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Abstract

The structure and interactions of proteins play a critical role in determining the quality attributes
of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding
of the structure–function relationships of proteins can provide greater insight into, and control of,
the relevant processes at play. Combining data from experimental measurements, human sensory
panels, and computer simulations through machine learning allows the construction of statistical
models relating nanoscale properties of proteins to the physicochemical properties, physiological
outcomes, and tastes of foods. This review highlights several examples of advanced computer sim-
ulations at molecular, mesoscale, and multiscale levels that shed light on the mechanisms at play
in foods, thereby facilitating their control. It includes a practical simulation toolbox for those new
to in silico modeling.

INTRODUCTION

The food industry is faced with multiple challenges to meet demands for new food products
that are safe, enjoyable, healthy, nutritious, and sustainable. An understanding of fundamental
structure–function relationships of food components is key to the rational design of new foods. A
relatively recent approach to deal with the complexity of food products is provided by soft matter
physics (Boire et al. 2019) (Figure 1).Molecules assemble through biological, physicochemical, or
manufacturing processes into structures that give foods their particular properties.Oral processing
and sensory stimulation followed by digestion lead to the disassembly of macroscopic structures
down to the molecular level, ultimately making them bioavailable to cells. All these processes can
be studied using soft matter physics techniques.

Multiscale Approach to Modeling Food Assembly and Disassembly

A key aspect of this approach is the identification of corresponding length scales and timescales
(Figure 1). Small changes at the molecular level can induce dramatic structural changes with
repercussions from the mesoscale to the macroscale. Consider ice cream as an example. It starts
as an oil-in-water emulsion that is frozen while incorporating air to produce a final structure with
water and sugar crystals dispersed in a mixed emulsion/foam structure. The folding and unfolding
of proteins at the oil–water interface during this process occur at nanometer scales, whereas the
creation and cleavage of disulfide bonds entailed in protein adsorption at the surface occur on
Ångstrom scales. Altering the protein state or solvent environment (e.g., pH or mineral content)
can result in dramatic changes in protein conformation and folding at the emulsion interface.
This in turn may lead to large changes in ice cream macroscale appearance, stability, rheology,
and mouthfeel. Another example relates to how aroma and taste compounds are perceived. One
needs to consider the breakdown of mesoscopic and macroscopic food structural elements by
mastication and how that controls nanoscale interaction between food tastant and neuroreceptors
at the tongue surface. The digestion of the food bolus as it passes through the gut is another
example of a multiscale phenomenon, from the physical breakdown of a macroscale bolus to the
mesoscale reorganization of fat globules with bile salts or protein hydrolysis by specific digestive
enzymes and the molecular-scale transport of nutrients across the gut membrane.
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Figure 1

Molecular interactions accounting for food science phenomena across the length scale and timescale and appropriate particle-based
simulation methods bridged by quality structure–activity relationships (QSARs).

Although a solely multiscale simulation approach to predict the properties of food products
with specific appearance, taste, and nutritive quality is feasible in principle, in practice the sheer
complexity of food renders such an approach unrealistic. However, multiscale approaches com-
bined with data from, for example, human tasters and statistical and machine learning methods,
such as quantitative structure–activity relationships (QSARs) and quantitative structure–property
relationships (QSPRs), can connect the molecular scale with physiological outcomes (Roy et al.
2015) and perceptions of taste (Kier 1972, Shallenberger & Acree 1967). Similar approaches are
used in biomedical contexts, such as relating the multiscale properties of nanomaterials to physi-
ological outcomes in toxicology (Kar & Leszczynski 2019).

In Silico Approaches

Particle-based simulation of soft matter using supercomputers can be used to explore the phenom-
ena and length scales of interest. In this context, the notion of a particle depends on the simulation
method(s) and models appropriate to each length scale and process as follows.

Mesoscale properties of food colloids, such as sols, foams, emulsions, and gels, can be explored
using coarse-grained (CG), particle-based simulations, in which each particle may represent a
few atoms [such as each individual amino acid (AA)] to hundreds of AAs (such as globular pro-
teins treated as rigid bodies). CG models bring simulations closer to experimentally accessible

www.annualreviews.org • Food Protein Structure and Function 367

A
nn

u.
 R

ev
. F

oo
d 

Sc
i. 

T
ec

hn
ol

. 2
02

0.
11

:3
65

-3
87

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
N

or
th

 C
ar

ol
in

a 
St

at
e 

U
ni

ve
rs

ity
 o

n 
08

/1
6/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



FO11CH16_Foegeding ARjats.cls February 28, 2020 17:25

temporal and spatial scales, provided that the dimensionality reduction does not entail the loss
of a key detail or underlying mechanism. In particular, food rheology and microstructure can be
conveniently studied at the mesoscale level. Simulations can address, for example, the coalescence
of emulsion droplets and the influence of adsorbing amphiphilic molecules on these processes
(Morris & Grove 2013, Pink & Razul 2014) and the phase behavior of microemulsions, and pro-
vide data on interfacial tension and morphology of the mesoscopic aggregates (Liu et al. 2015)
and molecular adsorption at interfaces.

Molecular processes such as the unfolding or denaturation of proteins occurring in thermal
processing or the noncovalent binding of tastants to receptors in the tongue can be explored using
classical molecular dynamics (MD), where particles represent individual atoms and the relevant
length scales are Ångstroms. For example, the binding of ligands to sweet or bitter taste receptors
can trigger conformational changes and downstream chemical/molecular signaling that eventu-
ally lead to taste perception. Molecular-level modifications of the tastant can greatly affect such
perceptions.

