PQI-5884 - Programação Inteira Mista aplicada à Otimização de Processos 3º Período 2023

Data	Atividade	Conteúdo
14/set	Aula 1	Introdução, formulação, classes, representação
21/set	Aula 2	Condições de otimalidade
28/set	Aula 3	Condições KKT, multiplicadores
06/out*	Aula 4	Otimização irrestrita
19/out	Aula 5	LP
26/out	Aula 6	NLP
09/out	Aula 7	MILP
17/nov*	Aula 8	MILP, problemas clássicos
23/nov	Aula 9	MILP, problema de scheduling
30/nov	Aula 10	MINLP, problema de síntese
07/dez	-	Apresentações

MILP: Mixed Integer Linear Programming

min
$$z = \underline{c_1}^T \underline{x} + \underline{c_2}^T \underline{y}$$

s.a. $\underline{\underline{A}} \underline{x} + \underline{\underline{B}} \underline{y} = \underline{d_1}$
 $\underline{\underline{C}} \underline{x} + \underline{\underline{D}} \underline{y} \le \underline{d_2}$
 $\underline{x} \in \Re^n$
 $\underline{y} \in \{0, 1\}^m$

$$y_i = \begin{cases} 1 \text{ se a proposição } Y_i \text{ for verdadeira} \\ 0 \text{ caso contrário} \end{cases}$$

2

REPRESENTAÇÃO DE VARIÁVEIS DISCRETAS

$$w \in \{w_1, w_2, w_3, \dots\}$$

$$w = \sum y_{wi} \cdot w_i$$

$$\sum y_{wi} = 1$$

$$w \in \Re^1$$

$$y_{wi} \in \{0,1\}$$

Exemplo:
$$D_{tubo} = \{ \frac{1}{2}, \frac{3}{4}, 1, 1 \frac{1}{4} \}$$

Modelagem usando variáveis binárias:

$$\begin{split} D_{tubo} &= (\frac{1}{2}).y_1 + (\frac{3}{4}).y_2 + (1).y_3 + (\frac{1}{4}).y_4 \\ y_1 + y_2 + y_3 + y_4 &= 1 \\ \text{com} \quad D_{tubo} &\in \Re^1 \\ y &\in \{0,1\}^4 \end{split}$$

Seleções de múltipla escolha $y = [y_1 \ y_2 \ y_3 \dots y_m]^T$

Exemplos:

- a) Apenas uma: $\sum y_i = 1$
- b) Pelo menos três: $\sum y_i \ge 3$
- c) No máximo duas: $\sum y_i \le 2$

Condição / Implicação – Se ... então... $Y_1 \Longrightarrow Y_2$ Se Y_1 for verdadeiro, então Y_2 é verdadeiro

y_1	y_2	$Y_1 \Rightarrow Y_2$
0	0	V
0	1	V
1	0	F
1	1	V

$$y_2 \ge y_1 \qquad \qquad \sum \qquad \qquad \left[\quad y_1 - y_2 \le 0 \right]$$

 $\begin{array}{ll} Equivalência - Se\ e\ somente\ se & Y_1 \Leftrightarrow Y_2 \\ A\ proposição\ Y_1\ \'e\ verdadeira\ se,\ e\ somente\ se,\ a\ proposição\ Y_2\ for\ verdadeira \end{array}$

y_1	y_2	$Y_1 \Leftrightarrow Y_2$	
0	0	V	
0	1	F	
1	0	F	
1	1	V	

 $\begin{array}{ll} Conjunção & Y_1 \wedge Y_2 \\ {\rm A\ proposição\ Y_1\ \'e\ verdadeira\ \underline{e}\ a\ proposição\ Y_2\ \'e\ verdadeira} \end{array}$

y_1	y_2	$Y_1 \wedge Y_2$	
0	0	F	
0	1	F	
1	0	F	
1	1	V	

$$y_1 = 1$$
$$y_2 = 1$$

 $\begin{array}{ll} \textbf{Disjunção} & Y_1 \vee Y_2 \\ \textbf{A proposição } \textbf{Y}_1 \text{ \'e verdadeira } \underline{\textbf{ou}} \text{ a proposição } \textbf{Y}_2 \text{ \'e verdadeira} \end{array}$

y_1	y_2	$Y_1 \vee Y_2$	
0	0	F	
0	1	V	
1	0	V	
1	1	V	

$$y_1 + y_2 \ge 1 \qquad \sum \qquad \boxed{1 - y_1 - y_2 \le 0}$$

Disjunção exclusiva $Y_1 \underline{\vee} Y_2$ A proposição Y_1 é verdadeira <u>ou, exclusivamente,</u> a proposição Y_2 é verdadeira.

