideal data.

	A	B	D	E	
a	1	1	1	1	
b	1	1	0	0	
c	1	0	1	1	$A * B * D \rightarrow E$
d	1	0	0	1	$A * b * D \rightarrow E$
f	0	1	0	0	$A * b * d \rightarrow E$
g	0	0	1	1	
h	0	0	0	0	$a^{*} b^{*} D \rightarrow E$

Fragmentation (limited diversity)

The top-down approach has problems with non-ideal data.

	A	B	D	E
a	1	1	1	1

$$
\begin{aligned}
A^{*} D & \rightarrow E \\
b^{*} D & \rightarrow E \\
A * b & \rightarrow E
\end{aligned}
$$

Fragmentation (limited diversity)

The top-down approach has problems with non-ideal data.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
A * B * D & \rightarrow E \\
A^{*} b^{*} D & \rightarrow E
\end{aligned}
$$

$$
A * D \rightarrow E
$$

$$
\begin{array}{c|ccccc}
\mathrm{f} & 0 & 1 & 0 & 0 & A * b * d \rightarrow E \\
\mathrm{~g} & 0 & 0 & 1 & 1 & \\
\mathrm{~h} & 0 & 0 & 0 & 0 & a * b * D \rightarrow E
\end{array}
$$

$A * D \rightarrow E$
$b * D \rightarrow E$
$A * b \rightarrow E$
$E \rightarrow A * D+b * D+A * b$

$$
b^{*} D \rightarrow E
$$

$$
A * b \rightarrow E
$$

Fragmentation (limited diversity)

The top-down approach has problems with non-ideal data.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
A * B * D & \rightarrow E \\
A * b^{*} D & \rightarrow E
\end{aligned}
$$

$$
A * D \rightarrow E
$$

$A^{* D} \rightarrow E$
$b * D \rightarrow E$
$A^{*} b \rightarrow E$
$E \rightarrow A * D+b^{*} D+A * b$
$A * D+b * D+A * b \leftrightarrow E$

$$
b^{*} D \rightarrow E
$$

$$
\begin{array}{c|ccccc}
\mathrm{f} & 0 & 1 & 0 & 0 & A^{*} b^{*} d \rightarrow E \\
\mathrm{~g} & 0 & 0 & 1 & 1 & \\
\mathrm{~h} & 0 & 0 & 0 & 0 & a^{*} b^{*} D \rightarrow E
\end{array}
$$

$$
A * b \rightarrow E
$$

Fragmentation (limited diversity)

The top-down approach has problems with non-ideal data.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{array}{c|ccccc}
\mathrm{f} & 0 & 1 & 0 & 0 & A^{*} b * d \rightarrow E \\
\mathrm{~g} & 0 & 0 & 1 & 1 & \\
\mathrm{~h} & 0 & 0 & 0 & 0 & a^{*} b * D \rightarrow E
\end{array}
$$

BUT: The true structure is $A * b+D \leftrightarrow E$.

$$
\begin{aligned}
& A * B * D \rightarrow E \\
& A * D \rightarrow E \\
& A * b * D \rightarrow E \\
& b^{*} D \rightarrow E \\
& A * b \rightarrow E
\end{aligned}
$$

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E	$D \rightarrow E$
a	1	1	1	1	
b	1	1	0	0	
c	1	0	1	1	
d	1	0	0	1	
f	0	1	0	0	
g	0	0	1	1	
h	0	0	0	0	

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
D \rightarrow E
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
D \rightarrow E
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
D \rightarrow E
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
D \rightarrow E
$$

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$D \rightarrow E$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
D \rightarrow E
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
D \rightarrow E
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
D & \rightarrow E \\
A * b & \rightarrow E
\end{aligned}
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
D & \rightarrow E \\
A^{*} b & \rightarrow E
\end{aligned}
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E		
a	1	1	1	1		
b	1	1	0	0		
c	1	0	1	1		
d	1	0	0	1	\quad	
---:						
f	O					

