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THE EXPONENTIAL MATRIX: AN

EXPLICIT FORMULA BY AN

ELEMENTARY METHOD

Abstract

We show an explicit formula, with a quite easy deduction, for the
exponential matrix e

tA of a real and finite square matrix A (and for com-
plex ones also). The elementary method developed avoids Jordan canon-
ical form, eigenvectors, resolution of any linear system, matrix inver-
sion, polynomial interpolation, complex integration, functional analysis,
and generalized Fibonacci sequences. The basic tools are the Cayley-
Hamilton theorem and the method of partial fraction decomposition.
Two examples are given. We also show that such method applies to
algebraic operators on infinite dimensional real Banach spaces.

1 Introduction.

In this article we give an explicit formula, with a quite easy deduction, for
the exponential matrix etA of a square real (or complex) matrix A of order
n × n, where t is an arbitrary real number. The method developed in what
follows requires neither Jordan canonical form (Gantmacher [3, pp. 149–152]),
nor eigenvectors (Taylor [10, pp. 146-157]), nor resolution of linear systems of
differential equations (Apostol [1, pp. 205–208], Kolodner [6]), nor matrix in-
version (Kirchner [5]), nor polynomial interpolation methods (Apostol [1, pp.
209–213], Gantmacher [3]) , nor complex integration combined with functional
analysis (Rudin [9, pp. 258–267]), nor generalized Fibonacci sequences (Ben-
saoud and Moline, [2]). The basic tools employed in this article are well-known
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results on power series and the method of partial fraction decomposition. Ob-
viously, it is also necessary to know the roots of the characteristic polynomial.

There are many distinctive methods and well-known formulas for obtaining
the exponential matrix and, as one should expect, some of these formulas (but
maybe not their correspondent methods) easily imply each other. I have been
unable to locate in the literature on the subject the method shown in this
article.

As is well-known, the question of computing the exponential matrix etA

arises from the problem of finding a real curve (a real solution) x : R → R
n to

the real constant coefficients linear system of ordinary differential equations

{

x′(t) = Ax(t)
x(0) = x0,

where

A =







a11 · · · a1n
...

...
an1 · · · ann







is a n × n real square matrix and x0 is a fixed point in Rn. As is also well-
known, the unique solution is the curve x(t) = etAx0. It turns out that this
real problem is best dealt in C and then, at last, we arrive at a real solution.

Two of the best ways of finding etA are the method that employs Jordan
canonical form and Putzer’s method (see [1]). Some authors, short of employ-
ing Jordan canonical form, resort to the linear algebra primary decomposition
theorem (see [10]). It is worth to point out that the method developed by
Putzer requires solving another linear system of differential equations. An
improvement of Putzer’s method can be seen in Kolodner [6].

Among others strategies of computing the matrix etA we mention Kirchner
[5]. In it Kirchner also finds an explicit formula for etA. However, his approach
requires to compute the inverse of a matrix and this can be troublesome. On
the contrary, the method provided in this article avoids matrix inversion.

The well-known polynomial interpolation methods, by Lagrange, Sylvester,
and Hermite, to compute the exponential matrix (Apostol [1], Gantmacher
[3]) have the disadvantage of requiring quite long justifications, besides either
matrix inversion or resolution of linear systems.

The sophisticated Symbolic Calculus technique (e.g., Rudin [9]) employs
the Cauchy integral formula for functions in one complex variable taking values
in complex Banach spaces. Three comments are worthwhile regarding it. First,
this technique requires a bit of functional analysis and complex integration
theory, and thus it does not apply (as pointed out in [9, p. 248]) to algebraic
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operators defined on infinite dimensional Banach spaces over the real numbers
(the elementary method in this article does apply to such operators). Second,
the complex integral formula then developed is not explicit on how to use
the partial fraction decomposition method in order to obtain the exponential
matrix. Third, this technique is unnecessary to find the exponential of a
matrix.

For those who are also interested on numerical analysis and computational
algorithms to evaluate the matrix etA, we refer Moler and Van Loan [8]. In it,
they focus specially the cases where A is a matrix of order n×n with n ≤ 100.

2 The explicit formula for e
tA

Let z be in C. We assume the following (proofs in Apostol [1], Lang [7]).

• (Cayley-Hamilton Theorem). Given A a n × n real matrix and
p(z) = det(zI−A) its monic characteristic polynomial, we have p(A) = 0.

