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Abstract
One of the most fundamental approaches to learn and understand from any type of data 
is by organizing it into meaningful groups (or clusters) and then analyzing them, which 
is a process known as cluster analysis. During this process of grouping, proximity meas-
ures play a significant role in deciding the similarity level of two objects. Moreover, before 
applying any learning algorithm on a dataset, different aspects related to preprocessing 
such as dealing with the sparsity of data, leveraging the correlation among features and 
normalizing the scales of different features are required to be considered. In this study, 
various proximity measures have been discussed and analyzed from the aforementioned 
aspects. In addition, a theoretical procedure for selecting a proximity measure for cluster-
ing purpose is proposed. This procedure can also be used in the process of designing a new 
proximity measure. Second, clustering algorithms of different categories have been over-
viewed and experimentally compared for various datasets of different domains. The data-
sets have been chosen in such a way that they range from a very low number of dimensions 
to a very high number of dimensions. Finally, the effect of using different proximity meas-
ures is analyzed in partitional and hierarchical clustering techniques based on experiments.

Keywords Unsupervised learning · Hierarchical clustering · Partitional clustering · 
Proximity measures

1 Introduction

Clustering is one of the most essential techniques applied across a wide range of domains 
such as in image segmentation, text mining, market research and finance. This technique 
segregates a collection of data points into separate groups (clusters) for “maximizing 
intraclass similarity and minimizing interclass similarity” (Han et  al. 2011). Thus, all 
the similar points are grouped into a cluster and the clusters themselves are dissimilar 
to each other. This partitioning process is performed using a certain proximity measure, 
density measure and other similar measures. Unlike the process of classification which 
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requires labels for data points, clustering does not require the knowledge of labels to 
recognize patterns in a given dataset. This is considerably significant, because in many 
situations it may either be tedious or expensive to gather the labeling information for a 
dataset (such as in the case of images and web documents etc.). The broad categories 
of clustering methods are as follows: hierarchical, partitional, density-based, grid-based 
and model-based. K-means is a widely used partitional clustering algorithm in which 
the sum of squares of distances between the center of a cluster and data points is mini-
mized to obtain an optimal data partition of a given dataset. Each data point in this par-
titioning belongs exactly to one cluster.

However, assigning a data point to exactly one cluster becomes inadequate when 
there are some data points in a dataset that are almost at an equal distance from two or 
more clusters. In this case, k-means forcefully assigns them to a single cluster, although 
they could relate to multiple clusters with the same or varying membership degrees. 
Thus, this observation wherein data points in a dataset could belong to multiple clus-
ters led to the foundation of fuzzy cluster analysis (Bezdek 1981) where data points are 
assigned membership degrees to which they belong to a particular cluster. This degree 
of membership is denoted by � and lies in the range (0,1). Thus, this type of assignment 
captures the cluster structure in a more natural way than the traditional hard (crisp) 
assignments of the k-means algorithm especially in cases where clusters overlap.The 
evolution of Fuzzy C-Means (FCM) clustering with respect to proximity measures is 
also reviewed in this paper.

At the heart of every partitional and hierarchical clustering algorithm, lies a proxim-
ity measure that indicates how similar or dissimilar two data points are with one another. 
Some common examples of proximity measures are Euclidean distance, Minkowski dis-
tance, Chebyshev distance and Manhattan distance. In a previous study (Lin et al. 2014), 
it was emphasized that the efficiency of a particular proximity measure used for clustering 
depends on three factors namely: the clustering algorithm used, the domain to which a 
clustering algorithm has been applied and the feature format used. In addition, a compari-
son study (Shirkhorshidi et al. 2015) emphasized one more factor namely the dimensional-
ity of a dataset. Considering these crucial aspects of data clustering, this paper presents a 
review and analysis of many important proximity measures. Based on this review, a proce-
dure is proposed for selecting an appropriate measure for a clustering task. Second, several 
clustering algorithms are reviewed and their performances are compared on a wide range 
of datasets of varying dimensions.

Clustering algorithms have been reviewed in many studies. Early important studies 
(Jain 2010; Jain et al. 1999; Jain and Dubes 1988; Xu and Wunsch 2005) have presented 
a thorough review of different clustering algorithms; however, proximity measures and 
data dimensionality were not a prime focus. Among recent studies Xu and Tian (2015), 
Kameshwaran and Malarvizhi (2014), Fahad et  al. (2014), Shirkhorshidi et  al. (2014), 
Cetinkaya et al. (2015) and Sehgal and Garg (2014), some have reviewed clustering algo-
rithms from a big data perspective whereas others have presented a theoretical review of 
various clustering algorithms highlighting their pros and cons. However, all are very dif-
ferent from the perspective covered in this paper. Specifically for proximity measures, 
Huang (2008) studied the effect of similarity measures on text document clustering and 
Strehl et al. (2000) compared the effect of four proximity measures on web page clustering. 
In a relatively recent research (Shirkhorshidi et al. 2015), many proximity measures were 
compared based on the performance of clustering algorithms; however, the range of data 
dimensionality was not too large to cover the data sets of different domains. Considering 
all these factors, following are the major contributions of this paper. 
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(1) Effect of preprocessing aspects such as scales of variables, existence of correlation 
among features and sparse structure of data on various proximity measures is analyzed. 
In addition, a theoretical procedure is proposed which can be used to select a proximity 
measure for clustering. This procedure can also be used while designing a new proxim-
ity measure.

(2) Clustering algorithms of different categories are compared experimentally on wisely 
chosen datasets from different domains. These datasets lie across a wide range of a 
very low number of dimensions to a very high number of dimensions.

(3) The effect of using different proximity measures is also analyzed in partitional and 
hierarchical clustering techniques based on experiments.

The organization of this paper is as follows. In Sect. 2, various proximity measures are dis-
cussed in detail and their features corresponding to contribution 1 are presented in a tabular 
form. Section  3 gives an overview of various categories of clustering algorithms. Their 
advantages and disadvantages are also presented comprehensively. In addition, the evolu-
tion of fuzzy clustering with respect to different proximity measures is presented. Section 4 
presents the theoretical procedure of key contribution 1. Section 5 provides details regard-
ing all experiments conducted for contributions 2 and 3.

2  Proximity measures for numeric data

A dataset is a collection of data objects and a data object represents an entity that can be, 
for example, a patient in a medical database, a document in a document dataset, a student 
in a university database, and an image in an image dataset. Each data object is represented 
by some attributes that are also known as features. In data analysis tasks such as cluster-
ing, classification and outlier analysis, the first and very crucial step is to calculate the 
proximity (similarity/dissimilarity) between two data objects. If important factors such as 
sparsity in data, correlation among data features and feature format are ignored in this step, 
meaningful patterns may remain obscure (McCune et al. 2002). The first and obvious dis-
tinction to be made for selecting a proximity measure is the category (or type) to which 
an attribute belongs. These four basic categories are nominal, binary, ordinal and numeric 
(Han et al. 2011) as shown in Fig. 1. Nominal attributes contain names that represent a cat-
egory; hence, these are also known as categorical attributes. There is no specific order or 
sequence to be followed for these names. In the case where nominal attributes contain only 
two values, attributes are known as binary attributes. Ordinal attributes are same as nomi-
nal but a specific order exists among the labels/names. Lastly, numeric attributes consists 
of numerical values.

