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1. Introduction

Deep learning is nothing but many classifiers working to-
gether, which are based on linear regression followed by some
activation functions. Its basis is the same as the traditional sta-
tistical linear regression WTX + b approach. The only difference
is that there are many neural nodes in deep learning instead
of only one node which is called linear regression in the tra-
ditional statistical learning. These neural nodes are also known
as a neural network, and one classifier node is known as a
neural unit or perception. Another contrasting point need to be
noticed is that in deep learning there are many layers between
the input and the output. A layer can have many hundreds or
even thousands of neural units. The layers which are in between
the input and the output known as the hidden layers and the
nodes are known as the hidden nodes. The draw-back of the
traditional machine learning classifiers is that we need to write
a complex hypothesis by ourselves, while in the deep neural
network it is generated by the network itself, which makes it
a powerful tool for learning nonlinear relationships effectively.
Machine learning can be divided into two development processes,
including shallow learning and deep learning. In 2006, before
the deep learning was again introduced into the research trend,
the research direction mainly focuses on the shallow learning
structure for data processing. Compared with the deep learning,
the shallow learning will be limited not to exceed two layers of
non-linear feature conversion layer. The most common shallow
structures include Logistic Regression [1-4], Support Vector Ma-
chines [5-8], Gaussian Mixture Models [9,10], and so on. So far,
shallow learning can only quickly and efficiently solve the prob-
lem with multiple restrictions, but it cannot handle the complex
problem in the real world, such as the human voices, the natural
pictures, the visual scenes, and so on. The shallow learning has a
limitation so that it can never be handled like the human brain for
information. In 2006, Hinton et al. [11] put forward a deep belief
network (DBN, Deep Belief Network), which was stacked through
a number of restricted Boltzmann machines (RBM, Restricted
Boltzmann Machine). They put forward an unsupervised train-
ing algorithm with greedy layer-by-layer through unsupervised
learning and training. Then, they put the data by learning as an
initial value of supervised learning. So that the deep learning
structure could solve the problem which the shallow learning
could not solve. As the deep learning started its development,
more and more scientific and technological personnel began to
focus on the applications of the deep learning research, which sig-
nificantly promoted the development of the human intelligence.
The study of deep learning is mainly embodied in the convening
of various world-class artificial intelligence conferences, the es-
tablishment of the world elite research group, the establishment
of the enterprise research team, and the continuous applications
of deep learning in artificial intelligence. Deep learning algo-
rithms are proposed continuously, and new records are created
continuously in many data sets. For example, in the test process
of image classification for 1000 kinds of images, in five years,
through the continuous improvement of the deep learning model,
the image classification error rate dropped to 3.5%, which is

higher than the accuracy of the ordinary people. In fact, that was
a success of using deep learning to enable machines to learn how
to successfully identify and categorize images. The development
of science and technology is constantly refreshing the human
cognition, and deep learning model is constantly being updated
as the core technology model of the artificial intelligence in the
big data environment, reflecting the latest research progress of
the current science and technology.

2. History of deep neural network

The initial move towards neural Networks occurred in 1943,
when Warren McCulloch, a neurophysiologist, and a youthful
mathematician, Walter Pitts, composed a paper on how neu-
rons may function. They proposed a basic neural network with
electrical circuits. In 1949 Donald Hebb theorized that neural
pathways are strengthened each time they are used [12]. In
1950s, Nathanial Rochester from the IBM research to simulated
abstract neural network on IBM 704 computers [13]. In 1956 four
scientists worked together on a summer project known as Dart-
mouth Summer Research project on Artificial Intelligence. The
four scientists were John McCarthy, Marvin L. Minsky, Nathaniel
Rochester, and Claude E. Shannon. They provided insightful leap
in Al research [14]. Following the Dartmouth project in 1957,
John Von Neumann proposed that telegraph relays or vacuum
tubes can be used to imitate the simple neuron function. In 1958,
Frank Rosenblatt, a neuro-biologist of Cornell, began work on
the Perceptron. He was charmed with the activity of the eye
of a fly. A significant part of the preparing which advises a fly
to escape is done in its eye. The Perceptron, which came about
because of this research, was built in hardware and is the most
established neural network still being used today. A single layer
perceptron was discovered to be helpful in classifying a single
valued set of inputs into one of two classes. The perceptron
figures a weighted amount of the data sources, takes away a limit,
and passes one of two potential qualities out as the outcome,
In 1959, Bernard Widrow and Marcian Hoff of Stanford created
models they called ADALINE and MADALINE !, These models were
named for their utilization of Multiple ADAptive LINear Elements.
MADALINE was the primary neural network to be applied to
a real-world problem. It is a adaptive channel which eliminate
with echoes on telephone lines. This neural organization is still in
business use. Shockingly, these prior triumphs made individuals
overstate the capability of neural networks, especially considering
the restriction in the hardware then accessible. This extreme
hype, which streamed out of the academic and technical fields,
tainted the overall writing of the time. Disillusionment set in as
guarantees were unfilled. Likewise, a dread set in as essayists
contemplated what impact “figuring machines” would have on
man. Asimov’s arrangement on robots uncovered the impacts on
man's ethics and qualities when machines where equipped for
doing the entirety of humankind’s work. In 1982, interest in the
field was reestablished. John Hopfield of Caltech introduced a

1 http://www?2.psych.utoronto.cafusers/reingold/courses/ai/cache/neural4.
html
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paper to the National Academy of Sciences 2, His methodology
was to make more valuable machines by utilizing bidirectional
lines. Beforehand, the associations between neurons was just a
single way. Additionally, in 1982, there was a joint US-Japan
Conference on Cooperative/Competitive Neural Networks. Japan
declared another Fifth Generation exertion on neural networks,
and US papers created stress that the US could be abandoned in
the field (Fifth era processing includes computerized reasoning.
Original utilized switches and wires, the second era utilized the
transistor, third state utilized strong state innovation like incor-
porated circuits and more significant level programming dialects,
and the fourth era is code generators.). Subsequently, there was
additionally subsidizing and, in this manner, more exploration in
the field. In 1985, American Institute of Physics started what has
become a yearly gathering — Neural Networks for Computing. By
1987, the Institute of Electrical and Electronic Engineer’'s (IEEE)
first International Conference on Neural Networks drew in ex-
cess of 1,800 participants. In 1997, A recurrent neural network
structure, Long Short-Term Memory (LSTM) was proposed by
Schmidhuber and Hochreiter. Long momentary memory (LSTM) is
artificial recurrent neural network (RNN) architecture [1] utilized
in the field of deep learning. Not at all like standard feedforward
neural networks, LSTM has feedback connections. It cannot just
cycle single information focuses, (for example, pictures), yet addi-
tionally whole sequence of data, (for example, speech or video). In
1998, Yann LeCun published Gradient-Based Learning Applied to
Document Recognition which was a major step in learning from
data [15].

3. Activation functions

Another important factor in a neural network is the activation
functions which are inspired by the human neural firing, i.e., it
either fire or not. The activation functions are used to generate
nonlinear relationships between the input and the output. This
nonlinearity, combined with many neural nodes and many layers,
mimics the human brain like structure, which is why it is called
a neural network. There are many activation functions (some of
them presented in Fig. 1(B)). In Fig. 1, we have plotted different
activation functions, which are commonly used, such as Sigmoid,
Hyperbolic tangent, and Relu. The role of the activation function is
to transform and abstract the data into a more classifiable plane.
Generally, the data is very tightly clustered; it is the job of the ac-
tivation function which transforms the data into a different plane
which helps in observing the effects of different dimensions in
the given problem. The best and classic example of the activation
function is sigmoid activation, which is used in logistic regression.
In fact, the logistic regression can be considered as one neural
unit (See Fig. 1(A)). The job of the sigmoid function is to take
any input and give an output between 0 and 1, which is used
for the classification problems. In Fig. 1(C), we have plotted one
hidden layer neural network, which has three hidden neural units
in the hidden layer and one in the output layer. This hidden unit
is similar to the logistic regression model. The difference is that
in the next layer, the input comes from the layer just before it. In
Fig. 1(D), we have plotted a description of more than one hidden
layer and more than one neural unit in every layer. From Fig. 1, it
can be easily noticed that the neural network can consist of many
layers, and every layer can have any number of neural units.

2 https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-
networks/History/history2.html
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4. Parameter learning

As the traditional machine learning classifiers, the deep learn-
ing classifiers also need to learn parameters with the help of some
mathematical tools such as the gradient descent. The gradient de-
scent algorithm is very useful in learning parameters for convex
functions. A function is convex if it has one absolute minima/max-
ima. If the function is convex, then the parameter learning is easy;,
otherwise, it needs some mathematical tricks to change a non-
convex function into convex function. This problem is also known
as a convex optimization problem. However, technicality, neural
network optimization is a non-convex optimization. It means that
it has many optimum (minima/maxima) points. The learning is
done by minimizing the error between the predicted value and
the actual value.

5. Deep learning performance

This figure (Fig. 2) shows how the size of the neural network
affects the prediction accuracy. For small data with small size,
the neural network can perform as Regression/Logistic Regression
and SVM (SVM, Support Vector Machines) classifiers. But, for big
data a small neural network is better than classical classifiers.
However, bigger neural network improves its performance if it
is trained on big data. The performance of bigger size neural net-
work grows with the data as it is compared to the classical models
and the medium and smaller neural networks. Wange et al. [16]
found that deep neural networks can be better perceived by
using the knowledge received by the visualization of the output
images acquired at each layer. Studies has been done to improve
the visualization idea in the neural networks by methods for a
strategy of obscuring and de-obscuring technique which may be
useful to its (neural network) performance.

