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1 Putzer’s algorithm

The differential equation
dx

dt
= Ax, (1)

where A is an n × n matrix of constants, possesses the fundamental matrix
solution exp(At), which reduces to the identity at t = 0. The spectrum of A,
and its invariant subspaces, determine the time dependence of this solution.
These are particularly important in the theorems regarding the decisiveness
of the spectrum of the linear problem for the stability of the corresponding
nonlinear problem. The traditional way of determining this time dependence
consists of first transforming A to canonical form (Jordan form, say). The
canonical forms simplify the problem of obtaining estimates regarding time
behavior of exp(At).

There is another, less traditional way of expressing the time dependence
of the fundamental matrix solution, called Putzer’s algorithm, which relies
less on the development of the theory of canonical forms and proceeds more
directly to the problem of the time dependence of the solutions of equation
(1). It does rely on an important theorem of linear algebra, the Cayley-
Hamilton theorem:

Theorem 1.1 (Cayley-Hamilton) Every matrix satisfies its characteristic
equation pA(µ) ≡ |A− µI| = 0.

In other words, if

pA(µ) = (−1)n
(
µn + c1µ

n−1 + · · ·+ cn−1µ+ cn
)
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then
pA(A) ≡ (−1)n

(
An + c1A

n−1 + · · ·+ cn−1A+ cnI
)

= 0.

We state and prove Putzer’s algorithm in this section and provide discus-
sion, examples and applications subsequently.

Theorem 1.2 Let A be an n×n matrix of constants, real or complex, and let
its eigenvalues be µ1, µ2, . . . , µn in any order and without regard to multiplic-
ities. Define the n−component, time-dependent vector r(t) by the succession
of first-order initial-value problems

dr1
dt

= µ1r1, r1(0) = 1;
drj
dt

= µjrj + rj−1(t), rj(0) = 0, j = 2, 3, . . . , n. (2)

Define the matrices P0, P1, . . . , Pn recursively by the formulas

P0 = I, Pj =
j∏

k=1

(A− µjI) , j = 1, 2, . . . , n. (3)

Then

eAt =
n−1∑
j=0

rj+1(t)Pj. (4)

Proof: Define Φ(t) =
∑n−1
j=0 rj+1(t)Pj. Note that Φ(0) = I. Its t derivative is

Φ̇ =
n−1∑
j=0

ṙj+1(t)Pj = µ1r1P0 +
n−1∑
j=1

(µj+1rj+1 + rj)Pj. (5)

On the other hand

AΦ = r1(t)AP0 +
n−1∑
j=1

rj+1(t)APj.

Now APj = Pj+1 + µjPj for j = 1, 2, . . . n − 1, by definition. Therefore we
have

AΦ = r1(t)AP0 + (µ2r2 + r1)P1 + . . . (µnrn + rn−1)Pn−1 + rnPn.

This is term-by-term the same as the expression (5) except for the last term.
But we recall that Pn = 0 by the Cayley-Hamilton theorem, so Φ̇ = AΦ and
Φ(0) = I: by the uniqueness theorem for the initial-value problem, equation
(4) holds. 2.

Remarks
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1. If the minimal polynomial M (see §3.2 below) has lower degree than the
characteristic polynomial, it can replace the characteristic polynomial
in this algorithm. Then equation (4) above is replaced by

eAt =
m−1∑
j=0

rj+1(t)Pj (6)

where the matrix factors Pj are now those appearing in the minimal
polynomial.

2. Equations (2) above can be rewritten in integral form:

r1(t) = eµ1t, rj+1(t) = eµj+1t
∫ t

0
e−µj+1srj(s) ds (7)

for j = 1, . . . , n− 1.

2 Examples

Example 2.1

A =

 0 1 0
−1 0 0
0 0 β

 .
The characteristic polynomial is (µ2 + 1)(β − µ) with roots ±i, β. Straight-
forward if tedious calculations lead to

r1(t) = eit, r2(t) = sin(t), r3(t) =
(
eβt + β sin(t)− cos(t)

)
/(1 + β2).

The matrix exp(At) then becomes, according to the formula above,

cos(t)I + sin(t)A+ r3(t)
(
A2 + I

)
.