This paper specifically focuses on proximity measures that deal with numeric type of 
data attributes. These are discussed in the next subsection.

2.1  Popular proximity measures

 (1) Euclidean distance Let pi = (pi1, pi2,… , pin) and pj = (pj1, pj2,… , pjn) be two data 
points in some dataset X. The Euclidean distance between pi and pj is given as 

(1)d2(pi, pj) = (pi1 − pj1)
2 + (pi2 − pj2)

2 +⋯ + (pin − pjn)
2
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 (2) Manhattan distance (or city block distance) This distance is defined as 

 That is, it walks along only one of the axis at a time. This is analogous to walking in 
a city of blocks where one cannot go diagonally between two locations; instead, we 
have to walk along either of the two dimensions at a time.

 (3) Minkowski distance This distance measure is given by the function: 

 Note that, for x = 1 , it becomes Manhattan distance and for x = 2 , it becomes 
Euclidean distance. Hence, it is a general form of both of them.

 (4) Chebyshev distance For two vectors, this metric is defined as the maximum of the 
difference across any of the dimensions of vectors; hence it is also known as the maxi-
mum metric. Thus, for two data points pi = (pi1, pi2,… , pin) and pj = (pj1, pj2,… , pjn) , 
Chebyshev distance is calculated as 

 (5) Cosine similarity For sparse datasets (those in which a significant number of zeros 
are present), the aforementioned traditional measures often do not work well. For 
example, in document clustering, the representation of a document often consists of 
a large number of zeros, making the dataset sparse. In such cases, cosine similarity 
is often used for measuring the similarity between two documents (Han et al. 2011). 
It is calculated as the cosine value of angle between vectors that represent two docu-
ments. 

 Here, da.db is the dot product between the vectors da and db . ||da|| and ||db|| denote 
the length of the vectors da and db respectively.

(2)d(pi, pj) = |pi2 − pj2| + |pi2 − pj2| + +|pin − pjn|

(3)d(pi, pj) =

n∑

k=1

(|pi,k − pj,k|)x)1∕x

(4)d(pi, pj) = max
n

(|pin − pjn|)

(5)sim(da, db) =
da.db

||da||.||db||

Fig. 1  Types of attributes
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 (6) Pearson distance Based on the Pearson correlation, the Pearson distance is defined 
as 

 Here, Corr(a, b) is the Pearson correlation of two variables a and b. It is defined as 

 where Cov(p, q) is the covariance between a and b. �a and �b are the standard devia-
tions of a and b respectively.

   The Pearson distance lies in [0, 2]. This measure has been shown as sensitive to 
outliers (Hanna et al. 2010) by Anscombe who highlights the importance of studying 
graphs.

 (7) Kullback–Leibler Divergence (KLD) If a dataset is assumed to be following some 
probability distribution, then a measure proposed by Kullback and Leibler (1951) 
calculates the distance between two probability distributions Pa and Pb as 

 This measure lies in the category of non-metric because it is not a symmetric meas-
ure and secondly it does not satisfy the triangle inequality (Glen 2018b). Huang 
(2008) compared the effectiveness of the average KLD measure with other meas-
ures such as Euclidean, Cosine, Jaccard and Pearson in the domain of text document 
clustering.

 (8) Canberra distance metric This distance metric is used when data vectors contain all 
non-negative elements (Schoenharl and Madey 2008). For the n-dimensional vectors 
p and q, it is formulated as 

 (9) Bray–Curtis This dissimilarity measure is specifically used in the field of ecology 
and biology to calculate the difference between the counts of species existing on two 
different sites. It is formulated as 

 where Sa and Sb are the counts at two sites a and b, and Cab is the sum total of 
smaller counts for each species on both the sites (Glen 2018a).

 (10) Jaccard similarity coefficient Between two finite sample sets, it measures the similar-
ity as the ratio of the intersection and the union of two sets (say S1 and S2 ) [1]. 

 In generalized form, the Jaccard index between two vectors P = (p1, p2, p3,… , pn) 
and Q = (q1, q2, q3,… , qn) is calculated as 

(6)1 − Corr(a, b)

(7)Corr(a, b) =
Cov(a.b)

�a.�b

(8)DKL(Pa||Pb) =
∑

i

Pa(i)log
Pa(i)

Pb(i)

(9)d(pi, qi) =

n∑

i=1

|pi − qi|
|pi + qi|

(10)BCab = 1 −
2Cab

Sa + Sb

(11)J(S1, S2) =
�S1

⋂
S2�

�S1
⋃

S2�
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 (11) Dice coefficient For two vectors x and y, the dice coefficient (Lin et al. 2014) is given 
as 

 (12) Mahalanobis distance For two vectors u and v, Mahalanobis distance (Shirkhorshidi 
et al. 2015) is given by 

 Here, S is the covariance matrix of the dataset.
   All the aforementioned proximity measures have been mathematically analyzed in 

this paper with respect to some preprocessing aspects. These are the effects of scales 
of variables, sparse structure of data, existing correlation between the attributes, and 
metric/non-metric. This analysis is presented in Table 1.

2.2  Some domain specific proximity measures

Apart from proximity measures mentioned in the previous subsection, it is worth mention-
ing some proximity measures that are relatively recent and have been designed in pertinent 
to a specific domain such as text mining and image analysis.

(12)J(P,Q) =

∑
i
min(pi, qi)∑

i
max(pj, qj)

(13)SDic(x, y) =
2x.y

x.x + y.y

(14)dmah =
√
(u − v)S−1(u − v)T

Table 1  Summary for the data handling potential of proximity measures

aOnly if the scales for all the variables are same

Proximity measures Capability factors

Metric Affected by variable’s 
scale

Leverages 
sparsity

Leverages 
correla-
tion

Euclidean distance Yes Yes No No
Manhattan distance Yes Yes No No
Minkowski distance No No No No
Chebyshev distance Yes Yes No No
Cosine similarity No No Yes No
Pearson correlation No No No Yes
KLD No Yes Yes No
Canberra distance metric Yes No No No
Bray–Curtis No Noa No No
Jaccard coefficient Yes Yes No No
Dice coefficient No No Yes No
Mahalanobis distance: Yes No No Yes
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2.2.1  Proximity measures in text mining

(1) Extensive Similarity (ES) This similarity measure (Basu and Murthy 2015), extensively 
takes each and every document dk present in the corpus to determine the similarity 
between the two documents di and dj . According to ES, two documents are said to be 
exactly similar to each other if they both are similar to each other and they both are 
either similar or dissimilar to every other document contained in the corpus.

  The first step of ES is to calculate the value of dis(di, dj) as follows. 

 where �(di, dj) is a similarity measure (cosine has been used in the original work) and 
� ∈ (0, 1) . If dis(di, dj) = 0 , a score l is assigned as follows. 

 Here, N denotes the total documents in the corpus, and finally, ES for two documents 
di, dj is 

 Thus, two documents di and dj can have a maximum ES value of N when the distance 
between them is zero and for every k, the distance between di and dk and the distance 
between dj and dk is the same.