5.1. Limitation and key issues

Deep learning are estimation of large number of parameters
that goes from input space to output vector space. They are
learning continuous geometric morphing from an input vector
space to output vector space. They are training point by point
so a deep neural network can best interpolate to points which
are near to training points. Which means to best learn we need
point by point training for all possible outcomes, which can be
expensive for real world complex problems such as autonomous
driving etc. Training with huge number of possible outcomes can
reduce the chance of testing error. Deep learning fails to abstract
information. For example an algorithm which is based on logic
can be applied on verity of unknown data. But deep learning can
only be applied on which data the model was trained. Although it
is known that deep neural networks can approximate any degree
of polynomial function in a given time. The main challenge is
the optimizing errors. The error optimization is difficult because
there is no one or generic function to achieve this task.

5.2. Optimization

It is understood that many real world problems with a natu-
ral non-convex optimizations are NP-hard [17]. Optimization for
high dimensional data is an open challenge for researchers [18].
Nouiehed and Razaviyayn [17] proposed the solution to the non-
convex optimization problem in neural network. Yun et al. [19]
found that even if the input data are random and the labels
are created according to a planted model the loss surface of
nonlinear networks contains spurious local minima. Furthermore,
Yun et al. [19] observed that intrusion of minor nonlinearities in
activation functions caused bad local minima in loss surface of
neural networks. Haeffele and Vidal came up with solution to find
optimum minima in Deep neural networks by studying the effect
of over-parametrization on the training of neural networks [20].
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Logistic regression/ single neural unit

A) (B)
X
(i)Sigmoid (ii)Tanh (iii)Relu
Input layer Hidden layer Output layer (C) |Input layer Output layer D)
Z|(Z) Zja(Z) — Zla(Z) ZJa(Z)
L X — ZhZ) ; | Z[a(Z) Za(Z) - - Za(Z)
Z[a(Z) _Z|ﬁ(Z) Output
Za(Z)) | Zja(Z) Zla(Z)

A shallow network

A deep neural network

Fig. 1. Basics of (Deep) Neural Network. Sub-figure (A) shows the classic logistic regression,(B) shows different activation functions plot, (C) shows one hidden layer

shallow network and (D) depicts more than two hidden layer neural network.
5.3. Architecture

To learn the complex relationship from the data neurons/per-
ceptron/single neural unit are stacked together either serial, par-
allel or both. It is found that these arrangements of neurons
also affect the over all neural networks performance. Haeffele
et al. [21] observed that for networks with specific structures
there is a path from initialization to global minima. This obser-
vation helps to find long lasting questing for finding optimum
minima for neural networks.

5.4. Generalization and regularization

Dropout is widely used to prevent over-fitting by switching off
some of the neural units randomly. It uses predefined dropout
probability. It is found very strong regularizer in neural net-
works [22]. Mianjy et al. [23] investigated the effect of dropout
regularization of an linear autoencoders (LAEs). They found that
induced regularizer is indeed nuclear norm. Ising-dropout [24]
is another recent dropout technique. It put the graphical Ising
model on top of a neural network in order to identify less useful
neurons, and drop them. The Ising dropout model is energy-based
dropout method which switch offs the neural units based on
activation values in dense layers of neural networks.

5.5. Stability and robustness

Sengupta et al. [25] investigated that as the prediction time
increases the RNN model loses its robustness. Different experi-
ments for the same task are obtained with different dynamical
behaviors. It suggests that risk-sensitive policy selection mini-
mizes expected complexity or computational cost (Sengupta and
Friston). Zheng et al. [26] propose to attach a stability term to
the objective function, which powers the model to have com-
parable yields for tests of the training set and their perturbed
forms. Further, they propose to improve the robustness of neural
organizations against little perturbation to enter pictures. [27] ex-
plored the performance of neural networks on different random
weights. Haber et al. [28] interpreted deep learning as a param-
eter estimation problem of nonlinear dynamical systems. Given
this formulation, they analyze stability and well-posedness of

deep neural network and use this new understanding to develop
new network architectures. Further they introduce the concept
of stable networks that can be arbitrarily long. Malladi et al. [29]
proposed fast normalization technique which converges and cost
less computation cycle. It exploits the low-rank properties of
weight updates and predicts the norms without explicitly cal-
culating them, The capacity to revert neural networks mitigates
the need to store activation values for backpropagation. Further
decreasing the memory impression of our calculation in those ap-
plications motivates the utilization of reversible neural networks
emerging from hyperbolic systems [30]. It additionally opens up
the likelihood to build various networks by utilizing distinctive
discretizations of the ODE, as in the midpoint network in.

The paper is structured as follows: Section G gives out an
introduction and an overview of the deep learning models; Sec-
tion 7 discusses the applications of deep learning technology;
Section 8 gives example how to use deep learning for solving
our problem. The challenges of deep learning are discussed in
Section 9; Section 10 concludes the paper and points out the focus
of future work.

6. Deep learning models

In this section, we survey the basic of deep learning-based
models and discuss their architectures and features. At present,
the deep learning mainly includes stacked automatic encoder,
deep belief network, deep Boltzmann machine, convolution neu-
ral network and so on. The following is a brief introduction of
basic models.

6.1. Stacking automatic encoders

1. Automatic Encoder: Auto Encoder (AE, Auto Encoder) [31]
mainly consists of the encoder, the decoder and the hidden
layer. The working process is shown in Fig. 3. An automatic
encoder firstly encodes the input signal and then uses the
coded signal to reconstruct the initial signal. This coded
signal can minimize the error between the initial signal and
the reconstructed signal. In the process of the encoding and
the reconstruction, the encoder maps the input data to a
specific feature space. The characteristics of the encoded
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Scale driving Deep Learning progress
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Fig. 2. This figure shows how the performance of Deep Neural Network
improves with data size.

Fig. 3. Schematic diagram of the automatic encoder.

signals are mapped back to the data space by the decoder,
and then the initial data is reconstructed. For the automatic
encoder, the mapping is often concerned with the input
that will be encoded. If there is a difference between the
forced coding data and the input data, then the system

N layer automatic encoder(. . . . . .

Constrpction

3 layer automatic encoder /\—. . . . . I

Construction
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can restore the initial signal in a different form. And thus,
the features are extracted so they can achieve automatic
learning.

. Stacking automatic encoders: In 2006, Hinton et al. up-

graded the structure of the encoder to improve the pro-
posed de-noising automatic encoder (DAE, Denoising Auto
Encoder [32]), after the researchers gradually put forward
shrink automatic encoder, Contractive Auto Encoder, Spare
Auto Encoder, Convolutional Auto Encoder, and so on. The
above automatic encoders are stacked automatic encoders.
The stacked automatic encoders are deep network struc-
tures formed by the n-times superposition of simple auto-
coding structures. The realization of the stacked automatic
encoder is presented as shown in Fig. 4. As shown in
Fig. 4, let n automatic encoders which are trained from
bottom to top. Firstly, the first autoencoder is trained, and
the initial reconstruction error is minimized. Secondly, the
output of the first autoencoder is trained as the input of
the second encoder, which is operated until the last layer.
Then, the output of the last layer is used as the input data of
the classifier, and its parameters are re-initialized. Finally,
based on the standard of the supervision, only the top is
fine-tuned, or all the layers are appropriate fine-tuned.

. Restricted Boltzmann machine: For a bipartite graph, if

there is no link between the first layer and the second layer,
then the first layer is consider as the input layer (i.e., it is
the visual layer), and the second layer is consider as a hid-
den layer [33]. Let us suppose that all the nodes are random
binary variables. Moreover, the full probability distribution
p(v, h) is subjected to the Boltzmann distribution which
is called the Boltzmann machine [34]. The specific model
is shown in Fig. 5. According to the characteristic of the
restricted Boltzmann machine, the activation conditions of
the hidden layers are independent for a given state of the
visible layer (i.e., the input data). So, for the state of a given
hidden layer, the activation conditions of the visible layers
are independent. Though the distribution of the restricted
Boltzmann machine cannot be calculated effectively, but a
random sample can be obtained by Gibbs sampling. This
random sample is subjected to the constrained Boltzmann
machine. As long as the number of the hidden layers are
sufficient, the Restricted Boltzmann Machine can fit any
discrete distribution. In terms of the application, the re-
stricted Boltzmann model has been successfully used to

econsitution

(000000

econsitution

000000

consitution

000000

Fig. 4. Stacked automatic encoders.
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solve various machine learning problems such as regres-
sion, classification, dimensionality reduction, time series
modeling, image co-filtering, and feature extraction.

. Deep Belief Network: The Deep Belief Network (DBN) [35,
36]is composed of a superposition of multiple constrained
Boltzmann models with hidden explanatory factor neural
networks of multiple layers. A typical neural network is
shown in Fig. 6. The network layer remains the connection
between the layers, but the connection in each layer does
not exist. The data dependency exhibited in the visual layer
unit is captured by the training of the hidden layer.

As shown in Fig. 7, in the process of deep belief network
training, firstly, the pre-training is carried out by an un-
supervised greedy method to obtain the eigenvalues of
the model layer by layer. The un-supervised greedy layer
method is called Contrastive Divergence and it has been
proved as a valid method. During the training process,
the visual layer generates a vector v. It passes the data
to the hidden layer through the vector v. Conversely, the
input of the visual layer is randomly selected to attempt
to reconstruct the original input signal. After that, the
neuron activation unit of the new visual unit can continue
forwarding the transfer input in order to reconstruct the
hidden layer activation unit and then obtains the vec-
tor h. These repetitive processes are also known as Gibbs
sampling. The correlation between the input of the visual
layer and the activation unit of the hidden layer is the
most important basis for measuring the weight update. The
restricted Boltzmann machines are trained for each layer
from bottom to top.

The top-level accesses are concatenated so that the out-
put in the bottom layer can provide an association to
the top layer, which can associate its memory content
and ultimately a discriminate performance obtained. After
the pre-training is completed, the neural network gets a
good initial data. However, this is not the optimal solution.
The Deep belief Network uses the tagged data to adjust
the discriminated performance by the error back propaga-
tion (BP), meanwhile, adding a label set to the top layer.
Through repetitive learning, the identification weight will
get the classification of the network, which will be stronger
than the single error back propagation algorithm, and the
training time is shorter than the feed-forward neural net-
work. As an important turning point in the deep learning,
the emergence of the deep belief networks are utilized in
various areas such as voice recognition, image processing
and so on.

