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This paper introduces the current machine learning approach to solving spatial modeling problems in the do-
main of landslide susceptibility assessment. The latter is introduced as a classification problem, having mul-
tiple (geological, morphological, environmental etc.) attributes and one referent landslide inventory map
from which to devise the classification rules. Three different machine learning algorithms were compared:
Support Vector Machines, Decision Trees and Logistic Regression. A specific area of the Fruška Gora Mountain
(Serbia) was selected to perform the entire modeling procedure, from attribute and referent data preparation/
processing, through the classifiers' implementation to the evaluation, carried out in terms of the model's perfor-
mance and agreement with the referent data. The experiments showed that Support Vector Machines outper-
formed the other proposed methods, and hence this algorithm was selected as the model of choice to be
compared with a common knowledge-driven method – the Analytical Hierarchy Process – to create a landslide
susceptibility map of the relevant area. The SVM classifier outperformed the AHP approach in all evaluation
metrics (κ index, area under ROC curve and false positive rate in stable ground class).
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1. Introduction

Natural hazards adversely affect humanity on different scales.
They occur at varying intervals and are of differing duration. They
have both social and economic consequences. Strategies for their
management ought to deal with not only existing hotspots (Nadim
et al., 2006), but also with potential new ones, by predicting their be-
havior, volume and severity prior to their occurrence. Of these, land-
slides, or mass movements of land are considered in this paper. Even
though they are often underestimated when compared to the effects
of related phenomena such as floods, earthquakes, volcanoes, storms
and so forth, landslides seem to be among the top seven natural haz-
ards (Aleotti and Chowdhury, 1999; Nadim et al., 2006). Lately, due to
the worldwide growing needs of urbanization and land exploitation
in unstable climatic conditions, there has been a significant growth
in interest in landslide assessment topics, resulting in frequent multi-
disciplinary case studies and raising the number of scholars per inves-
tigation (Gokceoglu and Sezer, 2009).

Landslide susceptibility (Varnes, 1984) is broadly confused with
landslide hazard, mainly because real hazard assessment appears to
be feasible only for limited areas with excellent data coverage
(Carrara and Pike, 2008). Nevertheless, the entire range of problems
is encountered in the landslide assessment framework, including
the quality of the input data, lack of historical evidence on landslide
occurrences, absence of triggering event analyses and model evalua-
tion, as well as interpretational difficulties on the scientist–decision
maker basis (Carrara and Pike, 2008).

In recent years a great variety of spatial data has become publicly
accessible in digital form, thus enabling the utilization of new data-
driven methods in processing and analyses. The emerging field of
computer science which studies the algorithms that learn from the
available data in order to perform processing tasks such as classifica-
tion, prediction or clustering is called machine learning (Mitchell,
1997). The basic concepts of machine learning and its applications
in spatially distributed data are given in Kanevski et al. (2009).

Landslide susceptibility has been illustrated in versatile tech-
niques in various case studies, yielding more or less reliable results
(Chacón et al., 2006), depending on the complexity of the terrain
and the suitability of the approach, (Bonham-Carter, 1994). The cen-
tral ideas of all those studies imply the processing of the input param-
eters into a single output model through the various weighting,
calculating and interpolating methods i.e. expert-based (heuristic)
approach, deterministic (physically-based) models and machine
learning techniques. Very detailed reviews of such examples can be
found in Chacón et al. (2006), Aleotti and Chowdhury (1999),
Brenning (2005, 2008), Guzzetti et al. (1999). All those attempts
came to a common conclusion; that the problematic dealt with in
the scope of landslide assessment tends to be non-linear, due to the
complexity of the geological environment, as well as the factors
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relating to the triggering itself (storms, earthquakes, erosion, human
influence, etc.). Most of those studies also signify the inevitable pres-
ence of spatial autocorrelation in every input attribute, which, if not
taken into consideration could lead to erroneous results (Brenning,
2005, 2008).

This research compares three different learning methods in the
task of landslide susceptibility mapping. After analyses were con-
ducted over the case study area, a Support Vector Machines method
was chosen to be compared with the common knowledge-driven
method — the Analytical Hierarchy Process. One of the foci was to ex-
amine the stability of the machine learning model in relation to the
size of the training set, as well as the generalization capabilities of in-
duced models, in order to demonstrate that fair susceptibility inter-
pretation is feasible from sparse (or “a low number of”) inputs, as
indicated in some earlier works (Yao et al., 2008).

A successful solution for susceptibility mapping with optimized al-
gorithms as proposed for this particular case study could be designed
to be used with adjacent terrains in order to automatically produce
the satisfactory landslide susceptibility map. The proposed approach
could serve different scales and levels of detail of Urban Planning or
Disaster Management affairs, in order to prevent or reduce the
landslide-related risk.

The structure of the paper is as follows: Section 2 defines the scope
of the research. Section 3 gives an insight into related works concern-
ing the usage of machine learning methods in landslide assessment. A
brief description of the theoretical foundations of the Support Vector
Machines approach used for landslide classification and the selected
knowledge-driven method is given in Section 4. In addition, it contains
a description of the proposed model evaluation metrics. Section 5 pro-
vides details of the experiments performed in the case study area in
northern Serbia. It describes the testing protocol and the analysis of
the experimental results. Section 6 concludes the paper.