(2) Similarity Measure for Text Processing (SMTP) This measure considers the absence 
and presence of a feature in two documents to be more significant than the difference 
of feature values. For example, if a feature w1 is absent in d1 but present in d2 so that 
d11 = 0 and d21 = 2 , and another feature w2 is present in both d1 and d2 so that d12 = 3 
and d22 = 5 , then w1 is considered to be more important than w2 in calculating the simi-
larity between the documents d1 and d2 despite of the same difference value which is 2. 
This property was shown to remain unsatisfied by other traditional proximity measures 
such as Euclidean, Cosine, Dice coefficient and IT-Sim etc in a previous study (Lin 
et al. 2014). Additionally, the study indicated that the usefulness of a similarity measure 
strongly depends on the following factors: 

(a) Applications domains (e.g., image or text).
(b) Representation format of the feature, for example, Term Frequency Inverse Docu-

ment Frequency (Tf-IDF) or word count in case of a text document.
(c) The classification/clustering algorithms used.

   These results form the basis to propose a theoretical procedure in Sect. 4.
(3) DRSim Between the two document vectors xi and xj , DRSim (Saraçoğlu et al. 2007) 

finds the similarity as 

(15)dis(di, dj) =

{
1, if �(di, dj) ≤ �

0, otherwise .

(16)li,j =

N∑

k=1

|dis(di, dk) − dis(dj, dk)|

(17)ES(di, dj) =

{
N − li,j, if dis(di, dj) = 0

−1, otherwise .

(18)DRSIM(xi, xj) =

�∑m

k=1
�xik − xij�2

m

�1∕m
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where m denotes the dimension of the feature vectors of documents. The results 
were shown to be better than those achieved using the Minkowski distance measure 
(Saraçoğlu et al. 2007).

(4) Style based In a previous study (Leoncini et al. 2011), a novel similarity metric was 
proposed that considers the position of concepts(terms) in a document. The idea behind 
this was that two similar documents should share some structural arrangement of terms 
contained in them. Thus, the final metric of this study contained two aspects, one for 
concepts of terms derived using EuroWordNet (Vossen 2002) ontology and the other 
as position of concepts.

(5) Kernel induced To capture patterns contained in the form of non-spherical clusters, 
Kannan et al. (2012) used kernel functions instead of Euclidean distance. Kernel func-
tions map the original feature space to a higher dimension space by using some non-
linear transformation (such as Gaussian kernel, sigmoid kernel and polynomial kernel). 
The new distance function obtained out of this is as follows: 

 where 

3  Clustering algorithms

Proximity measures are a crucial part of most clustering algorithms. Having reviewed them 
in the previous section, in this section, a description of various clustering algorithm cat-
egories is provided.

3.1  Classification of clustering algorithms

Figure 2 shows a broad classification of clustering algorithms (Han et al. 2011). A brief 
description of various categories is as follows: 

(I) Partitioning based Let a dataset D contains n number of objects. Given a value k (where 
k ≤ n ), partitioning methods partition the n objects into k clusters C1,C2,… ,Ck . The 
following conditions are to be satisfied by the obtained partitions: (1) none of the 
clusters should be empty and (2) each object must be contained in either one (Hard 
c-means) or more than one (Fuzzy c-means) clusters. First, k cluster centers are chosen 
either randomly or by using some more sophisticated methods and then a relocation 
method is used to shift the cluster centers towards an optimal solution, for instance, (1) 
in K-means (MacQueen et al. 1967), the average value of all data points in the cluster is 
used to find the new cluster center whereas (2) k-medoids (Park and Jun 2009) represent 
a cluster by an object that is located near to the center of the cluster. The quality of 
clustering is measured by an objective function. This objective function is designed to 
achieve high intracluster similarity and low intercluster similarity. Other well-known 
algorithms in this category are: K-modes (Huang 1997), PAM (Ng and Han 1994), 

(19)d2(xk − vi) = 2(1 − K(xk, vi))

(20)K(x, y) = exp
(−||x − ||2

2�2

)
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CLARA (Ng and Han 2002) and FCM (Bezdek et al. 1984). A detailed explanation of 
the K-means technique is described as follows:

K-means clustering algorithm

(1) A set of k points from the dataset D are chosen randomly as centers representing 
k clusters.

(2) Each point is assigned to the cluster whose center is at the minimum distance 
from it using Euclidean distance.

(3) Cluster centers are recomputed using current cluster memberships.
(4) Go to step (2) till the membership to clusters stops changing.

   Several variants of K-means can be found in the literature (Jain et al. 1999). Some 
of these target to initialize cluster centers in a more efficient way so as to reach a global 
optimum, whereas others use a totally different objective function. However, K-means 
and other similar algorithms of this type tend to get trapped in local optimal solutions. 
This limitation was overcame when in 1990, the data clustering problem was solved by 
the application of nature-inspired metaheuristic algorithms by using simulated anneal-
ing (Selim and Alsultan 1991). A similar recent approach using the gravitational search 
algorithm (GSA) is presented in Han et al. (2017). A detailed survey of the usage of 
these algorithms for data clustering is presented in Nanda and Panda (2014). In recent 
research, deep neural networks have been used to achieve a non-linear mapping of the 
original feature space in order to solve the problem of high dimensionality (Xie et al. 
2016). Learning of the parameters of the deep neural network and cluster centers was 
performed simultaneously by optimizing a KLD based objective function. However, 
because of simplicity and less computational cost, k-means is still used widely.

(II) Hierarchical based These methods perform a hierarchical breakdown of a given data-
set which can be classified as agglomerative and divisive. In agglomerative methods, 
initially, each object is regarded as a cluster on its own and they are then successively 

Fig. 2  Broad classification of clustering algorithms
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merged till they satisfy a termination condition. By contrast, in the divisive approach, 
initially, the set of objects is considered as a single large cluster and is successively 
split up into smaller clusters until a termination condition is satisfied. The former is 
also called the bottom-up approach whereas the latter is called the top-down approach. 
A general algorithm for agglomerative clustering is as follows.

Agglomerative clustering algorithm

(1) Let each data point be a cluster on its own.
(2) Compute the proximity matrix of individual points.
(3) Merge the two closest clusters and then update the proximity matrix.
(4) Repeat step (3) until a single cluster remains.

   In the form of output, a hierarchical clustering algorithm yields a tree-like struc-
ture known as a dendogram which can be broken at different levels to give corre-
sponding different data clusterings. Depending on how the inter-cluster similarity 
is defined, three important agglomerative hierarchical clustering algorithms include 
single-linkage, complete linkage and average linkage. Single linkage algorithm uses 
the distance between the closest pair of data points in clusters as a measure of inter-
cluster similarity. Complete linkage algorithm uses the distance between the farthest 
pair of data points as the inter-cluster similarity; while the average linkage algorithm 
uses the distance between the group average of all data points contained in a cluster 
as the proximity measure between clusters. Figure 3 (Jain and Dubes 1988) shows a 
dendogram created as a result of single linkage clustering applied on seven data points. 
Other popular hierarchical algorithms include BIRCH (Zhang et al. 1996), ROCK 
(Guha et al. 1998), CURE (Guha et al. 2000) and Chameleon (Karypis et al. 1999).