. Deep Boltzmann Machine: Deep Boltzmann Machine [37]
(DBM, Deep Boltzmann Machine) is also formed by the
restricted Boltzmann machine stack, which is similar to
the deep belief network. The difference between the deep
Boltzmann machine and the deep belief network is that
the former layer and the current layer are between the
non-directional connections, and there are no feedback pa-
rameters from top to bottom. The deep Boltzmann machine
training method first uses unsupervised pre-training to get
the desired initial authority and then it uses the field-
averaging algorithm. Finally, the supervised fine-tuning is
carried out. The deep Boltzmann machine is different from
other models. Firstly, the deep Boltzmann machine has
the ability to learn more complex intrinsic representations,
which is a new way of speech recognition and object recog-
nition. The deep learning can significantly improve the
performance in the field of voice recognition. Secondly,
the deep Boltzmann machine can build a higher represen-
tation in a large number of non-tagged data. To achieve

W
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Fig. 5. Restricted Boltzmann machine binary map.

the desired value, the deep Boltzmann uses the known
artificial tagged data to fine-tune the model. Also, the deep
Boltzmann machine can be more robust to deal with more
vague input data information, and it can be spread better,
which reduces the error in the process of dissemination.

6.2. Convolution neural network

1. Overview of Convolution neural network: Convolution

neural network [38] (CNN, Convolutional Neural Networks)
was first proposed in the 1980s. It is inspired by the cat's
cortex [39]. The LeNet-5 system was a classical model of
a convolution neural network. Its error rate was only 0.9%
on the MNIST data-set. It had been widely used to identify
handwritten checks on banks, but it did not recognize large
images. With the development of Graphics Processing Unit
(GPU) technology, Krizhevsky et al. [40] used an efficient
GPU supported program to solve the ImageNet problem in
2012, which made the convolution neural network again
popular. In fact, one of the bottlenecks of deep neural nets
was that it took a long time for training because of the
many hidden nodes in its network. But as the GPUs become
faster in parallel computing, this bottleneck was overcome.
At present, the convolution neural network is a hot topic in
the field of voice data analysis and image recognition. The
convolution neural network has a network structure with
share permission, which makes it closer to the biological
neural network. This network structure in the convolution
neural network can effectively reduce the complexity of
the network model and also reduce the number of the
weights. Mainly, it is more efficient to deal with high-
dimensional images, which can directly consider the image
as the input of the entire network and effectively avoid
the complex feature extraction and reconstruction of the
traditional algorithm. In the process of image recognition,
the convolution neural network has a high degree of in-
variance in scaling, tilting, translating, and other forms of
image deformation.

. Structure of convolution neural network: As a multi-

layer neural network, each layer in the convolution neu-
ral network structure is composed of a number of two-
dimensional planes and each plane has independent neu-
rons. The sparse connections are used between the layers.
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Fig. 6. Structure of deep belief network.

This means that the neuron in each feature map only
connects the neurons in a small area in the upper feature
map, rather than the traditional neural network. A typical
model of the convolution neural network is shown in Fig. 8.
The convolution neural network structure mainly depends
on the shared weight, the local experience field, and the
sub-collector to ensure the invariance of the input data.
These factors can be explained as follows: Local experience
field: The first hidden layer contains six feature maps (see
Fig. 8). Each feature map corresponding to a small box in
the input layer is a local experience field, or it is called the
sliding window.

Convolution: The activation value g of the j* feature
map in the convolution layer [, which is expressed in the
following equation:

af = fb' + Y a7V x k) (1)

ieMy
i

Where f is a non-linear function, % is a two-dimensional
convolution operator, bj‘ is the jth offset in the Ith layer,
and is the weight, which is a cumulative input in the
feature map i of I — 1th layer. The index vector of i is My in
the feature map of [ — 1th layer. The feature map needs
to be accumulated in the Ith layer. Weight share: Each
convolution layer is usually composed of several feature
maps and the weight of the same features in Fig. 8 is same,
which can reduce the number of its own parameters.
Sub-sampling: The translation of the convolution layer will
also translate its output at the same time. However, its
characteristics remain unchanged, and as long as a feature
is detected, its exact position will no longer be considered,
as only the relative position of the other features can be
preserved. So, each convolution layer has a sub-sampled
layer that performs local averaging to reduce the sensitivity
associated with the deformation and the translation of the
output. The feature mapping of the subsampling layer is
denoted by Eq. (2) as follows:

ai' = down(a,"~", N"), (2)

Where N' is the boundary size of the subsurface required
for the | sub-sampling layer and down is the down sam-
pling function in the factor. The above formula 2 is the
mean operation of the localized non-overlapping parts of
size. If the neuron output layer is C-dimensional, then the
C class can be identified, and the output layer which is

the output characterization for front connection feature
mapping is expressed in Eq. (2) as follows:

output = f(b°, W°f,) (3)

Where B is the partial value vector, W is the weight ma-
trix, f, is the eigenvector, and k;', b;', b°, W are the model
parameters. As the convolution neural network structure is
mainly alternately composed of convoluted layer and sub-
sampling layer. With the reduction of the spatial resolution,
the number of the feature maps is also increasing. The
training process of the convolution neural network is as
follows: The first stage is the forward training phase. It
consists of the following three steps:

e Select the samples according to the given sample set
randomly.

e Put the samples as initial data into the network.

e Calculate the corresponding output data.

The second stage is the backward propagation phase, It
consists of the following two steps:

e Calculate the difference between the ideal data infor-
mation and the output data information.

e Adjust the weight matrix according to the minimiza-
tion of the error method for the reverse transmission.

6.3. Deep learning on graphs

Deep learning or traditional machine learning takes data into
the form of vectors and considers it into the Euclidian plane.
The graph data set is dissimilar from other data sets such as
image, audio, etc. The graphs have the following characteristics,
which explain the failure of the traditional machine learning
approach [41].

e Irregular Domains: As previously mentioned, the graphs
represents irregular domains or non-Euclidean data, while
other data sets such as image and audio can be easily rep-
resented in the Euclidean plane or grid like structure. This
explained the reason why many mathematical operations
cannot be directly applied on the graph data [42].

o Non-static structure: Graphs are tools to represent complex
systems. Therefore, they might have different shapes and
structures such as homogeneous, non-homogeneous, signed,
unsigned graphs, and so on. The graphs may also be different
such as node centric (i.e., link prediction, node ranking,
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Fig. 7. Training process of deep belief network.

etc.), graph centric (e.g., graph generation, graph classifica-
tion, etc.) and so on. The most utilised graph representa-
tion method is using adjacency matrices. Which changes its
shape after addition or deletion of nodes. That's the reason
ML models cannot take adjacency matrices directly.
Scalability and Parallelization: In the computational tools
abundance era, the first problem we have is the big data
problem. In consequence, the generated graphs might have
millions of nodes and billions of edges. For example, Google
web page link data graph causes hindrance for training
machine learning models especially with many nodes and
hidden layers. The second problem is that how to parallelize
the algorithms since every node in the graph carries some
information about the other nodes in the graph, i.e., the
nodes have some relations with other nodes, which should
not be missed since losing such information might lose vital
information.

Domain specific knowledge: Learning on graphs might also
need to be aware about domain specific knowledge such
as drug-target interaction prediction task where the drug
chemical molecular structure may help for better predic-
tion. The other extra information might be helpful in the
prediction about drug-drug side effect as a feature.

1. Graph Neural Networks: Graph Neural Network is a kind
of neural network that takes the input as a graph data, not
as a vector. It learns to represent the features for every
node i. The further generated features can be used in any
graph-related problem such as node classification, graph

Feature Layer

Input Layer

Input

convolution downsampling

Feature Layer
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Kernel

Outpﬁt grid

Input .grid

Fig. 9. The picture shows how convolutional operator works on grid like
structure and generates output grid.

classification, clustering, and so on. In the node classifica-
tion problem, every node is characterized by its feature x;
and it has some associated label l,. In the graph classifica-
tion problem, there is a set of nodes which have associated
label I;. By learning the features of the nodes i, the graph
neural network has to predict the label for the unknown
nodes i. It learns to represent each node in d dimensional
vector v;. The vector v; contains information about the
neighbor nodes of the node i as presented in the following
equation (4) [43]:

Vi =f(X,-, Xco[i]s Vne[flf Xnelil) (4)

Where, X, represents the features of the edges adjacent
to the node i, is the embedded neighboring node of the
node of i, and f is a transition function (feed-forward neural
network), which output d dimensional vector. The above
formula can be solved using the neighborhood aggregation
theorem method as it can be rewritten in an iterative form
as follows:

v+ = Fvt X) (5)

The further output transition function O; is applied to get
the final low dimensional vector as follows:

0; = g(Vi. Xi) (6)

The further hidden parameters are learned by applying the
loss function between the predicted output O; and the true
labels I;. Based on the graph neural network, many derived
deep learning models are developed, such as Graph Convo-
lutional Neural Network (GCN) [44] and GaphSage [45] etc.
These models are the state of the art models and based on
the graph neural networks.

. Graph Convolutional Networks: A graph convolutional

neural network operates in three steps.

Feature Layer

Output Layer

convolution downsampling

Fig. 8. Convolutional Neural Network model.
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o Kernel/filters: A kernel/filter is a function that acts
like a scanner that has a limitation on the number
of pixels or cells (of adjacency matrices) needs to be
considered at a time, i.e., at one-time, the scanner
function works on a small part of the grid. Fig. 9.
shows how the kernel function is applied on an input
grid.

e Pooling: Similar to the kernel scanner function, pool-
ing is a function that gives an output for all the
values scanned by the scanner at a time. This output
value can be based on max pooling (i.e., an important
element or average value). It is also known as mean
pooling (as it can be seen from Fig. 9). It can be
noticed from many values in the input grid that only
one output cell is generated after applying the kernel
followed by the pooling function.

e Flattening: Flattening function truncates the grid
structure into a lower-dimensional vector, which can
be used to feed the forward neural networks.

