
Expert Systems With Applications 203 (2022) 117215

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Comprehensive comparative study of multi-label classification methods
Jasmin Bogatinovski a,b,c, Ljupčo Todorovski a,d, Sašo Džeroski a,b, Dragi Kocev a,b,∗

a Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana, Slovenia
b JSI International Postgraduate School, Ljubljana, Slovenia
c Department of Distributed Operating Systems, TU Berlin, Berlin, Germany
d Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

A R T I C L E I N F O

Keywords:
Multi-label classification
Benchmarking machine learning methods
Performance estimation
Evaluation measures

A B S T R A C T

Multi-label classification (MLC) has recently attracted increasing interest in the machine learning community.
Several studies provide surveys of methods and datasets for MLC, and a few provide empirical comparisons
of MLC methods. However, they are limited in the number of methods and datasets considered. This paper
provides a comprehensive empirical investigation of a wide range of MLC methods on a wealth of datasets
from different domains. More specifically, our study evaluates 26 methods on 42 benchmark datasets using 20
evaluation measures. The evaluation methodology used meets the highest literature standards for designing and
conducting large-scale, time-limited experimental studies. First, the methods were selected based on their use in
the community to ensure a balanced representation of methods across the MLC taxonomy of methods within the
study. Second, the datasets cover a wide range of complexity and application domains. The selected evaluation
measures assess the predictive performance and efficiency of the methods. The results of the analysis identify
RFPCT, RFDTBR, ECCJ48, EBRJ48, and AdaBoost.MH as the best-performing methods across the spectrum of
performance measures. Whenever a new method is introduced, it should be compared with different subsets
of MLC methods selected according to relevant (and possibly different) evaluation criteria.
1. Introduction

Predictive modelling is an area in machine learning concerned with
developing methods that learn models for predicting the value of a
target variable. The target variable is typically a single continuous or
discrete variable, corresponding to the two common tasks of regression
and classification, respectively. However, in practically relevant prob-
lems, more and more often, there are multiple properties of interest,
i.e., several target variables. Such practical problems include image
annotation with multiple labels (e.g., an image can depict trees and at
the same time the sky, grass etc.), predicting gene functions (each gene
is typically associated with multiple functions) and drug effects (each
drug can affect multiple conditions). The problems with multiple binary
variables as targets corresponding to the question if a given example is
associated with a subset from a set of predefined labels belong to the
widely known task of multi-label classification (MLC) (Herrera et al.,
2016; Madjarov et al., 2012; Tsoumakas & Katakis, 2007).

1.1. Practical relevance of MLC

In binary classification, the presence/absence of a single label is
predicted. In MLC, the presence/absence of multiple labels is predicted

∗ Corresponding author at: Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana, Slovenia.
E-mail addresses: jasmin.bogatinovski@tu-berlin.de (J. Bogatinovski), ljupco.todorovski@fmf.uni-lj.si (L. Todorovski), saso.dzeroski@ijs.si (S. Džeroski),

dragi.kocev@ijs.si (D. Kocev).

and multiple labels can be assigned simultaneously to a sample. Most
often, the MLC task is confused with multi-class classification (MCC).
In MCC, there are also multiple classes (labels) that a given example
can belong to, but a given example can belong to only one of these
multiple classes. In that spirit, the MCC task can be seen as a special
case of the MLC task, where exactly one label is relevant for each
example. Furthermore, the MLC task is different from the task of multi-
target classification (MTC) (Kocev et al., 2013), which is concerned
with predicting several targets, each of which can take only one value
of several possible classes. MLC can be viewed as a collection of several
binary classification tasks, and MTC of several MCC tasks. Finally,
another task related to MLC is multi-label ranking. The goal of multi-
label ranking is to produce a ranking/ordering of the labels regarding
their relevance to a given example (Madjarov et al., 2012).

MLC predicts the set of target attributes (called labels) that are
relevant for each presented sample. This task arises from practical ap-
plications. For example, Xu et al. (2016) introduce three instantiations
of the task of predicting the subcellular locations of proteins according
to their sequences. The dataset contains protein sequences for humans,
viruses and plants. Both GO (Gene Ontology) terms and pseudo amino
vailable online 21 April 2022
957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.eswa.2022.117215
Received 2 February 2022; Received in revised form 8 April 2022; Accepted 8 Apr
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

il 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:jasmin.bogatinovski@tu-berlin.de
mailto:ljupco.todorovski@fmf.uni-lj.si
mailto:saso.dzeroski@ijs.si
mailto:dragi.kocev@ijs.si
https://doi.org/10.1016/j.eswa.2022.117215
https://doi.org/10.1016/j.eswa.2022.117215
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117215&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.
Fig. 1. A summary of the number of papers from the SCOPUS database (https://www.
scopus.com/) related to the topic of MLC. The vertical axis represents the number of
conference and journal papers related to the topic of MLC. An almost exponential curve
of progress can be observed. The absence of large experimental studies with rigorous
extensive experimental empirical comparison amplifies the importance of performing a
comprehensive study on MLC methods to provide a survey of the landscape of methods.

acid compositions are used to describe the protein sequences. The goal
is to predict the relevant sub-cellular locations for each of the proteins.
There is a total of six subcellular locations for viruses, 12 subcellular
locations for plants, and 14 subcellular locations for humans. Briggs
et al. (2012) address the prediction of the type of birds whose songs are
present in a given recording using audio signal processing. The set of
labels consists of 19 species of birds. Several birds can simultaneously
be recorded on a given recording. The text document topic classifica-
tion is also a MLC problem, as many of the documents refer to more
than one topic at the same time. For example, Katakis et al. (2008)
present a dataset from BibSonomy entries, annotated with several
tags. Next, Boutell et al. (2004) present an image dataset containing
images annotated with several labels (beach, sunset, fall foliage, field,
urban and mountain) with multiple labels present in a single sample
simultaneously. Although the main focus of MLC applications is in text,
biology and multimedia, the potential for using MLC in other domains
is constantly increasing (medicine Grady & Funka-Lea, 2004; Ratnara-
jah & Qiu, 2014, environmental modeling Blockeel et al., 1999 social
sciences Schulz et al., 2016, commerce Wang et al., 2020 etc.). Liu
et al. (2020) give an extensive summary of the various emerging trends
and subareas of MLC: extreme multi-label classification, multi-label
learning with limited supervision, deep multi-label learning, online
multi-label learning, statistical multi-label learning, and rule-based
multi-label learning.

1.2. Motivation and related work

Fig. 1 shows the increasing interest in the task of MLC from the
machine learning community. The increasing trend indicates the ap-
pearance of novel MLC problems and methods. Given the large pool
of problems, multi-label methods and datasets, it is not easy for a
novice and even an experienced practitioner to select the most suitable
method for their problem. Moreover, it is not clear what benchmarking
baselines should be used when proposing a novel method. Therefore,
landscaping the existing methods and problems is a necessity for the
further advancement of this research area.

There are several previous attempts at addressing this issue. How-
ever, they have a limited scope concerning the methods and/or the
datasets used in the evaluation. Some of these studies require special
emphasis because they have helped shape the field by providing a
theoretical and empirical discussion on the properties of the various
2

MLC methods. We discuss these studies in chronological order of their
literature appearance.

Madjarov et al. (2012) provide the first comprehensive empirical
study for the task of MLC. They give a comprehensive analysis of 12
MLC methods on 11 benchmarking problems and 16 evaluation criteria.
As a systematic review, its conclusion can guide the practitioners tack-
ling MLC tasks, about relevant method selection. However, from the
current perspective, given the wealth of newly proposed methods and
problems/datasets, it is outdated in terms of the inclusion of problems
and methods that have been introduced in the last decade.

The second study provides details on the MLC tasks (Gibaja &
Ventura, 2015). It introduces a concise organization of the methods,
evaluation criteria, MLC specific data preprocessing techniques and
the different MLC problems. However, it lacks a comprehensive em-
pirical evaluation of the methods across different datasets. The third
study (Zhang & Zhou, 2014) provides an in-depth theoretical treatise of
eight MLC methods, together with their pseudo-codes and a discussion
of how the methods deal with the specifics of the MLC task. The
drawbacks of the previous three studies are addressed (to some extent)
in Herrera et al. (2016). As a book on MLC, it gives an extensive
overview of existing methods through an experimental comparison.
However, it lacks comparative experimental rigour as some of the
previous works, e.g., Madjarov et al. (2012).

Furthermore, the most recent study (Moyano et al., 2018) provides
a similar experimental setup as in Madjarov et al. (2012) with an
extension towards the analysis of ensembles of MLC methods. It argues
that ensemble learning methods are superior in terms of performance
to other, single-model learning approaches. While this is true in many
cases, the computational time one requires for building an ensemble is
larger than the time for building a single model. Given the complexity
of the MLC task, this may arise as a limitation in practical applica-
tions. Zhang et al. (2018) focus on providing an overview of a specific
type of MLC methods, referred to as binary relevance, but do not assess
their predictive performance. In a similar limited context, Rivolli et al.
(2020) present an empirical study of seven different base learners used
in ensembles on 20 datasets.

1.3. Objectives

A shared property of the previous studies is the focus on a smaller
part of the landscape of methods and problems. However, given the
plethora of problems and methods introduced in recent years, a com-
parative analysis on a larger scale is highly desired. The main aim
of this work is to fill this gap by performing an extensive study
of MLC in terms of both methods and problems/datasets. Simul-
taneously, it aims to identify the strengths and limitations of existing
methods beyond predictive performance and efficiency by studying
how the different methods deal with the specific MLC task challenges
across the vast set of problems.

1.4. Contributions

By performing the extensive experimental study, a landscape map of
the MLC will be obtained: It will include the performance of 26 MLC
methods evaluated on 42 benchmark datasets using 18 perfor-
mance evaluation measures. Next, it will reveal the best-performing
methods per method group and evaluation measure. Hence, it will iden-
tify the most suitable baselines that need to be used when proposing
a novel MLC method. Furthermore, it will outline the strengths and
weaknesses of the MLC methods concerning one another. Moreover,
it will highlight the used MLC methods in terms of their potential for
addressing several MLC specific properties (e.g., label dependencies and
high-dimensional label spaces).

This study is the most comprehensive experimental work for
the task of MLC performed thus far. In a nutshell, it identifies a
subset of five methods that should be used in baseline comparisons:

https://www.scopus.com/
https://www.scopus.com/

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

t
s
i

RFPCT (Random Forest of Predictive Clustering Trees) (Kocev et al.,
2013), RFDTBR (Binary Relevance with Random Forest of Decision
Trees) (Tsoumakas & Katakis, 2007), ECCJ48 (Ensemble of Classifier
Chains built with J48) (Read, 2010), EBRJ48 (Ensemble of Binary
Relevance built with J48) (Read, 2010) and AdaBoost (Schapire &
Singer, 1999). These methods show the best predictive performance
on average across the different problems. The first two methods are
computationally much more efficient compared to the others. Detailed
results from this study, alongside the descriptions of the methods,
datasets, and evaluation measures are available in the study repository
accessible at http://mlc.ijs.si/.

1.5. Organization of the paper

The remainder of the paper is organized as follows. In Section 2,
we formally define the task of MLC task and review/ describe the
available MLC datasets and problems. Section 3 organizes the MLC
methods into a taxonomy of methods, describes the methods in detail
and discusses how these methods address specific properties of MLC,
such as handling label-dependence and high-dimensional label spaces.
Section 4 outlines the design of the experimental study by describ-
ing the experimental methodology and setup, the hyper-parameter
instantiations, the evaluation measures, and the statistical analysis of
the obtained results. Section 5 discusses the statistical analysis results
from different viewpoints. Finally, Section 6 concludes and presents
the main outcomes of the study, together with further guidelines for
benchmarking MLC methods.

2. The task of multi-label classification

This section begins by describing the benchmark datasets considered
in the study. Next, it defines the task of MLC. Finally, it overviews the
methods considered in the study.

2.1. Multi-label classification datasets

Most of the datasets considered in this study come from application
areas such as biology, text and multimedia. The datasets from biology,
in general, include proteins representation as descriptive variables and
as targets either gene function prediction or sub-cellular localization.
The datasets from the text domain most often represent the problem
of topic classification for news documents. However, other textual
datasets predict targets such as cardiovascular condition states from
medical reports, or recommendation tags from reviews. The datasets
from the multimedia domain can be split into two major categories:
datasets concerned with the classification of images (most often scenes
in a given image) and datasets concerned with the classification of
audio content (e.g., genre, emotions).

Some datasets come from other domains such as medicine and
chemistry. The datasets from the medical domain represent the clas-
sification of diseases based on symptoms or state of the patient based
on vital measurements such as blood pressure. The dataset from the
domain in chemistry is concerned with the classification of chemical
concentration in observed subjects. The diversity of the available MLC
datasets witnesses the vast application potential of the MLC task. The
detailed statistics of the datasets used in this study can be found in
Table A.1 in Appendix A, available online.

The MLC datasets are described with five basic meta-features (i.e.,
features describing the dataset properties): number of instances/
examples, number of features, number of labels, label cardinality and
label density. The distribution of the datasets across these meta-features
is depicted in Fig. 2. The number of training examples ranges from 174
o 17190. The wide range of the sample number enables testing the
trengths and weaknesses of the MLC methods from the perspective of
3

nput data richness measured by the instance number.
Fig. 2. Distribution of the values of five dataset features on the 42 datasets. The feature
values are given on a log scale.