If β is real, this is of course real, despite the occurrence of complex eigen-
values – and therefore of complex coefficients βj – in intermediate expres-
sions.
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Example 2.2

A =

(
1 1
−2 −1

)
.

The characteristic polynomial is p(µ) = µ2 + 1 with eigenvalues µ = ±i. We
easily find

r1(t) = eit, r2(t) = sin(t)

and
eAt = cos(t)I + sin(t)A.

In the preceding example it is easy to check that A2 = −I; this makes it easy
to use the power-series expression for exp(At) to arrive at this conclusion.

In the next example the minimal polynomial differs from the characteristic
polynomial.

Example 2.3

A =

 2 2 −1
2 −1 2
−1 2 2

 .
The characteristic polynomial is p(µ) = −(µ + 3)(µ − 3)2 but the minimal
polynomial is easily found to be m(µ) = µ2−9. If we order the characteristic
roots as (µ1, µ2, µ3) = (3, 3,−3) we find, after some simple calculations that

r1(t) = e3t, r2(t) = te3t, r3(t) =
1

6
te3t− 1

36
e3t +

1

36
e−3t.

With
P0 = I, P1 = A− 3I, P2 = (A− 3I)2

we may form the expression for exp(At) given in equation (4) above. Sepa-
rating these into powers of A leads to the formula

eAt =
1

2
(e3t + e−3t)I +

1

6
(e3t − e−3t)A = cosh(3t)I +

1

3
sinh(3t)A. (8)
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These formulas can of course also be obtained directly from the definition of
the exponential exp(At) along with the observation that A2 = 9I.

It may be of some interest to carry out the preceding example using only
the characteristic roots ’that matter:’ µ = ±3. For this purpose we reorder
the roots (and the operators Pj) so that µ1 = −3, µ2 = 3, µ3 = 3. This
results in the formulas

r1(t) = e−3t, r2(t) =
1

6
(e3t − e−3t)

where we have omitted the calculation for r3(t) since its operator coefficient,
A2− 9I, vanishes. Forming the matrix exp(At) according to the formula (4)
now results in

eAt = e−3tI +
1

6
(e3t − e−3t)(A+ 3I) = cosh(3t)I +

1

3
sinh(3t)A,

agreeing with the result above and with significantly less computation.

Example 2.4

A =

 3 0 0
0 2 1
0 0 2

 .
This clearly has the eigenvalues µ = 3, µ = 2(2), where we have indicated
that the eigenvalue µ = 2 has multiplicity two. The characteristic polynomial
is p(µ) = (µ− 3)(µ− 2)2. With the ordering

P0 = I, P1 = A− 3I, P2 = (A− 3I)(A− 2I)

we find
r1(t) = e3t, r2(t) = e3t − e2t, r3(t) = e3t − (1 + t)e2t.

Putzer’s algorithm now provides the matrix exponential in the form

eAt = e3tI +
(
e3t − e2t

)
P1 +

(
e3t − (1 + t)e2t

)
P2 (9)

=

 r1 0 0
0 r1 − r2 r2 − r3
0 0 −r2

 =

 e3t 0 0
0 e2t te2t

0 0 e2t

 . (10)

One can also write this on collecting powers of A as

(4e3t − 3e2t − 6te2t)I + (−4e3t + 4e2t + 5te2t)A+ (e3t − (1 + t)e2t)A2, (11)

but this seems unnecessarily awkward, at least in this example.
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3 Estimates

Estimates like those normally drawn from transformation to Jordan canonical
form can be made straightforwardly with the aid of the Putzer algorithm.
We start with the following rather crude estimate.

3.1 A Simple Bound

Theorem 3.1 Choose the order of the {µj} so that the real parts do not
decrease: if µj = ρj + iσj, then ρj ≤ ρj+1. Then

|rj(t)| ≤
tj−1

(j − 1)!
eρjt for t > 0, j = 1, 2, . . . , n.

Proof: Since r1(t) = exp(µ1t) it holds for j = 1. Assume that it holds for j.
Then by equation (7) above

|rj+1(t)| ≤ eρj+1t
∫ t

0
e−ρj+1s

sj−1

(j − 1)!
eρjs ds.

