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Platform for Multiple Autonomous Vehicles Based
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Abstract—To facilitate studies in Deep Reinforcement Learning
(DRL) and autonomous vehicles, we present the CarAware frame-
work! for detailed multi-agent vehicle simulations, which works
together with the open-source traffic simulator CARLA. This
framework aims to fill the gap identified in currently available
CARLA DRL frameworks, often focused on the perception and
control of a single vehicle. The new framework provides baselines
for training DRL agents in scenarios with multiple connected
autonomous vehicles (CAVs), focusing on their sensors’ data
fusion for objects’ localization and identification. These features
and tools allow studying many different DRL strategies and
algorithms, applied for multi-vehicle sensors’ data fusion and
interpretation.

Index Terms—Connected Autonomous Vehicles, Deep Rein-
forcement Learning, Simulation Framework

I. INTRODUCTION

Despite recent developments in sensors and processing
hardware, a completely reliable autonomous vehicle is still
elusive, as indicated by recent events and accidents involving
semi-autonomous vehicles [1], [2]. Therefore, manufacturers
still have concerns to increase the automation levels of their
vehicles, such that additional research and development are
required. The amount of data generated by sensors is enor-
mous, and a fast and meaningful analysis in real-time is still
unattainable.

Studies have indicated that vehicle connectivity could be
used to enhance the vehicle environment perception, by data
shared by the vehicles with any other meaningful source
of traffic information (V2X: Vehicle-to-everything). Those
studies have been carried by both companies [3] and academic
institutions [4]. With recent advances in internet of things (IoT)
technologies, 5G mobile networks, edge/cloud computing, and
other connectivity technologies, this solution became feasible
and closer to reality.

Machine learning techniques are commonly used for percep-
tion tasks, requiring huge datasets from sensors covering most
of the situations that the vehicle faces regularly (for supervised
training) or many hours of trials-and-errors, which cannot be
performed in real vehicles due to the risks of accidents (for
reinforcement learning). Traffic simulators represent a viable
alternative for the development of autonomous driving, as
they allow realistic simulation of vehicles’ dynamics, traffic
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conditions, urban or rural environments, vehicles’ sensors, and
most of the elements needed to train and test machine learning
techniques used in those automotive systems.

This work presents a new framework for highly-detailed
multi-agent vehicle simulation, labeled CarAware - CARLA
Awareness Framework for Deep Reinforcement Learning. It
has been implemented on top of the open-source traffic sim-
ulator CARLA, due to its realistic simulation, configurable
environments, and open-source nature. This framework allows
customizing the number and models of simulated vehicles eas-
ily, with sensors and their configurations, pedestrians and their
behavior, obstacles, maps, weather, and many other important
driving characteristics. The vehicles are automatically driven
over randomly predefined routes (without real autonomous
controls implemented) throughout the map, generating data
from their sensors. A top-view visualization of the map was
also created, with high-level information on the simulated
objects and main metrics used for training and evaluation of
DRL techniques. An episodic simulation was set up, with the
possibility of randomized simulation resets for an enhanced
DRL training generalization. A DRL algorithm using Proximal
Policy Optimization (PPO) [5] was implemented, for online
training (without saving sensors’ data to the hard drive), fo-
cusing on predicting the vehicles/pedestrians’ positions based
on sensors’ inputs on a cloud-based collective perception
scenario, which could be used as an example for other DRL
implementations.

II. BACKGROUND
A. Overview of Traffic Simulators

Research on autonomous driving, performed in urban areas
with test vehicles, has been limited by the risks and costs
involved. Moreover, the only way to evolve the vehicle’s
algorithms, finding the missing gaps in the equipment or
testing field, is to keep designing, testing, and studying the
results intensively. In addition, to gather a meaningful amount
of data, a wide range of tests should be performed, with
many different vehicles. Performing those experiments in real
systems is impractical.