Additionally, the richness in the sample description (number of
features) ranges from 19 to 9844. Predominantly the number of features
range from 300 until 2000. Regarding the type of features, there are few
datasets with a mixture of nominal and numeric attributes. In most of
the datasets, the features are either solely numeric or solely nominal.
The number of labels is a unique property of the MLC classification task.
The number of labels ranges from 4 to 374, with one dataset being an
exception, containing 983 labels. Predominantly the number of labels
is in the range from 4 until 53.

Additional discussion about the datasets follows in terms of the
meta properties of label cardinality and label density. Label cardinality
is a measure of labels distribution per example. It is defined as the
mean number of labels associated with a sample (Tsoumakas & Katakis,
2007). In many of the datasets, this meta-feature is smaller than 1.5.
It indicates that these datasets on average have one label associated
with their examples. In most cases, there are no more than three labels
assigned to an example in a dataset. As exceptions are the datasets de-
licious and cal500, which have around 19 and 26 labels assigned
for each example on average, respectively. Label density is a measure of
the frequency of the labels. It is calculated as the division of the label
cardinality by the number of labels. It indicates the frequency of the
labels among all the instances. On the figure it is given in log scale.

2.2. Task description

The task of MLC can be viewed as an instantiation of the structure
output prediction paradigm (Kocev, 2011; Kocev et al., 2013). The goal
is for each example to define two sets of labels — the set of relevant
and the set of irrelevant labels. Following Madjarov et al. (2012), the
task of MLC is defined as:

Given:

• an example space  consisting of tuples of values of primi-
tive data types (categorical or numeric), i.e., ∀𝐱𝐢 ∈  , 𝐱𝐢 =
(𝑥𝑖1 , 𝑥𝑖2 ,… , 𝑥𝑖𝐷), where 𝐷 denotes the number of descriptive at-
tributes,

• a label space  = {𝜆1, 𝜆2,… , 𝜆𝑄} which is a set of 𝑄 possible
labels,

• a set of examples 𝐸, where each element is a pair of a tuple
from the example space and a subset of the label space, i.e., 𝐸 =
{(𝐱𝐢,𝑖)|𝐱𝐢 ∈  ,𝑖 ⊆ , 1 ≤ 𝑖 ≤ 𝑁} and 𝑁 is the number of
examples of 𝐸 (𝑁 = |𝐸|), and

http://mlc.ijs.si/

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

t
s
s
a
f
—
p
o
b
t
l

l
a
m
m
d
o
t
a
s

b
v
p
b
r
f
s

v
s
s
d
c
u
b
c
t
t
(
a

3

t
t
s
t
h
m
m

• a quality criterion 𝑞, which rewards models with high predictive
performance and low complexity.

Find: a function ℎ:  → 2 such that ℎ maximizes 𝑞.

2.3. Taxonomy of multi-label classification methods

There are a plethora of MLC methods presented in the literature.
In this paper, we follow the taxonomy of the methods as proposed
in Tsoumakas and Katakis (2007). The MLC methods are separated
into two categories problem transformation and algorithm adaptation.
The group of problem transformation methods approaches the problem
of MLC by transforming the multi-label dataset into one or multiple
datasets. These datasets are then approached with single-target ma-
chine learning methods and build one or multiple single-target models.
At prediction time, it is required that all models are invoked to predict
for the test sample.

Algorithm adaptation methods include some adaptation of the train-
ing and prediction phases of the single target methods towards handling
multiple labels simultaneously. For example, trees change the heuristic
used when creating the splits, neural networks directly handle the MLC
task, while Support Vector Machines (SVMs) employ additional thresh-
old techniques. The adaptations aim to provide a mechanism to directly
handle the dependency between the labels. Their grouping is based
on the type of underlying adapted paradigm. The literature recognizes
five defined groups of algorithm adaptation methods according to the
performed adaptation: trees, neural networks, support vector machines,
instance-based and probabilistic (Herrera et al., 2016). There are ad-
ditional methods that utilize various approaches from other domains,
e.g., genetic programming. However, they lack shared unifying ground
and are characterized as unspecified method groups. For more details,
one can refer to Herrera et al. (2016).

3. Methods for multi-label classification

In this section, we discuss the MLC methods used in the experimen-
tal evaluation. We first describe the problem transformation methods.
Next, we describe the algorithm adaptation methods and their ensemble
variants. Finally, we provide a discussion on how each of the methods is
addressing two properties of the MLC task: label dependencies and high
dimensional label spaces (including computational complexity method
analysis of the methods).

3.1. Problem transformation methods

There are two main ideas in the problem transformation methods —
decomposition of the problem of a set of binary problems or a (set of)
multi-class problem(s). Fig. 3 depicts the used problem transformation
methods and their organization into a taxonomy of methods.

The first idea observes a multi-label dataset as a composition of
multiple single-target datasets sharing the same feature space. Such an
approach has the benefit of providing a straightforward application of
single-target binary methods. At prediction time all trained single target
models are invoked to produce the result for the new test sample. This
approach, however, loses information about the dependency between
the labels. Regarding the process of creating the multiple single binary
target datasets, this group of methods is further grouped into One-Vs-
One-like and One-Vs-All-like methods. In the former approach (also
known as binary relevance or pairwise approach (Gibaja & Ventura,
2015)), each pair of labels is considered producing a quadratic number
of single-target binary datasets. In the latter approach, the problem is
transformed directly to || single target multi-class problems by using
the unique label sets as a separate class. This approach is also known
as label powerset.

Both approaches allow for the use of simpler classifiers: the binary
relevance uses binary classifiers, while the label powerset uses multi-
4

class classifiers. The advantages of the latter over the former are that t
a single model is learned (compared to a quadratic number of models
for the first) and the label dependencies are preserved (compared to
the complete obliteration of this information in the binary relevance
approach). However, a strong limitation of the label powerset methods
is the inability to generalize beyond the label-sets present in the train-
ing dataset. The shortcomings of these two approaches are addressed
to some extent by using them in the context of ensemble learning. We
next discuss these methods in more detail.

3.1.1. Binary relevance methods
The Binary Relevance method (BR) (Tsoumakas & Katakis, 2007)

ransforms the MLC problem into || binary classification problems that
hare the same feature (descriptive) space as the original descriptive
pace of the multi-label problem. Each of the binary problems has
ssigned one of the labels as a target. It trains one base binary classifier
or each of the transformed problems. It has only one hyperparameter

the base classifier. This method generalizes beyond the label-sets
resent in the training samples. It is not suitable for a large number
f labels and ignores the label correlations. Due to the necessity of
uilding models for each label, the training of the method can be
ime-consuming, especially if the computational complexity of the base
earning method is large.

Calibrated Label Ranking (CLR) is a pairwise technique for multi-
abel ranking. It provides a built-in mechanism to extract bipartitions
nd thus can be used as a MLC method. The core of the pairwise
ethods is creating ||(||−1)

2 single target binary datasets from the
ulti-label dataset with label-set of size ||, maintaining the original
escriptive space. The binary target is generated in such a way that if
ne of the labels in a given pair, chosen as positive, is different from
he other, the example in the newly created dataset obtains a value of 1
nd 0 otherwise. If the labels are the same, the example is excluded. In
uch way ||(||−1)

2 binary datasets are created. A base classifier is built
on these datasets. CLR introduces one artificial label (Brinker, 2006;
J. et al., 2008). This artificial label acts as a complementary label for
each of the original labels, thus introducing || more models to be
uilt. When ranking for each of the labels is obtained, the artificial
ariable acts as a split point between the relevant and irrelevant labels,
roducing bipartition. It has one hyperparameter to be chosen — the
ase learner. A strong advantage of this method is that it generates both
anking and bipartition. The main drawback is that it is not so suitable
or datasets with a large number of labels, due to the large exploration
pace and time complexity.

Classifier Chains (CC) (Read et al., 2011) learning procedure in-
olves two steps. It consists of training || single target binary clas-
ifiers as in BR connected in a chain. Each classifier deals with a
ingle target problem of augmented feature space consisting of all the
escriptive features and the predictions obtained from the previous
lassifier in the chain (the first classifier on the chain is learned only
sing the descriptive features). The only hyperparameter to set is the
ase classifier. A strength of this method is the introduction of label
orrelation to some extent (the order of the labels in the chain is impor-
ant) and can generalize beyond seen label-sets. The two limitations of
he method include its prohibitive usage for datasets with many labels
it is applying BR), and the dependence on the ordering of the labels
long the chain.

.1.2. Label powerset methods
Label Powerset (LP or LC) (Tsoumakas & Katakis, 2007) transforms

he MLC method into a multi-class classification problem in such a way
hat it treats each unique label-set as a separate class. Any classifier
uitable for solving a multi-class classifier can be applied to solve
he newly created single target multi-class problem. It has only one
yperparameter, the base multi-class classifier. An advantage of the
ethod is that preserves the label relationships. The limitations of this
ethod are that it cannot predict novel label combinations and is prone
o underfitting when the number of unique label sets is large.

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

d
m
m
T
t
i
i
s
t
t
l
c
t
n
t
t
t
f
i
t
t

3

m
g
d

e
n
w
m
r
M
t

Fig. 3. Problem transformation methods. The methods used in this study are shown in bold.
T
s
v
t
t
b
f
c
i
m
r
b

The method of Pruned Sets (PSt) (Read et al., 2008) aims at re-
ucing the number of unique classes (label-sets) appearing when a
ulti-label problem is approached with LP. To achieve this goal, the
ethod has two phases. The first step is the so-called pruning step.
he pruning step removes the infrequently occurring label sets from
he training data. The decision on what means infrequent label-set
s a hyperparameter of the method. The second phase consists of
ntroducing the removed examples into the training set. It is done by
ubsampling the label sets of the infrequent samples for label subsets
hat satisfy the pruning criterion. The method introduces this as a
uning hyperparameter, and it defines the maximal number of frequent
abel sets to subsample from the infrequent ones. On such a newly
reated dataset, LP is trained. Additional improvement of the method is
he introduction of a threshold function that enables new label combi-
ations to be created at prediction time (Read, 2010). In total, there are
hree hyperparameters for the method: the base multi-class classifier,
he pruning value (if the count of the label-sets in the datasets exceeds
his number, the example is preserved), and the maximal number of
requent label-sets to be reintroduced. An advantage of this method is
ts efficiency — it is much faster than Label Powerset. A limitation of
he method is that the assumptions can break, and the method (without
hreshold parameter) is unable to introduce novel label sets.

.1.3. Ensembles of problem transformation methods
This category of problem transformation methods groups all MLC

ethods that utilize ensemble-like techniques such as stacking, bag-
ing, random sub-spacing or employ different transformations of the
atasets, such as embeddings.

Conditional Dependency Network (CDN) (Guo & Gu, 2011) aims at
ncapsulating the dependencies between the labels using dependency
etworks. Dependency networks are cyclic directed graphical models,
here the parents of each variable are its Markov blanket (Hecker-
an et al., 2001). Markov blanket in the graphical model literature

epresents a set of nodes around a specific node that shield it. The
arkov blanket of a node is the only knowledge needed to predict
5

he behaviour of that node and its children (Pearl, 1988). The label n
dependency information is encoded into the graphical model parame-
ters — the conditional probabilistic distribution associated with each
label. The probabilistic distributions are modelled via simple binary
classifier models, that as input take the whole feature space augmented
by all other labels, with the exclusion of the label being modeled. In the
inference phase, it uses the standard model for inference in graphical
models — the Gibbs sampling method. This method assumes that one of
the labels can change, assuming that all others are fixed. First, random
ordering of the labels is chosen and each label is initialized to some
value. In each sampling iteration, all the nodes modeling the labels are
visited and the new value of the label being modelled is re-sampled ac-
cording to the probability model that represents the current label being
predicted. It has three tunable hyperparameters, i.e., the model trained
at each node of the network, the number of iterations to perform until
achieving stationarity of the chain the network and the burnin number
of operations. This model preserves the label dependencies, however,
if there are many labels the inference performed by the Gibbs sampling
needs a longer convergence time, and stationarity may not be achieved.

Meta Binary Relevance (MBR) (Tsoumakas et al., 2009), also known
as the 2BR method, consists of two consecutive stages of applying BR.
First, || binary base models are built. At the second (meta) stage, the
feature space is augmented with the predictions from the first stage
(|| features are added). New || binary models are trained as in BR.

here exist a few approaches to generate the predictions in the first
tage. The predictions can be generated using the full training set,
ia 𝑘 fold cross-validation or by ignoring the irrelevant variables into
he meta-level. The cross-validation approach is slow since it requires
raining of each model at the first level 𝑘 times, but it passes non-
iased information to the meta-level. The irrelevant information can be
iltered using the 𝛷 correlation coefficient to determine if two labels are
orrelated or not. If they are not correlated, the label is not introduced
nto the meta-level. Moyano et al. (2018) show that the version of this
ethod where the full training set is used at the first stage is better

egarding the other two. To further reduce the bias towards the label
eing predicted, Alvares-Cherman et al. (2012) suggest reducing the
umber of meta-labels to |𝐿|−1 (the label being predicted is excluded).

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

e
T
t
s
b
t
s
t
b
s
t
h

e
T
e
h
r

b
b
c
d
a
a
t
p
l
l
a
c
i
m

C
s
n
o
h
t
p
c
i
i

2
r
i

R
i
A
F
a
m
p
s
a
i
c

m
a
a
t
A
s

This method is known as BR+. MBR has one hyperparameter to tune,
the single target base method. A limitation is that MBR and its variants
inherit the drawbacks of BR, i.e., it is not suitable if there are many
labels.