(III) Density based Methods described above find the clusters based on a proximity measure 
and hence face difficulty while finding clusters of arbitrary shape (Han et al. 2011). 
On the other hand, density-based methods discover clusters based on density. These 
methods can find clusters of arbitrary shapes. Here, a cluster is kept growing as long as 
the number of data objects in the neighborhood exceeds some threshold value. In any 

Fig. 3  A dendogram showing 
clustering hierarchy on 7 points 
(Jain and Dubes 1988)
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density-based clustering method, density at some point p is defined to be the number 
of data points lying in a circle of radius eps around p. Also, if a circle of radius eps 
consists of some minimum number of data points denoted by minpts then the region is 
called the dense region. A core point is a point that consists of a dense region around it. 
A border point is a point that has points less than minpts around it but itself lies inside 
the neighborhood of a core point. Lastly, a point that is neither a core point nor a border 
point is known as a noise point. DBSCAN (Ester et al. 1996), a basic density-based 
algorithm can be abstracted as follows (Schubert et al. 2017).

DBSCAN algorithm

(1) Identify all core points.
(2) Assign neighboring core points into a single cluster.
(3) For each non-core point do
  If possible, assign it as a border point to the cluster of the closest core point 

otherwise, add it to noise.

   Other algorithms of this category include OPTICS (Ankerst et al. 1999), DBCLASD 
(Xu et al. 1998) and DENCLUE (Hinneburg et al. 1998).

(IV) Grid based Here, each dimension is divided into several cells thus forming a grid struc-
ture between dimensions. Clustering operations are then performed on this quantized 
space. The processing time of these methods is independent of the number of objects. 
Rather, it is determined by the number of cells in the grid structure. STING (Wang et al. 
1997) , Wavecluster (Sheikholeslami et al. 1998), CLIQUE (Jain and Dubes 1988) and 
OptiGrid (Hinneburg and Keim 1999) are well-known examples of this category.

  An overview of CLIQUE which is one of the initial algorithms in this category is 
presented as follows (Han et al. 2011). 

(1) Partition the d-dimensional data space into non-overlapping rectangular units (or 
cells) and identify dense units in all subspaces based on a density threshold l.

(2) Dense cells in each subspace are then used to generate clusters by starting with an 
arbitrary dense cell and finding the maximal region covering the cell and working 
on the remaining dense cells.

   A more detailed description of this algorithm can be found in Agrawal et al. (2005).
(3) Model based These methods perform clustering by first hypothesizing a math-

ematical model and then finding its best fit for a given dataset. For example, the 
EM algorithm performs an expectation-maximization analysis (Dempster et al. 
1977), COBWEB performs a probability analysis (Fisher 1987) and a neural 
network based method, Self-Organizing Maps (SOMs) (Kohonen 1998), per-
forms clustering by mapping high dimensional data onto a 2-D or 3-D feature 
map. CLASSIT (Gennari et al. 1989) is an extension algorithm of COBWEB for 
continuous-valued data.

The advantages and disadvantages of aforementioned clustering algorithms deter-
mined from the literature are summarized in Table 2. In Sehgal and Garg (2014), a per-
formance comparison of these algorithms is presented according to the size of data-
sets and time taken for cluster formation. In Shirkhorshidi et al. (2015), a performance 
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comparison of partitioning algorithms such as K-means and K-medoids, based on differ-
ent proximity measures was performed; however, the range of data dimensionality did 
not cover datasets of much larger dimensionality (such as textual data). In this study, 
experiments to study and compare the performance of various clustering algorithms 
of different categories are presented (Sect.  5) that covers a considerably wide range 
of data dimensionality. Having reviewed proximity measures in Sect. 2 and clustering 
algorithms in Sect.  3.1, in the next subsection, partitioning based algorithm FCM is 
reviewed especially for proximity measures.

3.2  Evolution of fuzzy clustering based on proximity measures

When it comes to applications where a data object can belong to more than one cat-
egory (i.e., when a degree of ambiguity or uncertainty is involved), the role of fuzzy 
cluster analysis comes into the picture to provide a better partitioning of data objects. 
Fuzzy cluster analysis allows the degree of membership of an object to a cluster to be 
measured in the range [0, 1] (denoted by � ). This concept of degree of membership 
allows greater flexibility to express the belongingness of data objects to multiple clus-
ters (Kruse et  al. 2007). Given a dataset X = {x1, x2 … xn} these memberships lead to 
the output of the clustering process to be a fuzzy label vector of degree of member-
ships to all clusters for each data point xj . The fuzzy label vector can be represented 
as �j = (�1j,�2j,… ,�cj)

T . The c x n matrix U = (�ij) is called a fuzzy partition matrix, 
where c is the number of clusters and n is the total number of data points.

3.2.1  Fuzzy c‑means algorithm

Let D = {x1,… , xn} be the set of data points and the number of required clusters be c 
( 1 < c < n ). To find a fuzzy partition matrix U = (�ij) , Dunn (1973) introduced the FCM 
algorithm. Bezdek (1981) later improved this algorithm. In FCM, the goal of finding 
the optimum fuzzy c-partition matrix U is encoded with an objective function Jm (Ross 
2005) as

where

here m is the dimension of the dataset. The weighting parameter m′ controls the extent to 
which the membership is shared between clusters. It ranges in [1,∞) . When m′ = 1, the 
membership value �ij is either 0 or 1. By contrast, when m�

→ ∞ , the value of Jm → 0 . In 
general, the bigger the value of m′ is, the more the fuzzier is the partition matrix U.

An optimal partition matrix U corresponds to the minimum value of this objective 
function Jm , which is a solution to the following equation:

(21)Jm(U, v) =

n∑

k=1

c∑

i=1

(�ik)
m�

(dik)
2

(22)(dik)
2 = (d(xk − vi))

2 =

m∑

j=1

(xkj − vij)
2
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under the constraints

and

An iterative algorithm introduced by Bezdek (1981) popularly known as the FCM algo-
rithm to get a solution to this equation is as follows: 

(1) Choose c (1 < c < n) and m′ . Initialize the partition matrix U(0) . As in Ross (2005), 
here, each step is labelled by r, where r = 0,1,2,...

(2) Calculate the c centers v(r)
i

 as: 

(3) Update the partition matrix as follows: 

(4) If ||U(r+1) − U(r)|| ≤ �L , stop; else, go to step 2 and make r = r + 1.

The next subsection presents different variants of FCM which are observed in the literature 
in the past 3 decades.

3.2.2  Variants of FCM based on distance functions

Euclidean distance used in FCM had been replaced many times by some other measure 
leading to better clustering results. An attempt to cover them comprehensively is given 
below. 

(1) Gustafson-Kessel algorithm
  Euclidean distance which is originally used in FCM favors clusters that are of spheri-

cal shape. In Gustafson and Kessel (1979), it was replaced by Mahalanobis distance, 
thus the algorithm could find clusters of arbitrary shape. Mahalanobis distance related 
to a cluster i, is given by the equation 

 where 
∑

i
 is the covariance matrix of the cluster. Cluster centers and membership 

degrees are calculated in the same way as in original FCM. The covariance matrix 
(Rudolf Kruse Christian Döring 2007) is updated as 

(23)J∗
m
(U∗, v∗) = min J(U, v).