<i>y</i> ₁	<i>y</i> ₂	$Y_1 \underline{\vee} Y_2$	
0	0	F	
0	1	V	
1	0	V	
1	1	F	

$$y_1 + y_2 = 1$$
 \sum $y_1 + y_2 - 1 = 0$

Negação
$$\neg Y_1$$
 ou $\sim Y_1$

Exemplo: Y_1 é verdadeiro ou Y_2 é falso $Y_1 \vee \neg Y_2$

y_1	y_2	$(1-y_2)$	$Y_1 \vee \neg Y_2$
0	0	1	V
0	1	0	F
1	0	1	V
1	1	0	V

Múltipla escolha usando (1-y) em vez de y:

$$y_1 + (1 - y_2) \ge 1$$
 $y_2 - y_1 \le 0$

Exemplo 1:

Se o reator A for selecionado, então não selecionar o separador B:

$$Y_{A}\! \Longrightarrow \! \neg Y_{B}$$

y_A	y_B	$Y_A \Rightarrow \neg Y_B$
0	0	V
0	1	V
1	0	V
1	1	F

$$y_A + y_B \le 1$$

Exemplo 2:

Produtos B1, B2 e B3 fazem parte da linha básica e produtos L1 e L2 fazem parte da linha luxo. No planejamento da produção, devem ser escolhidos pelo menos um básico <u>e</u> pelo menos um luxo.

Conjunção de duas disjunções:

$$(Y_{B1} \lor Y_{B2} \lor Y_{B3}) \land (Y_{L1} \lor Y_{L2})$$

em que Y_i = produzir o produto i

$$(Y_{B1} \lor Y_{B2} \lor Y_{B3})$$
 \rightarrow $y_{B1} + y_{B2} + y_{B3} \ge 1$

$$(\mathbf{Y}_{L1} \vee \mathbf{Y}_{L2}) \qquad \qquad \Rightarrow \qquad \qquad \mathbf{y}_{L1} + \mathbf{y}_{L2} \ge 1$$

Propriedades de expressões lógicas

Comutatividade

$$(Y_A {\wedge} Y_B) = (Y_B {\wedge} Y_A)$$

$$(Y_A \lor Y_B) = (Y_B \lor Y_A)$$

Associatividade

$$Y_{A} \wedge (Y_{B} \wedge Y_{C}) = (Y_{A} \wedge Y_{B}) \wedge Y_{C} = (Y_{A} \wedge Y_{B} \wedge Y_{C})$$

$$Y_A \lor (Y_B \lor Y_C) = (Y_A \lor Y_B) \lor Y_C = (Y_A \lor Y_B \lor Y_C)$$

Distributividade

$$Y_A \wedge (Y_B \vee Y_C) = (Y_A \wedge Y_B) \vee (Y_A \wedge Y_C)$$

$$Y_A \lor (Y_B \land Y_C) = (Y_A \lor Y_B) \land (Y_A \lor Y_C)$$

Teorema de De Morgan

$$\neg (Y_A \land Y_B) = (\neg Y_A \lor \neg Y_B)$$

$$\neg(Y_A \lor Y_B) = (\neg Y_A \land \neg Y_B)$$

Equivalência para operadores não básicos

$$Y_A \subseteq Y_B = (Y_A \land \neg Y_B) \lor (\neg Y_A \land Y_B)$$

$$Y_A \Rightarrow Y_B = (\neg Y_A \lor Y_B)$$

$$Y_A \Leftrightarrow Y_B$$

$$(Y_A \Rightarrow Y_B) \land (Y_B \Rightarrow Y_A) = (\neg Y_A \lor Y_B) \land (\neg Y_B \lor Y_A)$$

Opç	ões			$Y_A \underline{\vee} Y_B$	$Y_A \! \Rightarrow \! Y_B$	$Y_B \! \Rightarrow \! Y_A$	$Y_A \Leftrightarrow Y_B$
y_A	y_B	$(Y_A \land \neg Y_B)$	$(\neg Y_A \land Y_B)$	$(Y_{\mathtt{A}} {\wedge} \neg Y_{\mathtt{B}}) {\vee} (\neg Y_{\mathtt{A}} {\wedge} Y_{\mathtt{B}})$	$(\neg Y_A \!\!\vee\! Y_B)$	$(\neg Y_B \lor Y_A)$	$(\neg Y_{\mathtt{A}} \!\!\vee\! Y_{\mathtt{B}}) \!\!\wedge\! (\neg Y_{\mathtt{B}} \!\!\vee\! Y_{\mathtt{A}})$
0	0	F	F	F	V	V	V
0	1	F	V	V	V	F	F
1	0	V	F	V	F	V	F
1	1	F	F	F	V	V	V

LÓGICA PROPOSICIONAL E PROGRAMAÇÃO MATEMÁTICA

Raman e Grossmann (1991)

Procedimento:

Passo 1: Converter operadores não básicos em básicos ($\land \lor \neg$).