Ensemble of Classifier Chains (ECC) (Read et al., 2011) creates an
nsemble of CC built on sampled instances from the original dataset.
he sampling is done with replacement. In Read et al. (2011) is argued
hat sampling with replacement provides better results compared with
ampling without replacement. Choosing the percentage of the data for
uilding the models (bag size) is allowed. So the hyperparameters of
he method are the number of CC models in the ensemble and the bag
ize. In this method also a random ordering of the chain is considered
o provide compensation for introducing non-existence dependency
etween labels. Using the different random subspaces of the training
et and utilizing different ordering in the chain introduce diversity in
he ensemble. This method takes into account the label correlation but
as a drawback of the large time for training.

Ensemble of Binary Relevance (EBR) (Read et al., 2011) build
nsemble of BR as base learner. The sampling is done with replacement.
he hyperparameter of the method is the number of BR models in the
nsemble. Although it can provide novel label-sets at prediction, it still
as the assumption of labels independence. It can be treated as a binary
elevance approach with bagging as a meta learner.

Chi-dep (Tenenboim et al., 2009) is a multi-label method that is
ased on the identification of label dependencies using statistical tests
etween the labels. 𝜒2 statistical test for independence for each possible
ombination of two labels is used. It first tries to identify groups of
ependent and independent labels. After their identification, the BR
pproach for the independent groups, and LP for the dependent labels
re trained. At prediction time, the sample is processed by each of
he models and the prediction is generated accordingly. This method
rovides a trade-off between the assumption of independence of the
abels of the BR method, and the problem of a large number of unique
abel sets the LP method is facing. The hyperparameters of the method
re the base learners for the BR and LP method and the selection of a
onfidence level for the test. The positive aspect of the method is that
t provides a trade-off between the high bias and variance of the BR
ethod, and the low bias and high variance of the LP method.

Ensemble of Chi-dep (ECD) (Tenenboim et al., 2010) builds several
hi-dep models. First, it generates a large number of possible label-
et partitions at random. Each of the partitions is represented by the
ormalized 𝜒2 score of all the label pairs inside the partition, based
n the inside pairwise 𝜒2 scores. Then, the top m distinct sets with the
ighest scores are included in the ensemble. The hyperparameters of
he method are the number of ensemble members and the number of
artitions to evaluate. The positive aspects of the method are that it
an further reduce the variance of a single Chi-dep method, however,
t suffers from large time complexity. Thus a fast base learning method
s recommended.

Ensemble of Label Powersets (ELP) (Moyano et al., 2018) create an
ensemble of LP method on sampled prototypes from the original set.
The sampling is done with replacement. The hyperparameters of the
method include the number of LP models built in the ensemble and the
type of base models. It provides an opportunity to enable LP to predict
unseen label combinations (through the ensemble voting), however,
it inherits its large computational complexity, and it is practically
inefficient for datasets with a large number of unique label sets.

Ensemble of Pruned Sets (EPS) (Read et al., 2008) creates an ensem-
ble from the PSt method on sampled prototypes from the original set.
The sampling is done without replacement with a specific percentage
of the dataset being sampled. Additional parameters of the method
are the number of members of the ensemble as well as the number of
examples to be sampled from the training size (bag size). This method
can predict novel label sets, thus diminishing one of the disadvantages
6

of a standalone PSt method without thresholding. Its disadvantage is f
that it is not able to perform well when there are many diverse label-
sets without frequent reoccurring of some of the label-sets. This is due
to reducing the training set to a handful of training examples due to
the pruning strategy.

Random k Labelsets (RAkEL) (Tsoumakas, Katakis, & Vlahavas,
011) is an MLC ensemble. It uses multiple LP models trained on
andom partitions of the label space. Usually, the size of the label set
s small. Each of the LP methods should learn 2𝑘 classes instead of 2||,

where 𝑘 ≪ ||. Moreover, the resulting multi-class problems have a
much better-balanced distribution of the classes. In Tsoumakas, Katakis,
and Vlahavas (2011), two versions of the method are introduced. The
first version does not allow for overlap between the groups when
creating the label sets and is called RAkEL disjoint. The second version
allows for overlapping between the labels in the created label sets.
This gives the advantage for the same label to be included by the
different LP models. The predictions are obtained by voting. Further
improvements of the method are proposed in Rokach et al. (2014).
They propose using the classification confidence intervals instead of
voting. However, Moyano et al. (2018) show that voting versions of
RAkEL achieve better results. There are three hyperparameters to be
tuned: the size of label-sets 𝑘 and the number of models 𝑚, as well as
the base method. The underlying base method can be either LP or PSt.
The positive aspect of RAkEL is that uses a smaller number of classifiers
than BR and can provide better generalization and is not underfitting
as LP. However, it does not scale well in time, as the number of labels
and number of instances increases.

Hierarchy of Multi-label Classifiers (HOMER) (Tsoumakas et al.,
2008) is an ensemble based on the transformation of the problem into
a tree-shaped hierarchy of simpler, better-balanced, MLC problems,
utilizing the divide and conquer strategy. The tree is constructed in such
a manner that, at the leaves, there are the singleton labels, while the
internal nodes represent joint label sets. A node will contain a training
sample if and only if the sample is annotated with at least one of the
labels of the label-set contained in a node. The method consists of two
phases: first, the tree is built such that labels from the parent node are
distributed to the children nodes using a balanced clustering algorithm.
Second, the multi-label model is trained on a reduced label-subset, and
the process is repeated until all nodes are with one label. Such an
approach provides the opportunity to cluster dependent labels into a
single node. The hyperparameters of the method are the number of
children for a parent node (number of clusters) and the base learner.
It is predominantly useful in tasks with a large number of labels where
it is shown to have the best predictive performance (Madjarov et al.,
2012). However, the constructed hierarchy is not utilized in problems
with a smaller number of labels, hence this method does not show its
full potential on datasets with such property (Moyano et al., 2018).

Random Subspace (RS) multilabel method is an extension of the
andom Subspace methodology for single target prediction (Ho, 1998)

nto the area of MLC. It works with a random sampling of the features.
dditionally, one can subsample the instances from the training set.
or each subsample generated alongside the two dimensions of features
nd instances, either problem transformation or algorithm adaptation
ethod can be used. There are four hyperparameters to tune: the
ercentage of the attribute space to be used, the percentage of sample
pace to be used, the number of models in the ensemble to be built
nd the multi-label classifier at the base level. This ensemble method
s usually faster than bagging and other ensemble methods likewise
onditioned on the base multilabel learners.

The AdaBoost (AdaBoost, AdaBoost.MH) (Schapire & Singer, 2000)
ethod is introducing a set of weights maintained both on the ex-

mples (as in classical AdaBoost method Freund & Schapire, 1997)
nd the labels. The formula for calculating the weights incorporates
he example-label pairs that are miss-classified by the base classifier.
t each iteration, the method builds a simple classifier (e.g., decision
tump — a decision tree of depth 1). The classifier uses weights to

ocus more on the examples that are hard to predict. The base classifier

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.
should provide confidences, that are used to obtain a prediction. The
final prediction is obtained by combining the confidences of each of
the base models, weighted by the corresponding model weights. The
parameter of the method is the number of boosted decision trees. This
method is the same as applying AdaBoost to || binary datasets as in
BR (Moyano et al., 2018; Schapire & Singer, 2000).

Cost-Sensitive Multi-label Embedding (CLEMS) (Huang & Lin, 2017)
belongs to a special type of family of multi-label methods, known as
Label Embedding methods. In general, these methods try to embed
the label-space into a particular number of dimensions using some
embedding technique. It is assumed that the embedded space represents
a latent structure of the labels. For learning, either problem transfor-
mation or algorithm adaptation method is applied to the augmented
feature space. At prediction time, embedding methods employ regres-
sion techniques to predict the value of the embedded features. One type
of label embedding method is known as Cost-Sensitive Embedding. It
considers the performance criteria being optimized, as a parameter. In
particular, the method considered here employs weighted multidimen-
sional scaling as an embedding technique (Kruskal, 1964). It embeds
the cost matrix of unique label combinations. The cost matrix contains
the cost of mistaking a given label combination for another. The hy-
perparameters of CLEMS are the performance/cost function, underlying
MLC method, the regression method used to predict the values of the
embedding features and the number of embedding dimensions. The
most effective value for the number of embedding dimensions is the
number of labels. The positive aspect of the method is that it can
provide good results for a specific cost function being optimized. On the
negative side, this method is dependent on the underlying MLC method
and requires building a specific model for each cost function for optimal
performance per measure.

Triple Random Ensemble (TREMLC) (Nasierding et al., 2010) is an
ensemble for MLC that combines three ensemble strategies: a sampling
of the instance space, sampling of the feature space and sampling of
the target space. It is in essence combination of a Random Forest with
RAkEL as a base classification method. The parameters of the method
are bag size, the number of features to subsample, the size of label sets
and the number of models to be built. Its drawback is that it inherits
the large computational time of the RAkEL method, however, it scales
better regarding the number of instances and features since the Random
Forest method reduces the instance and label space.

Subset Mapper (SM) (Freund & Schapire, 1997) uses Hamming
distance to make mapping between the output of a multi-label classifier
and a known label combination seen in the training set. From the
predicted probability distribution, SM will produce a labeled subset
and will calculate the hamming distance to the labels of the training
instances. The new test sample as prediction will take the labelset that
resulted in the smallest distance. The parameter of this method is the
base learning MLC method. This method does not generalize beyond
the labelsets seen in the training set.

3.2. Algorithm adaptation methods

The adjustments of the underlying algorithm of the single target
methods are the core idea on which the algorithm adaptation methods
are built. For example, the adjustments for the trees to handle the multi-
label problem are two-fold. First, the nodes in the trees are allowed
to predict multiple labels at once. Second, the splits are generated by
adjusting the impurity measure to take into account the membership
and non-membership of a label in the set of relevant and irrelevant
labels for the samples. These two adjustments allow for each of the
labels to contribute when creating the splits and obtaining the pre-
dictions. Neural networks are inherently designed to tackle multiple
targets simultaneously. This is usually done by allowing each of the
output neurons to generate score estimates from 0 to 1 in the output
neurons. Instance-based such as kNN (k Nearest Neighbours) based
7

methods can also be used for MLC by design: the search of nearest
neighbours is in the descriptive features space, the only difference is
the calculation of the prediction. For example, Ml-KNN uses Bayesian
posterior probability for the estimation of the scores. Support vector
machine-based methods use SVM principles when building the model,
often with modified cost function to optimize. Probabilistic models, in
general, try to use the Bayes formula or Gaussian mixture models in a
multi-label scenario. Fig. 4 depicts the algorithm adaptation methods
used in this study.

3.2.1. Singleton algorithm adaptation methods
Predictive Clustering Trees (PCTs) (Blockeel et al., 1998) are de-

cision trees viewing the data as a hierarchy of clusters. This method
uses a standard TDITD algorithm for induction of the tree (Quinlan,
1986). At the top node, all data samples belong to the same cluster.
This cluster is recursively partitioned into smaller clusters, such that
the variance (impurity measure) is reduced. The variance function and
the prototype function are selected for the task at hand. In the case of
MLC, the variance function is computed as the sum of the Gini indices
of the labels. The prototype function returns a vector of probabilities
that a sample is labelled with a particular label. As stopping criteria for
growing the tree the F-test is used. That is the only hyperparameter of
the model that needs to be tuned. The positive aspects of this method
include the fast time for training and prediction, and it is one of the
rear MLC methods that can provide interpretable results. As negative
aspects are that a single tree may be poor in performance, however, an
ensemble of PCT can be a powerful learning model.

Back-propagation Neural Networks (BPNN) (Read & Perez-Cruz,
2014; Zhang & Zhou, 2006) is a neural network approach to the prob-
lem of MLC. It is the standard multi-layer perception method. It uses the
back-propagation algorithm to calculate the parameters of the network.
The hyperparameters of the method are the learning rate, the number
of epochs and the number of hidden units. The positive aspects of this
method are that it can provide good performance if a large number
of training samples are available, and inherently target multi-target
problems. It faces drawbacks on the time needed for hyperparameter
optimization. A popular approach in this family of methods is the
stacking of multiple layers of hidden units, thus increasing the neural
network architecture in depth. This is part of a much broader range of
methods referred to as deep learning. Given its popularity, a separate
paragraph is dedicated to one deep-learning approach used to model
higher-level features, Restricted Boltzmann Machines (RBMs).

RBMs is a type of deep-learning method that aims to discover the
underlying regularities of the observed data (Hinton & Salakhutdinov,
2006). A Boltzmann machine can be represented as a fully connected
network. The restricted Boltzmann machine additionally has the re-
striction of connections between neurons in the same layer. Usually,
the parameters of the network are learned by minimizing contrastive
divergence (Hinton, 2002). The stacking of multiple RBMs creates so-
called Deep Belief Networks (DBNs). The standard back-propagation
algorithm can be used to fine-tune the parameters of the network in
a supervised fashion. Using DBNs one can generate new features as
different representations of the data. Those features can be used as
input to any multi-label classifier. The hyperparameters of this method
include the same as for the BPNN method and an additional two: the
number of hidden layers and the output multi-label classifier. The novel
representation of the input data provided by DBNs can lead to improved
performance, on the cost of increased time and space complexity for
training the method (Read & Perez-Cruz, 2014).

