Introduction to Causal Data Analysis and Modeling with Coincidence Analysis

Module 1.3

The General Principles of Configurational Causal Discovery

Michael Baumgartner

Prague University of Economics and Business

15 May 2022

Baumgartner

CNA Workshop (Prague 2023)

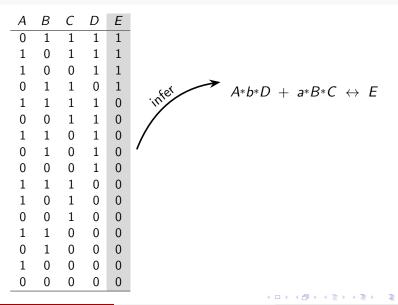
15 May 2022 1 / 24

Overview

- Epistemic uncertainty / limitations
- Ø Mill's Method of Difference
- Ocausal homogeneity
- Inference to causation vs. inference to non-causation
- Generalizing the Method of Difference
- From the Method of Difference to CNA
- Perfect data fit

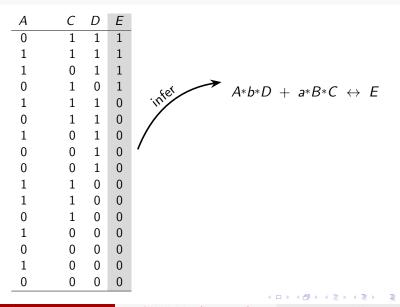
.

The goal of configurational causal modeling

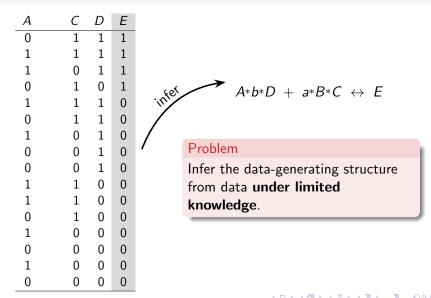


15 May 2022 3 / 24

The goal of configurational causal modeling



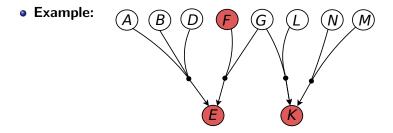
The goal of configurational causal modeling



How to uncover causation in light of limited knowledge?

Given that "A is a cause of E" is defined via A's (permanent) membership in a MINUS-formula Ψ of E, it seems that in order to establish A as a cause of E, we first have to find Ψ (infer Ψ from data). But if Ψ involves many unknown factors apart from A, how can we ever find Ψ ? And if we cannot find Ψ , how can we ever establish A as cause of E?

How to uncover causation in light of limited knowledge?



- Suppose that *F*, *E* and *K* are all the known/measured factors of this causal structure.
- The complex MINUS-formula representing this causal structure is

$$(A*B*D + F*G \leftrightarrow E)*(G*L + M*N \leftrightarrow K)$$

• How can we establish *F* as cause of *E* if we don't know anything about most of the relevant factors?

Baumgartner

CNA Workshop (Prague 2023)

Mill's Method of Difference

John S. Mill, System of Logic, book III, chapter 8:

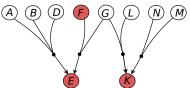
Second Canon

If an instance in which the phenomenon under investigation occurs, and an instance in which it does not occur, have every circumstance ⁴in common save one⁴, that one occurring only in the former; the circumstance in which alone the two instances differ, is the effect, or ^ethe^e cause, or ¹an indispensable¹ part of the cause, of the phenomenon.

Version of the Method of Difference in modern terminology Let S_1 and S_2 be two test situations that are identical in all factors except for an exogenous (test) factor F and an outcome E. If F is set to value 1 in S_1 and to value 0 in S_2 and if E likewise takes value 1 in S_1 and value 0 in S_2 , it follows that F is a non-redundant difference-maker of E in the context of S_1 and, hence, a cause of E.

