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ized momen t u m vector (16.5), while the t ime componen t is <?/c, where $ is the total energy 
of the charge in the field. 

§ 24. Lorentz transformation of the field 
In this section we find the t ransformation formulas for fields, tha t is, formulas by means 

of which we can determine the field in one inertial system of reference, knowing the same 
field in another system. 

The formulas for t ransformat ion of the potentials are obtained directly from the general 
formulas for t ransformat ion of four-vectors (6.1). Remember ing that A1 = (φ, A), we get 
easily 
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The t ransformation formulas for an ant isymmetric second-rank tensor (like Fik) were 
found in problem 2 of § 6: the components F23 and F0i do not change, while the com-
ponents F02, F03, and F 1 2 , F 1 3 t ransform like x° and x \ respectively. Expressing the 
components of Fik in terms of the componen t s of the fields E and H , according to (23.5), 
we then find the following formulas of t ransformat ion for the electric field: 

(24.2) F — F' F -
^χ ~ ^χ·» ^y -

and for the magnetic field: 
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(24.3) 

Thus the electric and magnetic fields, like the majority of physical quantit ies, are relative; 
tha t is, their propert ies are different in different reference systems. In part icular, the electric 
or the magnetic field can be equal to zero in one reference system and at the same time be 
present in another system. 

The formulas (24.2), (24.3) simplify considerably for the case V < c. To terms of order 
V/c9 we have : 

v v 
Ex = Ex, Ey = E'y+ - H'„ Ez = E'z H' \ 

c c 
V V 

Hx = HXJ Hy = H'y E'2, H2 = Hz-\— Ey\ 

These formulas can be written in vector form 

E = E + - H ' x V , H = H ' - - E ' x V . (24.4) 
c c 
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is the potential at the point of location of ea, produced by all the charges other than ea. In 
other words, we can write 

In particular, the energy of interaction of two charges is 

U' = ̂ . (37.8) 

§ 38. The field of a uniformly moving charge 

We determine the field produced by a charge e, moving uniformly with velocity V. We 
call the laboratory frame the system K; the system of reference moving with the charge is the 
K' system. Let the charge be located at the origin of coordinates of the K' system. The 
system K' moves relative to AT along the Jfaxis; the axes Y and Z are parallel to Y' andZ'. 
At the time / = 0 the origins of the two systems coincide. The coordinates of the charge in 
the K system are consequently x = Vt, y = z = 0. In the K' system, we have a constant 
electric field with vector potential A' = 0, and scalar potential equal to φ' = e/R\ where 
R'2 = x'2+y'2 + z'2. In the K system, according to (24.1) for A' = 0, 

φ - JL— = = = . (38.1) 

V1-? "'V1-? 
We must now express R' in terms of the coordinates x, y, z, in the K system. According to 

the formulas for the Lorentz transformation 

x = , y =y, z =z, 

from which 

R'2 = ^ C—l 
1 - F -

(38.2) 

Substituting this in (38.1) we find 

R 
where we have introduced the notation 

4> = -L 08.3) 

R*2 = (x-Vt)2+(l-^j\ (y2 + z2). (38.4) 

The vector potential in the K system is equal to 

c " cR* 
V eV 

Α = * τ = 75ϊ· (38-5) 
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In the K' system the magnetic field H' is absent and the electric field is 

Ε' = Λ ,3 · 

From formula (24.2), we find 

ex' ^ E'y ey' 
p p' p 
^x — C-x — ß ,3> ^y — Ji-7 *"V'-£' 

£ . = " 

-V-! 2 

Substituting for R', x', >·', z, their expressions in terms of x, y, z, we obtain 

E - ( 1 - ? ) ^ · (386) 

where R is the radius vector from the charge e to the field point with coordinates x, y, z (its 
components are JC— Vt, y, z). 

This expression for E can be written in another form by introducing the angle Θ between 
the direction of motion and the radius vector R. It is clear that y2 + z2 = R2 sin2 0, and there-
fore R*2 can be written in the form: 

Then we have for E, 
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(38.7) 

(38.8) 

For a fixed distance R from the charge, the value of the field E increases as Θ increases 
from 0 to π/2 (or as θ decreases from π to π/2). The field along the direction of motion 
((0 = 0, π) has the smallest value; it is equal to 

e ( V2 

E^-R2V~V2 

The largest field is that perpendicular to the velocity (0 = π/2), equal to 
e 1 

£χ 

V c 
We note that as the velocity increases, the field ΖΓ,, decreases, while E± increases. We can 
describe this pictorially by saying that the electric field of a moving charge is "contracted" 
in the direction of motion. For velocities V close to the velocity of light, the denominator 
in formula (38.8) is close to zero in a narrow interval of values 0 around the value 0 — π/2. 
The "width" of this interval is, in order of magnitude, 

V2 v-A0 
„2 
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Thus the electric field of a rapidly moving charge at a given distance from it is large only in a 
narrow range of angles in the neighborhood of the equatorial plane, and the width of this 
interval decreases with increasing V like y 1 —(V2lc2). 

The magnetic field in the K system is 

H = - V x E (38.9) 
c 

[see (24.5)]. In particular, for V <i c the electric field is given approximately by the usual 
formula for the Coulomb law, E = eR!R3, and the magnetic field is 

e V x R 
H = S - - R 3 - · ( 3 8 1 ° ) 

PROBLEM 
Determine the force (in the K system) between two charges moving with the same velocity V. 
Solution: We shall determine the force F by computing the force acting on one of the charges (e:) 

in the field produced by the other (e2). Using (38.9), we have 

F = e, E2+ - V x H2 ■-= e, [ 1 - Υζ) E2-f % V(V · E2). c \ c-) c2 

Substituting for E2 from (38.8). we get for the components of the force in the direction of motion 
(FT) and perpendicular to it (Fy): 

V2\ I V2\2 
1 cos 0 [ 1 sin 0 

F _*\?Ί \ c / r __ e1 e2 \ c 
R2 ( V- \3'2' R- / V2 \312' 

' l - ^ - s in^ j ^i__.sin*flj 
where R is the radius vector from e2 to eu and Θ is the angle between R and V. 

§ 39. Motion in the Coulomb field 

We consider the motion of a particle with mass m and charge e in the field produced by a 
second charge e'; we assume that the mass of this second charge is so large that it can be 
considered as fixed. Then our problem becomes the study of the motion of a charge e in a 
centrally symmetric electric field with potential φ = e'/r. 

The total energy 8 of the particle is equal to 

8 = C\/p2 + m2c2+ -, 
r 

where a = ee'. If we use polar coordinates in the plane of motion of the particle, then as we 
know from mechanics, 

p2 = (M2lr2) + p2, 
where pr is the radial component of the momentum, and M is the constant angular momen-
tum of the particle. Then 
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