Multi-label ARAM (MLARAM) network (Sapozhnikova, 2009) is
an extension of Adaptive Resonance Associative Map neural-fuzzy
networks. ARAM networks for supervised learning consists of two
self-organizing maps sharing the same output neurons. The first self-
organizing map tries to encode the input space into prototypes, while
simultaneously trying to characterize the prototypes with a mapping
encoding the labels. A parameter called vigilance is used to control

the specificity of the prototypes. Larger values indicate more specific

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

2
c
t
b
s
o
p
s
p
t
t
(
a
o
l
t
p

m
f
s
c
B
a
n
p
i

Fig. 4. Algorithm adaptation methods. The methods used in this study are bold.
3

2
2
s
a
f
m
t
s
v
c
t
a

3

m
W
o
t
i
d
d

3

t
e
o
w
s
e
w
i
t
o

i

prototypes (Tan, 1995). MLARAM is an extension of ARAM in such a
way that it allows flexibility in determining when a particular node
is activated, taking into consideration label dependencies. The output
predictions may vary due to the order in which training examples
are presented. The flexibility of inclusion depends on a threshold
parameter. The parameters to be tuned are vigilance and threshold. The
positive aspect is that is fast to train and is useful in text classification
of a large volume of data, however since it is based on Adaptive Res-
onance Theory neural-fuzzy networks it has generalization limitations
if too many prototypes are built.

Twin Multi-Label Support Vector Machine (MLTSVM) (Chen et al.,
016) tries to fit multiple nonparallel hyperplanes to the data to
apture the multi-label information embedded in the data. It follows
he Twin SVM concept (Jayadeva & Chandra, 2007), where (in the
inary classification case) one tries to find two nonparallel hyperplanes
uch that each one is closer to its class, but it is further than the
thers. At the training phase, this method constructs multiple non-
arallel hyperplanes to exploit the multi-label information via solving
everal quadratic programming problems using fast procedures. The
rediction is obtained by calculating the distance of the test sample
o the different hyperplanes. The hyperparameters of the method are
he threshold above which a label is assigned, empirical risk penalty
determines the trade-off between the loss terms in the loss function)
nd a regularization parameter. Chen et al. (2016) show that MLTSVM
utperforms other SVM-based methods for MLC (based on Hamming
oss and ranking evaluation measures). Its advantage is that it is fast to
rain because of the fast underlying procedures for solving the quadratic
roblem formulated by SVM.

Multi-label k Nearest Neighbour (MLkNN) (Zhang & Zhou, 2005)
ethod is an adaptation of the Nearest Neighbour (Ruiz, 1986) paradigm

or multi-label problems. It finds the 𝑘 nearest neighbours of a given
ample as in a single target kNN algorithm. It constructs prior and
onditional probabilities from the training data and thus can use the
ayes formula to obtain the posterior probability for a given label on
given test sample. The parameter of the method is the number of

eighbours. It is fast to build, but as a lazy method, obtaining the
rediction is a more expensive operation. Thus it may not be suitable
8

n a situation where fast predictions are required. i
.2.2. Ensemble of algorithm adaptation methods
Random Forest of Predictive Clustering Trees (RFPCT) (Kocev,

011; Madjarov et al., 2012) uses the random forest method (Breiman,
001) with a PCT as a base learning model. It samples both the instance
pace (sampling with replacement) and the feature space (at random
t each tree node). The parameters of the method are the number of
eatures to be used when building the trees and the number of ensemble
embers. The positive aspects of the method are that it is fast and can

ackle the correlation between the labels inherently. On the negative
ide, RFPCT is not suitable for datasets with large sparse feature
ectors. Due to the process of a random selection of attributes, it often
an happen that these sparse features will be chosen for building the
rees. In such a scenario, the trees will have low predictive performance
nd that will hurt the overall predictive performance of the ensemble.

.3. Addressing specific properties of MLC

Since there exist multiple targets to predict, the task of MLC is
ore challenging than binary classification (Herrera et al., 2016).
hile in binary classification the complexity of the models depends

n the number of relevant features and number of samples, the MLC
ask has an additional complexity along the target dimension. These
ssues present specific challenges (i.e., label dependencies and high
imensional multi-label space), and influence the application and the
evelopment of MLC methods.

.3.1. Label dependencies
Label dependence has a central position in the definition of the MLC

ask. It presents how the labels are related among themselves — for
xample, consider labelling an image of a seaside; Given the presence
f the label ‘sea’, it is more probable that it will also be labelled
ith ‘beach’ than ’city street’. Exploiting these label dependencies can

trongly influence the performance of a given MLC method. In the
xtreme case of the non-existence of such dependencies then the best
ay to approach MLC is by looking at the task as separate 𝐿 tasks,

.e., binary relevance. However, in real-world applications, typically
here is a strong influence of the label dependencies on the performance
f the MLC methods.

The most straightforward problem-transformation method, BR (and
ts corresponding ensemble - EBR), does not exploit the dependence

nformation, and it is its most common referenced drawback (Read

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

E
s
&
l
t
m
s
t

t
t
g
s
a
a
t
t

q
b
w
n
n
i
l

et al., 2011). To bridge that gap, there are various ways to introduce the
dependency information, hence the appearance of different methods
such as CC, CDN, MBR, SM, CLEMS and ECC. Binary relevance’s coun-
terpart, the LP method, takes into consideration the label dependencies.
However, it also considers the nonexistent dependency. Pruned sets
method utilizes LP and thus has the same positive aspect and drawback.

The ensemble of MLC models such as HOMER, where the groups of
similar labels are being joined together, exploit the label dependency
explicitly. HOMER is regrouping the labels into smaller groups, such
that dependent labels belong to closer nodes in the tree. Chi-dep’s
has a statistical driven built-in mechanism for resolving the depen-
dencies between labels. The ensembles of LP and PSt exploit the label
dependencies given their base MLC classification method. RAkEL and
TREMLC provide an opportunity to exploit the dependencies between
the labels. Since they are randomly subsampling the label space, in-
dependent labels may be grouped, thus non-existing dependencies are
modeled. Nevertheless, if a large number of base models are built it
is expected that these non-existing dependencies will be averaged out.
The random sampling of the labels increases the bias of the methods.
However, the variance of the methods is decreased with the averaging.

On the other side of the spectrum, most of the algorithm adaptation
methods (and their corresponding ensembles) in the names of PCT,
RFPCT, BPNN, DBNs, MLARAM and MLTSVMs, have the built-in mech-
anism to deal with this challenge. The presence of label dependencies
in methods that have as hyper-parameter a MLC method is tackled
depending on the choice of the particular method. Since AdaBoost can
be viewed as applying AdaBoost as base-learner to a BR (Schapire &
Singer, 2000), this method has no mechanism of dealing with depen-
dencies between the labels. MLkNN cannot exploit label dependencies
since it is similar to applying BR with kNN as a base learner.

All in all, different methods have different approaches to how they
tackle the dependencies between the labels. Some try to augment the
descriptive space, others try to model the dependencies modifying the
dataset, others are modifying the learning method. In general, it is
expected that adding additional information to the method can help
to improve performance. This means that it is somewhat expected for
methods considering the label-dependencies to perform better.

3.3.2. High-dimensional label space
The challenge of high-dimensional label space mimics the well-

known problem of curse of dimensionality (Bellman, 1954; Guyon &
lisseeff, 2003) appearing in the feature space. The curse of dimen-
ionality references the issues in datasets with many features (Kira

Rendell, 1992). Following the same analogy, the large number of
abels imposes a problem for the multi-label methods. It influences
he time needed to obtain a prediction and the performance of the
ethods (Herrera et al., 2016). The curse of dimensionality in the input

pace exist in MLC tasks also. We discuss these issues in more detail in
he remainder of this section.

The curse of dimensionality in the label space is best illustrated
hrough the computational complexity analysis for both training and
esting time provided in Table C.3 in the Appendix, available online. We
ive the complexity analysis as provided by the authors proposing the
pecific method. If this is not available, then we performed the analysis
nd the summary of it is given in the table (as reference these methods
re marked as [ours]). The training time complexity is the time needed
o learn the predictive models, while the testing time complexity is the
ime needed to predict for a given example.

BR and CC scale linearly with the number of labels. CLR scales
uadratically with the number of labels since it needs to build pairwise
ase learner models. The time complexity of LP scales exponentially
ith the number of labels in the worst case. However, in practice, the
umber of classifiers is limited to the 𝑚𝑖𝑛(2||, 𝑛𝑡𝑟), where 𝑛𝑡𝑟 is the
umber of training instances. Additionally, this method should take
nto consideration the applied strategy for solving the multi-class prob-
9

em by the base learner. If the base learner is SVM and if the applied
strategy is one vs one (OVO) the complexity scales quadratically with
the number of unique label sets. If the applied strategy is one-vs-all
(OVA), the complexity scales linearly with the number of unique label
sets. Since PSt utilize the LP method, at worst if no label-set is removed
from the training set its computational complexity is equivalent to the
LP method. However, in practice, it is much faster since depending on
the pruning parameter infrequent label-sets are removed.

The complexity of the ensembles for MLC built from BR, CC, PSt
and LP preserve the same complexity concerning the labels as their
base MLC models. Their complexity differs in the number of built
multi-label models. However, this is not true for HOMER. HOMER
requires splitting the label space into smaller clusters when building
the hierarchy, this means that its speed is dependent on the clustering
algorithm. In Tsoumakas et al. (2008), it is shown that the balanced
k-means method scales linearly with the number of labels. MBR, CDN,
ECD, MLTSVM and AdaBoost scale linearly with the number of labels.
For RFPCT and PCT, the computational complexity depends on a
logarithmic function of the number of labels.

An important aspect of the computational complexity analysis for a
specific method is the base learner it uses (and especially the suscepti-
bility of the base learner to the ’curse of dimensionality’). For example,
using SVM as a base learner requires calculation of the kernel, which
amounts to computational complexity of 𝑂(𝑛𝑡𝑟𝑓 2) for 𝑓 < 𝑛𝑡𝑟. If the
dataset has a large number of samples then the time needed for training
the method will be larger: 𝑂(𝑛3𝑡𝑟) if 𝑓 ∼ 𝑛𝑡𝑟.

The high-dimensional label space influences both problem trans-
formation and algorithm adaptation approaches to MLC, not just in
terms of computational complexity but also in terms of making the
problem more imbalanced. Namely, the high-dimensional label spaces
encountered in real-life datasets are usually also sparse: low label
cardinality (average number of labels per example) and low label
density (frequency of labels). The sparsity then poses a challenge for
both problem transformation and algorithm adaptation approaches as
follows. In the former case, in binary relevance and label power set,
the simpler classification tasks are imbalanced. Hence, once could
resort to specific approaches addressing this issue, thus, even more,
increasing the computational cost. In the latter case, the sparse output
spaces could make the learning of predictive models more difficult (for
example, see PCTs Kocev et al., 2013, extreme MLC Jain et al., 2016).
A way to approach this is to embed the sparse space in a more compact
space through matrix factorization or deep embedding methods (for
example, see Stepišnik & Kocev, 2020).

4. Experimental design

In this section, we discuss the experimental design. First, we present
the experimental methodology adopted for conducting the comprehen-
sive study. Second, we present the details on the specific experimental
setup used throughout the experiments. Third, we give the specific
parameter instantiations used to execute the experiments. Next, we
present the evaluation measures used to access the performance of the
methods. Finally, we discuss the statistical evaluation used to analyse
the results from the study.

4.1. Experimental methodology

At the basis of any large scale, comprehensive study lies a suit-
able experimental methodology for hyperparameter optimization of
the MLC methods and their base classifiers as well as measures and
procedures for accessing the (predictive) performance of the methods
on the datasets. In this study, we adopted and adapted the experimental
methodology presented in Caruana and Niculescu-Mizil (2006). Fig. 5
depicts the four-stages experimental methodology used in this work.

In the first stage, the multi-label datasets considered in this study

come in predefined train-test splits. We first sample 1000 examples

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

f
(

3
t
2
(
b
w
r
2
V
i
t
w
t
a
r

t
i
7
m

o
p
a
d
s

4

i
t
g
t
l
p
i
e
s
g
c

w

Fig. 5. The design of the experimental setup and protocol.
a
rom the training set using iterative stratification (Sechidis et al., 2011)
for the datasets with less than 1000 examples, we take all of them).

In the second stage, on the selected portion of the data we perform
-fold cross-validation to select the optimal hyper-parameters under a
ime-budget constraint of 12 h (similarly as in AutoML Hutter et al.,
019). It means that we allow for evaluation as much as possible
uniformly randomly selected) parameter combinations within the time
udget and select the best one out of these. For each of the methods,
e evaluate a multitude of hyperparameter combinations defined with

anges taken from the literature (Madjarov et al., 2012; Moyano et al.,
018; Read et al., 2011; de Sá et al., 2018; Tsoumakas, Katakis, &
lahavas, 2011) (detailed range values for the parameters are given

n the Supplementary Material Sec. Appendix B, available online). After
he expiration of the time budget or evaluating all of the combinations,
hichever comes first, the hyperparameter combination that leads to

he smallest Hamming loss is selected as best. If the time budget did not
llow for the evaluation of at least one combination then the literature
ecommended values are used.

In the third stage, we learn a predictive model using the complete
raining set and the selected optimal hyperparameter combination. Also
n this stage, we set a time budget for learning a predictive model to
days. In the cases where this occurs, the performance of that specific
ethod is marked as (DNF).

In the fourth and final stage, we evaluate the predictive performance
f the method using the test set. The test set is used only to assess the
redictive performance of the learned models, and it has not been used
t any other stage of the experimental evaluation. For the methods that
id not yield a model from the previous stage, their performance was
et to the worst possible value for each evaluation measure.

.2. Implementation of the experimental methodology

For undertaking such an extensive experimental study, we needed to
mplement a multi-platform experimental methodology. The implemen-
ation of the experimental methodology is done using the Python pro-
ramming language. It follows the design principles and guidelines of
he skmultilearn (Szymański & Kajdanowicz, 2019) and sckit-
earn (Buitinck et al., 2013) ecosystem. We designed a unified ex-
erimental methodology. To include methods and their well-tested
mplementations from CLUS, MULAN (Tsoumakas, Spyromitros-Xioufis
t al., 2011) and MEKA (Read et al., 2016), a unified experimental
etup was designed. An Ubuntu-Xenial image was built using Sin-
ularity (Kurtzer et al., 2017) to provide the same experimental
onditions for the experiments.