The above three methods are common to all graph convo-
lutional neural networks. The big difference comes only in
the different kernel functions across the graph neural net-
works. However, the researchers have classified the graph
convolutional neural networks into two types as follows:

e Spatial Methods: These kinds of convolutional oper-
ations do not need eigenvalues of the graphs.

o Spectral Methods: These kinds of methods are based
on eigenvalues and they are more popular than the
spatial methods as they consider both aspects, i.e., the
whole graph structure as well as the individual graph
components. There is a subfield known as Graph Sig-
nal Processing (GPS) which is based on signal pro-
cessing techniques such as Fourier transformation etc.
Some of the state-of-the-art works in this field are
ChebNets [46], and Kipf and Welling [44].

6.4. Deep probabilistic neural networks

Although probabilistic neural networks (PNN) are there for
quite long time [47]. But these were based on shallow neural
network architecture. The PNN network has four basic layers,
the input layer: that grabs and distributes the input vector; the
pattern layer: that applies the kernel to the input; the summation
layer: that gets the average of the output of the pattern units for
each class; and the decision layer: that declares the class assigned
to input vector based on the unit with the maximum output from
the summation layer [47]. Very recently deep probabilistic neural
network(DPNN) has been introduced [48]. The advantage of PNNs
over neural networks is that they can perform better even with
less training data [47]. Therefore they are found useful in many
cases where we usually lack of lots of training data such as med-
ical imaging, signal processing etc. Further PNNs are better under
adversarial attack which makes it promising choice as DNNs fails
even under minor random errors. Gast et al. [48] provide a deep
probabilistic neural network by altering a little to the current
neural network. The applied following two approaches to achieve
this:

e The first and simplest consists of replacing the output layer
of well-proven networks with a probabilistic one see
Fig. 10(b).

e The second alteration goes by considering activation uncer-
tainties also within the network by means of deep uncer-
tainty propagation see Fig. 10(c).
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6.5. Deep fuzzy neural networks

Although current neural networks outperforms even human
as a benchmark for some problems such as image recognition
but still they lack many aspects. One of the aspect is inter-
pretability and expansibility of the models. One cannot know
or explain what is going on inside the neural network param-
eter estimations. Therefore we use it as a black box machines.
Some networks such as Deep Convolution networks stack up-
to hundreds and thousands of layers together to solve image
recognition problem. It consist of millions or billions of inter-
nal parameters. Although their performance is very good but
we cannot explain all those layers or parameters by our logic.
Which is the reason even slight adversarial attack on image it
predicts completely different response. Even random label can
cause deep neural networks to over-fit and affect the test per-
formance very bad [49]. Neural networks lack logical reasoning
therefore it is prone to adversarial attack. For example Alpha
Go lost one game to South Korean Go player because its 78th
move was not decisive. Further this move led to sequence of
moves. Neural networks gives unpredictable and un-interpretable
results. In an example despite the advances sensors and cameras
the Neural network failed to detect the pedestrian at shadowed
street [50]. Considering the logical reasoning aspect of Fuzzy
logic some research proposed Deep fuzzy neural networks [51]
by fuzzing the two systems together. They proposed hierarchical
approaches to fuse the fuzzy logic and neural network that simul-
taneously leaned feature representations altogether for robust
data classification. Further Zhou et al. first transform the input
vector into latent vector using neural network then fuzzifies the
representation at the output layer for pattern classification [52].

6.6. Generative Adversarial Networks (GANs)

These are the class of generative models based on game the-
ory. Which do not explicitly model the data distribution but
rather models the sample from it. Sampling is performed using a
deep neural network. The neural network takes as input random
noise and transform it into model distribution. Suppose we have
examples of sample data Pyuq(x) — {x;},i = 1...N. We need
to find model which approximate the given data i.e. Ppodel(X) ~
Piaca(X). Pmoder(X) is not parametric model but it is accomplished
using deep neural network [53,54]. Generative Adversarial Net-
work consists of two neural networks. One is called Generator
and another one is called Discriminator. This model is called
adversarial because the generator is constantly trying to fool the
discriminator into believing that input is from training data(real
data). While discriminator always distinguishes between the two.

1. Generator: A neural network that takes as input, a random
noise vector and transform it into a model distribution.

2. Discriminator: It is a neural network that distinguishes
between output data point (Fake) and training data sam-
ples (Real). It acts like a classifier as if the input is real
or fake. These two neural networks trying to work against
each other. In these setting the weights of generator learns
that converts a random noise vector into a model distri-
bution. From Fig. 11 generator G takes a random noise
vector from latent space and out puts some samples. Now
discriminator D takes input from training data (real) and
checks against the generated fake sample from generator
(G). The training data should have images from the similar
kinds of tasks say paintings or faces etc. Upon taking both
the input the error function outputs probability that par-
ticular sample is real or fake. This output is used to train
the weights of the generator as well as the discriminator.
The another important part is formulation of error function
or cost function in GANs. This problem is formulated as
MiniMax zero sum game.
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Fig. 11. How Generative Adversarial Networks works.

7. Applications of deep learning

In this section we covered applications of deep learning in
various areas. Further we summarized it in one Table 1. Following
are the various applications of Deep learning.

7.1. Natural language processing:

In natural language, the deep learning is applied in many
areas such as voice translation, machine translation, computer
semantic understanding, and so on. In fact, the success of deep
learning is only in two fields, i.e., the image processing and the
natural language processing. In 2012, Schwenk et al. [55]proposed
a phrase-based statistical machine translation system based on
Deep Neural Network (DNN). It was able to learn meaningful
translation probabilities for unseen phrases which were not pre-
sented in the training set. In 2014, Dong et al. [56] proposed
a novel Adaptive Multi-Compositionality (AdaMC) layer in the
recursive neural network. This model introduced more than one
composition function, which was adaptively selected based on
the input features. In 2014, Tang et al. [57] presented a DNN
on Twitter data for sentiment analysis. In 2015, Google intro-
duced Word Lens recognition technology based on deep learning,
which used word lenses in real-time call translation and video
translation. This technology not only could read the words in real-
time, but also those words could be translated into the desired
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target language. Also, the translation work could be done through
the phone without networking. The current technology could be
applied in more than a visual translation of 20 languages. In
addition, Google proposed an automatic mail reply function in
Gmail, which used a deep learning model for extracting the e-
mail content and analyzing it semantically. Finally, a reply is
generated based on the analysis of the semantic. This technique is
fundamentally different from the traditional e-mail auto-respond
functionality.

7.2. Speech recognition:

In order to realize the Human-Computer Interaction, the re-
searchers made great efforts. In 1952, Bell Institute’s Davis and
others successfully developed the world’s first experimental sys-
tem which can identify 10 English digital pronunciations. The
research on speech recognition technology has few decades of
history, and voice recognition was the dictator used in certain
areas as it was mentioned by the US press as one of the top ten
events in computer development. In the last two decades, speech
recognition technology has made significant progress. With the
continuous improvement of the deep learning model, a large
number of speech recognition devices or applications have be-
gun to move from the laboratory to the market. In 2014, Baidu
launched Deep Speech, a voice recognition system with deep
learning technology, which can achieve 8% accuracy in noisy
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Table 1
Applications of deep learning.
Application field Reference Methods Task
Schwenk et al. 2012 [55] DNN-based Phrase-based translation

Natural language processing

Dong et al. 2014 [56]
Tang et al. 2014 et al. [57]

AdamMC +RNN based
COOOL: DNN-based

Sentiment analysis and semantic composition
Sentiment classification

Speech recosmition You et al. 2015 [58] DNN-based Speech recognition
p g Maas et al. 2017 [59] DNN-based Speech recognition
Li et al. 2014 [60] CNN-based Lung disease identification
Medical applications Li et al. 2015 [61] DNN-based Alzheimer's disease classification
pp Sirinukunwattana et al. 2016 [62] SC-CNN and NEP Cancer disease classification
Dou et al. 2016 [63] 3-D CNN Cerebral microbleeds identification
Krizhevsky et al. 2012 [40] CNN-based Image detection

Semantic segmentation &
Scene labeling & Face
recognition

Malik et al. 2012 [G4]
Behnke et al. 2014 [G5]

Sun et al. 2014 [66]
Pinheiro P et al. 2014 [67]
Taigman et al. 2014 [68]
Long et al. 2015 [69]
Schroff et al. 2015 [70]
Wang et al. 2015, [71]
Zheng, 2015 [72]
Ronneberger et al. 2015 [73]
Badrinarayana et al. 2015[74]
Liu et al. 2015 [75]

Byeon W et al. 2015 [76]
Lin et al. 2016 [77]

Shen et al. 2016 [78]
Chandra et al. 2016 [79]

Luc et al. 2016 [80]

Bayesian network

RGB-D sensor based on the deep learning
technology

DeeplD

CNN-based

DeepFace

FCN

FaceNet

CNN-based

CNN-based

U-Net (CNN-based)

SegNet (Convolutional Encoder-Decoder)
DPN(CNN)- and MRF-based

2D

CRF- and CNN-based

CRF- and CNN-based

GCRF based

GAN- and CNN-based

Ontology learning
Semantic scene segmentation

Face recognition

Scene labeling

Face recognition

Semantic segmentation

Face recognition and clustering
Pixel-wise semantic segmentation
Semantic segmentation

Biomedical Image Segmentation

Semantic Pixel-Wise Labeling

Semantic segmentation

pixel-level segmentation and scene labeling
Semantic segmentation

Semantic image segmentation

Contextual relations between parts of the
image.