2. Problem formulation

The main objective of this research is to examine the possibility of
automating the process of landslide susceptibility mapping by using
machine learning techniques. The desired automated procedure as-
sumes that after the initial acquisition of the necessary spatial data,
an expert is presented with a (possibly small) representative region
of the whole terrain. Such a scenario assumes a supervised learning
approach in which the expert performs mapping in the representa-
tive region and the map subsequently produced is used for training
the machine which would perform the mapping task in the rest of
the area.

Three different learning methods (Support Vector Machines —

SVM, Decision Trees — DT and Logistic Regression — LR) were tested
for their ability to perform the mapping task on a specified terrain.
After the selection of the method which performed the best, it is com-
pared to the common knowledge-driven approach (Analytical Hierar-
chy Process — AHP). Assuming that the input data (terrain attributes
and referent landslide map) are organized as raster sets, where each
grid element (pixel) represents a data instance at a certain point of
the terrain, the proposed approach leads to a classification task,
which places each pixel from the raster map into an appropriate land-
slide category using the terrain attributes associated with that pixel.

In this researchwewere partly faced with the problem of determin-
ing the number of training examples used to teach the machine — the
number of pixels processed by the expert. A good approach is to build
a sufficiently accurate model with a smaller number of training exam-
ples, thus leading to a reduced expert engagement. We can briefly for-
mulate the landslide classification problem.

Let P={x|x∈Rn} be the set of all possible pixels extracted from
the raster representation of a given terrain. Each pixel is represented
as an n-dimensional real vector where coordinate xi represents the
value of the i-th terrain attribute associated with the pixel x. Further,
let C={c1,c2,…,cl} be the set of l disjunctive, predefined landslide
susceptibility classes (as opposed to many other papers in the field,
in this case there are three classes of interest: stable ground, dormant
and active landslides). A function fc :P→C is called a classification if for
each xi∈P it holds that fc(xi)=cj whenever a pixel xi belongs to the
landslide susceptibility class cj. In practice, for a given terrain, one has
a limited set of m-labeled examples (xi,ci),xi∈Rn, ci∈C, i=1,…,m
(m being a reasonably small amount of instances). Labeled examples
form a training set for the classification problem at hand. The machine
learning approach tries tofind a function f̃c, which is a good approxima-
tion of a real, unknown function fc , using only the examples from the
training set and a specific learning method.

In Section 4, a brief theoretical background of Support Vector Ma-
chines and the Analytical Hierarchy Process is given. Decision trees
and Logistic Regression are explained in (Quinlan, 1993) and (Hosmer
and Lemeshow, 2000) respectively. All classification experiments were
performed within an open-source package,Weka 3.6 (Hall et al., 2009).

3. Related work

Pioneering the application of SVM in landslide susceptibility Yao
and Dai (2006) and Yao et al. (2008) compared single-class to two-
class (binary) SVM in the Hong Kong area. The authors demonstrated
how the latter provided better conditions for algorithm training and
testing, since it is clearly favorable to know where the landslides
exist and where they do not. The Study by Yuan and Zhang (2006)
regarded a specific type of landslide phenomena, the debris flows, by
comparing SVM and the fuzzy approach. Since it outperformed the
fuzzy method in the testing mode, SVM was considered appropriate
and more convenient for this kind of assessment in the area of interest
(Yunnan Province, China). As with SVM, Decision Trees are rather
novel in the landslide analysis framework, but some successful studies
have taken place recently (Saito et al., 2009; Yeon et al., 2010). Their
potential is more related to Expert Systems design, since most of the
DT techniques give an insight into particular conditions that are poten-
tially correlated with landslide occurrences (decomposing the tree to a
congregation of rules gives an insight into the attribute–landslide rela-
tionship). Logistic Regression on the other hand, has a longer tradition
in natural hazard assessment, and landslide susceptibility is no excep-
tion. It has been proven successful in numerous case studies (Falaschi
et al., 2009; Bai et al., 2010; Kanungo et al., 2006), but lately it has
been broadly challenged by other machine learning approaches.

Individual case studies point only to the specific merits or short-
comings of the models, so to illustrate the true value of the SVM, LR,
DT or any other method, comparative studies are mandatory (Carrara
and Pike, 2008). Few such contributions have been made. The first
study we will mention concerned a case study from the Ecuadorian
Andes (Brenning, 2005) which employed Logistic Regression, Deci-
sion Trees and SVM. The author emphasized the necessity of thorough
input data preparation, and pointed to the overoptimistic expecta-
tions for the machine learning techniques (when training on one
and testing on adjacent area, the result yields much poorer perfor-
mance). Finally, very recent comparative research (Yilmaz, 2009)
appeared in the field, with a very complete perspective on the land-
slide assessment methodology. Various modeling methods have
been considered and compared, including ANN and SVM techniques.
The study shows that several methods are very precise and efficient.