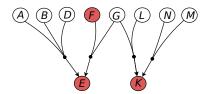
A D N A B N A B N A B N

Mill's Method of Difference



- 1. Given two test situations S_1 and S_2 that are identical except for the values on F and E.
- 2. Test result: $S_1 = S_2$ F=1 = F=0E=1 = E=0
- 3. As effects do not occur without any of their causes, there must exist a cause of E=1 in S_1 .
- 4. As E=0 in S_2 and as S_1 and S_2 are identical except for F and E, there is no unknown/unmeasured cause responsible for E=1 in S_1 .
- → Therefore, F=1 must be a non-redundant part of at least one cause of E=1 that is operative in S_1 .

Mill's Method of Difference



- The crucial assumption in this inference is the identity (apart from F and E) of S_1 and S_2 .
- Strictly speaking, however, there do not exist two identical test situations.
- But strict identity is not required for a causal inference under epistemic limitations.
- S_1 and S_2 must (only) be assumed to be **homogenous with respect to complete off-path causes** of the outcome.

CNA Workshop (Prague 2023)

15 May 2022 8 / 24

Causal homogeneity

Complete off-path cause (for one test factor)

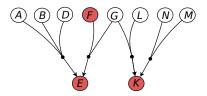
A complete off-path cause of an outcome E relative to an exogenous (test) factor F is a minimally sufficient condition of E that is located on a causal path to E on which F is not located.

Causal homogeneity (for two test situations)

Two test situations S_1 and S_2 are causally *homogeneous* relative to an outcome E and a (test) factor F iff S_1 and S_2 agree with respect to instantiations of complete off-path causes of E relative to F.

イロト 不得 トイヨト イヨト 二日

Causal homogeneity



- Causal homogeneity excludes causal errors.
- In the above structure, there cannot exist two causally homogenous test situations of the following type:

$$\begin{array}{c|c} \mathcal{S}_1 & \mathcal{S}_2 \\ \hline F=1 & F=0 \\ \hline K=1 & K=0 \end{array}$$

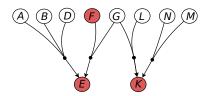
(日)

Justifying causal homogeneity?

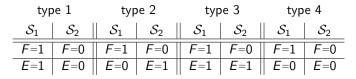
- How is it possible to establish (be certain about) causal homogeneity?
- The short answer is: it is not possible.
- Still, there are heuristics to render homogeneity plausible: in small-*n* studies via familiarity with the cases; in large-*n* studies via randomization or inclusion of off-path causes in the analysis.
- Every procedure of causal inference needs causal background assumptions.
- Background assumptions guarantee the error-freeness of a method's inferences, but violations of background assumptions do not automatically yield causal errors. Robustness analyses or inference tests can counterbalance homogeneity violations.

< □ > < □ > < □ > < □ > < □ > < □ >

Possible difference test results



• A simple difference test can generate 4 types of results:



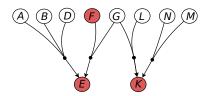
CNA Workshop (Prague 2023)

15 May 2022 12 / 24

-

▲ 伊 ▶ ▲ 三

Possible difference test results



• A simple difference test can generate 4 types of results:

typ	be 1	typ	e 2	typ	e 3	typ	e 4
\mathcal{S}_1	S_2	\mathcal{S}_1	S_2	$ S_1 $	\mathcal{S}_2	$ S_1 $	S_2
F=1	<i>F</i> =0	<i>F</i> =1	<i>F</i> =0	<i>F</i> =1	<i>F</i> =0	F=1	F=0
E=1	<i>E</i> =0	<i>E</i> =0	<i>E</i> =1	<i>E</i> =1	<i>E</i> =1	<i>E</i> =0	<i>E</i> =0

- \rightarrow A type 1 result entails that F is a cause of E.
- → A type 2 result entails that $f(\neg F)$ is a cause of E.
- → Type 3 and type 4 results do not entail anything, in particular, not causal irrelevance! Causal irrelevance is very difficult to establish.

4-field test

Generalizing the difference test: the 4-field test

A difference test allows for an inference to a gappy MINUS-formula

$$F * X_1 + Z_1 \leftrightarrow E \tag{1}$$

- To properly locate further factors in this rudimentary model, the design of simple difference tests must be generalized.
- A **4-field test** locates a second causal factor A in (1):

$$4f_1$$
 $F=1$
 $F=0$
 $A=1$
 $E=1$
 $E=0$
 $A=0$
 $E=0$
 $E=0$

• What inference is warranted by this 4f-test result?