• (Partial fraction decomposition). Let f an q be everywhere conver-
gent complex power series, and p and r be complex polynomials such that
f(z) = q(z)p(z) + r(z), where p is monic and degree(r) <degree(p) = n.
If λ1, . . . , λm are the distinct zeros of p(z), with respective multiplicities
m1, . . . ,mm, we write p(z) = (z−λ1)

m1 · · · (z−λm)mm . Then, there are
n constants C1,1, . . . , C1,m1

, . . . , Cm,1, . . . , Cm,mm
such that

f(z)

p(z)
= q(z)+

[

C1,1

z − λ1
+ · · ·+

C1,m1

(z − λ1)m1

]

+· · ·+

[

Cm,1

z − λm
+ · · ·+

Cm,mm

(z − λm)mm

]

,

for all z outside {λ1, . . . , λm}. These constants are given by

Cj,k =
g
(mj−k)
j (λj)

(mj − k)!
, where gj(z) =

f(z)(z − λj)
mj

p(z)
.

Remark 1. A short proof of the decomposition follows by induction on degree(p).

Theorem 2. Let A be a real matrix of size n×n and characteristic polynomial
p(z) = (z − λ1)

m1 · · · (z − λm)mm , with λ1, . . . , λm the distinct zeros of p and
m1, . . . ,mm their respective algebraic multiplicities. For each j = 1, . . . ,m and
each k = 1, . . . ,mj, let us consider the polynomial (a total of n polynomials)

pj,k(z) = (z − λj)
mj−k

∏

l 6=j

(z − λl)
ml

[

=
p(z)

(z − λj)k

]

.
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Giving t ∈ R, we have (to simplify the notation, we omit the set where the
indices take values)

etA =
∑

Cj,kpj,k(A), with Cj,k =
1

(mj − k)!

dmj−k

dzmj−k

{

etz(z − λj)
mj

p(z)

}

∣

∣

∣

z=λj

.

Proof. Fixed t ∈ R, the map z 7→ etz is given by a everywhere convergent
power series. Dividing such power series by the polynomial p(z) we find

etz = q(z)p(z)+r(z), with

{

q a everywhere convergent power series,
r a polynomial with degree(r) < degree(p).

Since A commutes with powers of A and the identity matrix I, we arrive at
etA = q(A)p(A)+r(A). The Cayley-Hamilton theorem yields p(A) = 0. Thus,

etA = r(A).

The partial fraction decomposition right above, and its notation, implies that

r(z)

p(z)
=

∑ Cj,k

(z − λj)k
and r(z) =

∑

Cj,kpj,k(z).

Hence, etA =
∑

Cj,kpj,k(A).

3 Examples.

Exemplo 3. - Let us compute etA and etB for the real matrices

(a) A =





−1 −3 3
−6 2 6
−3 3 5



 , (b) B =





5 2 2
1 1 2

−1 4 3



 .

Solutions.

(a) The characteristic polynomial is pA(z) = (z−2)(z+4)(z−8). Following
Theorem 2 and its notation we have etz = q(z)pA(z) + r(z) and

etz

(z − 2)(z + 4)(z − 8)
= q(z) +

α

z − 2
+

β

z + 4
+

γ

z − 8
,

with q(z) a convergent power series and (α, β, γ) = (− e2t

36 ,
e−4t

72 , e
8t

72 ).
Thus,

etA = −
e2t

36
(A+4I)(A−8I)+

e−4t

72
(A−2I)(A−8I)+

e8t

72
(A−2I)(A+4I).
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(b) The characteristic polynomial is pB(z) = (z+1)(z− 5)2 and, as it is not
difficult to see, the matrix B is non-diagonalizable. Following Theorem
2 and its notation we have etz = q(z)pB(z) + r(z) and

etz

(z + 1)(z − 5)2
= q(z) +

α

z + 1
+

β

(z − 5)2
+

γ

z − 5
,

with q a convergent power series and (α, β, γ) = ( e
−t

36 ,
e5t

6 ,
(6t−1)e5t

36 ).
Thus,

etB =
e−t

36
(A− 5I)2 +

e5t

36
(A+ I) +

(6t− 1)e5t

36
(A+ I)(A − 5I).

4 Exponential of Algebraic Operators.

Here we extend the method in section 3 to arbitrary dimensional Banach spaces
(either real or complex).

• Complex matrices. Clearly, the method in section 3 is applicable to a
complex square matrix of order n× n.

• Complex Banach spaces. Given an infinite dimensional complex Banach
space X and a continuous linear operator T : X → X , we say that T
is an algebraic operator if there exists a non null and monic complex
polynomial pT (z) = zn + an−1z

n−1 + · · · + a1z + a0, with n ≥ 1, such
that

pT (T ) = T n + an−1T
n−1 + · · ·+ a1T + a0I = 0,

where I : X → X is the identity operator.

Examples of algebraic operators are: nilpotent operators (i.e., Tm =
0 for some m), projections (i.e., T 2 = T ), idempotent operators (i.e.,
Tm = T for some m), and involution operators (i.e., Tm = I for some
m). Furthermore, operators with finite rank (i.e., the image T (X) has
finite dimension) are also algebraic operators (see Kaplanski [4, pp. 40–
41]).

