FGM implementation in Ansys Fluent 15.0

Application to Sandia flame D

Roberto Stella 14/12/2014

Case description

This tutorial explains how to correctly implement the Fluent 15.0 built in Flamelet Generated Manifolds method and be able to simulate premixed flames. In particular this tutorial focuses on the simulation of the Sandia flame D.

The jet fluid is a mixture of three parts air and one part CH4 by volume. The mixing rates are high enough that these flames burn as diffusion flames, with a single reaction zone near the stoichiometric mixture fraction and no indication of significant premixed reaction in the fuel-rich CH4/air mixtures. Flame D operates at a Reynolds number of 22400. The pilot is a lean mixture of C2H2, H2, air, CO2, and N2 with the equivalence ratio of 0.77.

Step-by-step guide to the simulation

Files needed

For the simulation you will need the mesh file "sandia-d.msh", the thermal properties database "thermo.db" and the chemical mechanism file "gri-3.0.che".

Starting of Fluent 15.0

In the Fluent launcher choose a "2D" dimension and leave the "Double Precision" checkbox unchecked. In "Working directory" browse the working path that you are using for the simulation.

Mesh import

When Fluent is opened import the mesh by clicking on File \rightarrow Read \rightarrow Mesh... Under the "Solution Setup" tree, in the "General" branch choose "Axisymmetric" under 2D space.

General		
Mesh		
Scale	Check	Report Quality
Display		
Solver		
Type Pressure-Based Density-Based	Velocity Fo	rmulation e e
Time Steady Transient	2D Space Planar Axisym	metric metric Swirl
Gravity		Units

Turbulence model setup

Select "Model" under the "Solution Setup" tree. Click on "Viscous-Laminar" and then click to "Edit…" then check the "k-e (2 equation)" checkbox and leave all the parameters as default.

Models	h	40	d	el	S
--------	---	----	---	----	---

Multiphase - Off	
Energy - Off	
Viscous - Laminar	
Radiation - Off	
Heat Exchanger - Off	
Species - Partially Premixed Combustion	
Inert - Off	
NOx - Off	
SOx - Off	
Soot - Off	
Decoupled Detailed Chemistry - Off	
Reactor Network - Off	
Discrete Phase - Off	
Solidification & Melting - Off	
Acoustics - Off	
<	>
•	

Model	Model Constants
 Inviscid Laminar Spalart-Allmaras (1 eqn) k-epsilon (2 eqn) k-omega (2 eqn) Transition k-kl-omega (3 eqn) Transition SST (4 eqn) Reynolds Stress (5 eqn) Scale-Adaptive Simulation (SAS) k-epsilon Model Standard RNG 	Cmu 0.09 C1-Epsilon 1.44 C2-Epsilon 1.92 TKE Prandtl Number 1
○ Realizable	User-Defined Functions
Near-Wall Treatment	
 Standard Wall Functions Scalable Wall Functions 	Prandtl and Schmidt Numbers
 Non-Equilibrium Wall Functions Enhanced Wall Treatment 	TKE Prandtl Number
OUser-Defined Wall Functions	none 🗸
Options	TDR Prandtl Number
Production Kato-Launder	none
Production Limiter	Turbulent Schmidt Number
	none v
OK	Cancel Help

Set up of the Flamelet Generated Manifold model Under the "Model" branch select "Species" and click on "Edit…"

Models
Models
Multiphase - Off
Energy - Off Viscous - Laminar
Radiation - Off
Heat Exchanger - Off
Discrete Phase - Off
Solidification & Melting - Off
Acoustics - Off
Edit

Now check "Partially Premixed Combustion". Set the operating pressure to 101325 Pa. Under "Options" select "Create Flamelet" and under "Flamelet Type" choose "Diffusion Flamelet"

Model	PDF Table Creation
 Off Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion Composition PDF Transport PDF Options Inlet Diffusion Liquid Micro-Mixing Premixed Model © C Equation Extended Coherent Flame Model G Equation 	Chemistry Boundary Control Flamelet Table Properties Premix State Relation Chemical Equilibrium Chemical Equilibr

To import the Thermodynamic Database file click on "Browse..." and select the "thermo.db" file that you should keep in the working directory.