The methods are abstracted into a generic form to provide a unique
10

ay of accessing. Using these libraries require specific pre-processing
nd formatting of the data: For example, MULAN requires XML files stor-
ing the names of the labels. After learning the model on a given dataset
with a specific method, the predictions (as raw scores) are stored. Next,
the raw prediction scores are used as input to the evaluation measures.
The sckit-learn implementation of the measures is used. The one
error measure is not implemented in sckit-learn, therefore, we
implemented it. Furthermore, we used a wrapper to access the MEKA
library the skmultilearn. The wrapper provides a uniform way to
obtain the scores, predictions and additional information describing the
models. Methods accessed through this library are MBR, BR, LP (LC),
PSt, CC, RAkEL, EBR, ELP, ECC, CDN, EPS, BPNN, RSLP, DBPNN, SM,
TREMLC. Additionally, the methods CLR and HOMER were accessed via
MEKA’s wrapper for MULAN. Methods from MEKA that do not provide
score estimates are LP, CC and SM. To use MULAN, a suitable wrapper
around it was used to access the CDE method. Next, CLUS was used to
access RFPCT and PCT. RFPCT and PCT do provide prediction scores
that can be seen as the probability of a given example being labeled
with a given label. Finally, the skmultilearn library was used to
access MLRAM, MLkNN, CLEMS, AdaBoost, RFDTBR and MLTSVM.
MLTSVM does not provide score estimates. It has an internal mech-
anism for providing predictions. AdaBoost and RFDTBR required the
implementation of supporting code to retrieve probability estimates.

4.3. Parameter tuning

The goal of the experimental study is to provide the same conditions
for all methods and to provide an opportunity for each method to give
its best results. Hence, we need to select the optimal parameters for
each of the methods. This is especially relevant for MLC methods that
use as base classifiers methods that require tuning (e.g., SVMs). Based
on our experimental methodology outlined in Fig. 5, we select the
optimal combination of parameters for each method using parameter
ranges as defined in the literature. Detailed description of the specific
parameter ranges and values evaluated in this study are provided in
Appendix B, available online.

4.4. Evaluation measures

We use 18 predictive performance and two efficiency criteria to
evaluate the performance of the methods across the datasets. Fig. 6
depicts a taxonomy of the evaluation measures (or criteria, scores) (Mad-
jarov et al., 2012).

For the evaluation of the predictive performance of the methods,
sckit-learn implementation of the measures for MLC is used. The
evaluation measures requiring score estimates as input are provided
with both the calculated scores and the ground truth labels. Since LP,

CC, SM and MLTSVM do not generate scores, score-based evaluation

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.
Fig. 6. Taxonomy of the evaluation criteria. There are two types of measures, one used to evaluate the performance of the methods and the other one used to evaluate the
efficiency of the methods. The performance evaluation can be done either via evaluating bipartitions or via evaluating the relevance of a label for the sample.
criteria are not calculated for them and the predictions as generated
by the implementations of the methods are used. Most of the methods
used in this study return raw scores as predictions. These scores then
need to be thresholded to obtain the label predictions. Hence, we use
the global PCut thresholding method (Read et al., 2011): It selects a
threshold using an iterative procedure such that the label cardinality
of the training set is equal to the cardinality of the test set. A detailed
description of the evaluation measures is given in the Supplementary
material as well as in the referenced literature (especially Gibaja &
Ventura, 2015; Herrera et al., 2016; Madjarov et al., 2012; Moyano
et al., 2018; Rivolli et al., 2020; Zhang et al., 2018; Zhang & Zhou,
2014).

The assessment of the performance of an MLC method relies on
the type of predictions it produces: relevance scores per label or a
bipartition. If a method produces relevance scores, special postpro-
cessing techniques can be employed to produce bipartitions (Reem
et al., 2014). In the case of bipartitions, the evaluation measures can
be separated into example-based and label-based measures. The latter
can then be micro- or macro-averaged, based on the fact whether
the joint statistics for all labels are used to calculate the measure
or the per label measures are averaged into a single value. In the
case of providing relevance scores per label, threshold independent
or ranking-based measures can be calculated. The different methods
might be more biased towards optimizing a given evaluation measure
than other methods. For example, the methods predicting label sets
have favourable evaluation using example-based measures, while the
methods predicting each label with a different model and combining
the predictions have favourable evaluation using macro-averaged mea-
sures. Hence, for an unbiased view of the performance of the MLC
methods, one needs to consider multiple evaluation measures.

To evaluate the efficiency of the MLC methods, the training and test
time is measured. Training time measures the time needed to learn the
predictive model, and the testing time measures the time needed to
make predictions for the available test set. While we are aware that
the execution times are dependent on the specific implementation of
a given method, measuring these times have practical relevance. They
provide a glimpse into the time a method needs to produce a model
or a prediction and can serve as a guideline for a practitioner when a
decision needs to be made on the use of a specific method. These effi-
ciency estimates should be examined together with the computational
11

complexity of the methods (as provided in Table C.3).
4.5. Statistical evaluation

Accessing the overall differences in performance across the datasets
to determine if the differences in performance of the methods are
statistically significant, we used the corrected Friedman test (Iman &
Davenport, 1980) and the post-hoc Nemenyi test (Nemenyi, 1963).
Friedman test is a non-parametric multiple hypothesis test (Friedman,
1940). It ranks the methods according to their performance for each
data separately. Then it calculates the average ranks of the methods
and calculates the Friedman statistics. Due to the conservatives of the
test the corrected Friedman statistics is preferred.

If statistical significance between the methods exists, the post-hoc
Nemenyi test is used to identify the methods with statistically signifi-
cant differences in performance. The performance of the two methods
is statistically significant if their ranks differ more than the critical
distance (calculated for a given number of methods, datasets and a
significance level). The significant level 𝛼 is set to 0.05.

Limitations of the study. While having great practical relevance for
detailed depicting the landscape of a learning task, these forms of
studies have inherent limitations. One of the drawbacks of making large
experimental studies relates to that they are computationally expensive.
For example, the time of computation for hyperparameter tuning as
well as building the models on all of the 42 datasets, while optimizing
single performance criteria took approximately 126720 CPU hours. This
time is linearly dependent on the number of performance criteria one
is optimizing. Thus optimization over all of the performance criteria is
practically infeasible with a lack of appropriate infrastructure. More-
over, the task of making sense out of an abundance of results that will
emerge is challenging.

To overcome this challenge, we adopt design choices following
recognized literature standards (Caruana & Niculescu-Mizil, 2006). The
iterative stratified cross-validation strategy preserves the frequency of
the labels. In the study, there are 19 datasets with more than 1000
samples and 7 datasets with more than 5000 labels (2 with more
than 9000). The iterative stratified sampling strategy sub-samples the
datasets, trying to preserve the frequency of the labelsets (Sechidis
et al., 2011). Thus, the potential effect of overfitting to the data is
not expected to have a noticeable influence over the choice of the best
method in the given experimental scenario for all of the datasets. Even
if it has, the influence will be small, and will not hurt the conclusions.

Following Madjarov et al. (2012), we selected Hamming loss as
optimization criteria as it is analogous to error rate in single target
classification. It provides penalization for the miss-classification of

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.
individual labels. Optimizing for other measures, e.g., F1, precision and
recall (micro, macro and example-based), have inherited bias towards
specific paradigms that are correlated with the assumptions done by
the families of methods. Considering threshold independent measures
discard methods that cannot produce rankings. Accuracy example-
based evaluates just the correctly predicted labels, while the subset
accuracy is blind to correct prediction of right and incorrect prediction
of wrongly predicted labels. Thus, Hamming loss seems like the fairest
choice for optimization.

Another challenge when performing large scale studies emerges
from the included datasets. The conclusions from such a study find
their validity to hold in the meta-space constrained by the values of
the meta-features of the included datasets. For MLC, to the best of our
knowledge, this is the greatest amount of datasets and methods being
evaluated. Thus we believe that it depicts the current state of the field
pointing out guidelines for both practitioners and experts to design and
choose the most suitable methods for their MLC problem, and further
expand the field of MLC as an important task in machine learning.

While deep learning methods have significantly gained in popular-
ity in recent years and managed to push the predictive performance
boundaries of machine learning models, they still do not perform as
well on tabular data as they do on image and text data (Gorishniy
et al., 2021). Furthermore, their greatest power resides in the ability
to extract useful feature representations by leveraging large quantities
of raw data typically given as images or textual documents. However,
most of the MLC problems from the domains of bioinformatics or
medicine typically do not have many samples needed by deep learning
methods to achieve state-of-the-art performance (Liu et al., 2020).
Considering these obstacles, we evaluated the performance of two
established neural network architectures for MLC on tabular data —
Deep Boltzmann machines (DBM) and Multi-layer Perception for MLC
(BPNN) (Read & Perez-Cruz, 2014; Zhang & Zhou, 2006).

5. Results and discussion

This section paints the landscape of MLC methods by providing a
discussion on the results from the comprehensive empirical study. The
discussion is organized into four parts: (1) comparison of problem trans-
formation methods, (2) comparison of algorithm adaptation methods,
(3) analysis of selected best-performing methods and (4) computational
efficiency analysis of the methods. We focus the discussion on the
predictive performance using four evaluation measures (Hamming Loss,
F1 example-based, Micro precision and AUPRC), thus ensuring the
inclusion of all the different groups of measures. The complete results
and their detailed analysis are provided in the Appendix (available
online), and at http://mlc.ijs.si.

5.1. Problem transformation method comparison

Fig. 7 depicts the average rank diagrams comparing the problem
transformation methods. At a first glance, we can observe that the
problem transformation methods that are utilizing BR outperform all
other methods across all evaluation measures. More specifically, the
best performing method is RFDTBR — it is the best-ranked method
on 12 evaluation measures (and second-best on three more) and is
the most efficient in terms of both training and testing time. EBRJ48,
AdaBoost.MH, ECC J48, TREMLC and PSt are often among the top-
ranked methods, while CDN, SM and HOMER are the worst-performing
methods (CDN is worst-ranked on 13 evaluation measures). In the
remainder of this section, we analyse the performance of all methods in
more detail, along with the different types of evaluation measures and
different subgroups of methods, finally selecting the most promising
problem transformation methods.

We first summarize the performance of the methods according to
the different groups of evaluation measures. Considering the example-
based evaluation measures, the best performing methods are RFDTBR,
12
ECC J48 and RSLP, while the worst performing methods are MBR,
HOMER and CDN. Next, focusing on the label-based evaluation mea-
sures, we can make the following observations: i) on the threshold-
independent measures (AUCROC and AUPRC), the best performing
methods are RFDTBR and EBR J48, while RAkEL, HOMER, and CDN
are on the losing end; ii) on the micro averaged measures, the best
performing methods are RFDTBR, TREMLC, ECC J48, AdaBoost.MH;
and iii) on the macro averaged measures, BR, ECC J48, CLR and Ad-
aBoost.MH perform best. It is interesting to observe the drop of RFDTBR
in the ranking based on macro-averaged measures. This suggests that
RFDTBR as a base learner fails to provide good individual predictions
per label, as opposed to BR with SVMs. Furthermore, analysing the per-
formance on ranking-based measures, RFDTBR, EBRJ48, AdaBoost.MH,
and PSt has the best performance, while RAkEL, HOMER, and CDN are
the worst. Finally, considering efficiency, the best training times are
obtained with RFDTBR, HOMER and PSt, and the worst with ECC J48,
EBR J48 and AdaBoost.MH, The best testing times are obtained with
RFDTBR, CDE, SSM, and the worst with LP, RAkEL, and CLR.

When it comes to using ensemble methods to approach MLC with
problem transformation (using the BR, CC or LP approach), it is very
important to select the proper base predictive models of those ensem-
bles (Madjarov et al., 2012; Moyano et al., 2018; Rivolli et al., 2020).
There are two widely used options concerning the base predictive
models: J48 and SVMs.

We performed an additional experimental study concerning this
choice. Namely, we evaluated EBR, ECC and ELP built with J48 trees
and SVMs as base predictive models. The results showed that using
J48 as a base predictive model is generally beneficial in terms of
predictive performance: on a large majority of predictive performance
measures, the ensembles using J48 are better ranked than their SVM
counterparts. Moreover, EBR with J48 is the best-ranked method on
14 out of 18 predictive performance measures. The ensembles with
SVMs perform better on the macro aggregated evaluation measures
and subset accuracy. In terms of efficiency, ensembles with J48 are
undoubtedly the preferred choice: they are faster to learn and make
predictions than their SVM counterparts. In addition, J48 does not need
parameter tuning, while two SVMs parameters need to be tuned. A
detailed discussion of the evaluation is available in the Supplementary
material accessible online.

Several observations can be made by comparing the performance
of the different ensembles of problem transformation methods (EBR,
ECC, ELP). First, it can be observed that EBR tends to perform best
according to ranking-based measures, micro-averaged label-based and
threshold-independent measures. The predictions of EBR are charac-
terized with good precision scores hence they provide more exact
predictions (i.e., the labels predicted as relevant are truly relevant).
Conversely, according to the example-based and macro-averaged label-
based measures, the ECC method ranks best. ECC has high values for
recall on the example-based measures, meaning that its predictions are
more complete (i.e., the truly relevant labels are indeed predicted as
relevant). EBR performs well on precision, and ECC performs well on
recall. EBR and ECC models with J48 tend to provide good results (EBR
on micro and ranking-based measures and ECC on micro and example-
based measures), do not require tuning of parameters and are fast to
build. ELP shows the worst performance in general.

