Shape Analysis and Classification

Luciano da Fontoura Costa
Roberto M. Cesar-Jr
http://www.vision.ime.usp.br/~cesar/shape/

Shape Analysis and Classification

SHAPE CHARACTERIZATION

Shape measures

- Basic idea: extracting measures from shapes
- Useful standard measures:
- mean (and other statistical moments, such as standard deviation, etc)
- median, min, max
- ratios such as max/min, etc.
- Acquisition information may play an important role (e.g. pixel dimensions)

Shape measures

- Perimeter:
- number of boundary pixels (approx.)
- for 8-connected chain-coded boundaries (N_{e} and N_{o} denote, respectively, the number of even and odd codes in the chain-coded contour representation):

$$
P=N_{e}+N_{o} \sqrt{2}
$$

Shape measures

- Perimeter:
- If the contour is represented as a complexvalued signal $u(n)=x(n)+j y(n)$:

$$
P=\sum_{n=0}^{N-1}|u(n)-u(n-1)|
$$

Shape measures

- Area:
- May be approximated by the number of shape pixels, in case of region-based representations (e.g. by binary images)
- The area of polygons may be calculated using triangle decomposition and vectorial products

Shape measures

Shape measures

Shape measures

Algorithm: Area-Based Object Sorting

```
1- Label each connected component in the image;
2- Calculate the histogram of the labeled image;
3- Sort the connected components as a function of the
respective histogram heights, ignoring the background pixels;
```


Shape measures

- Centroid:
- If the contour is represented as a complexvalued signal $u(n)=x(n)+j y(n)$:

$$
M=\frac{\sum_{n=0}^{N-1} u(n)}{N}
$$

- Region based representations: average value of all pixel coordinates

Shape measures

Centroid

Shape measures

- Centroid useful measures:
- Maximum distance $D_{\text {max }}$ between the centroid and the boundary points
- Minimum distance $D_{\text {min }}$ between the centroid and the boundary points
- Mean distance $D_{\text {mean }}$ between the centroid and the boundary points
- Histogram of the distances between the centroid and the boundary p Bints
- Ratios: $\frac{D_{\text {max }}}{D_{\text {min }}} \quad \frac{D_{\text {max }}}{D_{\text {maan }}} \quad \frac{D_{\text {min }}}{D_{\text {man }}}$

Shape measures

- Mean distance to the boundary:

$$
\beta=\frac{1}{N} \sum d(r, \text { boundary }(g))
$$

- May be calculated from the distance transform
- Derived complexity measure: $f=\frac{A}{\beta^{2}}$

Shape measures

- Diameter

Shape measures

\checkmark Norm features
$\checkmark \cdot 2 n$ Euclidean norm
\checkmark RMS size
\checkmark Mean size
\checkmark Centroid size
\checkmark Normalized centroid size
\checkmark Baseline distance
\checkmark Landmark-based shape diameter

Shape measures

- The Karhunen-Loève Transform
- Let X be a random vector with covariance matrix K.
- Let $v_{i},(i=1,2, \ldots, N)$ be the eigenvectors of K, represented in terms of the following matrix:

$$
\text { OMEGA }=\left[\begin{array}{c}
\leftarrow \vec{v}_{1} \rightarrow \\
\leftarrow \vec{v}_{2} \rightarrow \\
\vdots \\
\leftarrow \vec{v}_{N} \rightarrow
\end{array}\right]
$$

Shape measures

- The Karhunen-Loève Transform is defined as

$$
\overrightarrow{\hat{X}}=0 \mathrm{OMEGA} \vec{X}
$$

- Useful for dimensionality reduction

Shape measures

Shape measures

- Major and minor axis of a shape

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

- Regions, contours, etc.

Shape measures

Shape measures

\checkmark Shape measures from major/minor axes
\checkmark The lengths of the principal axes, which can be defined as the associated eigenvalues
\checkmark The aspect ratio, also known as elongation, defined by ratio the between the major and the minor axes' sizes
\checkmark Rectangularity, defined as $\frac{\text { area }(\text { shape })}{\text { area }(M E R)}$

Shape measures

Statistical moments

- As in the PCA case, the shape points are taken as samples from a given shape distribution:

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

- Let $g(p, q)$ be a binary image representing the shape.

Statistical moments

- The statistical moments of g are defined as:

$$
m_{r, s}=\sum_{p=0}^{P-1} \sum_{q=0}^{Q-1} p^{r} q^{s} g(p, q)
$$

Statistical moments

- Central moments are used for translation invariance

$$
\begin{array}{r}
\mu_{r, s}=\sum_{p=0}^{P-1} \sum_{q=0}^{Q-1}(p-\bar{p})^{r}(q-\bar{q})^{s} g(p, q) \\
\bar{p}=\frac{m_{1,0}}{m_{0,0}} \quad \bar{q}=\frac{m_{0,1}}{m_{0,0}}
\end{array}
$$

Bilateral symmetry

- Simple method:
- Reflection around major axis (passing through the centroid)
- Sum
-N : number of foreground pixels
- N2: number of foreground pixels with graylevel=2
- Symmetry measure: N2/N