To import the chemical mechanism click on "Import CHEMKIN Mechanism..."

Under "Gas-Phase CHEMKIN Mechanism File" browse to the "gri-3.0.che" file that you should keep in the working directory.

Under "Gas-Phase Thermodynamic Database File" browse again to the "thermo.db" file.

Material Name flamelet-mixture
Gas-Phase CHEMKIN
Gas-Phase CHEMKIN Mechanism File
C:\Users\Roberto\Dropbox\Politecnico\V Anno\Research Project\Sa Browse
Gas-Phase Thermodynamic Database File
C:\Users\Roberto\Dropbox\Politecnico\V Anno\Research Project\Sa Browse
Import Surface CHEMKIN Mechanism
Import Transport Property Database
Import Close Help

Now move to the "Boundary Tab" and set the value of the mole fractions of the species as seen in the following table. Remember to check "Mole Fraction" under "Specify species in".

Species	FUEL	OXIDIZER
02	0.1575	0.21
N2	0.5925	0.79
CH4	0.25	0

Set the fuel temperature to 294 K and the oxidizer one to 291 K.

Model	PDF Table Creation				
 Off Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion Composition PDF Transport 	Chemistry Boundary Species h2	Control Fla	Oxid	Properties Pr	remix
PDF Options	h	0	0		
Inlet Diffusion Liquid Micro-Mixing	0	0	0		
Premixed Model C Equation Extended Coherent Flame Model G Equation	Oz Oh Temperature Fuel (k) 294 Oxid (k) 291	0 Specify Spe	0.21	¥	
	OK Apply	/ Cancel	Help		

Leave the settings on the "Control" tab as default and move to the "Flamelet" tab.

Modify the "Number of Grid Points in Mixture Fraction Space" to 64 and the "Number of Grid Points in Reaction Progress Space" to 32. Modify the "Scalar Dissipation Step" to 1. Now click on "Calculate Flamelets"

Model	PDF Table Creation
 Off Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion Composition PDF Transport 	Chemistry Boundary Control Flamelet Table Properties Premix Flamelet Parameters Number of Grid Points in Mixture Fraction Space 64 Number of Grid Points in Reaction Progress Space 32
PDF Options Inlet Diffusion Liquid Micro-Mixing Premixed Model C Equation Extended Coherent Flame Model G Equation 	Initial Scalar Dissipation (1/s) 0.01 Scalar Dissipation Step (1/s) 1 Set Flamelet Parameters Calculate Flamelets Display Flamelets
	OK Apply Cancel Help

After the calculation is finished move to the "Table" tab. Select 21 for both "Number of Progress Variable Variance Points" and "Number of Mixture Fraction Variance Points". Modify to 10 the "Maximum Number of Species".

Model	PDF Table Creation
 Off Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion Composition PDF Transport 	Chemistry Boundary Control Flamelet Table Properties Premix Table Parameters Number of Mean Progress Variable Points 32
PDF Options Inlet Diffusion Liquid Micro-Mixing	Number of Progress Variable Variance Points 21 Number of Mixture Fraction Variance Points 21
Premixed Model C Equation Extended Coherent Flame Model G Equation	Maximum Number of Species 10
	OK Apply Cancel Help

Click on "Calculate PDF Table". When the calculations are finished move to the "Premix" Tab and under "Turbulence-Chemistry Interaction" select "Finite Rate".

Boundary Conditions

Under the "Solution Setup" tree select the "Boundary Conditions" branch. Select "Coflow", click "Edit…" and apply the momentum boundary conditions as shown in the figure below. Since "Coflow" is an oxidizer only velocity inlet the default species boundary conditions don't need to be modified.