Passo 2: Distribuir as negações (De Morgan).

Passo 3: Distribuir "ou" sobre "e".

Resultado: Conjunção de disjunções

 $Q_1 \wedge Q_2 \wedge ... \wedge Q_S$ em que $Q_i = (P_1 \vee P_2 \vee ... \vee P_R)$

Passo 4: Conversão para equações lineares:

Cada disjunção gera uma equação de múltipla escolha:

 $(P_1 \lor P_2 \lor ... \lor P_R) \rightarrow y_1 + y_2 + ... + y_R \ge 1$

Caso haja negações, substituir y_i por $(1 - y_i)$ no somatório.

Ex: $(\neg P_1 \lor \neg P_2 \lor ... \lor \neg P_R)$ \rightarrow $(1-y_1) + (1-y_2) + ... + (1-y_R) \ge 1$

Exemplo: Converter a expressão lógica $Y_A \underline{\vee} Y_B$ em equações.

Passo 1: operadores básicos

$$Y_A \underline{\vee} Y_B \rightarrow (Y_A \wedge \neg Y_B) \vee (\neg Y_A \wedge Y_B)$$

Passo 2: não há negações a distribuir

Passo 3: distribuir ∨ sobre ∧

$$(Y_A \land \neg Y_B) \lor (\neg Y_A \land Y_B)$$

$$\{\,(Y_{A} \wedge \neg Y_{B}) \vee (\neg Y_{A})\,\} \overset{\blacktriangle}{\wedge} \,\{\,(Y_{A} \wedge \neg Y_{B}) \vee (Y_{B})\,\}$$

$$\{\,[\,(Y_A)\vee(\neg Y_A)\,\,]\,\wedge\,[\,(\neg Y_B)\vee(\neg Y_A)]\,\,\}\,\,\textcolor{red}{\wedge}\,\,\{\,[(Y_A)\vee(Y_B)]\,\wedge\,[(\neg Y_B)\vee(Y_B)]\,\,\}$$

pela associatividade fica:

$$\{\; (Y_{A} \vee \neg Y_{A}) \wedge (\neg Y_{B} \vee \neg Y_{A}) \;\} \; \textcolor{red}{\wedge} \; \{\; (Y_{A} \vee Y_{B}) \wedge (\neg Y_{B} \vee Y_{B}) \;\}$$

$$(Y_{A} \vee \neg Y_{A}) \wedge (\neg Y_{B} \vee \neg Y_{A}) \overset{\blacktriangle}{\wedge} (Y_{A} \vee Y_{B}) \wedge (\neg Y_{B} \vee Y_{B})$$

$$(Y_A \vee \neg Y_A) \wedge (\neg Y_B \vee \neg Y_A) \overset{\bullet}{\wedge} (Y_A \vee Y_B) \wedge (\neg Y_B \vee Y_B)$$

Passo 4:

$$y_A + (1 - y_A)$$
 ≥ 1
 $(1 - y_B) + (1 - y_A)$ ≥ 1
 $y_A + y_B$ ≥ 1
 $(1 - y_B) + y_B$ ≥ 1

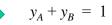
Que fica:

$$\begin{array}{lll}
0 & \geq 0 \\
-y_B - y_A & \geq -1 \\
y_A + y_B & \geq 1 \\
0 & \geq 0
\end{array}$$

Rearranjando:

$$y_A + y_B \le 1$$

$$y_A + y_B \ge 1$$



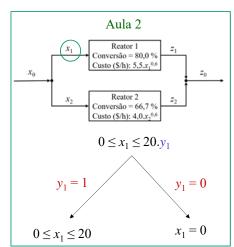
RESTRIÇÕES CONDICIONAIS EM VARIÁVEIS CONTÍNUAS (BIG-M)

Exemplo: Se o reator A não for selecionado, então sua vazão de alimentação x_A (m³/h) deve ser nula.

$$x_A \ge 0$$
$$x_A \le M.y_A + \varepsilon$$

$$x_A \ge 0$$

$$x_A \le 20.y_A + 1.10^{-3}$$



Proposição:
$$Y \Rightarrow (g(\underline{x}) \le 0)$$

$$g(\underline{x}) \leq M.(1-y)$$

Proposição:
$$Y \Rightarrow (h(\underline{x}) = 0)$$

$$-M.(1-y) \le h(\underline{x}) \le M.(1-y) + \varepsilon$$

Exemplo:

A variável x_A deve estar entre 0 e 10 ou entre 15 e 25.

Modelagem:

$$15.(1 - y_A) \le x_A \le 10.(y_A) + 25.(1 - y_A)$$

Caso
$$y_A = 1$$
, tem-se $0 \le x_A \le 10$

Caso
$$y_A = 0$$
, tem-se $15 \le x_A \le 25$