Those shortcomings motivated the development of several
simulation tools, focused on different aspects of autonomous
driving. Those tools allow running a large number of test
simulations that would be inaccessible in real systems. On the
other hand, the main concern is that simulations must mimic
real systems in realistic environments and situations so that
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Simul S Model Scope Category Visual Virtual Vehicle Sensors Pedestrians Graphics | Flexibility | Multi-Agent
AIMSUN Micro / Meso Comercial 3D None Individual Low High Yes
AirSim Nano / Micro Open-Source | 3D GPS / IMU / LIDAR Individual High High Yes
ARCHISIM Micro / Meso Comercial 2D None None Low Low Yes
Carcraft (Waymo) | Nano / Micro Comercial 3D GPS / Camera / IMU / LIDAR / Radar / Ultrassonic | Individual High Medium Yes
CARLA Nano / Micro Open-Source | 3D GPS / Camera / IMU / LIDAR / Radar / Ultrassonic | Individual High High Yes
CORSIM Micro / Meso Comercial 2D None Crowd Low Low Yes
DeepDrive Nano / Micro Open-Source | 3D GPS / Camera / LIDAR / Radar None High Medium No
HELIOS++ Nano Open-Source | 3D LIDAR None Medium High No
MATSim Micro / Meso Open-Source | 2D None Crowd Low High Yes
NVIDIA Drive Nano / Micro Open-Source | 3D GPS / Camera / IMU / LIDAR / Radar / Ultrassonic | Individual High Low No
Paramics Micro / Meso Comercial 3D None Impacts only Low Medium Yes
SimTraffic Micro Comercial 3D None Individual Low Low Yes
SUMO Micro / Meso Open-Source | 2D None Individual Low High Yes
TRANSIMS Micro / Meso Open-Source | 2D None Impacts only Low High Yes
TransModeler Micro / Meso / Macro | Comercial 3D None Impacts only Medium High Yes
Udacity Car Sim Nano / Micro Open-Source | 3D GPS / Camera / IMU / LIDAR / Infrared None Medium Low No
VISSIM/VISUM Micro / Meso / Macro | Comercial 2D /3D | None Individual / Crowd | Medium Medium Yes
SimSonic Nano Open-Source | 2D Ultrassonic None Low Low No

Table T
COMPARISON OF FEATURES INCORPORATED IN AUTOMOTIVE SIMULATORS.

the results are meaningful. There are several traffic simulators
available for testing AVs, each one with its pros and cons.
Some are private tools developed by car companies, focused on
autonomous driving, such as CarCraft by Waymo and DataViz
by Uber. Others are commercial packages, such as AIMSUN,
VISSIM, and VISUM. Finally, there are the open-source ones,
such as AirSim, SUMO, and CARLA.

As there are several situations in daily operations, and the
limited processing computer power used in those investiga-
tions, each simulator generally focuses on a specific scope.
It is also interesting to notice that some of these simulators
have interfaces for co-simulation with others, as shown in
[6], [7], [8]. Table I shows a detailed comparison of some
available simulators, classified according to their scope and
main features [9], [10], [11]. They are divided according to
their scopes:

* Nanoscopic: The focus is on each vehicle’s control (accel-
erating, braking, and steering), and interactions between them
with other obstacles (static, pedestrians, among others), in-
cluding car control algorithms, specifications, sensor reading,
programming of perception modules.

* Microscopic: Although they simulate individual vehicles,
they focus on the interactions of a group of vehicles, including
traffic-flow dynamics, while pedestrian simulations are also
possible. Normally, they are used to study driver behaviors
and their impacts on the traffic flow.

* Mesoscopic: They simulate a large group of vehicles
in a city-level analysis and present low detailed interactions
between them and other objects. The focus is on general traffic
evaluation, traffic lights’ cycle periods, and stop-and-go waves,
among others.

* Macroscopic: They simulate collective vehicle dynamics
and general impacts from public transportation. Used for
traffic-flow studies in large areas.

B. CARLA Simulator

CARLA is an open-source simulator for urban driving [12].
It could be classified within the nanoscopic category, but it
could be also used for some microscopic applications. One
of its strengths is the realistic simulation, associated with
vehicles’ dynamics, pedestrian representation, highly detailed

graphics, and a large number of miscellaneous objects rep-
resented in the simulated cities. The simulator can also use
scripts and scenario specifications, for specific test cases, and
supports a wide range of automotive sensors, providing real-
istic outputs to be used as inputs in an autonomous vehicle’s
control logic.

All user-created algorithms are implemented in a client
module, via an API in Python. Unlike most of its competitors,
it doesn’t present a user interface to facilitate the process of
simulation setup, visualization, and control. This is one of the
main goals of the framework presented here.

C. Simulation Frameworks Available for Carla

Due to the open and highly-customizable nature of CARLA
Simulator, as well as the absence of manufacturer user in-
terfaces with quick-to-setup tools, there are many proposals
of simulation frameworks for it, even involving other traffic
simulators.

In [8], a framework has been proposed to integrate CARLA
with another popular open-source traffic simulator called
SUMO. The idea was to combine their strengths, CARLA,
with its highly detailed sensors and visuals (nanoscopic),
and SUMO, with the natural traffic management and trajec-
tory planning algorithms (microscopic and mesoscopic). The
project Gym-Carla [13] is a framework that provides the tools
to train a single agent to drive a vehicle using DRL in an
end-to-end manner (from sensors directly to control). The
framework provides all the codes required for DRL in the
OpenAI’'s Gym structure [14].