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
D & \rightarrow E \\
A * b & \rightarrow E
\end{aligned}
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
D & \rightarrow E \\
A * b & \rightarrow E
\end{aligned}
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

D	$\rightarrow E$
$A * b$	$\rightarrow E$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
m s c(E)=D, A * b
$$

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
E \rightarrow D ?
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

$$
\begin{array}{c|cccc|}
& A & B & D & E \\
\hline \mathrm{a} & 1 & 1 & 1 & 1 \\
\mathrm{~b} & 1 & 1 & 0 & 0 \\
\mathrm{c} & 1 & 0 & 1 & 1 \\
\mathrm{~d} & 1 & 0 & 0 & 1
\end{array} \quad E \rightarrow D ?
$$

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
& E \rightarrow D ? \\
& E \rightarrow A * b ?
\end{aligned}
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
& E \rightarrow D ? \\
& E \rightarrow A * b ? \\
& E \rightarrow A * b+D ?
\end{aligned}
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
& E \rightarrow D ? \\
& E \rightarrow A * b ? \\
& E \rightarrow A^{*} b+D
\end{aligned}
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1
d	1	0	0	1

$$
\begin{aligned}
& E \rightarrow D ? \\
& E \rightarrow A^{*} b ? \\
& E \rightarrow A^{*} b+D \checkmark
\end{aligned}
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\operatorname{asf}(E)=A * b+D \leftrightarrow E
$$

Fragmentation (limited diversity)

The bottom-up approach has no such problems.

	A	B	D	E
a	1	1	1	1
b	1	1	0	0
c	1	0	1	1

$$
\begin{aligned}
D & \rightarrow E \\
A^{*} b & \rightarrow E \\
E & \rightarrow D
\end{aligned}
$$

f	0	1	0	0
g	0	0	1	1
h	0	0	0	0

$$
\operatorname{asf}(E)=D \leftrightarrow E
$$

\rightarrow CNA recovers the true structure or proper parts thereof from fragmented data.

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $B \rightarrow E, D \rightarrow E, a * C \rightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$ min_nec: $E \rightarrow B$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$\mathrm{msc}: \quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$ min_nec: $E \longrightarrow B$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$\mathrm{msc}: \quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$ min_nec: $E \longrightarrow B, E \rightarrow D$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$ min_nec: $E \longrightarrow B, E \longrightarrow D$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$
min_nec: $E \rightarrow B, E \longrightarrow \mathcal{D}, E \rightarrow a * C$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$ min_nec: $E \rightarrow B, E \rightarrow \mathcal{D}, E \rightarrow a^{*} C$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$ min_nec: $E \rightarrow B, E \rightarrow D, E \rightarrow a^{*} C$

$$
E \rightarrow B+a^{*} C
$$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$\mathrm{msc}: \quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$ min_nec: $E \rightarrow B, E \rightarrow D, E \rightarrow a^{*} C$ $E \rightarrow B+a^{*} C$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$\mathrm{msc}: \quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$
min_nec: $E \rightarrow B, E \rightarrow D, E \rightarrow a^{*} C$

$$
E \rightarrow B+a^{*} C, E \rightarrow D+a^{*} C
$$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$\mathrm{msc}: \quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$
min_nec: $E \rightarrow B, E \rightarrow D, E \rightarrow a^{*} C$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad B \rightarrow E, D \rightarrow E, a * C \rightarrow E$
min_nec: $E \rightarrow B, E \rightarrow D, E \rightarrow a^{*} C$

$$
E \Rightarrow B+a^{*} C, E \rightarrow D+a^{*} C, E \rightarrow B+D
$$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$\mathrm{msc}: \quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$
min_nec: $E \rightarrow B, E \rightarrow D, E \rightarrow a^{*} C$

$$
E \Rightarrow B+a^{*} C, E \rightarrow D+a^{*} C, E \rightarrow B+D
$$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$\mathrm{msc}: \quad B \rightarrow E, D \rightarrow E, a^{*} C \rightarrow E$
min_nec: $E \rightarrow B, E \rightarrow D, E \rightarrow a^{*} C$