4-field test

Generalizing the difference test: the 4-field test

A difference test allows for an inference to a gappy MINUS-formula

$$F * X_1 + Z_1 \leftrightarrow E \tag{1}$$

- To properly locate further factors in this rudimentary model, the design of simple difference tests must be generalized.
- A **4-field test** locates a second causal factor A in (1):

• What inference is warranted by this 4f-test result?

$$A * F * X_1' + Z_1 \leftrightarrow E \tag{2}$$

CNA Workshop (Prague 2023)

15 May 2022 13/24

Example 1
$$4f_2$$
 | $F=1$ | $F=0$
 $A=1$ | $E=1$ | $E=1$
 $A=0$ | $E=1$ | $E=0$

A D N A B N A B N A B N

Example 1
$$4f_2 || F=1 | F=0$$

 $A=1 || E=1 || E=1$
 $A=0 || E=1 || E=0$
 $F*X_1 + A*X_2 + Z_1 \leftrightarrow E$

イロト イヨト イヨト イヨト

(3)

Example 1
$$4f_2 || F=1 | F=0$$

 $A=1 || E=1 || E=1$
 $A=0 || E=1 || E=0$
 $F*X_1 + A*X_2 + Z_1 \leftrightarrow E$
Example 2 $4f_3 || F=1 || F=0$
 $A=1 || E=1 || E=0$
 $A=0 || E=1 || E=1$

Baumgartner

CNA Workshop (Prague 2023)

15 May 2022 14 / 24

3

イロト イヨト イヨト イヨト

(3)

Example 1
$$4f_2 \parallel F=1 \mid F=0$$

 $A=1 \mid E=1 \mid E=1$
 $A=0 \mid E=1 \mid E=0$
 $F*X_1 + A*X_2 + Z_1 \leftrightarrow E$ (3)
Example 2 $4f_3 \parallel F=1 \mid F=0$
 $A=1 \mid E=1 \mid E=0$
 $A=0 \mid E=1 \mid E=1$
 $F*X_1 + a*X_2 + Z_1 \leftrightarrow E$ (4)

Baumgartner

CNA Workshop (Prague 2023)

15 May 2022 14 / 24

3

イロト イヨト イヨト イヨト

Example 1
$$4f_2 || F=1 || F=0$$

 $A=1 || E=1 || E=1$
 $A=0 || E=1 || E=0$
 $F*X_1 + A*X_2 + Z_1 \leftrightarrow E$ (3)
Example 2 $4f_3 || F=1 || F=0$
 $A=1 || E=1 || E=0$
 $A=0 || E=1 || E=1$
 $F*X_1 + a*X_2 + Z_1 \leftrightarrow E$ (4)
Example 3 $4f_4 || F=1 || F=0$
 $A=1 || E=1 || E=0$
 $A=0 || E=0 || E=1$

▶ ▲ ■ ▶ ■ ∽ ۹ C 15 May 2022 14 / 24

A D N A B N A B N A B N

Example 1
$$4f_2 || F=1 || F=0$$

 $A=1 || E=1 || E=1$
 $A=0 || E=1 || E=0$
 $F*X_1 + A*X_2 + Z_1 \leftrightarrow E$ (3)
Example 2 $4f_3 || F=1 || F=0$
 $A=1 || E=1 || E=0$
 $A=0 || E=1 || E=1$
 $F*X_1 + a*X_2 + Z_1 \leftrightarrow E$ (4)
Example 3 $4f_4 || F=1 || F=0$
 $A=0 || E=0 || E=1$
 $A*F*X_1 + a*f*X_2 + Z_1 \leftrightarrow E$ (5)

CNA Workshop (Prague 2023)

A D N A B N A B N A B N

4-field test

Causal homogeneity generalized

Causal homogeneity can be generalized for an open number of test factors and situations:

Causal homogeneity

Test situations S_1, S_2, \ldots, S_i that are compared in order to investigate the causal structure behind the behavior of an outcome E relative to a set of exogenous (test) factors $\mathbf{F} = \{F_1, \dots, F_n\}$ are causally homogeneous iff S_1 to S_i agree with respect to instantiations of complete off-path causes of E relative to F.