Despite the functionalities of these frameworks, they still
have drawbacks that require different implementations for
collective perception DRL research. SUMO [8] focuses only
on one simulated autonomous vehicle, and requires high
processing power to run two different simulators simultane-
ously. GymCarla [13] has very good DRL preparations, but
focuses only on controlling a single vehicle. To address those
limitations, this work proposes a framework with a high level
of customization and accessibility, simulating many sensory
vehicles, pedestrians, and objects within the same environ-
ment, with the possibility of having multiple autonomous and
regular vehicles running randomly throughout the map, and
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prepared for DRL, focused on multi-vehicle sensors’ data
analyses.

ITII. SIMULATION FRAMEWORK
A. Modules Description and Their Relationship

The proposed framework provides a simulation environment
for DRL implementations related to the perception aspects
of connected and autonomous vehicles (CAVs). Training and
playing modes were implemented to create the real-time
simulation used during the neural network training, as well
as to create the simulation environment used to check if the
training was effective. The simulation mode does not have
machine learning implementations and can be used for many
other needs, such as producing datasets for supervised training.
The complete framework comprises several python scripts,
each one with its predefined role in the simulation system.
Figure 1 presents a block diagram, showing the scripts and
how they relate.

Train Play

Carla Env

REWEL]
Functions

Figure 1. Framework modules and their relationships.

B. Framework’s State-Machine Architecture

The framework state machine diagram is shown in figure
2, showing the three execution modes available and their
internal states. The "Training Mode" is used to setup/run the
simulation and the DRL training episodes, conducting both
activities in synchronized parallel threads. The "Play Mode"
is used to setup/run indefinitely a simulation in parallel with
a neural network providing predictions using a previously
trained model. The "Simulation Mode" is used to setup a
simulation-only session, without DRL implementations.

C. Implemented Sensors and Related Data Interpretation

CARLA Simulator is a powerful tool when it comes to
the sensors available in its simulated environment, including
global navigation satellite system (GNSS), camera, LIDAR,
and radar, among others. A significant feature offered in this
framework is the ability to gather sensor observations from
multiple vehicles in the environment, providing a sensor-based
collective perception, useful for studies on connected vehicles.
The main sensors implemented in this framework include their

New Episode Setup OK

oKfrom
“Train”
seript

End of
Episode

Training
ESC Button

or Total Episodes
Completed

Play Mode ESC Button

Play
Loading

simulation Mode m

Figure 2. State machine diagram of the framework.

Loading Complete

data processing, for easy interpretation by the neural networks
implemented in the DRL algorithms.

1) GNSS: CARLA Server provides a blueprint for creating
GNSS sensors and applying them to simulated vehicles or
pedestrians (for smartphone simulation). It has many customiz-
able configurations, such as sampling frequency, bias, and
induced error simulations (injection of a standard deviation
noise), available as configuration variables at the beginning of
the "Main" script. The sensor outputs the data in a geographic
coordinates system [15], with latitude and longitude values
in degrees. This is obtained by adding its metric position to
an initial geographic reference defined in the simulated map,
following the OpenDRIVE map definition [16]. This reference
simulates a real location as if the simulated map was actually
within the globe. To convert these coordinates into the standard
needed to position the objects in the top-view window, a few
steps of calculation are required, as follows:

e Equation 1: Converts "latitude/longitude" sensor output
data, from geographic coordinates, to "x/y" ECEF (Earth-
Centered-Earth-Fixed) system.

& = Reqrth - cos (lat) - cos (long) n
Yy = Rearen - cos (lat) - sin (long)

* Equation 2: Converts the results of the previous equation,
from ECEF coordinates to East-North-Up (ENU) system. The
earth center is chosen as a reference point for this conversion
(with A\ = lat, / ¢ = long, being its center location in
geographic coordinates and x, / y, / z, its center location
in ECEF).

Zeast = —sing - (x — ) +cosd - (Y — Yo)
Ynorth = — COS @ - SinA - (x — x,) — sin A 2)

sing - (y — yo) +cosA- (2 — 25)

* Equation 3: Converts the position in ENU coordinates to
the Pygame’s coordinates system, including scale, resolution
(pixels per meter), and position translations applied to the top-
view visualization. The resulting position is then drawn in the
shape of blue dots in the top-view window.