In the integral we have the factor

e(ρj−ρj+1)s ≤ 1

because the ordering of the eigenvalues makes the exponent negative. There-
fore

|rj+1(t)| ≤ eρj+1t
1

(j − 1)!

∫ t

0
sj−1 ds =

tj

j!
eρj+1t,

proving the assertion by induction. 2

Since ρn is the largest of the real parts, this result gives the simple esti-
mate

rj(t) ≤ (tj−1/(j − 1)!) exp(ρnt).

Since for any exponent j and any ρ′ > 0 it is true that tj < k exp(ρ′t) for
t ≥ 0, for some choice of positive constant k, we further have

rj(t) ≤ k exp((ρn + ρ′)t), t ≥ 0.

From this it is easy to derive the following estimate:
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Corollary 3.1 If the real parts of all the eigenvalues are negative, there are
positive constants k, K and ρ such that

|rj(t)| ≤ ke−ρt and ‖eAt‖ ≤ Ke−ρt.

This corollary will be of use in proving that linear, exponential, asymp-
totic stability is decisive for nonlinear stability. We shall also need to prove
that linear, exponential instability is decisive for nonlinear instability, but for
this we shall need some considerations of a linear-algebraic character.

3.2 The Minimal Polynomial

The matrix A satisfies its characteristic equation Pn(A) = 0 where

Pn(λ) = (λ− λ1)n1 · · · (λ− λr)nr ,

and we have departed from the previous notation in explicitly noting the
multiplicities, and have denoted by λ1, . . . , λr the distinct eigenvalues (r ≤
n). The matrix A may satisfy a polynomial equation of lower degree. As an
extreme example, the unit matrix I has the characteristic polynomial (λ−1)n

but satisfies the equation A−I = 0. We call M(A) = A−I, or M(λ) = λ−1,
its minimal polynomial. See also example (2.3) above. Any matrix A has a
minimal polynomial

M(λ) = (λ− λ1)m1 · · · (λ− λr)mr (12)

in which mi ≤ ni for i = 1, 2, . . . , r; it is therefore of degree not greater than
n (i.e. m1 + m2 + · · · + mr = m ≤ n) such that M(A) = 0 and there is no
polynomial of lower degree for which this is so. It may be that m = n and
the minimal polynomial is the same as the characteristic polynomial1, but
to treat the general case we need to allow for them to be different. For the
remainder of this section we refer to the minimal polnomial (12), and the
relation of its distinct eigenvalues (denoted by λ) to the (possibly repeated)
eigenvalues (denoted by µ) of Theorem 1.2 is

λ1 = µ1 = · · · = µm1 ; λ2 = µm1+1 = · · · = µm1+m2 ; etc. (13)

The principal effect of the multiplicity of the eigenvalues is to modify the
purely exponential growth (or decay) by algebraically growing factors. The
remainder of this section is devoted to the following theorem characterizing
of maximal growth.

1For example, this is necessarily the case if all eigenvalues are distinct.
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Theorem 3.2 Let λ1 = ρ1 + iσ1 be an eigenvalue of A of largest real part.

1. There is positive constant K such that, for all t ≥ 0

‖eAt‖ ≤ K(1 + tm1−1)eρ1t, and (14)

2. there is a positive constant k and initial data ξ0 with ‖ξ0‖ = 1 such
that, for infinitely many values tn, tn → +∞,

‖eAtnξ0‖ ≥ k(1 + tm1−1
n )eρ1tn . (15)

Here m1 is the exponent of the factor λ − λ1 in the minimal polynomial
(equation 12 above).

There is arbitrariness in the choice of norm. A choice appropriate to the
complex vector space Cn rather than Rn is convenient since the coefficients
{rj(t)} in Putzer’s algorithm may be complex even though the matrix A is
real. We’ll make repeated us of the following:

Lemma 3.1 Define, for any real or complex λ 6= 0,

qk(t, λ) =
∫ t

0
skeλs ds, k = 0, 1, 2, . . . . (16)

Then
qk(t, λ) = eλtpk(t, λ) + c (17)

where pk is a polynomial of degree k and c is a constant.