LP-based architectures of problem transformation methods have
good performance as measured by the recall, and consequently accord-
ingly to the F1 measure. More specifically, according to example-based
measures, these methods produce complete predictions, where truly
relevant labels are indeed predicted as relevant. In contrast, they fall
short on precision-based measures, meaning that not all the predicted
labels are truly relevant for the examples. Similar observations can
be made for the micro-averaged label-based measures, but not for the
macro-averaged label-based measures, where LP-based methods suffer
reduced performance. Since LP-based methods predict partitions, they

can preserve the label sets. This reflects the good rankings achieved

http://mlc.ijs.si

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.
Fig. 7. Average rank diagrams comparing the predictive performance of problem transformation methods. The performance of the methods connected with a line is not statistically
significantly different.
in example-based measures and micro-averaged label-based measures
that are calculated by taking the labels jointly, before averaging them.
However, when macro-averaged label-based measures are considered,
the preservation of the label-sets seems not to be beneficial and the
methods are unable to produce sufficient diversity per label. These
conclusions are further confirmed by analysing the performance of
the methods on the ranking and threshold-independent measures (see
Fig. 7(d)). Again, LP-based methods are ranked lower as compared to
the BR-based methods.

Comparing the results of LP-based and BR-based singletons utilizing
SVMs as base learners, it can be observed that PSt is the best ranked,
except for the macro measures. PSt prunes the infrequent label sets and
trains an LP method on the modified dataset. The better ranking of PSt
shows that the infrequent label-sets hurt the performance of the LP-
based approaches. PSt is superior to its counterpart BR according to the
example-based and micro-averaged label-based measures. Comparison
of the BR-based and LP-based singletons versus the corresponding
architectures shows better performance for the architectures, which
most often is significantly large, for the best-performing methods.

Based on the above discussion and the empirical evidence, we select
RFDTBR, AdaBoost.MH, ECCJ48, TREMLC, PSt and EBRJ48 as the best
performing group of the problem transformation methods.
13
5.2. Algorithm adaptation method comparison

Fig. 8 depicts the average rank diagrams for the algorithm adapta-
tion methods. At a first glance, we can make the following observations:
(i) The best performing method is RFPCT — it is best ranked ac-
cording to 17 out of 18 performance evaluation measures; (ii) It is
closely followed by BPNN — ranked second according to 16 out of
18 performance evaluation measures, with performance differences to
RFPCT that are not statistically significant; and (iii) the worst-ranked
methods are MLTSVM, DEEP 1 and DEEP 4 (DEEP 1 and 4 are the two
architectures using DBNs to create a lower-dimensional representation
of the input, and then using BPNNs or ECC as a second stage classifier).

By inspecting in detail the results across all types of evaluation
measures, we find that the above observations hold: RFPCT and BPNN
are typically the best-ranked methods. Here, we mention the two
evaluation measures where this is not the case: Hamming Loss and
micro-averaged precision. For both evaluation measures, CLEMS and
MLkNN achieve good predictive performance (according to micro-
averaged precision, CLEMS and MLkNN are the top-ranked methods,
see Fig. 8(c)). The good performance on precision indicates that these
methods are more conservative in assigning relevant labels. Usually,
this means a weaker performance on recall-based measures.

Next, we have performed an extensive evaluation of four different
architectures of deep belief networks (DBNs), as representatives of deep
learning methods for MLC. The 4 DBN-based models were trained on

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

d

t
f
a
o
t

m
o
m
t
m
c
o
m
b
g
t
e

w
a

5

m
a
t
m
t
p
e
f
o
p

t
4
r

Fig. 8. Average rank diagrams comparing the performance of algorithm adaptation methods. The performance of the methods connected with a line is not statistically significantly
ifferent.
he whole training set to increase their chance of preventing over-
itting due to the small number of instances. These four architectures
re obtained as a Cartesian product of two sets of parameters of the
ptimizer (learning rate and momentum) and the MLC classifier with
he fixed-parameter at the second stage (one of BPNN or ECC).

Detailed analyses of the DBN results, given in the Supplementary
aterial reveal the following. Using ECC as a MLC classifier in the sec-

nd stage, is beneficial according to the example-based and label-based
easures while using BPNN for that purpose is beneficial according to

he threshold-independent label-based measures and the ranking-based
easures. The better-ranked architectures for the two different MLC

lassifiers (DEEP1 and DEEP4) were selected for comparison with the
ther algorithm adaptation methods. Still, these two architectures have
uch worse performance as compared to other methods. This might be

ecause the benchmarking datasets are of different sizes and there is a
ood portion of them with a small number of examples, which makes
he DBNs overfit (Read & Perez-Cruz, 2014): This prompts for better
xploration of the parameter space of DBNs in this context.

Based on the discussion and all of the empirical evidence presented,
e select RFPCT and BPNN as the best performing group of algorithm
daptation methods.

.3. Selected MLC methods performance comparison

We further compare the results of the selected best-performing
ethods from both groups, i.e., the problem transformation methods

nd the algorithm adaptation methods. Fig. 9 depicts the results of
his comparison. As explained above, we selected six problem transfor-
ation methods and two algorithm adaptation methods. At a glance,

he results shown here, as well as the detailed results from the Ap-
endix, clearly identify that tree-based model as the state-of-the-art,
specially tree-based ensembles based on random forests. Below, we
irst discuss the performance of all considered methods along the lines
f the different types of evaluation measures and then drill down to the
erformance of each selected method.

We start with discussing the results for the example-based evalua-
ion measures (Figure D.11). Here, RFPCT is best ranked according to
out of 6 measures and second-best on the other two. RFDTBR is best
14

anked on one measure and second-best on 4. These two methods are
the best performers, except on recall (where ECC J48 is top-ranked).
It means that the predictions made by RFPCT and RFDTBR assign
relevant labels more conservatively. Also, on the threshold-independent
measures (Figure D.13), which provide the most holistic view on MLC
method performance, RFPCT and RFDTBR are dominant (according to
AUPRC, they statistically significantly outperform the competition).

In terms of the label-based evaluation measures (Figure D.14),
the situation is not as clear. ECCJ48 is the best performing method
according to 3 evaluation measures and worst-performing according
to two evaluation measures. Namely, ECCJ48 is strong according to
the recall measures (for the macro-averaged recall it even statisti-
cally significantly outperforms all competitors). This comes at the
price of it being the worst-ranked method on precision. On precision-
based measures, AdaBoost.MH is the best performing (with RFPCT and
RFDTBR following closely) and among the worst-performing methods
on recall-based measures. Interesting to note here is the difference in
the performance of RFPCT due to the averaging of the recall: with
macro averaging, it is worst-ranked, while with micro averaging, it
is ranked second best. It indicates that RFPCT focuses on predicting
the more frequent labels correctly at the cost of misclassifying the less
frequent ones. This is in line with the understanding that the BR-type of
methods are more appropriate for macro-averaging of the performance:
they try to predict each of the labels separately as well as possible.
Conversely, the methods that predict the complete or partial label set
(such as LP-based methods and algorithm adaptation methods, incl.
RFPCT) are well suited for micro-averaged measures.

Furthermore, in terms of ranking-based measures (Figure D.12),
the best performing method is RFDTBR — it is top-ranked on all four
evaluation measures, while RFPCT is second-best on three evaluation
measures. These results indicate that by further improving the thresh-
olding method for assessing whether a label is relevant or not, one
can expect a further improvement of the performance of these methods
on the other evaluation measures. Here, the worst-performing method
is ECC J48 — it has the worst ranks according to three performance
evaluation measures.

We next dig deeper into the performance of each of the selected
methods. We start with the random forest approach to learning en-
sembles for MLC. When used either in local/problem transformation
(RFDTBR) or global/algorithm adaptation (RFPCT) context, random

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.
Fig. 9. Average rank diagrams for the best-performing methods from both groups (problem transformation and algorithm adaptation) were selected after the per-group analysis of
the results. The performance of the methods connected with a line is not statistically significantly different. The average ranking diagrams for all evaluation measures are available
in Appendix A, available online.
n
2

r

forests show the best performance across the example-based, micro-
averaged label-based and ranking-based measures, as well as threshold-
independent measures. When considering the macro-averaged label-
based measures, both of the methods, despite having good rankings
on macro precision measures, are not able to predict as relevant all
instances where the labels are truly relevant (per label) and thus have
worse rankings on macro recall. This leads us to the observation that
these methods are rather conservative when deciding whether a label
is relevant or not.

ECCJ48 is best ranked on the recall-based measures but underper-
forms on the precision-based measures, where it is often being ranked
worst. It indicates that ECCJ48 is rather liberal when assigning labels
as relevant, i.e., it indeed truthfully predicts most of the relevant labels,
but at the cost of also predicting irrelevant labels as relevant.

In contrast to ECCJ48, AdaBoost.MH shows good results on preci-
sion, as compared to the results on recall. The weights over the samples
help AdaBoost to be conservative in its predictions. Additionally, it is
ranked favourably according to the ranking-based measures (indicating
that there is room for further improvement of the scores for the other
measures by adjusting the thresholding method). For coverage and
ranking loss, it is among the best-ranked methods.

EBRJ48 shows competitive performance on the ranking measures. It
closely follows the best-ranked methods, often not statistically signifi-
cantly different from them. On the threshold-independent measures, it
is also ranked as the 3-rd best method. However, it suffers on the other
measures, even though it is not statistically significantly worse than
the best method in 4 out of 12 remaining measures (after excluding
the ranking-based and the threshold-independent based ones).

The PSt method has good ranks for the example-based measures —
it is not statistically significantly different from the best-ranked method
in four out of six measures. However, on the remaining measures,
it has hood ranks for two measures — macro F1 and coverage. The
rationale behind this behaviour of PSt is that it predicts label-sets hence
it can provide good performance on the per example-based measures.
TREMLC, as an LP-based architecture, has better ranks for macro and
micro-based measures, as compared to the singleton LP-based method,
PSt. However, it has statistically significantly worse ranks than the best-
ranked methods, similar to PSt. The average rank diagrams show that
LP-based methods, in general, are not competitive on ranking-based
performance measures.

BPNN has the weakest ranking across the measures — it is often
statistically significantly different from the best-ranked method and it is
15

R

only ranked as not statistically significantly different to the best method
in two out of 18 predictive performance measures. These results point
out that BPNN is very sensitive to its architectural design and param-
eter settings. Finding the best configuration for a BPNN, for a given
problem is a computationally expensive challenge on its (Elsken et al.,
2019). Moreover, this observation follows the general observation for
single target tasks, for tabular data, where ensemble methods have the
competitive edge (Lundberg et al., 2020).

5.4. MLC methods efficiency comparison

We focus the discussion now on comparing the efficiency of the
selected best-performing methods in terms of training and testing times.
Fig. 10 shows that RFPCT is the most efficient method — it learns
a predictive model fastest and makes predictions the fastest. It is
then followed by RFDTBR. The differences in the efficiency of these
two methods as compared to the rest of the methods are statistically
significant for both the training time (except for the PSt method) and
the testing time.

We next consider the speed up of RFPCT (as the top efficient
method) relative to the remaining methods across all datasets1. In a
utshell, RFDTBR is slower than RFPCT ∼ 2.5 times, AdaBoost.MH ∼
8.1 times, PSt ∼ 29.6 times, TREMLC ∼ 48.1, EBRJ48 ∼ 61 times, BPNN
∼ 63 times and ECCJ48 ∼ 76.7 times. We believe that the difference in
efficiency between the two top-ranked methods (RFPCT and RFDTBR)
is because RFPCT typically learns shallower/smaller trees (Kocev et al.,
2013). Notwithstanding this difference, the comparison of efficiency
identifies RFPCT and RFDTBR as the most efficient MLC methods.

6. Conclusion

In this paper, we present the most comprehensive comparative study
of MLC methods to date. It gives an in-depth theoretical and empirical
analysis of a variety of MLC methods. Considering the ever-increasing
interest in MLC by the research community and its increased practical
relevance, this study maps the landscape of MLC methods, and provides
guidelines for practitioners on the usage of the MLC methods, on

1 The relative speedup is calculated as the average over the datasets of the
atio of the times needed to learn a model by the other methods and by using
FPCTs.

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

s

s
t

c
i
a
e
h
t
p
t
m
a
g
m

s
p
p
f
m
1
o
p
i

r
m
r
p
a
w
o

f
m
b
g
E
a
c
p

a
s
b
v
m
a
p
m
o

e
s

Fig. 10. Average rank diagrams comparing the efficiency (running times) of the best performing methods. The performance of the methods connected with a line is not statistically
ignificantly different.
d
i
a
i
o
p
s
p
w
u
f
f
t
s
f
a
d

C

s
p
m
P
t
T
a
t
D
a
t
K
i
o
i
r

D

p
w
1

A

A
1
F
O
s
S
B

electing the best baselines when proposing a new method, or selecting
he first methods to try out on new MLC datasets.

The theoretical analysis of the MLC methods focuses on aspects
overing different viewpoints of the methods, such as (1) detailing the
nner working procedures of the methods; (2) stressing their strengths
nd weaknesses; (3) discussing their potential to address specific prop-
rties of the MLC task, i.e., exploit the potential label dependencies and
andle the high-dimensionality of the label space; and (4) analysis of
he computational cost for training a predictive model and making a
rediction using it. We divide the methods into two groups: problem
ransformation and algorithm adaptation. While the former group of
ethods decomposes the MLC problem into a simpler problem(s) that

re addressed with standard machine learning methods, the latter
roup of methods holistically addresses the MLC problem — it learns a
odel predicting all labels simultaneously.