Semantic segmentation

Hoffman ] et al. 2016 [81] FCN-based Semantic segmentation

Shuai B et al. 2016 [82] DAG-RNNs Scene labeling

He et al. 2016; [83] ResNet Image recognition

Chen et al. 2017 [84] CNN-based Semantic segmentation

Koziski M et al. 2017 [85] GAN based Semantic segmentation

Chen et al. 2017 [86] CNN-based Semantic segmentation

Souly et al. 2017 [87] GAN based Semantic segmentation

Yu et al.2018 [88] CNN-based Semantic segmentation

Marvin et al. 2018 [39] CRF- and CNN-based Semantic segmentation

Karen et al. 2015 [90] CNN-based Oject detection

Pierre et al. 2014 [91] CNN-based Object localization and detection
Object Detection Russakovsky et al. 2015 [92] CNN-based Object detection

Chatfield et al. 2015 [93] CNN-based Object detection

Pi et al. 2020 [94] CNN-based Object detection in aerial imagery.

Gu et al. 2020 [95] CNN-based Object detection in X-ray images.

Caellas et al. 2017 [96] 0SVOS: CNN-based Moving object detection in videos

Shin et al. 2017 [97] CNN-based Moving object detection in videos

Jang et al. 2017 [98] convolutional trident network Moving object detection in videos
Video object segmentation Hu et al. 2017 [99] MaskRNN Instance level video object segmentation

Sasikumar et al. 2018 [100] Mask R-CNN Moving object detection in videos

Li et al. 2018 [101] CNN-based Video foreground target extraction

Xiao et al. 2018 [102] MoNet Moving object detection in videos

Goel et al. 2018 [103] MOREL Moving object detection in videos

Schofield et al. 1996][104] DNN-based Object detection in videos

Tavakkoli et al. 2005 [105] DNN Foreground and background separation in

videos

Culibrk et al. 2006 [106] DNN-based Background modeling

Maddalena et al. 2007 [107] Self organization+DNN Background modeling

Ramiraz et al. 2013 [108] RESOM Background separation in videos

Guo et al. 2013 [109] PS-RBM Background modeling

Background/foreground
separation

Xu et al. 2014 [110]
Xu et al. 2014 [111]
Ramirez et al. 2015 [112]

Qu et al. 2016 [113]
Minematsu et al. 2018 [114]
Ammar et al. 2019 [115]
Sultana et al. 2020 [116]

Auto-encoder Networks

Auto-encoder Networks

Self-organizing Maps (SOMs) and Cellular
Neural Networks (CNNs), CNN-based
Context-encoder: CNN-based

DNN-based

DeepSphere

GAN-based

Background modeling
Background modeling
Dynamic object detection

Background modeling
Background modeling
Foreground modeling
Background modeling

environments. In February 2016, Baidu's Deep Speech 2’s error

rate of phrase recognition had been reduced to 3.7%. In 2015,
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(continued on next page)

You et al. [58] proposed a node pruning method to reconstruct

the DNN which gave a novel bottleneck feature, Further, in 2017,
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Application field Reference Methods

Task

Duvenaud et al. 2015 [117]
Kearness et al. 2016 [118]
Berg et al. 2017 [119]
Monti et al. 2017 [120]

GCNN-based

Gilmer et al. 2017 [121] MPNN
Coley et al. 2017 [122] GCN-based
Ktena et al. 2017 [123] GCNN-based
Graphs based applications Parisont et al. 2017 [124] GCNN-based
Parisont et al.2018 [125] GCNN-based

Qui et al. 2018 [126]
Ying et al. 2018 [127]
You et al. 2018[128]
Cao et al. 2018 [129]
Zitnic et al. 2018 [130]
Xie et al. 2018 [131]

Molecular Graph Convolution: GCNN-based
Graph Auto Encoder-based
Multi-Graph CNN

DeepInf: GNN based
PinSage: GCN- + RW-based
GCPN: GCN-based
MolGAN: GAN-based
Dacagon:GCNN-based
CGCNN: GCNN-based

Molecular property generation
Molecular property prediction
Link prediction

Matrix completion

Molecular property prediction
Molecular Graph embedding generation
Graph similarity prediction
Brain disease prediction

Brain disease prediction

Social influence prediction
Web-based recommendation
Molecular graph generation
Molecular graph generation
drug-drug side effect prediction
Material property prediction

Moreira et al. 2013 [132]
De et al. 2015 [133]
Vinyals et al. 2015 [134]
Li et al. 2015 [135]

Bello et al. 2016 [136]
Zhang et al. 2016 [137]
Chen et al. 2016 [138]
Endo et al. 2017 [139]
Ke et al. 2017 [140]

Yao et al. 2017 [141]

RNN-based

RNN-based
CNN-based

RNN-based

(DMVST-Net)
Khalil et al. 2017 [142]
Ma et al. 2017 [143]
Jiang et al. 2017 [144]
Yao et al. 2017[145]
Yang et al. 2018 [146]
Jindal et al. 2018 [147]

Intelligent transportation

system CNN-based

RNN-based

Time varying Poisson and ARIMA
Bi-directional CNN+NN

Graph-based DL

stacked Autoencoder-based

LSTM+CNN-based
a Deep Multi-View Spatial-Temporal Network

Graph-based DL
Auto-Encoder-based

Network/Graph-based DL
Spatio-Temporal Neural Network+

Destination prediction
Destination prediction

Demand serving

Routing problem

Demand serving

Traffic flow prediction

Predicting traffic accident severity
Destination prediction

Demand Prediction

Demand Prediction

Routing problem
Traffic flow prediction
Transportation mode
Trajectory clustering
Navigation

Travel time estimation

reinforcement learning

Li et al. 2018 [148]
Kool et al. 2018 [149]

Lv et al. 2018 [150] CNN-based
Yuan et al. 2019 [151] CNN-based
Li et al. 2019 [152] LSTM-based

Network-based DL
Attention Model

Travel time estimation
Routing problem
Destination prediction
Seen recognition
Traffic route planning

Maas et al. [59] analyzed different architectures and parameters
of the DNN for training a very large speech data. They found
simple architecture and simple optimization methods that gave
strong performance than the other very complicated models.

7.3. Medical applications

The forecast function of deep learning and its automatic fea-
ture identification makes it popular technique in disease diag-
nosis also. The applications of deep learning in medical field,
either in the use of frequency or in the use of species are con-
stantly upgrading. In 2014, Li et al. [60] proposed customized
CNN to classify lung image patches. This model used the dropout
method and single-volume structure to avoid overfitting. In 2015,
Li et al. [61] proposed a DNN-based framework to differentiate
the identity stages of Alzheimer’s Disease (AD) from the MRI and
PET scan data. In 2016, Srinukunwattana et al. [62] proposed a
spatially constrained convolutional neural network (SC-CNN) to
analyze the histopathology images and identify the nucleus of the
cancerous cells. Their SC-CNN method had better performance
than the classical feature classification method. In 2016, Google
developed a vision system for identifying early-stage ocular dis-
eases. They worked with the Moorfields Eye Hospital, such as
diabetic retinopathy and age-related macular degeneration to
provide early prevention methods. A month later, Google used
deep learning techniques to design a head and neck cancer radio-
therapy method which had an effective control of the patient's
radiotherapy time and it could minimize the radiotherapy of
the patient’s injury. With the continuous development of deep
learning technology, the deep learning in the field of precision
medical care will lead to more prominent contributions.
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7.4. Computer vision

Computer vision is an essential application of artificial in-
telligence. It is an interdisciplinary field that deals with how
computers can gain high-level understanding from digital images
or videos. It can use computers and cameras to replace the human
eye for the target object recognition, tracking, measurement, and
for other visual problems. And then deal with the graphics so
that the computer can achieve image processing capabilities even
beyond the eye. In 2015, Baidu announced that it will refresh
the performance for the ImageNet image classification recogni-
tion. In the test, the error rate of the image recognition was
less than 5%, which was beyond the human level error for the
first time in computer performance. Computer vision is a broad
term which give birth to many research directions. Followings
are some well known directions which comes under umbrella of
computer vision.

1. Image segmentation: Throughout the previous thirty
years, one of the most difficult issues in computer vision
has been image segmentation. Image segmentation is not
quite the same as image classification or item recognition
in that it is not important to understand what the visual
ideas or articles are. To be explicit, an object classification
will just characterize objects that it has explicit labels
for, for example, horse, auto, house, dog. An ideal image
segmentation calculation will likewise fragment unknown
objects, that is, objects which are new or unknown. There
are various applications [64,93,153]where image segmen-
tation could be utilized to improve existing algorithms
from social legacy conservation to picture duplicate identi-
fication to satellite symbolism examination to on-the-fly
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visual hunt and human-computer interaction. In these
applications, approaching divisions would permit the is-
sue to be drawn closer at a semantic level. For instance,
in content-based image recovery, each picture could be
portioned as it is added to the information base. At the
point when a question is prepared, it very well may be
fragmented and permit the client to inquiry for compar-
ative portions in the information base, e.g., discover the
entirety of the cruisers in the data set. In human-computer
interaction, all aspects of every video casing would be
segmented so the client could connect at a better level with
different people and items in the climate. With regards to
an air terminal, for instance, the security group is ordinarily
keen on any unattended things, some of which could hold
risky materials. It is useful to make inquiries for all articles
which were given up by a human. The image segmentation
problem can be stated as, given an image the algorithm
should identify which two pixels are closely related see
work by Pavlidis et al. from 1979 [154]. An ideal algorithm
should cluster pixels [155] together according two object
i.e. If there are two cars in an image then algorithm should
separate pixels of cars from non-car pixels. There are many
work has been done specially by utilizing Deep learning
tools. Conventional algorithms segment image based on
clustering and more information from contours and edges;
Markov process is proposed by Geman et al. [156] in 1984;
and so on. With the advancement of algorithms such as
deep learning techniques image segmentation of digital
media is becoming more popular and challenging. A survey
of image segmentation on the basis of their strengths,
weaknesses and major challenges by using deep learning
techniques can be found in various application areas a
reviews are presented in 1996 by Zhang et al. [157],in 2013
by Narkhedo [158], in 2014 by Kaur et al. [ 159], and in 2016
by Kuruvilla et al. [160].