4. Methods

4.1. Support Vector Machines

Originally, SVM is a binary classifier (instances could be classified
to only one of the two classes), but one can easily transform n-class
problems into the sequence of n (one-versus-all) or n(n−1)/2
(one-versus-one) binary classification tasks (Belousov et al., 2002).
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The basic variant of the algorithm attempts to generate a separating
hyper-plane in the original space of n coordinates (xi parameters in
vector x) between the points of two distinct classes. The SVM differs
from other separating hyper-plane approaches in the way the
hyper-plane is constructed from the training set points (Fig. 1a).
The algorithm seeks a maximum margin of separation between the
classes (M2NM1 in Fig. 1a) and constructs a classification hyper-
plane in the middle of the maximum margin (f(x) in Fig. 1a). If a
point x∈Rn is above the hyper-plane, it is classified as +1 (squares
in Fig. 1a), otherwise it is −1 (circles in Fig. 1a). The classification
function is therefore given with Eq. (1) in which y represents the
class label,w and b are the parameters of the hyper-plane and sgn de-
notes the sign function. It has been proven that a maximum-margin
classifier has the best generalization capabilities on unseen data
when compared to other possible separating hyper-plane solutions
(Vapnik, 1995).

y ¼ sgn f xð Þð Þ ¼ sgn ∑
n

i¼1
wixi þ b

 !
¼ sgn w · x þ bð Þ ð1Þ

Real classification datasets are noisy and linearly non-separable.
Hence, the algorithm for finding f(x) allows some points to be on
the wrong side of the hyper-plane (Fig. 1b). The soft-margin classifier
is therefore constructed to balance between the generalization capac-
ity (wide margin width) and the empirical error (sum of training er-
rors ek) of the classification model. If one allows many erroneous
points, the model becomes less complex but cannot capture the
class distributions (poor generalization capacity). In addition, if
there are very few errors, the model becomes very complex and
once again its generalization capacity is small. SVM training intro-
duces a parameter CN0 which controls this trade-off (larger values
of C produce more complex models).

The solution for optimal hyper-planeweightsw can be expressed as
a linear combination of training points w ¼ ∑

m

i¼1

αiyixi ; i ¼ 1;…m .
Eq. (1) now becomes:

f xð Þ ¼ sgn∑
m

i¼1
αiyi xi · xð Þ þ b ð2Þ
Fig. 1. a) Maximum-margin classifier f(x) separating circles from squares in R2; b) Soft-mar
d) Mapping original input space into feature space of higher dimension (R2). Classes becom
An interesting property of the optimal hyper-plane is that many αi

are equal to zero, and hence the solution (2) depends only on the sub-
set of training points called support vectors — these are the points
that contain sufficient information about classes.

In order to cope with the non-linearity of the classification prob-
lem, the SVM approach goes a step further. One can define the map-
ping of examples to a so-called feature space of very high
dimension: ϕ : Rn→Rd; n≪d i.e. x→ϕ xð Þ. The basic idea of this
mapping into high dimensional space is to transform the non-linear
case into a linear one as illustrated in Fig. 1c,d (where R1 inseparable
case becomes separable in R2) and then to use the linear algorithm
that has already been mentioned. In such space the dot-product
from Eq. (2) transforms into ϕ xið Þ·ϕ xð Þ. Certain classes of functions
called kernels exist for which k x; yð Þ ¼ ϕ xð Þ·ϕ yð Þ holds, meaning
that they represent dot-products in some high dimensional spaces
(feature spaces), yet could be easily computed into the original
space. The most popular kernels used in SVM classification tasks are
polynomial kernels and Radial Basis Function (RBF), also called
Gaussian kernels. By using some of these kernels Eq. (2) becomes:

f xð Þ ¼ sgn∑
m

i¼1
αiyik xi; xð Þ þ b ð3Þ

In this paper a Gaussian kernel Eq. (4) was used to cope with the
non-linear nature of the problem. It initially gave encouraging results
and was included in the further optimization procedure described in
Section 5.3.

k x; yð Þ ¼ exp −γjjx−yjj2
� �

ð4Þ

In order to achieve the numerical stability of the SVM learning
method, we scaled both training and test sets in all our experiments
by using linear transformation of inputs (each attribute value is divid-
ed by the corresponding maximum value from the training set).
These sets were used for other compared methods, too.

A more detailed review of SVM algorithm for pattern classification
can be found in Burges (1998) and Kecman (2005). Kernel methods
are thoroughly described in Cristiani and Shawe-Taylor (2000).
gin classifier allows some points to be misclassified; c) Linearly inseparable case in R1;
e linearly separable after the mapping.
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4.2. Analytical Hierarchy Process

One widespread knowledge-driven method was proposed, in
order to challenge the SVM-driven solution. It involved heuristic
multi-criteria analyses, which required weighting and a ranging of
input data in a somewhat subjective but fast and efficient manner. At-
tributes Ai were first reclassified by natural breaks cutoffs and ranged
to appropriate values (0–100). Each input attribute was weighted
(Wi) according to its importance for the landsliding process, as judged
by several studies (Komac, 2006; Voženílek, 2000). Criteria quantifi-
cation was performed through the Analytical Hierarchy Process
(AHP) (Saaty, 1980) and final weightsWi were embedded into an ad-
ditive function L, as indicated in Eq. (5), in a GIS environment, retriev-
ing the continual AHP-driven raster model of landslide susceptibility.
In order to evaluate its performance against the referent map, this re-
sult needed to be reclassified in the same fashion as the reference. For
this purpose the most convenient method was a 3-fold logarithmic
cutoffs selection, which delivered classification intervals in respect
of the referent map.