Zone Name			
coflow			
Momentum Thermal Radiation Species	s DPM Multiphase U	s	
Velocity Specification Method	Magnitude, Normal to Boun	dary	¥
Reference Frame	Absolute		~
Velocity Magnitude (m/s)	0.9	constant	~
Supersonic/Initial Gauge Pressure (pascal)	0	constant	~
Turbulence	<u>ر</u>		
Specification Method	Intensity and Viscosity Ratio		-
	Turbulent Intensity (%	6) 10	Р
	Turbulent Viscosity Rat	io 10	P
ОК	Cancel Help		

Select "Jet", click "Edit..." and apply the momentum boundary conditions as shown in the figure below.

Zone Name				
jet				
Momentum Thermal Radiation Species	s DPM Multiphase U	DS		
Velocity Specification Method	Magnitude, Normal to Bour	ndary	~	
Reference Frame	Absolute		~	
Velocity Magnitude (m/s)	49.6	constant	~	
Supersonic/Initial Gauge Pressure (pascal)	0	constant	~	
Turbulence	, <u> </u>			
Specification Method Intensity and Hydraulic Diameter				
	Turbulent Intensity (%	6) 10	Ρ	
Hydraulic Diameter (m) 0.0072				
OK Cancel Help				

Since "Jet" is the fuel inlet it is necessary to modify the species boundary condition changing the mixture fraction value to 1 (corresponding to 100% fuel and 0% oxidizer).

Zone Name						
jet						
Momentum Thermal Radiation Species DPM Multiphase UDS						
Progress Variable	0	constant	~			
Progress Variable Variance	0	constant	~			
Mean Mixture Fraction	1	constant	~			
Mixture Fraction Variance	0	constant	~			
		-				
OK Cancel Help						

Select "Pilot", click "Edit..." and apply the momentum boundary conditions as shown in the figure below.

Zone Name				
pilot				
Momentum Thermal Radiation Species	s DPM Multiphase U	DS		
Velocity Specification Method	Magnitude, Normal to Bour	ndary	¥	
Reference Frame	Absolute		~	
Velocity Magnitude (m/s)	11.4	constant	¥	
Supersonic/Initial Gauge Pressure (pascal)	0	constant	¥	
Turbulence				
Specification Method	Intensity and Hydraulic Diam	eter v		
	Turbulent Intensity (%	6) 10	P	
	Hydraulic Diameter <mark>(</mark> n	n) 0.0165	P	
OK Cancel Help				

Since "Pilot" is the pilot flame it is necessary to modify the species boundary condition changing the mixture fraction value to 0.2755 (corresponding to 27,55% fuel, 72.45% air) and the progress variable value to 1 (meaning that the mixture is already burnt).

Zone Name						
pilot						
Momentum Thermal Radiation Species DPM Multiphase UDS						
Progress Variable	1	constant	~			
Progress Variable Variance	0	constant	v			
Mean Mixture Fraction	0.2755	constant	~			
Mixture Fraction Variance	0	constant	×			
OK Cancel Help						

Solution methods

Now select "Solution Methods" branch under the "Solution" tree. Under "Spatial discretization" modify "Gradient" to "Green-Gauss Cell Based" and select a first order approximation for "Turbulent Kinetic Energy" and "Turbulent Dissipation Rate" while a second order approximation for all the other variables.

Solution controls

Select "Solution Controls" branch under the "Solution" tree. Modify the Pressure Under-Relaxation Factor to 0.7 and the Momentum one to 0.3. Leave all the other values to default.

Solution initialization

Select "Solution Initialization" branch under the "Solution" tree. Check "Standard Initialization". Initialize the values as follows:

Axial Velocity: 0.9 m/s

Turbulent Kinetic Energy: 0.01215 m2/s2 Turbulent Dissipation Rate: 0.09 m2/s3 Progress Variable: 1 Leave all the other values to 0 then click on "Initialize".

Monitors

Select "Monitors" under the "Solution" tree. Select "Residuals" and click "Edit". Then set "Convergence Criterion" to "none".

Calculation

Select "Run Calculation" branch under the "Solution" tree. Modify the "Number of Iterations" to 2500. Click on "Calculate".

Solution

After the calculation is converged you should obtain a solution that is similar to the following:

Feb 19, 2015 ANSYS Fluent 15.0 (axi, dp, pbns, pdf10, ske)