(24)
n∑

j=1

𝜇ij > 0,∀i ∈ {1,… , c},

(25)
c∑

i=1

�ij = 1,∀j ∈ {1,… , n}

(26)vij =

∑n

k=1
(�ik)

m�

.xki∑n

k=1
(�ik)

m�

(27)�
(r+1)

ik
=

[ c∑

j=1

(d(r)
ik

d
(r)

jk

) 2

m�−1

]−1

(28)d2(xj,Ci) = (xj − Ci)
T ∑−1

i
(xj − Ci)
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 However, owing to matrix inversions, computational costs are higher for this algo-
rithm in comparison with FCM (Rudolf Kruse Christian Döring 2007).

(2) Pedrycz-97
  Early semi-supervised fuzzy clustering techniques as in Pedrycz and Waletzky 

(1997) also used Mahalanobis distance. In Pedrycz and Waletzky (1997), a total of 
three experiments were performed based on three different datasets. The results of that 
study showed that when Mahalanobis distance was used, the convergence rate was the 
highest among all algorithms used.

(3) Kernel-based clustering
  In Wu et al. (2003), a Fuzzy Kernel C-Means algorithm (FKCM) was proposed to 

deal with datasets that may consist of non-spherical clusters. In kernel-based clustering, 
the original feature space is transformed into a high dimensional feature space. The 
transformation of space is denoted as � ∶ X → F , where X is the original feature space 
and F is the transformed feature space. The transformed data is denoted by �(x) . In 
FKCM, FCM is integrated with a mercer kernel function to capture the non-spherical 
shape of clusters (such as the annular ring shape). The results presented in Wu et al. 
(2003) showed that for spherical datasets, FCM and FKCM perform equally well, but 
for annular ring-shaped datasets, FKCM clusters more effectively.

(4) S2KFCM
  In Zhang et al. (2004), using Gaussian kernel, a new Semi Supervised Kernel Fuzzy 

C-Means (S2KFCM) algorithm was introduced by Zhang et al. Gaussian kernel is given 
by the equation 

 Experiments conducted on benchmark datasets indicated that better classification 
results were obtained using S 2KFCM, than other classical algorithms such as K-NN 
and SVM (Zhang et al. 2004).

(5) Bouchachia et al.
  Bouchachia and Pedrycz (2006) investigated the effect of four different distance 

measures named Euclidean, weighted Euclidean, fully adaptive and kernel-based dis-
tance with the same objective function. After performing experiments on three datasets 
(fully labeled), it was found that the relative performance (high to low) was in the order 
of usage: fully adaptive(e.g., Mahalanobis distance), weighted Euclidean, kernel-based 
distance and Euclidean distance. Thus, the use of fully adaptive distance yielded the 
best results.

(6) Lai and Garibaldi
  Lai and Garibaldi (2011) compared four algorithms with different objective functions 

[Pedrycz-97 (Pedrycz and Waletzky 1997), Li-08 (Li et al. 2008), Zhang-04 (Zhang 
et al. 2004) and Endo-09 (Yasunori et al. 2009)] by using different distance metrics, 

(29)
∑

i
=

∑∗

i

p

�
det(

∑∗

i
)

(30)
∑∗

i
=

∑n

j=1
�ij(xj − ci)(xj − ci)

T

∑n

j=1
�ij

(31)K(x, y) = exp
(−||x − y||2

�2

)
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namely Euclidean distance, Mahalanobis distance and Gaussian kernel-based distance. 
They indicated that Pedrycz-97 and Li-08 perform better than others owing to the pres-
ence of Mahalanobis distance. Because of the presence of the inverse of covariance 
matrix in Mahalanobis distance, different scales of variables are normalized, and the 
correlation between features is also handled. The results also showed that the infinity 
problem arises when using Euclidean distance with high dimensional datasets.

  Based on the literature reviewed in this paper, in the next section (4) a concise view 
of factors upon which an appropriate selection of a proximity measure depends is pre-
sented. Based on the factors reviewed, a procedure for the same has also been proposed.

3.3  Recent applications of clustering

Some important and recent applications of clustering are discussed in detail below. 

1. Social news clustering In recent years, the emergence of social media as a huge platform 
for information sharing has led news organizations to extract useful information from 
it. Some recent attempts for the news clustering task involve modeling of pair of words 
that co-occur in a corpus of short texts (Xia et al. 2015; Yan et al. 2013). In Jan (2020) a 
cluster-then-label semi-supervised approach for labeling of tweets as spam/not spam was 
proposed. Grouping of news written in different languages is another interesting area of 
research; for instance in Hong et al. (2017), the Chinese–Vietnamese news dataset was 
used for clustering based on the semantic correlation between two languages.

2. Document clustering The task of organizing raw text documents into useful categories 
when no predefined labels are available, is known as document clustering. Document 
clustering plays a considerably significant role in fast information filtering, automatic 
document organization, and topic extraction and comprehension. Various statistical and 
semantic-based document clustering techniques have been proposed by different authors. 
Statistical techniques mainly rely on frequency-based bag of words (BOW) model (Man-
ning et al. 1999) and other modified term weighting schemes such as Tf-IDF (Altınçay 
and Erenel 2010; Lan et al. 2005). On the other side, semantic-based techniques take 
the benefit of lexical databases such as Wordnet (Sedding and Kazakov 2004; Wei et al. 
2015). Apart from the clustering of documents written in English language, multilin-
gual document clustering techniques have also been proposed. Some state of the art 
techniques in this new research area can be found in Tang et al. (2015) and Hong et al. 
(2017).

3. Sentiment analysis Various e-commerce websites such as Amazon and Flipkart offer 
their users to express their reviews regarding their products and services. Similarly, 
social networking sites such as Facebook, YouTube, and Twitter, allow users to express 
their opinions regarding any social event or political news. “Sentiment analysis is the 
task of detecting, extracting and classifying opinions, sentiments and attitudes concern-
ing different topics, as expressed in textual input” (Montoyo et al. 2012). This type of 
analysis helps other users on the same platform to make purchase decisions and service 
providers to improve the quality of services. Clustering is an important step in the whole 
process of sentiment analysis for grouping similar sentiments together. Ravi and Ravi 
(2015) presented a comprehensive survey of different techniques used in sentiment anal-
ysis. Recent research in this area has focused on (1) a language-independent approach 
for sentiment analysis such as the one presented in García-Pablos et al. (2018), and (2) 
a novel vector space model for concept-level sentiment analysis that allows reasoning 
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by analogy on natural language concepts namely AffectiveSpace2 (Cambria et al. 2011, 
2015).

4  Analysis of the usefulness of a proximity measure

In Sect. 2, many different proximity measures were presented. Various authors have ana-
lyzed the usefulness of proximity measures with respect to different factors. These factors 
are data dimensionality, application domain, feature format and clustering algorithm. This 
section presents a concise view of all factors that are important in determining the useful-
ness of a given proximity measure for clustering purposes. Based on the following research 
papers, different factors that have been identified as important by authors are highlighted in 
Fig. 4.

In Shirkhorshidi et  al. (2015), using high dimensional datasets, clustering using par-
tition-based algorithms was performed and significant results were produced indicating 
that the average Euclidean distance is the fastest when using the K-means clustering algo-
rithm. In addition, results indicated that Mahalanobis distance is the best performer for 
low-dimensional datasets.