L ¼ ∑
12

i¼1
WiAi ð5Þ

4.3. Model evaluation metrics

The quality of classification could be simply estimated as the rela-
tion between correctly and incorrectly classified instances, but the
problem of proper evaluation becomes more complex (Frattini et al.,
2010), and requires more sophisticated solutions, and in this paper
two such solutions were considered.

The first involved Receiver Operating Characteristics (ROC), which
is a cut-off independent performance estimator (Fielding and Bell,
1997). It involves the inspection of False Positives — FP (misclassified
landslide instances — classifier labels pixel as class A, expert dis-
agrees) and False Negatives — FN (misclassified non-landslide
instances — expert labels pixel as A, classifier disagrees) inspec-
tion. ROC values are created by plotting the cumulative rates of FP
(sensitivity) versus rates of FN (specificity) for every model, resulting
in a set of ROC curves. The performance is evaluated by the Area
Under the Curve (AUC) relative to the entire plot area, so that an
AUC equal to 1 has the best performance, while an AUC as low as
0.5 results in a very poor performance (Frattini et al., 2010).

The second method concerns the agreement coefficient, also
called the κ-index, which represents the measure of agreement be-
tween compared entities, rather than the measure of classification
quality (Landis and Koch, 1977). It is quite convenient for the map
comparisons if an equal number of classes applies (Bonham-Carter,
1994), which was the case in this research. The idea of κ is to remove
the effect of the random agreement between the two experts (here,
between classifier-driven and AHP-driven maps on the one hand
and referent landslide map on the other). The Obtained index ranges
from −1 for the complete absence of agreement to +1 for the abso-
lute agreement. Zero values suggest that the agreement is no different
from the original odds of having coinciding classes between two
maps.

Based on Landis and Koch (1977) the κ-index, values falling with-
in a range of 0.61–0.81 are categorized as substantial, and values
higher than 0.81 are considered as nearly perfect.

5. Experiments

5.1. Case study area

The study area encompasses the NW slopes of the Fruška Gora
Mountain, in the vicinity of Novi Sad, Serbia (Fig. 2). The site (N
45°09′20″, E 19°32′34″–N 45°12′25″, E 19°37′46″) spreads over ap-
proximately 100 km2 of hilly landscape, but with interesting dynam-
ics and an abundance of landslide occurrences.

The geological setting of the entire mountain reveals a zonal com-
position caused by the complex E–W trended horst-anticline. The
typical succession (Pavlović et al., 2005) starts with Paleozoic meta-
morphic rocks in the anticline base, encompassing the ground above
300 m and underlying all younger formations. Triassic basal sedi-
ments (conglomerates and sandstones gradually shifting toward the
limestones) imply localized subsidence in the relief at the time of
the basin's formation. The closing of that basin during the Jurassic–
Cretaceous, left typical oceanic crust evidence (ultra-mafic unit) as
well as gulf limestone sequences. The Tertiary is chiefly represented
by marine sediments, gaining more carbonate components as the
basin turned more limnic during the late Neogene. The most wide-
spread Quaternary unit is loess, which covers the lower landscape to-
ward the Danube on the north.

In geotechnical practice, it is believed that the superficial dynam-
ics directly depend on geological background, meaning that the rocks'
behavior under agencies of different processes yields diverse geody-
namic outcomes (Janjić, 1962). Geomorphological evidence supports
these expectations for our relatively small study area (Fig. 2), where
slope stability can be generalized into several scenarios (Fig. 3). The
higher ground, chiefly composed of metamorphic rocks, is mostly
shaped by fluvial and slope processes, where shallow valleys and
gullies are cut into the bedrock, forming a dense drainage pattern. Be-
cause they are not severely tectonized, moderately inclined and
mostly vegetated, the dominating slope processes on the flanks of
these rocky valleys are screes, minor rockfalls and minor shallow
landslides (Fig. 3a). The middle plateau (Fig. 2) is formed of carbonate
and clastic rocks and has insufficient thickness to develop karstifica-
tion, so the fluvial forms still predominate. However, the slope pro-
cesses are better developed, especially in Miocene–Pliocene
marlstones and clays, where deep-seated landslides (slips up to 10–
20 m in depth) are hosted (Fig. 3b), particularly on the steeper slopes
(slopeN20°). The morphology of the lowest ground that flattens to-
ward the north is governed by the fluvial dynamics of the Danube.
It is represented by sequences of river terraces, inundation plains
and the alluvial fans of smaller tributaries. This is where the loess for-
mations are facing the river as relatively steep cliffs. In spite of the
general stability of loess, landslides on the cliff faces are quite com-
mon along the riverbank. The latter is caused by surges of groundwa-
ter that locally communicate through the bedrock (Fig. 3c), keeping
the loess units in unfavorable conditions (saturation and suffosion).
Moreover, loess usually consists of overlaying clays and marls that
are likely hosting the fossil landslides and seizing the loess slabs
above them (Fig. 3c).