. Face recognition: Face recognition is a biometric identi-
fication technology based on the features of the human
faces. Firstly, the camera is used to collect the video or
image data containing the face, and then the collected
video or image data is used to detect the image and the
face automatically. In 2012, Huang et al. [161] presented
a convolutional deep belief network for image segmen-
tation problems. In order to exploit the global structural
features, this model used the local convolutional restricted
machine. In 2014, Taigman et al. [68] applied 3D face
modeling to apply piecewise affine transformation for gen-
erating lower-dimensional features, which achieved 27%
error reduction with respect to the state-of-the-art models.
In 2014, Sun et al. [66] proposed deep hidden identity
features (DeeplD) for high-level representation generation
from face data, which further could be easily used with
the state-of-the-art classifiers. In 2015, Schroff et al. [70]
proposed FaceNet based on a convolutional network, which
considered face image in Euclidian space and generated
low dimensional features. The face recognition accuracy
of the latest deep learning algorithm (i.e., FaceNet) was
99.63%, which is more than the eye recognition. Generally,
the deep learning can obtain the essential characteristics
that the manual expression does not have. Such as deep
learning is moderate sparse, which has a strong selectivity
for face attributes and identification. Also, it has very good
robustness for the local block. The face recognition features
are obtained based on deep learning and the display con-
straint or post-processing is added in the model. This is the
main reason that deep learning is widely used in the field of
face recognition. The main technology of deep learning in
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face recognition includes the convolution neural network
technology, the robustness modeling of deep learning face
pose, the deep non-linear face recognition technology, the
face recognition technology in the constraints of the en-
vironment, the low-resolution face recognition technology
based on deep learning etc.

. Object detection: Object detection is one of the fundamen-

tal and challenging problem in computer vision. And it has
been an active research area since last few decades [162-
166]. The goal of object detection is to find the given object
category in the image or video e.g. human face, eyes, ani-
mal etc. As the foundational task of image understanding
and computer vision object detection is the basis for solv-
ing many complex problems such as scene understanding,
image captioning, event detection and activity recognition
etc. Object detection has plethora of applications such as
consumer electronics, robot vision, security, autonomous
driving, human-computer interaction, automated surveil-
lance and so on. As the image dimensions were very high so
traditional algorithms were not very effective to learn pat-
tern. Until recently when in 2006, Hinton et al. [ 167] found
deep neural nets as very effective in automated feature
learning from high dimensional images. In fact the credit
for the success of deep learning goes to computer vision
community see works in 2015, Russakovsky et al. [92], in
2015, Lecun et al. [168], in 2012, Krizhevsky et al. [40].
The object detection problem can be categorize into two
types. The first one aim to find particular object such as
face of football player Ronaldo, Eiffel tower etc. The other
task is to find generic object of some category, probably
unseen objects for examples cats, dogs and cars etc. Farmer
problem is a bit harder than the later. Most of the research
works has been done on the later problem. There are many
review articles in this field mostly specific to the problem
of interest. For example pedestrian detection, see works
by Dollar et al. [169] in 2012, by Enzweiler et al. [170] in
2009, by Geronimo et al. [171] in 2009; vehicle detection
see works by Sun et al. [172] in 2006, by Sakhare et al.
in 2020 [173], and by Yuan et al. [174] in 2020; and
face detection [175-177]. In 2019, Zhao et al. [178], an
object detection method by using semantic segmentation
and deep learning methods is surveyed. An application of
semantic segmentation of the field of maritime surveillance
is presented in 2018 by Cane et al. [179]. In the year of
2014, Girshick et al. [180] has been proposed a simple
and scalable object detection scheme. The experimental
result gives 30 percent improves mean average precision
than previous state of the art method. In 2015, Girshick
et al. [181] has designed a Fast Region-based Convolutional
Network method (Fast R-CNN) for object detection, where
the performance of Fast R-CNN is higher than existing
CNN-based architecture.

. Image semantic segmentation An image contains a large

amount of information. The semantic segmentation of the
image is the process of dividing the image into a specific
region and extracting the relevant target. The key to image
processing and image analysis lies in what is called image
semantic segmentation. In image segmentation task we
segregate the pixels and cluster them according to some
semantic relevance but we do not classify each pixels. In se-
mantic segmentation each pixels are classified. In 2014, Liu
et al. [182] reviewed some works on Probabilistic Graph-
ical Model (PGM) for image segmentation and analysis.
Further, in 2014, Hoft et al. [65] solved the image seg-
mentation problem for getting depth information, which
had greatly improved the image semantic segmentation. In
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2014, Pinheiro and Collobert [67] proposed an end to end
framework based on recurrent convolutional neural net-
works for scene labeling. In 2015 Long et al. [69] proposed
an end to end Fully Convolution Network (FCN) seman-
tic segmentation. However, the FCN method did not ade-
quately consider the relationship between different pixels,
which resulted in insufficient segmentation. In 2015, Be-
yon et al. [76] proposed Long Short Term Memory (LSTM)
recurrent neural network based on end to end framework
for pixel-level segmentation and classification. Later, in
2015, Zheng et al. [72] combined a convolutional neural
network with Conditional Random Field-based graphical
models (CRF-RNN) for image segment analysis in order
to reach the pixel-level segmentation and classification
task. In 2015, Yu and Koltun [88] proposed dilated CNN
with CRF label modeling for image segmentation. In 2015,
Ronneberger et al. [73] proposed U-Net for biomedical
image segmentation, which relied on data augmentation.
In 2015, Badrinarayana et al. [74] proposed Segnet using
a convolutional encoder and decoder-based framework for
image pixel-level analysis. In 2015, Liu et al. [75] pro-
posed Deep Parsing Network (DPN), which solved the im-
age segmentation problem by incorporating Markov Ran-
dom Field (MRF). In 2016, Lin et al. [77] proposed a fully
connected CRF with linear binary cliques, which helped
in identifying similar image segments. In 2016, Shen and
Zeng [78] proposed a framework that considered higher-
order object-level features along with the discriminative
features. In 2016, Chandra and Kokkinos [79] solved the
image segmentation problem using Gaussian Conditional
Random Fields (G-CRF) and Deep Neural Nets. In 2016,
Shuai et al. [82] proposed Directed Acyclic Graph Recur-
rent Neural Network (DAG-RNN), which was able to model
long-range semantic dependencies among image units. The
DAG-RNN was also able to learn rare classes. In 2016,
Luc et al. [80] proposed generative adversarial networks
for image semantic segmentation, which could work on
different kinds of images once trained. In 2016, Hoffman
et al. [81] proposed unsupervised adversarial generative
model, which returned this model to a domain adaptive
model. In 2017, Chen et al. [84] combined the atrous sep-
arable convolutional pyramid pooling for semantic image
segmentation problems. In 2017, Chen et al. [86] proposed
Deeplab for image segmentation problem, which consid-
ered multiscale features via parallel filters with different
dilation factors. In 2017, Kozinski et al. [85] proposed a
generative adversarial network-based framework for im-
age segmentation. In 2017, Souly et al. [87] further gave
GAN (Generative Adversarial Network) based generative
model for pixel-level annotation. The motivation behind
this model was in adding a large amount of fake visual
data which forced the real samples to be closed in feature
space. In consequence, the bottom-up clustering approach
helped in the multiclass pixel-level classification task. Up to
some extent, it reduced the problems brought by the CNN,
the FCN, and the other networks in the process of image
semantic segmentation. With the continuous development
of deep learning, the image semantic segmentation contin-
ues to develop in a more precise and faster direction. In
2018, Wang et al. [71] solved this problem by dense up the
sampling of the convolutional framework. In 2018, Teich-
mann [89] proposed convolutional CRFs based framework
by considering conditional independence, which helped in
implementing CRFs on GPUs,
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5. Video object segmentation : Due to rapid development of

online social media video data is overwhelmed on Internet.
In this environment finding object of interest inside video
is really beneficial and demanding task. In object segmen-
tation the pixels are divided into two subsets of the fore-
ground target and the background region, and generates
the object segmentation mask, which is the core problem
of behavior recognition and video retrieval. Further object
tracking are used to locate the location of object insider
a video which is very helpful in intelligent surveillance.
Object tracking and object segmentation are complemen-
tary to each other. As accurate object segmentation will
help in object tracking and vice versa. Instance level ob-
ject segmentation is popular in video processing where
object identification, video editing, and video compression
can be achieved. It is an interesting research direction
recently [96,97,100,101,103]. A user annotations-based tar-
get object at the first frame by using semi-supervised on-
line video object segmentation algorithm is presented in
2017 by Jang et al. [98], it is also known as CTN. The
MaskRNN in 2017 by Hu et al. [99] is a novel recurrent
neural net method for instance level segmentation in video.
In this method by using recurrent neural net and the com-
bination of segmentation and localization nets, the idea
takes benefit of the long-term temporal information and
the location prior to improve the results than some of
the states of the art methods. In 2018, Xiao et al. [102]
presented a novel trainable network MoNet introduces two
motion exploitation components which are feature align-
ment and a distance transform layer to refine segmentation
results.