< □ > < □ > < □ > < □ > < □ > < □ >

Generalizing further

- The application of the basic methodological idea behind the difference test is not restricted to the laboratory.
- As long as homogeneity of the uncontrolled causal background can be rendered plausible, value configurations of analyzed factors can simply be recorded from **observed cases/units**.
- In order to not only register the configurations but also the number of cases featuring each configuration, observational data are typically not recorded in the form of cross-tables but in the form of **lists of configurations**.

< □ > < □ > < □ > < □ > < □ > < □ >

Configurational data

	F	Α	Ε
а	1	1	1
b	1	1	1
с	0	0	1
d	0	0	1
е	0	1	0
f	0	1	0
g	1	0	0
h	1	0	0

<ロト <問ト < 目ト < 目ト

Configurational data

	F	Α	Ε
а	1	1	1
b	1	1	1
с	0	0	1
d	0	0	1
е	0	1	0
f	0	1	0
g	1	0	0
h	1	0	0

What MINUS-formula (causal model) follows from this table?

A D N A B N A B N A B N

Configurational data

	F	Α	Ε
а	1	1	1
b	1	1	1
с	0	0	1
d	0	0	1
е	0	1	0
f	0	1	0
g	1	0	0
h	1	0	0

What MINUS-formula (causal model) follows from this table?

$$A*F*X_1 + a*f*X_2 + Z_1 \leftrightarrow E \tag{6}$$

Or, if we treat model incompleteness implicitly:

$$A * F + a * f \leftrightarrow E$$
(7)

CNA Workshop (Prague 2023)

$$I5 May 2022 \qquad 17/24$$

CNA Workshop (Prague 2023)

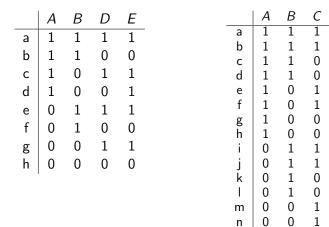
n exogenous factors

- Likewise, nothing in the logic behind the method of difference restricts its applicability to one or two exogenous (test) factors or to one endogenous factor.
- In principle, an open number of exogenous and endogenous factors can be configurationally modeled.
- There are only practical (mostly computational) constraints limiting the size and dimensionality of the data of in real-life discovery contexts.

< □ > < □ > < □ > < □ > < □ > < □ >

n exogenous factors

n exogenous factors



. ⊒ →

Ε

D

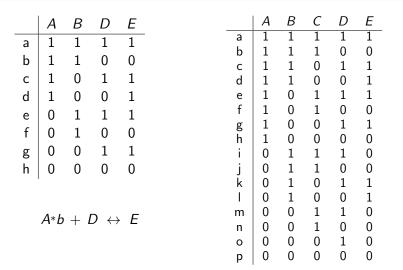
n

р

・ロト ・日下・ ・日下

n exogenous factors

n exogenous factors



 $A*D + B*c \leftrightarrow E = 0 < C$ 3) 15 May 2022 19/24

CNA Workshop (Prague 2023)

Three data types

• Configurational data need not only feature binary factors but may also involve factors with more than two values or values from the interval [0,1]:

	A	В	D	Ε		Α	В	D	Ε		A	В	D	Ε
а	1	1	1	1	а	2	1	1	1	а	0.1	0.2	1	0.8
b	1	1	0	0	b	3	1	3	0	b	0.4	0.2	0.4	0.5
с	1	0	1	1	с	1	2	1	1	с	0.2	0.4	1	1
d	1	0	0	1	d	1	0	0	1	d	0.4	0.4	0.8	1
е	0	1	1	1	е	0	1	2	1	е	0	0.4	1	0.9
f	0	1	0	0	f	0	1	0	0	f	0	0.2	0	0.7
g	0	0	1	1	g	3	0	1	1	g	0.3	0	1	0.4
h				0								0.4	0	0

< □ > < 同 > < 回 > < 回 > < 回 >

From the method of difference to CNA

- Configurational causal modeling using the Method of Difference quickly reaches computational limits.
- What is needed is an algorithm that mechanically identifies all MINUS-formulas that fit the analyzed data.
- → This is the problem to be solved by CNA:

The problem

Given data δ , **algorithmically** find all MINUS-formulas that fit δ .