According to Lin et al. (2014), the efficiency of a particular proximity measure used for 
clustering depends on three factors: the clustering algorithm used, the domain to which a 
clustering algorithm is being applied and the feature format used. In addition, a comparison 

Fig. 4  Factors that determine the usefulness of a proximity measure
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study (Shirkhorshidi et  al. 2015) emphasized one more factor namely dimensionality of 
the dataset. Huang (2008) studied the effect of similarity measures on text document clus-
tering. Strehl et  al. (2000) compared the effect of four similarity measures on web page 
clustering.

Based on this review, a stepwise procedure is proposed in this paper, that can help a 
researcher to choose and design a versatile proximity measure when the accuracy of clus-
tering results is the primary goal. The procedure is shown in Fig. 5. The principle behind 
the procedure is as follows.

• Step1: Selection of the measure based on attribute type
  It is clear that first, a proximity measure must be chosen depending on the attribute 

type such as nominal, ordinal, continuous and binary.
• Step2: Selection of the measure based on the algorithm to be used
  Depending upon data, (e.g., whether it contains overlapping or non-overlapping clus-

ters) one may use clustering algorithms suitable to our data. As observed in Shirkhor-
shidi et al. (2015) and also suggested in Lin et al. (2014), different proximity measures 
perform differently in a clustering algorithm; thus, the second step must be to deter-
mine the suitability of the proximity measure to the clustering algorithm.

Fig. 5  Proposed procedure for 
selecting a versatile proximity 
measure
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• Step3: Selection of the measure based on the domain where clustering is to be applied
  Each domain has its criteria to be satisfied for a proximity measure to be suitable to 

it. For example, text clustering has its listing as suggested in Lin et al. (2014), the image 
segmentation domain has its criteria for a good proximity measure, and the financial 
domain has its conditions that are to be followed. Thus, the next step to be taken care of 
while designing or choosing a proximity measure must be the domain knowledge.

• Step4: Selection of the measure based on the feature format to be used
  After entering into the domain, the data representation may have one or more forms; 

for instance, a document can be in the form of BOW model (Manning et al. 1999) or it 
can be represented in the form of lexical chains (Wei et al. 2015). This will also affect 
the design of the proximity measure.

• Step5: Selection of the measure based on data dimensionality
  Finally, data can be low dimensional or high dimensional. Work performed in Shirk-

horshidi et al. (2015) can act as a good reference to choose between a number of meas-
ures that can perform better in either of the two situations. Studying the behavior of 
proximity measures with respect to the dimensionality of a dataset by using partitional 
and hierarchical clustering algorithms is one of the major experiments in this study as 
well.

As proposed in Shirkhorshidi et  al. (2015), no single proximity measure can be perfect 
for all types of datasets. It is clear that, although no proximity measure can satisfy all the 
aforementioned requirements for all types of datasets, however, for a single type of domain 
(e.g., document clustering or image segmentation etc.), specific measures can be designed 
out of existing measures. For example, SMTP has been proposed in Lin et al. (2014) which 
particularly measures the similarity of two documents. The next section presents conducted 
experiments to compare clustering algorithms of different categories which are presented 
in Sect. 3. It also details the experiments of studying the effect of using different proximity 
measures in partitional and hierarchical clustering algorithms on datasets ranging from the 
low number of dimensions to a very high number of dimensions.

5  Experiments

In this section, an experimental comparison of various clustering techniques of different 
categories is conducted on various datasets. These datasets are described in the next sub-
section. Second, experiments of using various proximity measures in partitional and hierar-
chical clustering algorithms on several datasets with varying dimensionality ranging from 
low to very high number of dimensions are presented. All these experiments are performed 
on a machine having Intel(R) Core(TM) i7-6700 processor with 16GB RAM. The source 
code is written in Python with support from the sklearn machine learning library. Impor-
tant packages used are sklearn.cluster, scipy.spatial.distance, sklearn.preprocessing and 
sklearn.metrics.
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5.1  Datasets

To setup a good testbed for a comprehensive evaluation, various datasets from different 
areas, such as image, text and biology are used in experiments. Iris,1 Breast cancer,2 leuke-
mia3 and TOX1 are taken from the biomedical domain. Mfea-fou, Mfea-fac, and Mfea-pix4 
are taken from a multiple features database consisting of features of handwritten numer-
als. USPS5 and MNIST6 are also scanned images of handwritten digits. The 20Newsgroup 
(Pedregosa et al. 2011) dataset consists of a large number of textual articles. Lastly, glass,7 
a physics domain dataset consists of attributes defining the type of glass. Table 3 summa-
rizes the details of these publicly available benchmark datasets in the order of increasing 
number of dimensionality.

5.2  Parameter settings

All clustering algorithms have their own requirements of parameter values to perform the 
process of clustering. Values used in this paper are stated as follows.

K-means This algorithm does not guarantee a globally optimum solution because it 
tends to stick in a local bad optimum. For this reason, for each dataset, it has been execued 
7 times with different seed values corresponding to which different initial clusters are cho-
sen every time. This algorithm also requires the maximum number of iterations for its con-
vergence which is set to 400 and lastly, the number of clusters (i.e., k value) is set to be the 

Table 3  Datasets description

Dataset name Domain No. of objects No. of dimensions No. of classes

Iris Medical/biology 150 4 3
Breast cancer Medical/biology 699 9 2
Glass Physics 214 9 7
Mfea-Fou Images, handwritten digits 2000 76 10
Mfea-Fac Images, handwritten digits 2000 216 10
Mfea-Pix Images, handwritten digits 2000 240 10
USPS Images, handwritten digits 9298 256 10
MNIST Images, handwritten digits 60000 784 10
TOX Medical/biology 171 5748 4
Leukemia1 Medical/biology 72 7070 3
Wikipedia articles Text 59701 > 50,000 25
20Newsgroup Text > 18, 000 > 30, 000 20

4 https ://archi ve.ics.uci.edu/ml/datas ets/Multi ple+Featu res, Accessed: 2019-05-15.
5 https ://www.openm l.org/d/41070 , Accessed: 2019-05-16.
6 https ://cs.nyu.edu/~rowei s/data.html, Accessed: 2019-05-16.
7 https ://archi ve.ics.uci.edu/ml/datas ets/glass +ident ifica tion, Accessed: 2019-05-16.

1 https ://archi ve.ics.uci.edu/ml/datas ets/iris, Accessed: 2019-05-12.
2 https ://archi ve.ics.uci.edu/ml/machi ne-learn ing-datab ases/breas t-cance r-wisco nsin/, Accessed: 2019-
05-14.
3 http://featu resel ectio n.asu.edu/datas ets.php, Accessed: 2019-05-15.

https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://www.openml.org/d/41070
https://cs.nyu.edu/%7eroweis/data.html
https://archive.ics.uci.edu/ml/datasets/glass+identification
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
http://featureselection.asu.edu/datasets.php
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number of available classes for each dataset used in experiments. To investigate the effect 
of different proximity measures, the algorithm is run with different proximity measures 
such as Euclidean, correlation distance and Manhattan distance.