. Background/foreground separation: It is segmentation

task in which algorithm split between background and
foreground area of the image. This is currently hot topic
as it has wide applications such as intelligent surveillance
in public space, traffic monitoring, industrial machine vi-
sion and so on [183-187]. Recently neural network based
models are also being applied for Background separation
tasks see works in 1996, by Schofield et al. [104], in 2013
by Ramirez et el. [108], and in 2015, by Ramirez et al. [112].
In 1996, Schofield et al. [104] were the first to use neu-
ral networks to background and foreground separation
tasks. They proposed Random Access Neural Networks
(RAM-NN) which needs background information correctly
represented. Further Tavakkoli in 2005, [105] proposed NN
approach approaching it as novelty detection. The back-
ground is divided into blocks and each block is associated
with Radial Basis Function Neural Network(RBF-NN). In
2006, Culibrk et al. [106] proposed feed forward neural
network for background separation task which is based
on Bayesian model. Although their work was supervised
but it can be work unsupervised also. In 2007, Maddalena
and Petrosino [107] came up Self Organizing Background
Subtraction (SOBS) model which is based on a 2D self-
organizing neural network architecture preserving pixel
spatial relations. The weight vector of neural network is
same as number of pixels i.e. n x n. In this setting the back-
ground is modeled using neurons weight of the network.
These models used simple neural network. Further deep
neural network along with Convolutional neural network
used and showed promising accuracy see works: by Guo
et al. [109] in 2013, by Xu et al. [110] in 2014, by Xu
et al. [111] in 2019, by Xu et al. [188]in 2015 and by Qu
et al. [113] in 2016. For further studies in this area we
will suggest to read these papers by Ammar et al. [115]
in 2019, by Bouwmans et al. [189] in 2019, by Minematsu
et al. [114] in 2018, and by Sultana et al. [116] in 2020.
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7.5. Deep learning on graphs

In the recent years, the researchers are trying to develop
new techniques which can effectively learn patterns from graph
structured data. There are wide verities of problems which have
been solved using deep learning on graphs. For example in 2018,
Qiu et al. [126] presented an end to end deep learning framework
for influential user prediction, which took the input from the
user’s local graph structure. In 2018, Ying et al. [127] proposed
a graph-based recommendation framework which was based on
the random walk and the graph convolutional neural networks.
Their framework was suitable for largescale graphs. In 2017,
Berge et al. [119] proposed a graph auto-encoder framework
based on differential message passing mechanism, which helped
the user-item interaction and bipartite graph completion. Also,
in 2017, Monti et al. [120] presented a geometric deep learn-
ing framework which was based on convolutional neural net-
work and recurrent neural network. This model helped in matrix
completion problem by predicting accurate rating in the rec-
ommendation system. Further researchers also solved the deep
learning and graphs problem in chemistry such as in 2015, Duve-
naud et al. [117] presented a deep learning model for generating
molecular features based on convolutional neural networks. In
2017, Gilmer et al. [121] developed a deep learning framework
based on message passing neural network for molecular property
prediction. In 2016, Kearnes et al. [118] developed molecular
graph convolutional neural network which worked on undirected
molecular graph. In 2018, You et al. [128] proposed Reinforce-
ment learning based Graph Convolutional Policy Network (GCPN)
which was a goal directed graph generation model. The model
was highly applied in chemistry and drug discovery, where there
is a need to find new molecule within given molecular properties
such as drug-likeness and synthetic accessibility. In 2018 Cao
and Kipf [129] proposed Generative Adversarial Network (GAN)
based on likelihood free generative model. This model was also
able to generate molecule with desired molecular property. In
2017, Coley et al. [ 122] solved the molecular graph representation
problem by applying graph convolutional network on undirected
molecular graph. Along with the molecular graph structural at-
tribute, they also considered other factors such as atom and
bond attribute, atom neighbor, radii and so on. In 2018, Xie
et al. [131] proposed Crystal Graph Convolutional Neural Network
framework, which was able to learn material properties from the
crystal atomic link structure, which could be very helpful in new
material design. In 2017, Ktena et al. [123] used graph convolu-
tional neural networks for graph similarity prediction to identity
brain disorders. It was very common to treat complex disease by
giving many drugs at a time that targeted complex diseased pro-
teins. However, sometimes in the presence of another drug, the
effect of changing one drug is usually not observed under clinical
trains. To solve this problem, in 2018, Zitnik et al. [130] pro-
posed Decagon, a graph convolutional network-based framework.
Decagon could predict what side effects on the patient could be
caused by two drugs. In 2017 and 2018 Parisot et al. [124,125]
used graph convolutional network for brain disease prediction.
Also, in 2018, Assouel et al. [190] proposed a conditional graph
generative model.

7.6. Intelligent transportation system

Intelligent Transportation Systems (ITS) are at the heart of
smart cities, which are the research focus of 21st century [151,
191]. Transportation systems are back bone of any nation through-
out the ages. It is found that 40% of the world’s population
spent at-least 1 hour on the road everyday see paper by Zhang
et al. [191] in 2011. As population of the world is growing so
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do the vehicles which is becoming hard to manage without the
help of machines. In 2019 alone US citizens used 181,541 public
transportation vehicles, took 9.9 Billion trips which resulted in
55.8+ billion KM traveling. It suggest smart transportation is a
very demand of the all big cities around the world. The trans-
portation data can vary from letters and digits to sound images
and videos. For example an automatic passenger counter which
leads to revenue generation prediction needs image recognition
and video surveillance. Along with automatic passenger counter
we also need to in analyze which route people took most and
at what time. It needs GPS and road map information. It also
sometimes require non-human generated data such as ‘weather’.
These heterogeneous data comes from various sensors that would
be installed at various locations e.g at traffic signals, in cars etc.
The main problems that ITS focuses are: destination prediction,
traffic signal control, demand prediction, traffic flow prediction,
transportation mode and combinatorial optimization. The deep
learning has been applied in the following ITS problems see work
by Veras et al. [192] in 2019.

1. Destination prediction:

Destination prediction is one of the task in which we pre-
dict where the person or vehicle will end up its journey.
Currently it is a hot research area. This popularity is be-
cause deep learning models improve its performance with
the abundance of data and transportation systems pro-
duce Tera bytes of data every day see work by Moreira
et al. [132] in 2013. There are two approaches found in the
literature for destination prediction.

e Predicting Destination From a Trajectory Prefix:
Brébisson and ]. Lv et al. [133,150] proposed deep
neural network method based on basis of trajectory
path information in 2015 and 2018 respectively. To
achieve this they have combined the idea of fixed
length trajectory, possible destination information.

e Predicting Destination via Next Steps: In 2017, Endo
et al. [139] solved the destination prediction by iter-
atively predicting as the next point in the trajectory.

2. Demand Prediction: As oppose to destination which aims
to predict where the journey will end, in demand the aim
is to predict when and where the journey will start. It
is used to allocate resources for example making more
available taxi at any tourist spot at closing time. In 2017, Ke
et al. [140] proposed convolutional-LSTM based short term
taxi demand prediction model. In 2018, Yao et al. [141]
only considered local information along with spatio-
temporal information for demand prediction.

3. Traffic Flow Prediction: Traffic flow prediction is one of
the important task that predict how much time it will take
to flow the traffic in advance. There are many interesting
work has been done in this area using deep learning. In
2016, Zhang et al. [137] made inflow and outflow predic-
tive model by considering city as 2D grid. In 2017, Ma
et al. [ 143] considered the speed of vehicle sensed via GPS
along highways. Ma solves this problem by considering
highways into single column vector and by stacking them.

4. Travel Time Estimation: Travel Time Estimation(TTE) is
also an interesting problem in which we predict the esti-
mated time ahead of starting the journey. Researchers such
as in 2016, Siripanpornchana et al. [193] and in 2018, Zhang
et al. [ 194] calculate the time by already predicting the path
from start to end. They achieve it by stacking the known
and already estimated time of trajectory sections along
the path. Some works like in 2018, by Jindal et al. [147]
and in 2018, Li et al. [148]consider routes between origin
and destination is unknown. They achieve it by considering
every possible path between two nodes.
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5.

10.

11.

Predicting Traffic Accident Severity: No doubt road acci-
dents are one of the leading cause of deaths and injuries
around the world. In Canada it was found that 160,000
people got injured during road accidents in 2016. In 2016,
Chen et al. [138] predicted where and how bad a traffic
accident could be. To achieve this they have categorize the
injuries into four classes.

. Predicting the Mode of Transportation: In this task the

aim is to predict how people are moving rather than where
they are moving. In 2017, Jiang et al. proposed [144] Tra-
jectoryNet to solved this prediction problem by considering
the GPS information. As GPS is easily available such as
smart phones. This model is based on bi-direction RNN.

. Trajectory Clustering: Trajectory clustering is also a pre-

diction task. In this task we are interested to cluster similar
routes probably by minimizing the Euclidian distance in an
unsupervised fashion. In 2017, Yao et al. [145] and in 2002
Longest Common Subsequence (LCSS) [195] by Vlachose
et al. are some works in this direction.

. Navigation: In intelligent transportation system navigation

is one of the challenging task. It is affected by not only
environments but also personal choices, road traffic dy-
namics and so on. These factors makes it hard to predict
accurately. Tamar et al. In 2016, Tamar et al. [ 196] proposed
CNN-based planning module known as value iteration net-
work(VIN). In 2016, Yang et al. utilized "time traverse
map" [146]. Following works of Yang et al. in 2019, Li
et al. [152] proposed network based prediction of traffic.

. Demand Serving: Demand prediction is a task when and

where the passengers need vehicle to travel. While demand
serving is a task how to efficiently serve those demands e.g
by routing vehicles. Car pooling is one of the approach for
demand serving mechanism see work by Jindal et al. [147]
in 2018.

Traffic Signal Control: As demand serving comes after de-
mand prediction. Anomalously traffic signal control comes
after traffic flow prediction. Intelligent traffic signaling can
have huge impact on traffic jams. Reinforcement learning
is found to be very effective in this field see work by Yau
et al. [197] in 2017.