Bilateral symmetry
 symmetry $=0.9342$

0.93
symmetry $=0.97688$

0.97

Shape signatures

1 D signals that represent the shape

Shape signatures

- $x, y, x+j y$ or by some function of each such complex values, such as magnitude or phase.
- Chain-code and shape number
- Curvature
- Distance to the centroid.
- Number of intersections: this signature is possible only for the above described angle-based parameterization, being defined by the number of times that the current line intersects the shape boundary.
- Angle with an axis: the angle-based parameterization can be inverted in order to produce an interesting signature.
- Affine signatures: affine curvature and affine parameterization
- Sholl diagrams

Topological descriptors

- The number of holes NH
- The number of connected components NC. It is important to note that this feature applies to composed shapes (e.g. Arabic character recognition)
- The Euler number, which is defined as $\mathrm{E}=\mathrm{NC}-\mathrm{NH}$

B in a 1 ¢ B : $\mathrm{NH}=3, \mathrm{NC}=7, \mathrm{E}=4$

Polygonal descriptors

- Number of corners or vertices
- Angle and sides statistics, such as mean, median, variance and moments, to name but a few
- Major and minor sides lengths
- Major and minor sides ratio
- Major and minor angles ratio
- Ratio between the major angle and the sum of all angles
- Ratio between the standard deviations of sides and angles
- Mean absolute difference of adjacent angles

Complexity

Simple

Complex

Complexity

- Circularity
- Thinness ratio

$$
4 \pi\left(\frac{A}{P^{2}}\right)
$$

- Area to perimeter ratio
- Rectangularity

$$
\frac{P^{2}}{A}
$$

Complexity

- Fractal dimension: box-counting approach
- The topological dimension: number of degrees of freedom (points $=0$, curves $=1$, planes=2, etc.)
- Hausdorff-Besicovitch dimension
- Benoit Mandelbrot: fractal set $-d \geq d_{T}$

Complexity

- Let S be a set of R^{2}, and $M(\varepsilon)$ the number of open balls of radius ε that are necessary to cover S.
- An open ball of radius ε and centered at $\left(x_{0}, y_{0}\right)$, in R^{2}, can be defined as the set $\left\{(x, y) \in R^{2} \mid\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)^{1 / 2}<\varepsilon\right\}$.

Complexity

- The box-counting fractal dimension d is defined as $M(\varepsilon) \sim \varepsilon{ }^{-d}$
- Example 1: for a point, $d=0$
- Example 2: for a straight line, $d=1$
- Example 3: for plane, $d=2$

Complexity

Complexity

Complexity

ε	M\& $)$	Measured Curve Length
$1 / 2=(1 / 2)(1)=(1 / 2)(1 / 3)$	$1=4^{0}$	1
$1 / 6=(1 / 2)(1 / 3)=(1 / 2)(1 / 3)$	$4=4^{1}$	1.33
$1 / 18=(1 / 2)(1 / 9)=(1 / 2)(1 / 3)$	$16=4^{2}$	1.78
\cdots	\cdots	\cdots

$4 \sim(1 / 3)^{-d}$

$$
d=\log (4) / \log (3) \cong 1.26
$$

Complexity

Estimating the box-counting dimension

Complexity

Complexity

The Minkowsky Sausage or Dilation Method

$$
d=2-\text { slope }
$$

Curvature

Curvature

Table 6. 1:
Summary of some important curvature properties

Curvature	Geometrical Aspect
Curvature local absolute value maximuming counterclockwise parameterization)	
Curvature local positive maximum	Generic corner
Curvature local negative minimum	Convex corner
Constant zero curvature	Straight line segment
Constant non-zero curvature	Circle segment
Zero crossing	Inflection point
Average high curvature in absolute or squared values	Shape complexity, related to the bending energy (Chapter 7)

Curvature

$$
k(t)=\frac{\dot{x}(t) \ddot{y}(t)-\ddot{x}(t) \dot{y}(t)}{\left(\dot{x}(t)^{2}+\dot{y}(t)^{2}\right)^{3 / 2}}
$$

Problem to be solved: numerical differentiation

- Definition of alternative curvature measures based on angles between vectors defined in terms of the discrete contour elements
- Interpolation of and and differentiation of the interpolated curves

Curvature

Curvature

$$
r_{i}(n)=\frac{v_{i}|n| w_{i}|n|}{\left\|v_{i}|n|\right\|| | w_{i}|n| \mid}
$$

Curvature

Curvature

Multiscale approach obtained by varying the neighborhood size

Curvature

- Curvature features:
- Sampled curvature
- Curvature statistics
- Maxima, minima, inflection points
- Bending energy

$$
B=\frac{1}{P} \int k(t)^{2} d t
$$

Fourier descriptors

- Basic idea: Fourier transform of the shape
- Contours and regions
- Many variations (for invariance, etc)
- Many interesting properties have been explored in the literature

Fourier descriptors

Fourier descriptors

$\arg (F D(s))$

Shape Analysis and Classification - Luciano da F. Costa and Roberto M. Cesar-Jr

Fourier descriptors

Fourier descriptors