Hierarchical agglomerative clustering The first parameter required by this algorithm is 
the number of clusters which is set to be the number of available classes. Second, the link-
age criterion is set to be average i.e. to calculate the distance between two clusters, the 
mean of all data points in a cluster is used.

DBSCAN Although, this algorithm, can find nonconvex clusters, the difficulty lies in 
determining its two important parameters, namely eps value and minpts as already defined 
in Sect. 3.1. To judge eps value, a histogram of distances to the nearest neighbor is plotted 
for each data point in a dataset. Then eps value is set to be the distance under which the 
nearest neighbors for most of the data points lie. To calculate minpts value, a histogram is 
plotted that indicates the count of neighbors for each data point that lies in the eps amount 
of neighborhood. Then, the minimum value from the histogram for which approximately 
10% of all data points are contained in its eps neighborhood is chosen to be the minpts 
value.

GMM This algorithm requires only the number of components for the Gaussian mix-
ture. This value corresponds to the number of available classes.

5.3  Clustering evaluation metrics

Various metrics are defined in the literature for assessing clustering quality. These are Rand 
Index (RI), Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), Adjusted 
Mutual Information (AMI), F-measure, Homogeneity, V-measure, Heterogeneity, Com-
pleteness and Silhouette coefficient etc. A few of these metrics that are widely used in the 
data clustering community are defined as follows.

• ARI ARI is used to compare two clustering assignments that ignore permutations and 
is a chance normalized version of RI. In this study, ARI is used to assess clustering 
quality. Similar clustering assignments yield a score close to 1.0 whereas non-positive 
scores are yielded for dissimilar clustering. Let C denotes the ground truth class labe-
ling and K be the clustering assignment. Also, let

• A be the number of element pairs that lie in the same set of C and K, and
• B be the number of element pairs that lie in different sets of both C and K.
  Then RI is given by: 

 where Cnsamples

2
 denotes the total number of possible pairs in the dataset. To overcome 

the drawback of RI (i.e. random label assignments will not evaluate the RI value 
close to zero), ARI is defined by discounting the expected RI denoted as E[RI] value 
of random labelings as follows. 

• AMI Mutual Information (MI) measures the similarity of two clustering assignments. 
AMI is a version of MI that is adjusted against chance (Pedregosa et al. 2011). Hence, 

(32)RI =
A + B

C
nsamples

2

(33)ARI =
RI − E[RI]

max(RI) − E[RI]
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for datasets for which ground truth labels are available, AMI is used in this study to 
compare clustering results. Perfect labeling gives a score of 1.0 whereas non-positive 
scores are obtained for dissimilar clusterings (e.g., independent labeling). A previous 
study (Vinh et al. 2010) that conducted a useful survey can be referred for mathemati-
cal details.

• Silhouette coefficient For the case when ground truth class labeling is not available, 
clustering quality is measured using clusters themselves. Silhouette coefficient (Rous-
seeuw 1987) is such a measure. For a sample, it is given by the equation: 

 where

• A is the average distance between a sample and all other points of the same cluster.
• B is the average distance between a sample and all other points of the next nearest 

cluster.

   For dense and well-separated clusters, the score reaches a value of 1.0 and for incor-
rect clusters, it reached a value of − 1.0 . The value of 0 indicates overlapping clusters.

5.4  Result analysis

To determine how the performance of different algorithms varies in comparison with each 
other when one goes from low dimensional to very high dimensional datasets, bar charts 
of AMI values obtained from different clusterings are plotted and shown in Figs. 6, 7 and 

(34)s =
B − A

max(A,B)

Fig. 6  Clustering results on low dimensional datasets
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8. When a dataset goes from low to very high dimensions, the overall performance of all 
algorithms decreases. For example, the maximum AMI value in low dimensional datasets 
is 0.897 and that in high dimensional datasets is 0.531, both of which belong to GMM 

Fig. 7  Clustering results on medium dimensional datasets

Fig. 8  Clustering results on high dimensional datasets
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clustering. This type of a decreasing trend is exhibited by every other clustering algorithm 
as well. DBSCAN and average linkage algorithms both fail to cluster high-dimensional 
datasets. Individual analysis of these three bar chart figures is given as follows:

Low dimensionality clustering On an average, K-means show the best performance with 
an average AMI value of 0.624 which is almost equal to the average AMI achieved by 
GMM (i.e., 0.622). Average linkage hierarchical clustering and density-based DBSCAN 
achieved average AMI values of 0.445 and 0.480 respectively.

Medium dimensionality clustering Regarding clustering of medium dimensionality 
datasets, on an average, the best AMI value is again achieved by k-means as 0.626, fol-
lowed again by GMM with an average AMI value of 0.530. Average linkage hierarchical 
and DBSCAN algorithms achieved much lower values of 0.316 and 0.300, respectively.

High dimensionality clustering Finally, when the number of dimensions goes in thou-
sands, all algorithms perform poorly as shown by very low average AMI values of 0.246 
for K-means, 0.062 for average linkage, and 0.236 for GMM. DBSCAN fails to produce 
any clusters.

To determine the effect of using different proximity measures on partitioning and hier-
archical clustering algorithms, Tables  4 and 5 list AMI values obtained using different 
proximity measures with partitioning algorithm k-means and average linkage hierarchical 
clustering algorithm, respectively.  The  best values are shown in bold. In low dimension 
clustering ( ≤ 100) with k-means, the best average AMI value of 0.626 is achieved using 
Bray–Curtis proximity measure. It is followed by Euclidean and Minkowski with an AMI 
value of 0.624. Going to the next level of medium dimensionality (101–1000) clustering 
with k-means, using the correlation proximity measure gives the best average AMI value 
of 0.645. Clustering of high dimensionality data (i.e. >1000 dimensions) using k-means, 
cosine distance achieves the best average AMI value of 0.332 followed by the correlation 
measure with a value of 0.322.

By using the average linkage clustering, the best average AMI value of 0.485 is 
achieved using the city-block proximity measure in low dimensional datasets. Going fur-
ther to medium and high dimensionality datasets, the best average AMI value in both is 
achieved using the correlation-based distance of 0.365 and 0.255, respectively. Based on 
results obtained, it can be concluded that correlation distance shows the best performance 
in both the algorithms when the dataset consists of a large number of dimensions.    