Combinatorial Optimization: Combinatorial optimization
problems are well researched area into (intelligent) trans-
port systems. These problems are NP-hard and being re-
searched since long time such as famous travel sales man
problem. In some cases the environment where the vehi-
cle works may just be somewhat referred to, for exam-
ple, in the Vehicle Routing Issue with Stochastic Demands
(VRPSD), or Vehicle Routing Problem with Stochastic Cus-
tomers (VRPSC). Further, in a real setting, ideal courses
may likewise exist as a more intricate capacity at that
point essentially separation or time. These augmentations
incorporate factors, for example, the kind of products, the
sort of street, the sort of vehicle, or even the quantity of
drivers on the street. These impact the sort and intricacy
of the calculation used to play out the steering. There
are many approaches followed till now. For example in
2015, Vinyals et al. [134] followed pointer network based
approaches. Further in 2016, Bello et al. [136] introduced
the idea of training pointer networks using Reinforcement
Learning. There are likewise a few specific methodologies
that influence diagram structures see for example work by
Li et al. [135] in 2015 to take care of comparative issues.
Ongoing work by Khalil et al. in 2017 [142], and Kool
et al. [149] in 2018, they have applied these graph embed-
ding designs to a few activities research issues, including
the TSP and VRP among others.
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8. How to use deep learning

There are many libraries available which are also open source.
Tensorflow is one the best python-based tool available. Here we
will give some guidance how to use Tensorflow. We need to
follow following few steps to use Tensorflow for our problems.
After installing Tensorflow in our Python environment we need
to follow steps below.

e Import the Tensorflow library to use.

import tensorflow as tf

e Load and prepare the MNIST dataset. Convert the samples
from integers to floating-point numbers. Tensorflow has
already many datasets for learning purpose. We will use
MNIST handwritten digit classification dataset. We divide
the datasets into two parts: training and testing. Further we
are dividing this 255 to normalize it. As pixel intensity value
varies from [0,255]. By dividing it by 255 all the values will
lie between [0, 1].

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.
load_data()

x_train, X_test = x_train / 2565.0, x_test / 255.0

e Build the tf.keras.Sequential model by stacking layers. Here
we are building neural network. Things to be careful while
creating neural network is that we need to be choosing
input and output dimensions according to our dataset and
problems. Like here we are giving input shape (28, 28) as
our single image is of size 28 * 28 pixel values. And dimen-
sion of final layer should be equal to number of classes(in
our case it is 10). For regression problem the final layer
should be 1. And for binary classification it can be either 1
or 2. Intermediate or hidden layer can be as many as we
want and no restriction on number of nodes as long as it
best fit our problem. We are using Relu activation function
for intermediate layer. Further we want to switch off the
nodes whose activation value are below 0.2 so we are using
dropout with threshold value 0.2.

model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense (128, activation=’relu’),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)

1

e For each example the model returns a vector of “logits” or
“log-odds” scores, one for each class.

predictions = model(x_train[:1]).numpy()

e The tf.nn.softmax function converts these logits to “proba-
bilities” for each class. Here we are using softmax activa-
tion for final layer activation as our problem is multi-class
classification problem.

tf.nn.softmax(predictions) .numpy ()

e The losses.SparseCategoricalCrossentropy loss takes a vec-
tor of logits and a True index and returns a scalar loss
for each example. Loss function changes according to our
problem e.g. for regression it could be Route Mean Square.
There are many loss functions available for one problem in
Tensorflow. One should use what gives the best accuracy.

loss_fn = tf.keras.losses.
SparseCategoricalCrossentropy(from_logits=True)
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e This loss is equal to the negative log probability of the true
class: It is zero if the model is sure of the correct class.
This untrained model gives probabilities close to random
(1/10 for each class), so the initial loss should be close to
-tf.log(1/10) =2.3.

loss_fn(y_train[:1], predictions).numpy()

o Now we need to compile the model to see if it is correctly
build. Here we are also mentioning about optimizer algo-
rithm which is ‘adam’. There are many optimizer available
such as Gradient Descent, Momentum base gradient descent
and so on.

model.compile (optimizer=’adam’,
loss=loss_1In,
metrics=[’accuracy’])

e The Model.fit method adjusts the model parameters to min-
imize the loss:

model.fit(x_train, y_train, epochs=5)
e The Model.evaluate method checks the models performance,

usually on a “Validation-set” or “Test-set”.

model.evaluate(x_test, y_test, verbose=2)
e [f you want your model to return a probability, you can wrap

the trained model, and attach the Softmax to it:

probability_model = tf.keras.Sequential ([

model ,
tf.keras.layers.Softmax ()
D

9. The challenges of deep learning
9.1. Lack of innovation in model structure

Since the re-recognition of deep learning in 2006, the deep
learning model was mainly introduced as the above several clas-
sical models. The last introductions of the deep learning models
were in these traditional models based on an evolution of more
than a decade. In the past, most models stacked on simple models,
and due to this stacking, it is becoming more difficult to increase
the efficiency of data processing. However, the depth of the
advantages of learning technology is still not fully implemented,
as there is a need to realize that the development of a new depth
of learning model, either the current depth of the learning model
or the other appropriate methods for effective integration, is the
need to solve the problem.

9.2. Update training methods

The supervised and unsupervised learning are the two training
methods for the current deep learning models. The use of super-
vised training methods, the restricted Boltzmann machine, and
the automatic encoder as the core model, the main pre-training,
such as the use of a large number of training methods. The way
is unsupervised learning. At the same time, they are combined
with supervised learning to fine-tune training to learn. There is
no real sense to do complete unsupervised training. So, how to
achieve complete unsupervised training is the direction of the
future study of the deep learning model.

17

Computer Science Review 40 (2021) 100379
9.3. Challenges with parameter learning

There are many challenges with parameter learning in deep
neural networks as listed below:

1. Learning rate: A small learning rate takes long time to find
optimum point and it can stick in local minima. While on
the other hand, large learning rate may skip the optimum
points and may never converge,

2. Local optima: A local minimum is a major problem in
many parameters learning objective. The gradient descent
algorithm works on taking slop of the current point and
accordingly it updates the parameters. For the ideal convex
problem, there is only one minima or maxima point so
the absolute minima can be found. While in the case of
local minima, there are many minima and maxima points.
However, when the parameter updating using gradient
descent reaches to the local minimum points, its gradient
value becomes zero as the slope at any local minimum
point will be zero, therefore it never updates the parameter
again, and this is what is called the local minima problem.
In Fig. 12 presents the local and global minimum problems.

3. Saddle points: A saddle point is a minimax point on the
graph where the derivative function is almost zero. In
consequence, the gradient descent stops updating the pa-
rameters. Also, the saddle point is neither minima nor
maxima. This problem is generally happened when there
are many dimensions present. The Hessian matrix is used
to determine saddle points. The hessian matrix is a square
matrix of the second order partial derivatives. It describes
the local curvature of the graph under many dimensions.
On a given point, if the Hessian is indefinite then that
point is a saddle point. However, due to complexity of the
Hessian matrix, it is not suitable for neural networks.

4. Vanishing and exploding gradients: This is one of the
crucial problems faced while training the large neural net-
works. As deep neural networks contain more than two
hidden layers, so the features are propagated to the final
layer by applying many affine transformations followed
by activation functions. In consequence, sometimes, the
value of the gradients may become very large, while some
times it becomes very small. The former is known as “ex-
ploding gradients” while the latter is known as “vanishing
gradients” in the literature.

9.4. Reduce training time

At present, the detection of various types of deep learning
models is mostly carried out in the ideal environment. In the
complex reality environment, the current technology is still un-
able to achieve the desired results. Also, the deep learning model
is composed of either simple model or several models. As the
complexity of the problem is higher, the amount of information
processed is more significant, which means that there is a need
for more and more training time of the deep learning model.
How to change the deep learning model without any flexibility
in the hardware to improve the accuracy and the speed of data
processing is the future research of deep learning technology.

9.5. Online learning

Unsupervised pre-training and supervised fine-tuning are the
main training methods for today’s deep learning techniques.
However, the online learning training requires global fine tuning,
which will cause the output to be fallen into the local minimum.
Therefore, the current training is not conducive to the realization
of the online learning. The improvements of online learning
ability based on an innovative deep learning model need to be
faced.
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Fig. 12. Pictorial description for local and global minima.

9.6. Overcome adversarial sample

If the input sample is deliberately added, the subtle interfer-
ence in the data set can cause the model to throw the wrong
output with high confidence. However, the adversarial sample is
a big problem in the current deep learning. This adding of the
input sample cannot only effectively avoid the potential security
problems when exploring how to overcome the problem of the
adversarial sample, but also it can help in improving the deep
learning model to solve the problem of precision. In a sense, there
is a fundamental contradiction between creating a linear model
for easy training and creating a non-linear model that can resist
the sample. However, from the long-term development of deep
learning, the creation of more powerful optimization methods
and more non-linear models of training are the direction of the
future in this research field.

10. Conclusion

The deep learning technology is widely applied in many fields
and research areas such as speech recognition, image processing,
graphs, medicine, computer vision, and so on. It is one of the
fastest developing and adaptive technologies ever. The difficul-
ties are in the presence of big and complex data on how to
effectively solve the problem using deep learning. In the ac-
tual process of an application, it is more and more challenging
to build an appropriate model of deep learning. Although the
current deep learning is not fully matured and there are many
problems which need to be solved, but the deep learning has
shown strong learning ability. It is still a hot research area in
the field of future artificial intelligence. This paper has discussed
some classic advances of deep learning and its applications in a
plethora of fields. Finally, the applications of deep learning are
further presented. As there are many scientific problems which
are being solved day by day, so sometimes unexpected and better
performances can be achieved by deep learning in many areas
such as image processing and diabetic retinopathy diagnosis,
which is very difficult to diagnosed by human experts. In fact,
the diabetic retinopathy diagnosis is nothing but an application
of image processing. Therefore, one advance in one field might
be a breakthrough solution in another field. Deep learning is
getting attention very fast, every day some new application or
inventions are happening. According to our limited knowledge
followings are the few active research areas that will also keep
getting attention in near future. (1) Generative models using
deep neural networks [198] for example Generative adversarial
networks, (2) Deep learning for non-Euclidean data such as Deep
learning for graphs, Geometric deep learning [199], Hyperbolic
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neural networks [200], (3) Deep Learning for spatio-temporal
data mining [201], and (4) How to improve the structures and
algorithms of a deep neural network model [202] etc..
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