It is well-known that it is well defined the exponential operator

etT =
+∞
∑

n=0

(tT )n

n!
= I + tT +

(tT )2

2!
+

(tT )3

3!
+ · · · , for all real t.

Then, it is not difficult to see, analogously to what we have commented
for the exponential of a complex matrix, we obtain a formula for etT .
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• Real Banach spaces. The definition of an algebraic operator T : X → X ,
with X a real Banach space, is analogous to the one right above. The
non null monic polynomial pT , such that pT (T ) = 0, has real coefficients
and fixed a real number t it is not difficult to see that we have

etz = qT (z)pT (z) + rT (z), for all z,

with qT a everywhere convergent (over the complex plane) power series
with real coefficients and rT a polynomial, with real coefficients and
whose degree is smaller than that of pT . Thus, we have etT = rT (T ).

By employing the partial fraction decomposition we may write

rT (z)

pT (z)
=

∑

1≤j≤µ
1≤k≤µj

αj,k

(z − zj)k
+

∑

1≤j≤µ
1≤k≤µj

βj,k

(z − zj)k
+

∑

1≤l≤ν
1≤k≤νl

γl,k

(z − xl)k
, (1)

where the polynomial pT has complex roots z1, z1, . . . , zµ, zµ and real
roots x1, . . . , xν (all the roots are distinct and the algebraic multiplicities
of these are, respectively, µ1, µ1, . . . , µµ, µµ, ν1, ν2, . . . νν), with degree(pT ) =
2(µ1 + · · · + µµ) + ν1 + · · · + νν = n, and all the coefficients αj,k, βj,k,
and γl,k are unique complex constants.

In what follows, to simplify the layout we omit the sets where the indices
for the coefficients αj,k, βj,k, and γl,k take values.

Claim 1. All the constants γl,k are real numbers. In fact, since the map
z 7→ etz(z−xl)

νl may be developed as a power series with real coefficients
and the polynomial pT has real coefficients, it follows that

γl,k =
1

(νl − k)!

dνl−k

dzνl−k

{

etz(z − xl)
νl

pT (z)

}

∣

∣

∣

z=xl

∈ R.

Claim 2. We have βj,k = αj,k for all possible j and k. In order to verify
this claim, we consider the functions

ϕ(z) =
etz(z − zj)

µj

pT (z)
and ψ(z) =

etz(z − zj)
µj

pT (z)
.

The identity ψ(z) = ϕ(z) holds, since the power series etz and the
polynomial pT have real coefficients. This implies that ϕ′(z) = ψ′(z),
ϕ′′(z) = ψ′′(z), ϕ′′′(z) = ψ′′′(z), etc. From these and Theorem 2 we
have

αj,k =
ϕ(µj−k)(zj)

(µj − k)!
=
ψ(µj−k)(zj)

(µj − k)!
= βj,k.
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The proof of Claim 2 is complete.

Thus far, based on equation (1) we have seen that

rT (z)

pT (z)
=

∑

[

αj,k

(z − zj)k
+

αj,k

(z − zj)k

]

+
∑ γl,k

(z − xl)k

=
∑ αj,k(z − zj)

k + αj,k(z − zj)
k

(z − zj)k(z − zj)k
+
∑ γl,k

(z − xl)k
.

Claim 3. The expansion of the map uj,k(z) = αj,k(z−zj)
k+αj,k(z−zj)

k

is a polynomial, in the variable z, with real coefficients. In fact, we have

αj,k(z−zj)
k+αj,k(z−zj)

k =

k′=k
∑

k′=0

(

k

k′

)

(−1)k−k′

[

αj,kzj
k−k′

+ αj,kz
k−k′

j

]

zk
′

,

with the right-hand side a polynomial with real coefficients. Claim 3 is
proven.

Therefore, we may write

rT (z) =
∑

uj,k(z)
pT (z)

(z − zj)k(z − zj)k
+
∑

γl,k
pT (z)

(z − xl)k
.

Eliminating singularities, with clear identifications we may write rT =
∑

ujkvjk +
∑

γlkwlk, where each ujk, vjk and wlk is a polynomial with
real coefficients (a total of n polynomials) and each γlk is a real number.

Summing up, and since etT = rT (T ), these computations yield the for-
mula

etT =
∑

uj,k(T )vj,k(T ) +
∑

γl,kwl,k(T ).

The case for X a real Banach space is complete.

5 Some Final Remarks.

The author humbly hopes that this very short method may be quite useful,
along the already well-known textbook methods, as a practical way of com-
puting the exponential of matrices and algebraic operators. One cannot miss
the opportunity to point out that we are right in the middle of a coronavirus
pandemic crisis that turned “exponential growth” into a household expression.

Acknowledgment. The author is thankful to D.P. Dias, S. P. Phanzu and
J. V. Ralston for theirs comments, and to G. Terra for reference [9].
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