$$
E \Rightarrow B+a^{*} C, E \Rightarrow D+a^{*} C, E \rightarrow B+D
$$

atomic solution formula: $B+D \leftrightarrow E$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc:
min_nec:
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc:
min_nec:
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc:
min_nec:
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc:
min_nec:
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc:
min_nec:
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc:
min_nec:
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad b^{*} E \rightarrow D$
 min_nec:

atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad b^{*} E \rightarrow D$
 min_nec:

atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad b^{*} E \rightarrow D, c^{*} E \rightarrow D$
min_nec:
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad b^{*} E \rightarrow D, c^{*} E \rightarrow D$
min_nec: $\quad D \rightarrow b^{*} E$
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad b^{*} E \rightarrow D, c^{*} E \rightarrow D$ min_nec: $D \longrightarrow b^{*} E$
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad b^{*} E \rightarrow D, c^{*} E \rightarrow D$ min_nec: $D \longrightarrow b^{*} E, D \rightarrow c^{*} E$
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad b^{*} E \rightarrow D, c^{*} E \rightarrow D$ min_nec: $D \longrightarrow b^{*} E, D \longrightarrow C^{*} E$
atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$$
\begin{aligned}
\text { msc: } & b^{*} E \rightarrow D, c^{*} E \rightarrow D \\
\text { min_nec: } & D \rightarrow b^{*} E, D \rightarrow c^{*} E, D \rightarrow b^{*} E+c^{*} E
\end{aligned}
$$ atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$$
\begin{aligned}
\text { msc: } & b^{*} E \rightarrow D, c^{*} E \rightarrow D \\
\text { min_nec: } & D \rightarrow b^{*} E, D \rightarrow c^{*} E, D \rightarrow b^{*} E+c^{*} E
\end{aligned}
$$

atomic solution formula:

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

$$
\begin{aligned}
\text { msc: } & b^{*} E \rightarrow D, c^{*} E \rightarrow D \\
\text { min_nec: } & D \rightarrow b^{*} E, D \rightarrow c^{*} E, D \rightarrow b^{*} E+c^{*} E
\end{aligned}
$$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

msc: $\quad A \rightarrow C, B \rightarrow C, d * E \rightarrow C$
min_nec: $\quad C \rightarrow A+C$
atomic solution formula: $A+B \leftrightarrow C$

A multi-outcome example with CNA

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

complex solution formula: $(A+B \leftrightarrow C) *(B+D \leftrightarrow E)$

Multiple models

$\#$	A	B	C	L
c_{1}	0	1	1	1
c_{2}	1	0	1	1
c_{3}	1	1	0	1
c_{4}	0	1	0	1
c_{5}	1	0	0	1
c_{6}	1	1	1	0
c_{7}	0	0	1	0
c_{8}	0	0	0	0

Multiple models

$\#$	A	B	C	L
c_{1}	0	1	1	1
c_{2}	1	0	1	1
c_{3}	1	1	0	1
c_{4}	0	1	0	1
c_{5}	1	0	0	1
c_{6}	1	1	1	0
c_{7}	0	0	1	0
c_{8}	0	0	0	0

$$
m s c(L): \quad a * B
$$

Multiple models

$\#$	A	B	C	L
c_{1}	0	1	1	1
c_{2}	1	0	1	1
c_{3}	1	1	0	1
c_{4}	0	1	0	1
c_{5}	1	0	0	1
c_{6}	1	1	1	0
c_{7}	0	0	1	0
c_{8}	0	0	0	0

$$
m s c(L): \quad A * b, \quad a * B
$$

Multiple models

$$
m s c(L): \quad A * b, a * B, \quad A * c
$$

Multiple models

$m s c(L): A^{*} b, a^{*} B, A^{*} c, B^{*} c$

Multiple models

$\#$	A	B	C	L
c_{1}	0	1	1	1
c_{2}	1	0	1	1
c_{3}	1	1	0	1
c_{4}	0	1	0	1
c_{5}	1	0	0	1
c_{6}	1	1	1	0
c_{7}	0	0	1	0
c_{8}	0	0	0	0