The proof is elementary and is omitted. One finds for pk and c the following:

pk(t, λ) = (−1)k
k!

λk+1

k∑
j=0

(−λt)j

j!
and c = (−1)k+1 k!

λk+1
. (18)

We prove Theorem 3.2 in this section, beginning with equation (14). In
equation (6), arrange the eigenvalues so that λ1 (the one with largest real
part ρ1) comes first, i.e., that the first m1 terms in the sum refer to λ1. We
find from equation (7) for the first m1 coefficients the formulas

rj(t) =
tj−1

(j − 1)!
eλ1t, j = 1, 2, . . . ,m1.
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The contribution of the first m1 terms to the sum in equation (4), is clearly
dominated as follows:

‖
m1∑
j=1

rj(t)Pj−1‖ ≤ K1(1 + t+ t2 + · · ·+ tm1−1)eρ1t (19)

for some K1 > 0. If λ1 = ρ1 is real, we pause after this estimate and go
on to the next eigenvalue. Supposing instead that λ1 = ρ1 + iσ1 is complex
(σ1 6= 0), we choose λ2 = λ1 = ρ1 − iσ1, and, assuming the next m1 terms in
equation (4) refer to λ1, we use equation (7). For the next coefficient rm1+1(t)
we find

rm1+1(t) = eλ1t
∫ t

0
e−λ1srm1(s) ds = eλ1t

∫ t

0
e(λ1−λ1)s

sm1−1

(m1 − 1)!
ds.

Applying Lemma 3.1 to the integral then gives

rm1+1(t) = eλ1tp
(0)
m1−1(t) + q0e

λ1t

where p
(0)
m1−1 is a polynomial of degree m1−1 and q0 is a constant. Subsequent

applications of Lemma 3.1 to obtain rm1+2, . . . , r2m1 give expressions like that
above,

rm1+j = eλ1tp
(j)
m1−1(t) + qj−1(t)e

λt (20)

with a succession of polynomials p
(j)
m1−1 all of degree m1−1, and a succession

of polynomials qj with degrees increasing from zero (for rm1+1) to m1−1 (for
r2m1). Then estimating the first 2m1 terms in the expression (4) gives us an
estimate exactly like that of equation (19) above, although with a different
choice of the constant K1.

We pass on to the next eigenvalue ρ2 + iσ2 where ρ2 < ρ1 and find the
next coefficients

r2m1+1, . . . , r2m1+m2

with the aid of equations (7) and (17). The results are sums of expo-
nentials times polynomials. The sums involving the preceding eigenval-
ues λ1, λ1 persist (the coefficients of their polynomials are altered but not
the degrees).The new eigenvalue λ2 generates, according to Lemma 3.1, a
polynomial factor of degree m2 − 1. It is possible that the most rapidly
growing terms tm2−1 exp(ρ2t) include higher powers of t than in preceding
terms (this will be so if m2 > m1), but there is a constant C such that
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tm2−1 exp(ρ2t) < Ctm1−1 exp(ρ1t) for all t > 0. Thus all the terms in the
expression corresponding to λ2 are dominated by expressions like that on the
right-hand side of equation (19) above. The block of terms in the expression
(4) belonging to λ2 and beyond are all estimated in the manner of equation
(19), but with K1 in general replaced by a larger constant. This gives an
estimate of the form

‖
m∑
j=1

rj(t)Pj−1‖ ≤ K(1 + t+ t2 + · · ·+ tm1−1)eρ1t (21)

valid for all t ≥ 0.

The formula above is essentially the same as that of the estimate (14)
above. To make them agree exactly it is sufficient to note that, for any
non-negative integer n, the expression

1 + t+ t2 + · · ·+ tn

1 + tn
(22)

has a finite maximum (K, say) on [0,∞).

We are using the principle that a continuous function on a compact
set has a maximum (and a minimum) there, but the interval [0,∞) is
not compact, so the principle appears to fail. It’s easy to rectify this.
Here are a couple of ways:

1. Let τ = tn/(1 + tn), or t = (τ/(1− τ))1/n, so that τ runs from 0
to 1 as t runs from 0 to ∞. The expression (22) becomes

1 + τ1/n(1− τ)(n−1)/n + · · ·+ τ (n−1)/n(1− τ)1/n.