< □ > < □ > < □ > < □ > < □ > < □ >

What does data fit mean?

Α	В	D	E	((A	*	7	B)	+	D)	\leftrightarrow	Ε
1	1	1	1	1			1		1		1
1	1	1	0	1			1		1		0
1	1	0	1	1			1		0		1
1	1	0	0	1			1		0		0
1	0	1	1	1			0		1		1
1	0	1	0	1			0		1		0
1	0	0	1	1			0		0		1
1	0	0	0	1			0		0		0
0	1	1	1	0			1		1		1
0	1	1	0	0			1		1		0
0	1	0	1	0			1		0		1
0	1	0	0	0			1		0		0
0	0	1	1	0			0		1		1
0	0	1	0	0			0		1		0
0	0	0	1	0			0		0		1
0	0	0	0	0			0		0		0

イロト イヨト イヨト イヨト

What does data fit mean?

Α	В	D	E	((A	*	7	B)	+	D)	\leftrightarrow	Ε
1	1	1	1	1		0	1		1		1
1	1	1	0	1		0	1		1		0
1	1	0	1	1		0	1		0		1
1	1	0	0	1		0	1		0		0
1	0	1	1	1		1	0		1		1
1	0	1	0	1		1	0		1		0
1	0	0	1	1		1	0		0		1
1	0	0	0	1		1	0		0		0
0	1	1	1	0		0	1		1		1
0	1	1	0	0		0	1		1		0
0	1	0	1	0		0	1		0		1
0	1	0	0	0		0	1		0		0
0	0	1	1	0		1	0		1		1
0	0	1	0	0		1	0		1		0
0	0	0	1	0		1	0		0		1
0	0	0	0	0		1	0		0		0
											□ ▶ ∢ ₫

Baumgartner

CNA Workshop (Prague 2023)

■ ▶ ▲ ■ ▶ ■ 夕へで 15 May 2022 22 / 24

What does data fit mean?

Α	B	D	E	((A	*	_	B)	+	D)	\leftrightarrow	Ε
1	1	1	1	1	0	0	1		1		1
1	1	1	0	1	0	0	1		1		0
1	1	0	1	1	0	0	1		0		1
1	1	0	0	1	0	0	1		0		0
1	0	1	1	1	1	1	0		1		1
1	0	1	0	1	1	1	0		1		0
1	0	0	1	1	1	1	0		0		1
1	0	0	0	1	1	1	0		0		0
0	1	1	1	0	0	0	1		1		1
0	1	1	0	0	0	0	1		1		0
0	1	0	1	0	0	0	1		0		1
0	1	0	0	0	0	0	1		0		0
0	0	1	1	0	0	1	0		1		1
0	0	1	0	0	0	1	0		1		0
0	0	0	1	0	0	1	0		0		1
0	0	0	0	0	0	1	0		0		0

イロト イヨト イヨト イヨト

What does data fit mean?

Α	В	D	E	((A	*	7	B)	+	D)	\leftrightarrow	Ε
1	1	1	1	1	0	0	1	1	1		1
1	1	1	0	1	0	0	1	1	1		0
1	1	0	1	1	0	0	1	0	0		1
1	1	0	0	1	0	0	1	0	0		0
1	0	1	1	1	1	1	0	1	1		1
1	0	1	0	1	1	1	0	1	1		0
1	0	0	1	1	1	1	0	1	0		1
1	0	0	0	1	1	1	0	1	0		0
0	1	1	1	0	0	0	1	1	1		1
0	1	1	0	0	0	0	1	1	1		0
0	1	0	1	0	0	0	1	0	0		1
0	1	0	0	0	0	0	1	0	0		0
0	0	1	1	0	0	1	0	1	1		1
0	0	1	0	0	0	1	0	1	1		0
0	0	0	1	0	0	1	0	0	0		1
0	0	0	0	0	0	1	0	0	0		0

イロト イヨト イヨト イヨト

What does data fit mean?