It seems apparent that the instabilities are generally driven by
geological, geomorphometric, and environmental attributes (such as
lithology, elevation, slope angle, land cover and so forth) which was
further elaborated in this study.

5.2. Input datasets

Being a non-linear classification problem, landslide susceptibility
investigation fits the description of the problematic addressed in pre-
vious passages. It has already been indicated that conventional tech-
niques for this type of research involve the use of a modeling
method with an input dataset of important terrain attributes, which
are being selected according to the data availability and the signifi-
cance of data in relation to the problem at question. Although a ma-
jority of researchers use all available data and measure their
statistical dependence against landslide occurrences prior to their im-
plementation, it is suggested that the input attributes are chosen
more cautiously, due to their temporal durability and scale constric-
tions. Namely, it is considered that in landslide susceptibility analysis,



Fig. 2. Geographical location (GK grid, zone 7) and geological setting of the study area (Fruška Gora Mountain, Serbia). Legend: Pz — Paleozoic low grade metamorphic rocks (phyl-
lite, greenschists), Se — ultramafic rocks (serpentinite of Jurassic age), M1 — lower Miocene limestone, marlstone, sandstone and sand, M2 — upper Miocene organic limestone and
marl, Pl — Pliocene marl and clay, l — loess, dl — diluvium cover, a′ — terrace sediments (gravel and sand), a — alluvium deposits (gravel and sand).
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constant variables (regarding the time scale of the landsliding pro-
cess) should be preferred, meaning that attributes such as land use,
climate data, pore-water pressure data and others that have distinct
annual or even diurnal variations, should be used with caution
(Ohlemacher, 2007).

Thematic layers were acquired from different resources, entailing
different levels of generalization and different scales, and subsequently
compiled to an optimal 30 m raster cell resolution. Their assemblage
represents our input dataset, first prepared by ArcGIS and SAGA GIS
Fig. 3. Schematic cross-sections of typical slope instability scenarios over the study area: a) sh
c) landslide in saturated loess (groundwater percolates from the porous bedrock toward loess
1 — phylitte/greenschist (Pz), 2— limestone (calcarenite) and marlstone (M1), 3— gravelly sa
cover (Q); vertical and horizontal scale are the same.
packages (Böhner et al., 2006) to be finally converted to ASCII files
(to commute with machine learning software in absence of fully inte-
grated modules). The descriptions of used input data, their spatial res-
olution and sources are given in Table 1. The general statistics for all
attribute layers and information gain ranking (Quinlan, 1993) based
on overall terrain data are shown in Table 2. The information gain rank-
ing bears out the usage of all three different sources of input data: to-
pographic attributes — DEM, lithology — geological map, and NDVI —
LANDSAT imagery.
allow landslide in the diluvium cover on the valley side, b) deep-seated landslide in clay,
as clay layer wedges down) d) loess slabs seized by reactivated fossil landslide. Legend:

nd (M1), 4—marl (M2), 5 — sandy clay (Pl), 6 — loess with loam layers (Q), 7 — diluvium

image of Fig.�2
image of Fig.�3


Table 1
Raster thematic maps of input dataset.

Spatial data attributes (notation) Source, scale/resolution Short description

Elevation (A1) Topo-maps, 1:25,000 DEM of the terrain surface
Slope (A2) DEM, 30 m Angle of the slope inclination
Aspect (A3) DEM, 30 m Exposition of the slope
Slope length (A4) DEM, 30 m Length factor of the slope
Topographic wetness index (A5) DEM, 30 m Ratio of contributing area a and tg (slope)
Plan curvature (A6) DEM, 30 m Index of concavity parallel to the slope
Profile curvature (A7) DEM, 30 m Index of concavity perpendicular to slope
Distance from stream (A8) DEM, 30 m Buffer of drainage network
Lithology⁎ (A9) Geo-map, 1:50,000 Rock units
Distance from fault (A10) Geo-map, 1:50,000 Buffer of structures
Distance from geo-boundary (A11) Geo-map, 1:50,000 Buffer of boundaries between rock units
NDVI (A12) Landsat image, 30 m Interpretation of vegetation, water bodies and bare soil, based on NDVI

⁎ To avoid subjective quantification of nominal classes, this attribute was actually isolated into n dummy variables, giving n-bit class codes for class units, where n is the number
of classes in the attribute (e.g. limestone — class 3 in lithology is coded as 00100000000).
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Topographic data were obtained from the standard topographic
maps of Serbia at the scale 1:25,000, where contour lines generated
from a conventional photogrammetric restitution are given, with
the equidistance of 10 m. For the generation of the Digital Elevation
Model (DEM), these contour lines were first digitized, then decom-
posed to point data, interpolated by triangulation, and converted to
raster format with 30 m cell resolution. Even though topographic
maps with a given scale are suitable for DEM's productions with dens-
er resolutions (Carrara et al., 1997), a DEM resolution of 30 m was
chosen for two reasons; as the proper DEM resolution for regional
landslide modeling (Gruber et al., 2009) and as the adequate support
grid size compatible with other data sources used in this study, such
as a geological map to the scale 1:50,000 and 30 m Landsat imagery.
All DEM-related geomorphometric and hydrological thematic maps
kept the same (30 m) resolution.