Our empirical study of the methods is by far the largest empirical
tudy for MLC methods to date: It considers 26 MLC methods learning
redictive models for 42 datasets, and evaluating them by 18 predictive
erformance measures and two efficiency criteria. The datasets stem
rom various domains, including text (news, reports), medicine, multi-
edia (images and audio), bioinformatics, biology and chemistry. The
8 predictive evaluation criteria provide a whole range of viewpoints
n the performance of the MLC methods, including their capability of
redicting bi-partitions (per example and label), label ranking, and the
ndependence of the predictions regarding the threshold.

Regarding the experimental design, we adhere to the literature
ecognized standards for conducting large experimental studies in the
achine learning community. It includes time-constrained hyperpa-

ameter optimization of the methods’ parameters on a sub-sampled
ortion of the datasets. The parameterization is performed using liter-
ture recognized values for the parameters. For analyses of the results,
e use the Friedman and Nemenyi statistical tests and present their
utcomes using average ranking diagrams.

We analyse and discuss the results of the experiments in detail,
irst separately for problem transformation and algorithm adaptation
ethods, and then on a selection of the best-performing methods from

oth groups. Based on the analysis of the performance within each
roup, we selected 8 best performing methods (RFDTBR, AdaBoost.MH,
CCJ48, TREMLC, PSt and EBRJ48 among problem transformation,
nd RFPCT and BPNN among algorithm adaptation methods). We then
ompare these to identify an even more compact set of methods as best
erforming.

The evaluation outlines RFPCT, RFDTBR, EBRJ48, AdaBoost.MH
nd ECCJ48 as best performing, considering the 18 evaluation mea-
ures. These methods have their strengths and weaknesses and should
e selected based on the context of use. For example, ECCJ48 is
ery strong on recall-based measures and weak on precision-based
easures — this is reversed for AdaBoost.MH. Notwithstanding, RFPCT

nd RFDTBR are the top-performing methods (having the top-ranked
ositions across the majority of the evaluation measures) as well as the
ost efficient MLC methods (within the selected best performing group

f methods).
Being very comprehensive in terms of MLC methods, datasets and

valuation measures, this study opens several avenues for further re-
earch and exploration. To begin with, while it is important to provide
16

a

ifferent viewpoints by using different evaluation measures, this makes
t difficult to select an optimal method. To alleviate this problem, we
im to use our empirical results to study the evaluation measures and
dentify relevant relationships between them. Furthermore, the results
f the large set of experiments will allow us to relate the data set
roperties and the performance of the methods in a meta learning
tudy and investigate the influence of dataset properties on predictive
erformance. For this purpose, we will first describe the MLC datasets
ith features that describe their specific MLC task properties and then
se these features to learn meta models. Next, we will investigate
urther the potential of deep learning methods for MLC, with a special
ocus on methods for transfer learning as well as different data augmen-
ation strategies. Finally, considering that we store the actual prediction
cores of the models, we can further experiment with thresholding
unctions that separate the relevant from irrelevant labels. We will
nalyse different MLC thresholding techniques, to improve existing or
esign novel thresholding methods.

RediT authorship contribution statement

Jasmin Bogatinovski: Conceived and designed the experimental
tudy, Performed initial analysis and visualization of the results, Pre-
ared the initial draft of the manuscript, Collected the datasets, Imple-
entations of the methods, Implemented the experimental framework,
erformed the experiments, All the authors contributed in verifying
he results, All authors participated in the manuscript revision. Ljupčo
odorovski: Design of the study, Analysis of the results and reviewed
nd edited the manuscript, All the authors contributed in verifying
he results, All authors participated in the manuscript revision. Sašo
žeroski: Design of the study, Analysis of the results and reviewed
nd edited the manuscript, All the authors contributed in verifying
he results, All authors participated in the manuscript revision. Dragi
ocev: Conceived and designed the experimental study, Performed

nitial analysis and visualization of the results, Prepared the initial draft
f the manuscript, Supervised the work, All the authors contributed
n verifying the results, All authors participated in the manuscript
evision.

eclaration of competing interest

No author associated with this paper has disclosed any potential or
ertinent conflicts which may be perceived to have impending conflict
ith this work. For full disclosure statements refer to https://doi.org/
0.1016/j.eswa.2022.117215.

cknowledgments

We acknowledge the financial support of the Slovenian Research
gency via the grants P2-0103, J2-9230, N2-0128, P5-0093, and V5-
930 and the European Commission through the project TAILOR -
oundations of Trustworthy AI - Integrating Reasoning, Learning and
ptimization (grant No. 952215). The computational experiments pre-

ented here were executed on a computing infrastructure from the
lovenian Grid (SLING) initiative, and we thank the administrators
arbara Krašovec and Janez Srakar for their assistance. All authors read

nd approved the final manuscript.

https://doi.org/10.1016/j.eswa.2022.117215
https://doi.org/10.1016/j.eswa.2022.117215
https://doi.org/10.1016/j.eswa.2022.117215

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

B

B

B

B

B

B

B

B

C

C

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2022.117215.

References

Alvares-Cherman, E., Metz, J., & Monard, M. C. (2012). Incorporating label dependency
into the binary relevance framework for multi-label classification. Expert Systems
with Applications, 39, 1647–1655. http://dx.doi.org/10.1016/j.eswa.2011.06.056.

ellman, R. (1954). The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60, 503–515. http://dx.doi.org/10.1073/pnas.38.8.716.

lockeel, H., Džeroski, S., & Grbović, J. (1999). Simultaneous prediction of multiple
chemical parameters of river water quality with TILDE. In Principles of data mining
and knowledge discovery (pp. 32–40). Berlin, Heidelberg: Springer.

lockeel, H., Raedt, L. D., & Ramon, J. (1998). Top-down induction of clustering trees.
In Proceedings of the 15th international conference on machine learning (pp. 55–63).
San Francisco, CA, USA: Morgan Kaufmann Publishers.

outell, M., Luo, J., Shen, X., & Brown, C. (2004). Learning multi-label scene classifica-
tion. Pattern Recognition, 37, 1757–1771. http://dx.doi.org/10.1016/j.patcog.2004.
03.009.

reiman, L. (2001). Random forests. Machine Learning, 45, 5–32. http://dx.doi.org/10.
1023/A:1010933404324.

riggs, F., Lakshminarayanan, B., Neal, L., Fern, X. Z., Raich, R., Hadley, S., Hadley, A.,
& Betts, M. (2012). Acoustic classification of multiple simultaneous bird species: A
multi-instance multi-label approach. The Journal of the Acoustical Society of America,
131, 4640–4650. http://dx.doi.org/10.1121/1.4707424.

rinker, K. (2006). On active learning in multi-label classification. In From data and
information analysis to knowledge engineering (pp. 206–213). Berlin, Heidelberg:
Springer.

uitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., Vanderplas, J., Joly, A.,
Holt, B., & Varoquaux, G. (2013). API design for machine learning software:
experiences from the scikit-learn project. arxiv. http://arxiv.org/abs/arXiv:1309.
0238 [arXiv:arXiv:1309.0238].

aruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on machine
learning (pp. 161–168). New York, USA: ACM.

hen, W. J., Shao, Y. H., Li, C. N., & Deng, N. Y. (2016). MLTSVM: a novel twin
support vector machine to multi-label learning. Pattern Recognition, 52, 61–74.
http://dx.doi.org/10.1016/j.patcog.2015.10.008.

Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural architecture search: A survey.
Journal of Machine Learning Research, 20, 1–21, http://jmlr.org/papers/v20/18-
598.html.

Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55,
119–139. http://dx.doi.org/10.1006/jcss.1997.1504.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem
of m rankings. The Annals of Mathematical Statistics, 11, 86–92. http://dx.doi.org/
10.1214/aoms/1177731944.

Gibaja, E., & Ventura, S. (2015). A tutorial on multilabel learning. ACM Computing
Surveys, 47, 52:1–52:38. http://dx.doi.org/10.1145/2716262.

Gorishniy, Y., Rubachev, I., Khrulkov, V., & Babenko, A. (2021). Revisiting deep
learning models for tabular data. In Proceedings of the 35-th conference on advances
in neural information processing systems. Curran Associates, Inc.

Grady, L., & Funka-Lea, G. (2004). Multi-label image segmentation for medical
applications based on graph-theoretic electrical potentials. In Computer vision and
mathematical methods in medical and biomedical image analysis (pp. 230–245). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Guo, Y., & Gu, S. (2011). Multi-label classification using conditional dependency
networks. In Proceedings of the 22nd international joint conference on artificial
intelligence (pp. 1300–1305). Barcelona, Spain: AAAI Press.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of Machine Learning Research, 3, 1157–1182.

Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., & Kadie, C. (2001).
Dependency networks for inference, collaborative filtering, and data visualization.
Journal of Machine Learning Research, 1, 49–75.

Herrera, F., Rivera, A. J., del Jesus, M. J., & Charte, F. (2016). Multilabel classification:
problem analysis, metrics and techniques. Springer Cham, Switzerland: Springer.

Hinton, G. (2002). Training products of experts by minimizing contrastive
divergence. Neural Computing, 14, 1771–1800. http://dx.doi.org/10.1162/
089976602760128018.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313, 504–507. http://dx.doi.org/10.1126/science.1127647.

Ho, T. K. (1998). The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 832–844. http:
//dx.doi.org/10.1109/34.709601.
17
Huang, K. H., & Lin, H. T. (2017). Cost-sensitive label embedding for multi-label clas-
sification. Machine Learning, 106, 1725–1746. http://dx.doi.org/10.1007/s10994-
017-5659-z.

Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automatic machine learning: methods,
systems, challenges. Berlin, Heilderberg: Springer, (Chapter 2).

Iman, R., & Davenport, J. (1980). Approximations of the critical region of the friedman
statistic. Communications in Statistics-theory and Methods, 9, 571–595. http://dx.doi.
org/10.1080/03610928008827904.

J., Fürnkranz, Hüllermeier, E., Loza Mencía, E., & Brinker, K. (2008). Multilabel
classification via calibrated label ranking. Machine Learning, 73, 133–153. http:
//dx.doi.org/10.1007/s10994-008-5064-8.

Jain, H., Prabhu, Y., & Varma, M. (2016). Extreme multi-label loss functions for
recommendation, tagging, ranking & other missing label applications. In Proceedings
of the 22nd ACM SIGKDD International conference on knowledge discovery and data
mining (pp. 935–944). Association for Computing Machinery.

Jayadeva, Khemchandani R., & Chandra, S. (2007). Twin support vector machines for
pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29, 905–910.

Katakis, I., Tsoumakas, G., & Vlahavas, I. (2008). Multilabel text classification for
automated tag suggestion. In Proceedings of the ECML/PKDD 2008 discovery
challenge.

Kira, K., & Rendell, L. (1992). The feature selection problem: Traditional methods and a
new algorithm. In Proceedings of the 10th national conference on artificial intelligence
(pp. 129–134). San Jose, California: AAAI Press.

Kocev, D. (2011). Ensembles for predicting structured outputs. (Ph.D. thesis), Ljubljana,
Slovenia: Jožef Stefan International Postgraduate School.

Kocev, D., Vens, C., Struyf, J., & Džeroski, S. (2013). Tree ensembles for predicting
structured outputs. Pattern Recognition, 46, 817–833. http://dx.doi.org/10.1016/j.
patcog.2012.09.023.

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29, 1–27. http://dx.doi.org/10.1007/
BF02289565.

Kurtzer, G. M., Vanessa, S., & Bauer, W. M. (2017). Singularity, scientific containers
for mobility of compute. PLoS One, 12(5), Article e0177459. http://dx.doi.org/10.
1371/journal.pone.0177459.

Liu, W., Shen, X., Wang, H., & Tsang, I. W. (2020). The emerging trends of multi-label
learning. arXiv:2011.11197 (preprint).

Lundberg, M., S, Erion, G., & Chen, H. e. a. (2020). From local explanations to global
understanding with explainable AI for trees. Nature Machine Intelligence, 2, 56–67.
http://dx.doi.org/10.1038/s42256-019-0138-9.

Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive exper-
imental comparison of methods for multi-label learning. Pattern Recognition, 45,
3084–3104. http://dx.doi.org/10.1016/j.patcog.2012.03.004.

Moyano, J. M., Galindo, E. L. G., Cios, K. J., & Ventura, S. (2018). Review of ensembles
of multi-label classifiers: Models. Experimental Study and Prospects Information
Fusion, 44, 33–45. http://dx.doi.org/10.1016/j.inffus.2017.12.001G.

Nasierding, G., Kouzani, A., & Tsoumakas, G. (2010). A triple-random ensemble
classification method for mining multi-label data. In IEEE International conference on
data mining workshops (pp. 49–56). Washington, DC, USA: IEEE Computer Society.

Nemenyi, P. (1963). Distribution-free Multiple Comparisons. (Ph.D. thesis), Princeton,
USA: Princeton University.

Pearl, J. (1988). Markov and bayesian networks: two graphical representations of
probabilistic knowledge. In J. Pearl (Ed.), Probabilistic reasoning in intelligent systems
(pp. 77–141). San Francisco (CA): Morgan Kaufman Publishers.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106. http:
//dx.doi.org/10.1007/BF00116251.

Ratnarajah, N., & Qiu, A. (2014). Multi-label segmentation of white matter structures:
Application to neonatal brains. NeuroImage, 102, 913–922. http://dx.doi.org/10.
1016/j.neuroimage.2014.08.001.