Tpygame = Scale - resolution - (T — Toffset) 3)

Ypygame = Scale - resolution - (Y — Yoffset)
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2) IMU: CARLA also provides a blueprint for the Inertial
Measurement Unit (IMU) sensor. This sensor is composed of
accelerometers and gyroscopes, providing the linear accelera-
tion measurements in 1m /52, and the angular velocity in rad/s,
in all axes (six degrees of freedom). It also contains a compass,
which indicates the direction the vehicle is heading, in radians.

3) Camera: Out-of-the-box, CARLA provides four differ-
ent types of camera sensors: regular RGB (Red, Green, and
Blue), semantic, dynamic vision sensor (DVS), and optical
flow. In order to increase the features provided by the cameras,
two other types of image sensors were implemented in this
framework. The binary camera sensor was created, to improve
even more the object identification capabilities of the neural
networks, by highlighting in white only the interesting objects:
vehicles, pedestrians, and specific static objects. Moreover, the
object identifying pre-trained neural network model YOLO
was also made available to be used in this framework [17],
providing object tracking capabilities. The frame stacking
technique was implemented, following an example described
by Takeshi [18], where a group of four sequential images is
used to transmit the sense of motion to the neural network.

4) LIDAR: This sensor simulates a rotating LIDAR im-
plemented using ray-casting. It creates a point cloud, with
each point representing where the laser has hit an object in
the simulated environment. In the framework, it is possible
to configure the number of generated points per step, num-
ber of sensor channels, rotation frequency, maximum range,
visualization type, and more.

Regarding the LIDAR sensor visualization in the top-view
window, there are two modes available: "All" and "Interest".
The "All" mode plots all generated points around each rep-
resented vehicle. As it demands high processing power and
can be difficult to analyze, the "Interest” mode was also
implemented. In this mode, only the interest points are shown
in the top-view: The ones that hit vehicles, pedestrians, or
specific static objects, each type with a different color. When
an object is detected, a circle is also drawn showing the
sensor’s maximum range.

The coordinates generated by the LIDAR sensor are relative
to the sensor’s orientation, being the "Y" axis parallel to the
vehicle’s heading direction and pointing backward, "X" axis
perpendicular and pointing to the vehicle’s left side, and "Z"
starting in the sensor’s origin and pointing to the ground. This
representation is shown in figure 3.

To convert this relative orientation to the static orientation
used in the top-view screen, a function was created to perform
this conversion using the Cartesian rotation of axis equation,
shown in Equation 4. In the equation, (z,y) represents the
position in the top-view absolute plane, (Z,%) the position in
the LIDAR relative plane, and 6 the rotation angle between
both planes.

“4)

r=-cosf-T—sinf -y
Yy

y=sin€ -+ cosf -

Figure 3. LIDAR coordinates system (red) vs. Pygame coordinates system
(green).

5) Speed and Steering Angle Sensor: A new sensor was
created on the client-side (in the framework’s "Simulation"
script), including regular sensors’ structures like customizable
characteristics, required for many analyses. The steering wheel
angle value is acquired from CARLA in the range from -1 to
1, converted to steering rotation values in degrees.

IV. CASE STUDY ANALYSIS: V2X SENSORS TO VEHICLE
LOCALIZATION WITH DRL PPO

In order to show the framework capabilities, a case study
DRL training session was performed. The goal was to collect
sensor data from the GNSS and IMU sensors in multiple
simulated vehicles and infer correctly the position of all
vehicles in the top-view window. These sensors were chosen
since they are commonly used in connected vehicles with
embedded V2X communication systems, transmitting their
data to others via Basic Safety Messages (BSM) [19]. The
concept diagram for this proposed DRL implementation is
shown in figure 4.

For the proposed task in this case study, the applied al-
gorithm was the policy-based Proximal Policy Optimization
(PPO). Each existing DRL algorithm is best fit for certain
groups of applications (figure 5) [20]. The PPO algorithm was
released in 2017 [5], which is still one of the most efficient
DRL algorithms being applied to complex environments with
continuous observation and action spaces. Its central idea is
to avoid having too large policy updates, by implementing
a clipped surrogate objective function (GAE estimator is
commonly used), which will constrain the policy changes
within a small predefined range of change ratio (normally from
0.8 to 1.2).