Within the framework of The Vojvodina Province governmental
project on Geological conditions of rational exploitation of the Fruška
Gora Mountain area, completed in 2005 by the expert team of the Fac-
ulty of Mining and Geology of Belgrade University, a set of different
thematic maps was generated for the entire mountain area, including
geological, geomorphological, photogeological, pedological, seismo-
logical etc. In this research some of those resources were utilized
thanks to the courtesy of the Faculty of Mining and Geology.

Geological data were obtained from the above mentioned digital
Geological map at 1:50,000 scale. This map was compiled from a ter-
rain Geological map at 1:25,000 and the Basic Geological map of Ser-
bia at the scale of 1:100,000. Since it is not formational but
chronostratigraphic, the map was simplified even further for the pur-
pose of our case study (it contained many rock units of similar phys-
ical properties, which could be a drawback for the analysis, so the
simplification was governed toward formational criteria). Therefore,
Table 2
General statistics of attribute layers.

Terrain attribute (unit) Maximum value Minimum value

Elevation (m) 523.19 79.83
Slope (°) 40.16 0.00
Aspect (°) 359.99 −1.00
Slope length (m) 6456.41 0.00
Topographic wetness index 22.49 7.56
Plan curvature 3.3725 −4.0694
Profile curvature 4.0607 −2.6968
Distance from stream (m) 1225.60 0.00
Lithology⁎ ⁎ ⁎

Distance from fault (m) 1672.75 0.00
Distance from geo-boundary (m) 1465.09 0.00
NDVI 0.56 −0.75

⁎ Nominal attribute.
the generalization to a raster map with 30 m resolution was
justifiable.

The photogeological map (1:50,000) represents the coupled geo-
morphological and structural map, that stresses the forms of the
most current geological processes at play. It is compiled by adopting
basic geomorphological units and appending the heuristic (Remote-
sensing-based) structural and stability interpretation. The latter was
performed as an expert-based analysis of 30 m Landsat TM imagery
and auxiliary derivates (enhancements and processed images), as
well as orthorectified aerial photographs at 1:33,000 scale. In this re-
search, the emphasis was on utilizing the stability analysis, so only
that part was extracted from the photogeological map. In this man-
ner, the Landslide reference raster map at 30 m resolution was
obtained (landslide inventory). This map reveals the stability of the
landscape by distinguishing several classes of landsliding processes,
chiefly dormant and active landslide scarps (Fig. 4a). According to
the adopted classification (Varnes, 1984), landslide instances fell
into the category of rotational and translational type of slides, while
other, minor occurrences of flows and falls were not taken into con-
sideration. The map depicted the distribution of classes into the fol-
lowing categories: 3.6% active slides, 5.6% dormant slides and the
remaining 90.8% conditionally stable ground.

Environmental information particularly regarded the vegetation
cover, due to possible remediation that some vegetation types can
provide for shallow landslidng (the influence of root cohesion, mois-
ture retention). There are numerous vegetation indices proposed, to
estimate biomass and delineate different types of vegetation apart
from bare soil, rock, wetlands and artificial surfaces (Glenn et al.,
2008). After experimenting with several indices we acknowledged
the Normalized Difference Vegetation Index (NDVI), which basically
delimits the chlorophyll spectra. For this purpose, 30 m Landsat TM
Mean value Standard deviation Info. gain ranking

241.64 94.61 1
11.77 6.62 5
173.26 116.47 10
103.77 152.19 11
11.51 2.83 4
0.0085 0.0085 9
0.0089 0.4060 8
319.59 224.89 6
⁎ ⁎ 2
309.85 259.11 7
306.32 295.45 12
0.17 0.21 3



Fig. 4. Referent landslide inventory map a) and landslide susceptibility models of the balanced training set experiments: RS-B SVM10% Support Vector Machine model b); RS-B
LR10% Logistic Regression model c); RS-B DT10% Decision Tree model d).
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satellite images were used, particularly in the visible and near-
infrared bands.
5.3. Experimental results

In our problem setting we performed two groups of experiments
concerning the spatial distribution of training and test data: a random
training subset uniformly distributed over the whole case study area
(RS) and a train-test split derived from two independent, neighboring
parts of the whole case study area (NS).