Read, J. (2010). Scalable Multi-Label Classification. (Ph.D. thesis), Hamilton, New Zeland:
University of Waikato.

Read, J., & Perez-Cruz, F. (2014). Deep learning for multi-label classification. http:
//arxiv.org/abs/arXiv:1502.05988 arXiv:1502.05988 (pre-print).

Read, J., Pfahringer, B., & Holmes, G. (2008). Multi-label classification using ensembles
of pruned sets. In Proceedings of the 8th IEEE international conference on data mining
(pp. 995–1000). Washington, DC, USA: IEEE Computer Society.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-
label classification. Machine Learning, 85(333), http://dx.doi.org/10.1007/s10994-
011-5256-5.

Read, J., Reutemann, P., Pfahringer, B., & Holmes, G. (2016). MEKA: a multi-
label/multi-target extension to WEKA. Journal of Machine Learning Research, 17,
1–5.

Reem, A.-O., Flach, P., & Meelis, K. (2014). Multi-label classification: A comparative
study on threshold selection method. In 1st International workshop on learning over
multiple contexts.

Rivolli, A., Read, J., Soares, C., Pfahringer, B., & de Carvalho, A. C. P. L. F. (2020).
An empirical analysis of binary transformation strategies and base algorithms for
multi-label learning. Machine Learning, 109.

Rokach, L., Schclar, A., & Itach, E. (2014). Ensemble methods for multi-label classifica-
tion. Expert Systems with Applications, 41, 7507–7523. http://dx.doi.org/10.1016/j.
eswa.2014.06.015.

https://doi.org/10.1016/j.eswa.2022.117215
http://dx.doi.org/10.1016/j.eswa.2011.06.056
http://dx.doi.org/10.1073/pnas.38.8.716
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb3
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb3
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb3
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb3
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb3
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb4
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb4
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb4
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb4
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb4
http://dx.doi.org/10.1016/j.patcog.2004.03.009
http://dx.doi.org/10.1016/j.patcog.2004.03.009
http://dx.doi.org/10.1016/j.patcog.2004.03.009
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1121/1.4707424
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb8
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb8
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb8
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb8
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb8
http://arxiv.org/abs/arXiv:1309.0238
http://arxiv.org/abs/arXiv:1309.0238
http://arxiv.org/abs/arXiv:1309.0238
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb10
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb10
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb10
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb10
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb10
http://dx.doi.org/10.1016/j.patcog.2015.10.008
http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.1145/2716262
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb16
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb16
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb16
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb16
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb16
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb17
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb17
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb17
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb17
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb17
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb17
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb17
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb18
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb18
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb18
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb18
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb18
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb19
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb19
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb19
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb20
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb20
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb20
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb20
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb20
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb21
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb21
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb21
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1007/s10994-017-5659-z
http://dx.doi.org/10.1007/s10994-017-5659-z
http://dx.doi.org/10.1007/s10994-017-5659-z
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb26
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb26
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb26
http://dx.doi.org/10.1080/03610928008827904
http://dx.doi.org/10.1080/03610928008827904
http://dx.doi.org/10.1080/03610928008827904
http://dx.doi.org/10.1007/s10994-008-5064-8
http://dx.doi.org/10.1007/s10994-008-5064-8
http://dx.doi.org/10.1007/s10994-008-5064-8
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb29
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb29
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb29
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb29
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb29
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb29
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb29
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb30
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb30
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb30
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb30
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb30
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb31
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb31
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb31
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb31
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb31
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb32
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb32
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb32
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb32
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb32
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb33
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb33
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb33
http://dx.doi.org/10.1016/j.patcog.2012.09.023
http://dx.doi.org/10.1016/j.patcog.2012.09.023
http://dx.doi.org/10.1016/j.patcog.2012.09.023
http://dx.doi.org/10.1007/BF02289565
http://dx.doi.org/10.1007/BF02289565
http://dx.doi.org/10.1007/BF02289565
http://dx.doi.org/10.1371/journal.pone.0177459
http://dx.doi.org/10.1371/journal.pone.0177459
http://dx.doi.org/10.1371/journal.pone.0177459
http://arxiv.org/abs/2011.11197
http://dx.doi.org/10.1038/s42256-019-0138-9
http://dx.doi.org/10.1016/j.patcog.2012.03.004
http://dx.doi.org/10.1016/j.inffus.2017.12.001G
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb41
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb41
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb41
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb41
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb41
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb42
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb42
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb42
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb43
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb43
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb43
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb43
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb43
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1016/j.neuroimage.2014.08.001
http://dx.doi.org/10.1016/j.neuroimage.2014.08.001
http://dx.doi.org/10.1016/j.neuroimage.2014.08.001
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb46
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb46
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb46
http://arxiv.org/abs/arXiv:1502.05988
http://arxiv.org/abs/arXiv:1502.05988
http://arxiv.org/abs/arXiv:1502.05988
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb48
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb48
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb48
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb48
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb48
http://dx.doi.org/10.1007/s10994-011-5256-5
http://dx.doi.org/10.1007/s10994-011-5256-5
http://dx.doi.org/10.1007/s10994-011-5256-5
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb50
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb50
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb50
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb50
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb50
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb51
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb51
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb51
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb51
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb51
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb52
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb52
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb52
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb52
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb52
http://dx.doi.org/10.1016/j.eswa.2014.06.015
http://dx.doi.org/10.1016/j.eswa.2014.06.015
http://dx.doi.org/10.1016/j.eswa.2014.06.015

Expert Systems With Applications 203 (2022) 117215J. Bogatinovski et al.

S

S

S

S

S

T

T

T

T

T

T

T

T

W

X

Z

Z

Z

Z

Ruiz, E. V. (1986). An algorithm for finding nearest neighbours in (approximately)
constant average time. Pattern Recognition Letters, 4, 145–157. http://dx.doi.org/
10.1016/0167-8655(86)90013-9.

de Sá, A. G. C., Pappa, G. L., & Freitas, A. (2018). Multi-label classification search
space in the MEKA software. arXiv:1811.11353.

Sapozhnikova, E. (2009). ART-based neural networks for multi-label classification. In
Advances in intelligent data analysis VIII (pp. 167–177). Berlin, Heidelberg: Springer.

Schapire, R., & Singer, Y. (1999). Improved boosting algorithms using confidence-
rated predictions. Machine Learning, 37, 297–336. http://dx.doi.org/10.1023/A:
1007614523901.

chapire, R., & Singer, Y. (2000). Boostexter: A boosting-based system for text
categorization. Machine Learning, 39, 135–168. http://dx.doi.org/10.1023/A:
1007649029923.

chulz, A., Loza Mencía, E., & Schmidt, B. (2016). A rapid-prototyping framework
for extracting small-scale incident-related information in microblogs: Application
of multi-label classification on tweets. Information Systems, 57, 88–110. http://dx.
doi.org/10.1016/j.is.2015.10.010.

echidis, K., Tsoumakas, G., & Vlahavas, I. (2011). On the stratification of multi-label
data. In Machine learning and knowledge discovery in databases (pp. 145–158). Berlin,
Heidelberg: Springer.

tepišnik, T., & Kocev, D. (2020). Hyperbolic embeddings for hierarchical multi-label
classification. In International symposium on methodologies for intelligent systems (pp.
66–76). Springer.

zymański, P., & Kajdanowicz, T. (2019). A scikit-based python environment for
performing multi-label classification. Journal of Machine Learning Research, 20,
209–230.

an, A. H. (1995). Adaptive resonance associative map. Neural Networks, 8, 437–446.
http://dx.doi.org/10.1016/0893-6080(94)00092-Z.

enenboim, L., Rokach, L., & Shapira, B. (2009). Multi-label classification by analyzing
labels dependencies. In Proceedings of the 1st international workshop on learning from
multi-label data (pp. 117–131).

enenboim, L., Rokach, L., & Shapira, B. (2010). Identification of label dependencies for
multi-label classification. In 2nd International workshop on learning from multi-label
data (pp. 53–60).
18
soumakas, G., Anastasios, D., Eleftherios, S., Vasileios, M., Ioannis, K., & Vlahavas, I.
P. (2009). Correlation-based pruning of stacked binary relevance models for multi-
label learning. In 1st International workshop on learning from multi-label data (pp.
101–116).

soumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International
Journal of Data Warehousing and Mining, 2007, 1–13.

soumakas, G., Katakis, I., & Vlahavas, I. P. (2008). Effective and efficient multilabel
classification in domains with large number of labels. In Proceedings of the workshop
on mining multidimensional data at ECML/PKDD 2008 (pp. 53–59).

soumakas, G., Katakis, I., & Vlahavas, I. (2011). Random K-labelsets for multi-label
classification. IEEE Transactions on Knowledge and Data Engineering, 23, 1079–1089.
http://dx.doi.org/10.1109/TKDE.2010.164.

soumakas, G., Spyromitros-Xioufis, E., Vilcek, J., & Vlahavas, I. (2011). Mulan: A
java library for multi-label learning. Journal of Machine Learning Research, 12,
2411–2414.

ang, H., Li, Z., Huang, J., Hui, P., Liu, W., Hu, T., & Chen, G. (2020). Collaboration
based multi-label propagation for fraud detection. In Proceedings of the twenty-ninth
international joint conference on artificial intelligence (pp. 2477–2483). International
Joint Conferences on Artificial Intelligence Organization.

u, J., Liu, J., Yin, J., & Sun, C. (2016). A multi-label feature extraction algorithm
via maximizing feature variance and feature-label dependence simultaneously.
Knowledge-Based Systems, 98, 172–184. http://dx.doi.org/10.1016/j.knosys.2016.
01.032.

hang, M.-L., Yu-Kun, L., Xu-Ying, L., & Geng, X. (2018). Binary relevance for multi-
label learning: an overview. Frontiers of Computer Science, 12, 191–202. http:
//dx.doi.org/10.1007/s11704-017-7031-7.

hang, M.-L., & Zhou, Z.-H. (2005). A k-nearest neighbor based algorithm for multi-
label classification. In IEEE international conference on granular computing (pp.
718–721). Washington, DC, USA: IEEE.

hang, M.-L., & Zhou, Z.-H. (2006). Multilabel neural networks with applications to
functional genomics and text categorization. IEEE Transactions on Knowledge and
Data Engineering, 18, 1338–1351. http://dx.doi.org/10.1109/TKDE.2006.162.

hang, M. L., & Zhou, Z. H. (2014). A review on multi-label learning algorithms. IEEE
Transactions on Knowledge and Data Engineering, 26, 1819–1837. http://dx.doi.org/
10.1109/TKDE.2013.39.

http://dx.doi.org/10.1016/0167-8655(86)90013-9
http://dx.doi.org/10.1016/0167-8655(86)90013-9
http://dx.doi.org/10.1016/0167-8655(86)90013-9
http://arxiv.org/abs/arXiv:1811.11353
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb56
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb56
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb56
http://dx.doi.org/10.1023/A:1007614523901
http://dx.doi.org/10.1023/A:1007614523901
http://dx.doi.org/10.1023/A:1007614523901
http://dx.doi.org/10.1023/A:1007649029923
http://dx.doi.org/10.1023/A:1007649029923
http://dx.doi.org/10.1023/A:1007649029923
http://dx.doi.org/10.1016/j.is.2015.10.010
http://dx.doi.org/10.1016/j.is.2015.10.010
http://dx.doi.org/10.1016/j.is.2015.10.010
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb60
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb60
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb60
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb60
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb60
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb61
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb61
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb61
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb61
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb61
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb62
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb62
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb62
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb62
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb62
http://dx.doi.org/10.1016/0893-6080(94)00092-Z
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb64
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb64
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb64
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb64
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb64
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb65
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb65
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb65
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb65
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb65
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb66
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb66
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb66
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb66
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb66
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb66
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb66
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb67
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb67
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb67
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb68
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb68
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb68
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb68
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb68
http://dx.doi.org/10.1109/TKDE.2010.164
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb70
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb70
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb70
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb70
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb70
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb71
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb71
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb71
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb71
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb71
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb71
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb71
http://dx.doi.org/10.1016/j.knosys.2016.01.032
http://dx.doi.org/10.1016/j.knosys.2016.01.032
http://dx.doi.org/10.1016/j.knosys.2016.01.032
http://dx.doi.org/10.1007/s11704-017-7031-7
http://dx.doi.org/10.1007/s11704-017-7031-7
http://dx.doi.org/10.1007/s11704-017-7031-7
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb74
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb74
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb74
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb74
http://refhub.elsevier.com/S0957-4174(22)00599-1/sb74
http://dx.doi.org/10.1109/TKDE.2006.162
http://dx.doi.org/10.1109/TKDE.2013.39
http://dx.doi.org/10.1109/TKDE.2013.39
http://dx.doi.org/10.1109/TKDE.2013.39

	Comprehensive comparative study of multi-label classification methods
	Introduction
	Practical relevance of MLC
	Motivation and related work
	Objectives
	Contributions
	Organization of the paper

	The task of multi-label classification
	Multi-label classification datasets
	Task description
	Taxonomy of multi-label classification methods

	Methods for multi-label classification
	Problem transformation methods
	Binary relevance methods
	Label powerset methods
	Ensembles of problem transformation methods

	Algorithm adaptation methods
	Singleton algorithm adaptation methods
	Ensemble of algorithm adaptation methods

	Addressing specific properties of MLC
	Label dependencies
	High-dimensional label space

	Experimental design
	Experimental methodology
	Implementation of the experimental methodology
	Parameter tuning
	Evaluation measures
	Statistical evaluation

	Results and discussion
	Problem transformation method comparison
	Algorithm adaptation method comparison
	Selected MLC methods performance comparison
	MLC methods efficiency comparison

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