$m s c(L): A * b, a * B, A * c, B * c$

$$
\begin{aligned}
\operatorname{asf}(L): & A * b+a * B+A * c \leftrightarrow L \\
& A * b+a * B+B * c \leftrightarrow L
\end{aligned}
$$

Incomplete ground truth recovery

- As data δ analyzed by CNA typically are fragmented, models inferred from δ are incomplete.
- CNA models inferred from fragmented data make claims about causal relevancies, but not about causal irrelevancies. For instance, $A * B+a * b \leftrightarrow E$ inferred from δ entails
- A, B, a, and b are causally relevant for E.
- A and B are on one path and a and b on another.
- (It does not follow that G is not relevant for E).
\rightarrow A model $\boldsymbol{m}_{\boldsymbol{i}}$ output by CNA is correct of a ground truth Δ if Ψ is submodel of Δ.

The submodel relation

Submodel relation

A model $\boldsymbol{m}_{\boldsymbol{i}}$ is a submodel of another model $\boldsymbol{m}_{\boldsymbol{j}}$ iff all causal relevance ascriptions as well as conjunctive and disjunctive groupings entailed by $\boldsymbol{m}_{\boldsymbol{i}}$ are also entailed by $\boldsymbol{m}_{\boldsymbol{j}}$.
(The submodel relation is reflexive.)

The submodel relation

$\#$	$\boldsymbol{m}_{\boldsymbol{i}}$	$\boldsymbol{m}_{\boldsymbol{j}}$	submodel
1	$A * b * C+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
2	$A * b * D+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
3	$A+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
4	$b+C \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
5	$A * b+D+G \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
6	$A * b * G+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	

The submodel relation

$\#$	$\boldsymbol{m}_{\boldsymbol{i}}$	$\boldsymbol{m}_{\boldsymbol{j}}$	submodel
1	$A * b * C+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
2	$A * b * D+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
3	$A+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
4	$b+C \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
5	$A * b+D+G \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
6	$A * b * G+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	

The submodel relation

$\#$	$\boldsymbol{m}_{\boldsymbol{i}}$	$\boldsymbol{m}_{\boldsymbol{j}}$	submodel
1	$A * b * C+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
2	$A * b * D+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
3	$A+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
4	$b+C \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
5	$A * b+D+G \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
6	$A * b * G+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	

The submodel relation

$\#$	$\boldsymbol{m}_{\boldsymbol{i}}$	$\boldsymbol{m}_{\boldsymbol{j}}$	submodel
1	$A * b * C+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
2	$A * b * D+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
3	$A+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
4	$b+C \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
5	$A * b+D+G \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
6	$A * b * G+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	

The submodel relation

$\#$	$\boldsymbol{m}_{\boldsymbol{i}}$	$\boldsymbol{m}_{\boldsymbol{j}}$	submodel
1	$A * b * C+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
2	$A * b * D+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
3	$A+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
4	$b+C \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
5	$A * b+D+G \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	
6	$A * b * G+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	

The submodel relation

$\#$	$\boldsymbol{m}_{\boldsymbol{i}}$	$\boldsymbol{m}_{\boldsymbol{j}}$	submodel
1	$A * b * C+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
2	$A * b * D+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
3	$A+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
4	$b+C \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
5	$A * b+D+G \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
6	$A * b * G+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	

The submodel relation

$\#$	$\boldsymbol{m}_{\boldsymbol{i}}$	$\boldsymbol{m}_{\boldsymbol{j}}$	submodel
1	$A * b * C+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
2	$A * b * D+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
3	$A+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
4	$b+C \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
5	$A * b+D+G \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
6	$A * b * G+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark

The submodel relation

$\#$	$\boldsymbol{m}_{\boldsymbol{i}}$	$\boldsymbol{m}_{\boldsymbol{j}}$	submodel
1	$A * b * C+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
2	$A * b * D+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
3	$A+f \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark
4	$b+C \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
5	$A * b+D+G \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\boldsymbol{x}
6	$A * b * G+D \leftrightarrow E$	$A * b * C * G+D * f \leftrightarrow E$	\checkmark

\rightarrow If $\boldsymbol{m}_{\boldsymbol{j}}$ is the ground truth, models 1,3 , and 6 make only true causal claims, i.e. they are correct. The other models are incorrect.