6  Conclusion

In this study, various proximity measures are reviewed and analyzed with respect to impor-
tant aspects of data analysis such as sparsity, the existence of correlation among features 
and the effect of different feature scales. In addition, a theoretical procedure is proposed 
that can help researchers to select a versatile proximity measure for the clustering pur-
pose. Then, a variety of clustering algorithm categories are reviewed and an experimental 
comparison has also been performed between the algorithms to analyze their performance. 
This is especially conducted concerning the dimensionality of datasets and it has been con-
cluded that the performance of all traditional clustering algorithms is adversely affected 
when the number of dimensions is considerably high. Algorithm such as DBSCAN just 
fail to perform clustering when the dataset consisted of a very high number of dimensions. 
An experimental comparison to analyze the effect of using different proximity measures in 
a partitional clustering algorithm namely k-means and a hierarchical clustering algorithm 



Analytical review of clustering techniques and proximity…

1 3

Ta
bl

e 
4 

 A
M

I v
al

ue
s o

f K
-m

ea
ns

 c
lu

ste
rin

g 
ac

hi
ev

ed
 o

n 
di

ffe
re

nt
 d

at
as

et
s (

cl
as

si
fie

d 
on

 th
e 

ba
si

s o
f t

he
 n

um
be

r o
f d

im
en

si
on

s)

Pr
ox

im
ity

 
m

ea
su

re
Lo

w
 d

im
en

si
on

al
 d

at
as

et
s

A
ve

ra
ge

 
A

M
I

M
ed

iu
m

 d
im

en
si

on
al

 d
at

as
et

s
A

ve
ra

ge
 

A
M

I
H

ig
h 

di
m

en
si

on
al

 d
at

as
et

s
A

ve
ra

ge
 

A
M

I
IR

IS
 (4

)
CA

N
-

C
ER

 (9
)

G
LA

SS
 

(9
)

M
FE

A
-

FO
U

 
(7

6)

M
FE

A
-

FA
C

 
(2

16
)

M
FE

A
-

PI
X

 
(2

40
)

U
SP

S 
(2

56
)

M
N

IS
T 

(7
84

)
TO

X
 

(5
74

8)
LE

U
K

- 
EM

IA
 

(7
07

0)

20
N

EW
S-

G
RO

U
P 

(5
0,

00
0)

Eu
cl

id
ea

n
0.

74
8

0.
72

5
0.

34
6

0.
67

8
0.

62
4

0.
69

1
0.

72
0

0.
53

8
0.

48
3

0.
60

8
0.

19
6

0.
12

8
0.

41
6

0.
24

6
C

os
in

e
0.

91
2

0.
24

2
0.

36
8

0.
61

9
0.

53
5

0.
69

8
0.

74
1

0.
59

4
0.

52
0

0.
63

8
0.

24
2

0.
12

8
0.

62
6

0.
33
2

C
or

re
la

tio
n

0.
86

1
0.

28
7

0.
36

8
0.

62
3

0.
53

4
0.

68
2

0.
74

1
0.

64
7

0.
51

3
0.
64
5

0.
23

8
0.

11
0

0.
61

8
0.

32
2

M
in

ko
w

sk
i

0.
74

8
0.

72
5

0.
34

6
0.

67
8

0.
62

4
0.

69
1

0.
72

0
0.

61
3

0.
48

3
0.

62
6

0.
19

6
0.

12
8

0.
41

6
0.

24
6

C
ity

bl
oc

k
0.

74
0

0.
66

1
0.

33
8

0.
63

0
0.

59
2

0.
69

6
0.

70
7

0.
50

0
0.

41
7

0.
58

0
0.

23
4

0.
15

5
0.

04
3

0.
14

4
C

he
by

sh
ev

0.
72

8
0.

74
9

0.
36

1
0.

64
5

0.
62

0
0.

59
2

0.
00

9
0.

47
2

0.
27

9
0.

33
8

0.
11

2
0.

00
4

0.
17

0
0.

09
5

C
an

be
rr

a
0.

84
5

0.
71

2
0.

24
8

0.
49

8
0.

57
5

0.
66

1
0.

70
3

0.
41

9
N

.A
0.

59
4

0.
23

8
0.

16
1

0
0.

13
3

B
ra

y–
cu

rti
s

0.
72

5
0.

79
7

0.
33

8
0.

64
7

0.
62
6

0.
68

8
0.

73
9

0.
47

7
0.

50
7

0.
60

2
0.

22
6

0.
13

6
0.

52
7

0.
29

6



 V. Mehta et al.

1 3

Ta
bl

e 
5 

 A
M

I v
al

ue
s o

f a
ve

ra
ge

-li
nk

ag
e 

cl
us

te
rin

g 
ac

hi
ev

ed
 o

n 
di

ffe
re

nt
 d

at
as

et
s (

cl
as

si
fie

d 
on

 th
e 

ba
si

s o
f t

he
 n

um
be

r o
f d

im
en

si
on

s)

Pr
ox

im
ity

 
m

ea
su

re
Lo

w
 d

im
en

si
on

al
 d

at
as

et
s

A
ve

ra
ge

 
A

M
I

M
ed

iu
m

 d
im

en
si

on
al

 d
at

as
et

s
A

ve
ra

ge
 

A
M

I
H

ig
h 

di
m

en
si

on
al

 d
at

as
et

s
A

ve
ra

ge
 

A
M

I
IR

IS
 (4

)
CA

N
-

C
ER

 (9
)

G
LA

SS
 

(9
)

M
FE

A
-

FO
U

 
(7

6)

M
FE

A
-

FA
C

 
(2

16
)

M
FE

A
-

PI
X

 
(2

40
)

U
SP

S 
(2

56
)

M
N

IS
T 

(7
84

)
TO

X
 

(5
74

8)
LE

U
K

- 
EM

IA
 

(7
07

0)

20
N

EW
S-

G
RO

U
P 

(5
0,

00
0)

Eu
cl

id
ea

n
0.

79
3

0.
64

8
0.

03
5

0.
30

6
0.

44
5

0.
43

0
0.

57
9

0.
07

9
0.

17
9

0.
31

6
0.

02
3

0.
16

4
0.

0
0.

06
2

C
os

in
e

0.
57

4
0.

00
1

0.
22

9
0.

45
5

0.
31

4
0.

66
2

0.
77

8
0.

08
2

0.
01

5
0.

28
4

0.
33

4
0.

15
4

0.
00

1
0.

16
3

C
or

re
la

tio
n

0.
83

4
N

.A
0.

29
2

0.
50

2
0.

41
0

0.
69

3
0.

57
9

0.
16

7
0.

02
1

0.
36
5

0.
34

3
0.

16
4

0.
26

0
0.
25
5

M
in

ko
w

sk
i

0.
79

3
0.

64
8

0.
03

5
0.

30
6

0.
44

5
0.

43
0

0.
58

1
0.

07
9

0.
17

9
0.

31
7

0.
02

3
0.

16
4

0.
0

0.
06

2
C

ity
bl

oc
k

0.
76

7
0.

74
2

0.
10

1
0.

33
2

0.
48
5

0.
48

5
0.

51
2

0.
06

6
0.

00
5

0.
26

7
0.

04
9

0.
16

9
0.

00
1

0.
07

3
C

he
by

sh
ev

0.
62

0
0.

00
1

0.
22

7
0.

52
7

0.
34

3
0.

14
4

0.
00

1
0.

00
5

0.
00

1
0.

03
7

0.
00

3
0.

12
0

0.
0

0.
04

1
C

an
be

rr
a

0.
57

4
0.

82
0

0.
25

2
0.

20
6

0.
46

3
0.

64
1

0.
49

3
0.

06
7

0.
15

4
0.

33
8

0.
33

0
0.

15
6

0.
00

1
0.

16
2

B
ra

y–
cu

rti
s

0.
59

1
0.

77
8

0.
10

1
0.

28
5

0.
43

8
0.

63
9

0.
36

3
0.

13
3

0.
00

3
0.

28
4

0.
27

6
0.

15
4

0.
00

1
0.

14
3



Analytical review of clustering techniques and proximity…

1 3

namely the average linkage, is conducted. The results showed that the average performance 
scores of clustering vary when a different proximity measure is used. In addition, the best 
performing measures have been reported.
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