Α	В	D	E	((A	*	7	B)	+	D)	\leftrightarrow	Ε
1	1	1	1	1	0	0	1	1	1	1	1
1	1	1	0	1	0	0	1	1	1	0	0
1	1	0	1	1	0	0	1	0	0	0	1
1	1	0	0	1	0	0	1	0	0	1	0
1	0	1	1	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	0	1	1	0	0
1	0	0	1	1	1	1	0	1	0	1	1
1	0	0	0	1	1	1	0	1	0	0	0
0	1	1	1	0	0	0	1	1	1	1	1
0	1	1	0	0	0	0	1	1	1	0	0
0	1	0	1	0	0	0	1	0	0	0	1
0	1	0	0	0	0	0	1	0	0	1	0
0	0	1	1	0	0	1	0	1	1	1	1
0	0	1	0	0	0	1	0	1	1	0	0
0	0	0	1	0	0	1	0	0	0	0	1
0	0	0	0	0	0	1	0	0	0	1	0

イロト 不聞 トイヨト イヨト

What does data fit mean?

Α	B	D	E	((A	*	7	B)	+	D)	\leftrightarrow	Е					
1	1	1	1	1	0	0	1	1	1	1	1					
1	1	1	0	1	0	0	1	1	1	0	0					
1	1	0	1	1	0	0	1	0	0	0	1					
1	1	0	0	1	0	0	1	0	0	1	0		A	В	D	Ε
1	0	1	1	1	1	1	0	1	1	1	1	а	1	1	1	1
1	0	1	0	1	1	1	0	1	1	0	0	b	1	1	0	0
1	0	0	1	1	1	1	0	1	0	1	1	с	1	0	1	1
1	0	0	0	1	1	1	0	1	0	0	0	d	1	0	0	1
0	1	1	1	0	0	0	1	1	1	1	1	е	0	1	1	1
0	1	1	0	0	0	0	1	1	1	0	0	f	0	1	0	0
0	1	0	1	0	0	0	1	0	0	0	1	g	0	0	1	1
0	1	0	0	0	0	0	1	0	0	1	0	h	0	0	0	0
0	0	1	1	0	0	1	0	1	1	1	1		I			
0	0	1	0	0	0	1	0	1	1	0	0					
0	0	0	1	0	0	1	0	0	0	0	1					
0	0	0	0	0	0	1	0	0	0	1	0					
											□ ▶ ∢∂	5 • •	≡×	< ≣) I	

Baumgartner

CNA Workshop (Prague 2023)

15 May 2022 22 / 24

What does data fit mean?

Perfect data fit

A MINUS-formula Ψ fits data δ perfectly iff Ψ is true in exactly those cases recorded in δ .

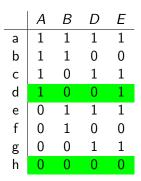
Non-perfect data fit

A MINUS-formula Ψ fits a data set δ to degree χ iff the configurations in which Ψ is true and the cases recorded in δ overlap to degree χ .

(日) (四) (日) (日) (日)

Difference-making pairs

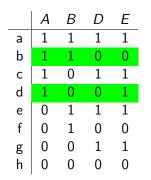
There is tight connection between causation and difference-making: for every factor value in a MINUS-formula there exists a difference-making pair of rows in ideal data.

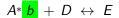


 $A * b + D \leftrightarrow E$

Difference-making pairs

There is tight connection between causation and difference-making: for every factor value in a MINUS-formula there exists a difference-making pair of rows in ideal data.





 $A*b + D \leftrightarrow E$

Difference-making pairs

There is tight connection between causation and difference-making: for every factor value in a MINUS-formula there exists a difference-making **pair** of rows in ideal data.

		Α	В	D 1 0 1 0 1 0	Ε
-	а	1	1	1	1
	b	1	1	0	0
	с	1	0	1	1
	d	1	0	0	1
	е	0	1	1	1
	f	0	1	0	0
	g	0	0	1	1
	h	0	0	0	0

Baumgartner, M. and M. Ambühl (2020).

Causal modeling with multi-value and fuzzy-set Coincidence Analysis. *Political Science Research and Methods 8*, 526–542.

Mill, J. S. (1843). *A System of Logic.* London: John W. Parker.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))