For the case study application, the agent was structured to
get observations, and provide actions and rewards, on one vehi-
cle per training step, cycling through all of them continuously.
The observation space was defined as a one-dimensional vector
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Figure 4. Case study DRL concept diagram.
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Figure 5. Main DRL algorithms, their features and classification.

with nine continuous elements, representing each simulated
vehicle’s inputs in the scenario. The action space was defined
as a one-dimensional vector of two continuous elements, repre-
senting each simulated vehicle’s prediction. A reward function
was defined as the Euclidean Distance between the prediction
position and the real simulated vehicle position (passed to the
function as a ground-truth data from the simulator), as defined
in Equation 5. The reward value is calculated as the inverse of
the distance value, as the reward should be higher the closer
the prediction is to the vehicle. Before passing the observations
and rewards as inputs to the neural network, their values were
normalized to be within the O to 1 range, to avoid early weight
overfitting during training. As a consequence, the outputs had
to be restored to their original ranges continually.

Aenclid = \/(U@hw — pred,;)? + (vehy — predy)?  (5)

For each application, the DRL algorithms require specific
tuning of their hyperparameters. This is because each environ-
ment presents different levels of complexity, sizes and patterns
of states, agent control behavior, and other properties. The
most important hyperparameters used by the PPO algorithm
are (more details in [5]):

* Episode Number: Number of training episodes performed.

* Learning-Rate: Defines the rate at which the neural
network weights are updated upon training. Higher values
haste the training process but can cause wrong learning and
unwanted behaviors.

* GAE Lambda: Smoothing factor applied to the General-
ized Advantage Estimator, the objective function used to clip
each policy update ratio.

* Initial Deviation: Defines the initial standard deviation
applied in the neural network output. Its value should be high
enough to cause important reward value changes, otherwise,
the model won’t learn the desired behavior.

* Entropy Scale: This factor is responsible for encouraging
some exploration by the agent in later training phases.

* PPO Epsilon: Defines the positive and negative policy
update clip ratio values.

» Horizon Number: The number of steps of observation-
action-reward performed before the resulting training data is
fed to the neural network. For complex environments, this
value should be higher, so the agent has more data to learn.

* Batch Size: Defines the size of each batch used in the
gradient descent training operations. It should be an exact
fragment of the horizon number.

* Epoch Number: Defines the number of times the training
process is executed with the same data, generated by a
complete horizon execution.

Using hyperparameters optimization techniques for complex
environments with continuous action spaces, and curriculum
learning techniques [21] to slowly increase environments’
complexity during training, the agent was able to fulfill the
proposed objective. For the case study application, three steps
of learning were established:

* Step 1 - Single Moving Agent w/o Restart: It started with
just one simulated vehicle equipped with GNSS and IMU
sensors, running around the map using randomized routes.
The agent was trained under this condition until the standard
deviation reached the value of 0.5, in episode 162.

* Step 2 - Single Moving Agent w/ Restart: The agent con-
tinued its training, restarting the vehicle position to a ran-
domized spawn point after each episode. With this simulation
strategy, the agent could increase its generalization ability
due to the sudden position changes that happened with every
restart. The agent was trained until the standard deviation
reached the value of 0.35, in episode 235.

* Step 3 - Multiple Moving Agents: At last, the agent con-
tinued its training with 8 vehicles (randomized spawn points).
As the agent analyzes one vehicle at a time, located far from
each other, the previous training steps were necessary for the
agent to learn to predict all vehicle positions on the map. The
training stopped when the predictions converged, and before
there was a network overfitting (standard deviation of 0.27,
episode 283).

The resulting predictions provided by the neural network
after the training are shown in figure 6 (red dots representing
the predicted vehicles’ positions and blue arrow-like rectangles
representing their actual position), and the report showing the
training progress of the two main metrics in figure 7.
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Figure 6. Case study predictions after curriculum-training - Red-dots repre-
senting predictions, and blue arrow-like rectangles representing the vehicles’
positions.
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Figure 7. Reward and standard deviation curves, divided by the steps of
curriculum learning - Step 1: Single agent without restart; Step 2: Single
agent with restart; Step 3: Multiple Agents.

V. RESULTS AND DISCUSSIONS

This framework project was performed to enable the DRL
study focused on creating a collective perception methodology.
It shows a brief explanation and the first successful results
of the case study scenario of V2X data sharing. More diffi-
cult training scenarios could be tested in the future. During
the development, a more comprehensive toolset for CAVs’
simulation was created, so it could also provide the needed
sensors’ data and complex environment simulations required
for the CAVs’ complete sensor fusion methodology. In the
end, these methodologies could be assigned to real cloud
backend systems, collecting data and providing information to
running vehicles, improving their capabilities of recognizing
their surroundings and therefore, improving the safety of these

technologies in overall traffic situations. The development
of the framework was focused on DRL due to the study’s
focus and development time restrictions, but it could be easily
improved, to implement other deep learning techniques and
additional features.
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