Possible CNA outputs

(1) Empty: There are no data-fitting models. CNA states that the evidence is insufficient to draw conclusions. That is not the same as an inference to causal irrelevance!
(2) One solution formula: CNA states that the solution formula is a truthful (possibly incomplete) representation of the data-generating structure.
(3) Multiple solution formulas: CNA states that at least one of the solution formulas is a truthful (possibly incomplete) representation of the data-generating structure but that there is not enough evidence to determine which one exactly.

Model interpretation

Suppose a CNA analysis of a data set over $\boldsymbol{F}=\{A, B, C, D, E, F\}$ yields (1) and (2). How to interpret that?

$$
\begin{align*}
& A * B+a^{*} b+B * D \leftrightarrow E \tag{1}\\
& A * B+a^{*} b+a * D \leftrightarrow E \tag{2}
\end{align*}
$$

(1) (1) OR (2) is a truthful (incomplete) representation of the data-generating structure.
(2) $A * B$ and $a * b$ are parts of the same complex cause of E.
(3) There is a further path to E, including either $B * D$ OR $a * D$.
(9) There is no evidence in the data that F is a cause of E.

Benchmark criteria

Error-freeness A CNA output is error-free iff it is either empty or contains at least one model that only ascribes causal relevance relations that are present in the data-generating structure.

Correctness A CNA output is correct iff it contains at least one model that only ascribes causal relevance relations that are present in the data-generating structure.

Completeness A CNA output is complete iff it contains at least one model that is identical to the data-generating structure.

Non-binary factors

$\#$	A	B	C	D	E
c_{1}	1	1	1	1	1
c_{2}	1	1	1	0	1
c_{3}	1	0	1	1	1
c_{4}	1	0	1	0	0
c_{5}	0	1	1	1	1
c_{6}	0	1	1	0	1
c_{7}	0	0	0	1	1
c_{8}	0	0	0	0	0

Non-binary factors

$\#$	A	B	C	D	E
c_{1}	3	3	2	1	1
c_{2}	2	2	3	2	1
c_{3}	2	1	1	2	2
c_{4}	3	3	1	2	2
c_{5}	3	1	2	2	2
c_{6}	1	1	3	2	2
c_{7}	3	1	1	3	2
c_{8}	1	2	3	1	1
c_{9}	2	1	2	2	3
c_{10}	2	1	1	3	3
c_{11}	3	1	2	3	3
c_{12}	3	3	2	3	3

Non-binary factors

$\#$	A	B	C	D	E
c_{1}	3	3	2	1	1
c_{2}	2	2	3	2	1
c_{3}	2	1	1	2	2
c_{4}	3	3	1	2	2
c_{5}	3	1	2	2	2
c_{6}	1	1	3	2	2
c_{7}	3	1	1	3	2
c_{8}	1	2	3	1	1
c_{9}	2	1	2	2	3
c_{10}	2	1	1	3	3
c_{11}	3	1	2	3	3
c_{12}	3	3	2	3	3

$$
(A=1+B=2 \leftrightarrow C=3) *(B=2+D=1 \leftrightarrow E=1)
$$

Baumgartner, M. (2009).
Inferring causal complexity.
Sociological Methods \& Research 38, 71-101.
McCluskey, E. J. (1965).
Introduction to the Theory of Switching Circuits.
Princeton: Princeton University Press.
Quine, W. v. O. (1959).
On cores and prime implicants of truth functions.
The American Mathematical Monthly 66, 755-760.