The RS group consisted of two different experiments concerning
the choice of training points: the first assumed usage of all points in
the random sample (A), while the second used a balanced approach
in which the number of non-landslide points is equal to the sum of
landslide points (B). Both RS-A and RS-B were performed in three dif-
ferent iterations in which a random subset consisted of 5% (6156),
Table 3
Comparison of the models and the referent landslide map (unbalanced training set).

Model κ-index AUC FP0

SVM5% 0.57 0.79 0.4
LR5% 0.08 0.86 0.94
DT5% 0.42 0.76 0.56
SVM10% 0.67 0.82 0.32
LR10% 0.08 0.86 0.94
DT10% 0.42 0.76 0.56
SVM15% 0.73 0.84 0.32
LR15% 0.06 0.86 0.96
DT15% 0.54 0.80 0.43
10% (12,313) and 15% (18,496) of points from the whole case study
area.

In RS-A, sampling instances were selected randomly, but equally
spread over the original area, and they contained a referent class pro-
portion similar to the original landslide model (3.6% of active land-
slides, 5.6% of dormant landslides, and 90.8% of conditionally stable
ground).

In order to illustrate the RS-A experimenting procedure, we will
describe the course of the RS-A (5%) experiment, while the remaining
two are completely analog. The negative effects of randomization
(poor estimate of model variance) were minimized by creating 20 dif-
ferent random splits, each containing 5% data points for training and
95% for the test set. It is obvious that these splits are spatially overlap-
ping to some degree, but full separation would not be feasible since
some values of many attributes would appear only in the test set.

Since there is a lack of information in most related papers con-
cerning the adjustment of SVM learning parameters (Brenning,
Table 4
Comparison of the models and the referent landslide map (balanced training set).

Model κ-index AUC FP0

SVM5% 0.38 0.85 0.11
LR5% 0.25 0.85 0.23
DT5% 0.28 0.82 0.18
SVM10% 0.42 0.89 0.08
LR10% 0.25 0.85 0.24
DT10% 0.32 0.82 0.17
SVM15% 0.43 0.90 0.06
LR15% 0.23 0.86 0.20
DT15% 0.34 0.85 0.16

image of Fig.�4


Table 5
AHP-driven weights Wi of input attributes Ai in respect with Eq. (5).

Ai A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Wi (%) 16.9 19.9 3.3 3.4 8.0 2.0 1.2 6.0 21.8 1.0 5.4 11.1

*Attribute indexes i are given in the same order as in Tables 1 and 2.
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2005; Yilmaz, 2009), a procedure of their estimation was conducted.
The parameter estimation focused on the penalty factor C and Gauss-
ian kernel width γ. Parameters C and γ took many different values
(C={1, 10, 100, 1000, 10,000} and γ={0.1, 0.5, 1, 2, 4}). For each
combination of (C, γ) a 10-fold cross-validation procedure was per-
formed on a particular training set and the evaluation measures (κ-
index and AUC) were averaged and recorded for each combination
of (C, γ). The results showed that in all 20 splits of the RS-A (5%) ex-
periment, optimal C and γ were the same (100, 4). These values
turned optimal for the RS-A (10% and 15%) experiments as well.

Given the optimal parameters, the SVM classifier was trained over
the entire particular training set and tested over the related test set.
The evaluation measures included κ-index, AUC and the false posi-
tives rate for non-landslide class (FP0). The above procedure was re-
peated 20 times for each train-test split and the final measures for
the experiment were averaged over all 20 splits. The same evaluation
procedure was repeated for DT and LR and the results are given in
Table 3.

When the number of training points increases, the SVM and DT
improve their performance on the κ-index and AUC, while the LR per-
formance remains the same. Concerning the κ-index, the SVM signif-
icantly outperformed other models, followed by the DT and LR
respectively (very low κ-index for LR). The LR yielded the best AUC
when compared to the other two methods, but the SVM came close
to the LR when the number of training points increased (0.84 for
the SVM compared to 0.86 for the LR). Such a big discrepancy be-
tween the κ-index and the AUC in the case of the LR can be explained
by understanding that in the non-binary classification setting
reported, the AUC represents the weighted sum of class AUCs calcu-
lated in a standard binary manner (a particular class against all
others) where the weights represent class proportions (Fawcett,
2006). Since our dataset is highly unbalanced, favoring the non-
landslide class, we recorded a false positives rate in the dominant
class (column three in Table 3). One can see that the LR exhibits ex-
tremely high FP0 when compared to other methods. From the risk as-
sessment point of view this finding completely eliminates the LR as a
model of choice since one does not want a landslide terrain to be clas-
sified as stable ground. Therefore, we decided to perform another set
Fig. 5. AHP landslide susceptibility model a); NS SVM10% model with t
of RS-B experiments, in which each particular training set had a bal-
anced nature (an equal number of stable and non-stable points). In
fact, each training set for RS-B is obtained from the corresponding
RS-A set by retaining all landslide points and selecting an equal num-
ber of stable points that are spatially uniformly distributed over the
whole area. In RS-B experiments the testing protocol remained the
same and the results obtained are given in Table 4 (the optimal
SVM parameters changed to C=10 and γ=4).