This can be evaluated in the limit τ = 1 (where it has the value
1) and this value adjoined to the function. It is now a continuous
function on a compact interval, to which the principle in question
may be applied.

2. Consider a continuous function f defined and continuous on
[0,∞) and having a limit b (say) as t → ∞. Then, given ε > 0
there exists T > 0 such that |f(t)− b| < ε if t > T . On [0, T ] f
is continuous and therefore bounded by (say) M . It follows that
for all t ≥ 0

f(t) ≤ max (M, b+ ε)

providing an upper bound on [0,∞). A lower bound can be
found in a similar way.
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We now verify the second estimate of Theorem 3.2, that of equation (15).

Choose an eigenvalue, say λ1 with multiplicity m1 in the minimal poly-
nomial M (equation 12). It must have at least one eigenspace of dimension
m1 associated with it. We see this as follows. There is some vector v 6= 0
such that

(A− λ1I)m1−1 · · · (A− λrI)mrv 6= 0

for otherwise there would be a polynomial of lower degree m1−1 that vanishes
and M would not be minimal. Put

ξ1 = (A− λ2I)m2 · · · (A− λrI)mrv.

Then, if m1 > 1, define the m1 vectors

ξ1, ξ2 = (A− λ1I)ξ1, . . . , ξm1 = (A− λ1I)ξm1−1. (23)

That these vectors are linearly independent is seen as follows. If not, there
would exist c1, c2, . . . , cm1 (not all zero) such that

c1ξ1 + c2ξ2 + · · ·+ cm1ξm1 = 0.

Operating on this with the operator (A − λ1I)m1−1, we see that only the
first term remains and that c1 = 0. Returning to the equation now and
applying instead (A− λ1I)m1−2 we next infer that c2 = 0; and so on. In this
way one sees that all the coefficients must vanish so the vectors are linearly
independent. It is easy to see that the subspace spanned by these vecors is
invariant under A.

Because of this invariance, we can find solutions of the basic linear equa-
tion ẋ = Ax in this subspace. Seeking it in the form

x(t) = c1(t)ξ1 + c2(t)ξ2 + · · ·+ cm1(t)ξm1 (24)

with initial data cj(0) = γj for j = 1, 2, . . . ,m1 one easily finds

cm1(t) = γm1e
λ1t, cm1−1(t) = (γm1−1 + γm1t) e

λ1t, . . . ,

c1(t) =
(
γ1 + γ2t+ · · ·+ γm1

tm1−1

(m1−1)!

)
eλ1t. (25)

These considerations apply to any eigenvalue and an associated invariant
subspace. We now suppose that λ1 is the eigenvalue with largest real part
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and the invariant subspace is the largest of the invariant subspaces belonging
to it, of dimension m1.

Suppose first that λ1 = ρ1 is real. Then the vectors {ξj}m1
1 may also be

chosen real, and we achieve a real solution of maximal growth on taking (for
example) γi = 0 if i = 1, 2, . . . ,m1 − 1 and γm1 = 1. The resulting formula
for the solution ξ(t) becomes

ξ(t) =

(
tm1−1

(m1 − 1)!
ξ1 + · · ·+ tξm1−1 + ξm1

)
eρ1t

and its norm is

‖ tm1−1

(m1 − 1)!
ξ1 + · · ·+ tξm1−1 + ξm1‖eρ1t.

Consider the non-negative function

φ(t) =
‖ tm1−1

(m1−1)!ξ1 + · · ·+ tξm1−1 + ξm1‖
1 + tm1−1

.

It is continuous on [0,∞) and therefore has a maximum and minimum there
(see the argument attending equation (22) above). Its minimum, φ∗ say,
cannot vanish. For it is achieved at some point t∗ and if φ∗ vanished it would
follow that

tm1−1
∗

(m1 − 1)!
ξ1 + · · ·+ t∗ξm1−1 + ξm1 = 0.