Generally, the ranking of methods remained similar except the
SVM exhibited the best performance in both the κ-index and the
AUC for all training set sizes. The biggest gain from the balanced sam-
pling was achieved by the LR method where the AUC remained the
same, but the κ-index increased due to a significant decrease in FP0.
The SVM and DT methods increased their AUC following the trend
of decreasing FP0, but their κ-index decreased due to the increase in
the number of stable ground points misclassified as landslides. We
believe that this property of these models is more desirable in the ap-
plication of risk assessment. Furthermore, in order to visualize the re-
sults, we retrieved the classification model from RS-B (10%) for the
split which had its evaluation measures closest to the average values
given in Table 4 (shaded rows). This classifier was then applied to the
entire original dataset (all 100%), as it was being remapped into sus-
ceptibility maps (Fig. 4b,c,d).

A visual impression of those maps supplements the figures from
Table 5, which are in favor of the SVM over the DT and LR models. The
RS-B SVM map in particular, (Fig. 4b) is the most realistic in following
trends of landslide scarps distribution as depicted by the expert
(Fig. 4a), while the other two models somewhat disperse either of
two landslide classes (active and dormant landslides). It could therefore
be speculated that some further generalization (post-processing filter-
ing) could improve the mapping accuracy to some extent.

In the NS experiment (Fig. 5b) the area under consideration was
divided in two separate, neighboring parts, where the training part
occupied approximately one third (nearly 41,000 points) of the
whole area (123,134 points). The spatial division was made in order
to produce the training set in which all lithological classes will be pre-
sented in the training area. From Tables 3 and 4 one can conclude that
the SVM is the best performing model and hence it was tested against
the AHPmethod (AHP-driven weightsWi of the input attributes Ai are
given in Table 5) on the neighboring area. A final, balanced training
set was obtained by keeping all landslide points and an equal number
of stable ground points which were uniformly distributed over the
training area. The comparison results are given in Table 6 and the
generated landslide map is shown in Fig. 5.

The proposed SVM approach outperformed the AHP (Fig. 5) in all
performance measures but the results were significantly weaker in
raining area represented as a referent landslide inventory map b).

image of Fig.�5


Table 6
Comparison of the models and the referent landslide map for neighboring terrain test
set.

Model κ-index AUC FP0

AHP 0.15 0.59 0.73
SVM10% 0.17 0.71 0.39
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comparison to the RS experiments. This finding was expected since
the applied classification model was built on a different terrain to
the test data, which probably came from a different distribution of
input parameters (Brenning, 2005).

Finally, we comment on the strengths and weaknesses of the SVM
model. Support Vector Machines do not need any feature selection
technique as opposed to some other methods such as Decision
Trees. This fact enables richer data representation for the input vec-
tors representing terrain pixels. This aspect of the research is left to
future work. In addition, since the solution for the SVM separating
hyper-plane is found from the convex quadratic programming opti-
mization problem, it is guaranteed that the solution is globally opti-
mal. Therefore, the SVM is a good replacement for Artificial Neural
Networks which are usually stuck at local optima and are very diffi-
cult to train. On the other hand, the SVM is not an interpretable
model like the Decision Trees, and hence could not be rewritten in
the form of expert rules. When compared to Logistic Regression,
they are muchmore memory and time consuming during the training
phase, but that is probably not of great importance for the task of
landslide mapping.
6. Conclusions

In this research landslide susceptibility mapping was regarded as a
classification task in the input space of DEM, geological and Landsat
imagery derived attributes. Terrain pixels (30 m resolution) were
classified into three categories: stable ground, dormant and active
landslides. Three different learning techniques which learn from ex-
pertly labeled data were compared: Support Vector Machines, Logis-
tic Regression and Decision Trees. Two different sampling strategies
were conducted in order to create train-test splits for the evaluation
of chosen classifiers. The first approach randomly sampled a certain
number of terrain pixels from the whole area, retaining the uniform
spatial distribution of the selected training points. The second ap-
proach divided the whole area into two adjacent parts and then se-
lected from the first part, all landslides points and an equal number
of stable ground points to form the training set. While, in the first
sampling approach, we tested maximal possibilities of classification
models, the second scenario had a very important practical implication
— is it possible to automate the creation of landslide susceptibility
maps, given the appropriate expert processed data on a neighboring
terrain?

After conducting experiments based on the first sampling ap-
proach, the Support Vector Machines turned to be the model of
choice, outperforming other competitors in all evaluation measures
(the κ-index and the area under the ROC curve). In addition, the
SVM achieved the lowest false positives rate for the stable ground
class which is a very important property for risk assessment
applications.

When comparing the SVM classifier to a common expert-based
approach (the Analytical Hierarchy Process) in the mapping task on
a neighboring terrain, the former achieved better performance in
terms of all evaluation measures than the latter. However, generated
maps suggest that much more has to be done to put the automated
SVM procedure into operative work. Two possible directions in our
future work would be to construct a new set of input features repre-
senting terrain pixels, which will include the available information
from neighboring points, and to construct a new SVM kernel, other
than Gaussian, to incorporate available domain knowledge.
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