This is a relation of linear dependence and is not possible since the set {ξj}m1
1

is linearly independent. Thus, for all t ≥ 0,

‖ tm1−1

(m1 − 1)!
ξ1 + · · ·+ tξm1−1 + ξm1‖ ≥ φ∗(1 + tm1−1) (26)

where φ∗ > 0. This provides a vector solution ξ(t) of the kind proposed in
Theorem 2, equation (15), except for the condition that ξ(0) = 1; a different
choice of the constant γm1 can be made to satisfy this condition. This result
is stronger than that of equation (15) in that it holds for all t > 0, not just
for a sequence {tj}.

Suppose now that λ1, the eigenvalue of A with (algebraically) greatest
real part ρ1, is complex (σ1 6= 0). There may be more than one string of
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vectors like that of equation (23); if so we choose a string of maximal length
m1. For real matrices A, if λ1 is complex, its complex conjugate λ1 also
occurs, and possesses the corresponding eigenspace spanned by the vectors

ξ1, ξ2 = (A− λ1I)ξ1, · · · , ξm1
= (A− λ1I)ξm1−1.

In the solution (24) above again choose γj = 0 if j = 1, . . . ,m1 − 1, and
choose γm1 = 1. This provides the solution

x(t) =

(
tm1−1

(m1 − 1)!
ξ1 + · · ·+ tξm1−1 + ξm1

)
eλ1t.

Since λ1 = ρ1 + iσ1 is complex, so also is ξk = ηk + iζk. The 2m1 complex
vectors {ξj, ξj}m1

1 are linearly independent over C and therefore the 2m1 real
vectors {ηj, ζj}m1

1 , consisting of their real and imaginary parts, are linearly
independent over R. From the equation for x(t) above we can form the real
solution y(t) = (x(t) + x(t))/2 or

y(t) ≡ = eρ1t
[
cos(σ1t)

(
tm1−1

(m1 − 1)!
η1 + · · ·+ tηm1−1 + ηm1

)
− (27)

sin(σ1t)

(
tm1−1

(m1 − 1)!
ζ1 + · · ·+ tζm1−1 + ζm1

)]
(28)

At times tj = (π/σ1)j this real solution has norm

‖y(tj)‖ = eρtj ‖
tm1−1
j

(m1 − 1)!
η1 + · · ·+ tjηm1−1 + ηm1‖.

The factor of exp(ρtj), is bounded below as in the inequality (26) above.
This provides the estimate (15) above except for the initial condition, and
this can be satisfied with a different choice of the constant γm1 .

3.3 Rationale

We address here how Putzer was led to this result. He first considered a
more transparent result. It’s clear from the use of the C-H theorem that you
should be able to express exp(At) in finitely many powers of A:

eAt =
n−1∑
k=0

pk(t)A
k. (29)
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Differentiating this with respect to t on the one hand, and using the formula

d

dt
eAt = AeAt

on the other, together with an application of the C-H theorem, provides a
system of first-order differential equations for the coefficients {pk}; evaluation
at zero (where exp(At) reduces to the identity), provides initial data for
this system. This works nicely and provides an expression for exp(At) via
equation (29).

Putzer presents, without motivation, the alternative expression (4) given
above. It can be motivated in the following way.

The space of linear operators on a vector space of dimension n is itself
a vector space of dimension n2. For a given operator A with minimal poly-
nomial of degree m, the powers {Ak} form a subspace of dimension m: the
operators {Ak}m−10 form a basis for this subspace. This underlies the for-
mula (29). What underlies the formula (4) is that the operators {Pk}m−10

likewise form a basis for this subspace. To see this, it suffices to show that
they are linearly independent. To this end consider the expression of linear
dependence

c0P0 + c1P1 + · · ·+ cm−1Pm−1 = 0. (30)

Operate on this sum with the operator

(A− µ2I) · · · (A− µmI).

It is easy to see that every term but the first disappears from this, whereas
the coefficient of c0 cannot vanish, or there would be a vanishing polynomial
of degree less than m. This can’t happen since m is the degree of the minimal
polynomial, so c0 = 0. We now return to equation (30) with c0 = 0 and apply
the operator

(A− µ3I) · · · (A− µmI)

and infer, by the same reasoning as above, that c1 = 0. We continue suc-
cessively in this way to find that all the coefficients in equation (30) must
vanish, verifying the linear independence of the operators {Pk}n−10 .
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