At even finer length scales the particles may be electrons, protons, and nuclei, and a paradigm
shift of physical method to elucidate the phenomena is required, as quantum-mechanical (QM)
effects may occur. These include the creation and cleavage of covalent bonds in the hydrolysis of
sugars, fats, and proteins and the Maillard browning reaction between AAs and reducing sugars
that gives many foods their distinctive colors and flavors. It can also be used to determine the
protonation and deprotonation of titratable sites of proteins during food processing and diges-
tion. Hybrid approaches are also possible, such as QM/MD (Bolnykh et al. 2019, Guest 2012) or
CG/MD, which combine a fine-scale level of description with a much coarser one.

� As one might expect, as particle size is reduced, the number of particles needed to simulate
a complex system increases, as does the computational cost of the simulation. Consider the
ubiquitous example of pH regulation of protein aggregation. As pH changes, protons trans-
fer from solvent to acidic or basic titratable sites, but this can also allow proteins to fold.
Thus, many different length scales may be involved. Quantum mechanics is in principle rel-
evant, but often approximations are necessary.MD is much more suited to modeling protein
folding, and for large protein complexes, mesoscale modeling is often more useful. At the
densities typical of food complexes,MD is usually the most efficient means to perform real-
istic simulations. An MD simulation involves numerically integrating Newton’s equation of
motion over typicallymillions to billions of small time-steps. For this, the forces on the parti-
cles (typically atoms) of the system must be known. In biology (and therefore food science),
the most frequently used models for interatomic forces, called force fields (FFs), include
CHARMM (MacKerell 2004, MacKerell et al. 1998) and Amber (Ponder & Case 2003).
Depending on the system, Monte Carlo (MC) methods (Binder 1997, Frenkel et al. 2001)
can often provide a more efficient means to simulate equilibrium properties of biophysical
systems, particularly when water can be treated implicitly. Unlike MD,MC simulation only
requires total energies of a system and is free to move particles in ways that may appear
unphysical, provided they are consistent with the system’s thermodynamic constraints.

� The food scientist armed with suitable simulation methods also has to address the issue of
timescales. This issue can be appreciated using the example of the folding or unfolding of
food proteins, which may take place during drying or hydration of food and for which clas-
sical MD is appropriate. In this case, the smallest timescale, associated with the vibrations of
bonds involving hydrogen, is on the order of femtoseconds and determines the size of the
simulation-integrating time-step. However, the timescales associated with folding or com-
plex formation can be on the order of milliseconds or even seconds. A host of statistical
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sampling techniques known as rare-event methods exist to address problems involving such
different timescales,whether the simulationmethod used is quantum, classical, or mesoscale.
They surmount the rare-event problem through the application of biasing forces or energies
to place the system in configurations where such events are likely and then correct mathe-
matically for the effects of the bias. This requires a set of order parameters that determine
the locations of such events. When the number of order parameters is no more than three
or so, a variety of statistical techniques can be used to build the corresponding free-energy
surface. One such technique is well-tempered metadynamics (Barducci et al. 2008). When
the number of order parameters is large, a method known as temperature-accelerated MD
(TAMD) (Abrams & Vanden-Eijnden 2010) may be appropriate. This method couples the
order parameters to a hot thermostat to pull the system out of free-energy wells where it
might otherwise be stuck. Another approach that can be combined with experimental data
having molecular resolution, such as nuclear magnetic resonance (NMR), is steered MD,
which dynamically guides the system to the regions that need to be sampled. Several so-
phisticated algorithms, such as the String method (Maragliano et al. 2006, Vanden-Eijnden
& Venturoli 2009), also exist to find the most likely reaction path of thermodynamic pro-
cesses. An important and complementary methodology comes from computer science: Ma-
chine learning is increasingly being combined with particle-based simulation at all the above
length scales.Not only is it facilitating the modeling of complex phenomena themselves but,
in some cases, allows particle-based properties to be related to physiological outcomes such
as toxicity or perception of taste as expressed by panels of human tasters.

Quantitative Structure–Activity Relationships and Physiological Models
for Predicting Complex Functionalities

The molecular-level interactions that determine food component association, transport, and ab-
sorption at long timescales are complex and difficult to model in full detail. An increasingly viable
alternative is to relate molecular features to the specific functionality, such as taste, using QSARs.
QSARs are analytical expressions representing correlations between the activity of a substance and
quantitative chemical attributes representing the molecular features of the substance (Roy et al.
2015). The termQSPR is also used.QSARs and QSPRs are often developed using statistical tech-
niques, with some modern QSARs/QSPRs being derived using machine learning methods. The
features that can serve as inputs toQSAR/QSPRmodels range from very simple zero-dimensional
(0D) features, such as those based on the empirical chemical formula (e.g., number of atoms, num-
ber of bonds, molecular weight), all the way to 7D features involving real target-based receptor
model data (Kar & Leszczynski 2019, Roy et al. 2015). The increasing feature dimensionality is
a measure of the complexity of the data required (see Figure 2). For example, 1D features in-
volve information based on the chemical fragments that make up the molecule (similar to classical
group-contribution methods), 2D features include information based on the molecular connec-
tivity, 3Dmethods use information based on the three-dimensional structure of the molecule, and
descriptors beyond 3D use more complex information such as sets of molecular conformations,
solvation, protonation states, and even models containing information about the biological targets
involved. Other descriptors used in describing molecule reactivity, or adsorption on solid surfaces
or interfaces, include the electronic properties (highest occupied/lowest unoccupied molecular
orbitals, polarizability), charge, van der Waals (VDW) surface energy, or binding energies of se-
lected sets of representative molecule fragments. These have been used to predict nanoparticle
(NP) cell uptake and toxicity (Kamath et al. 2015, Liu et al. 2015, Xia et al. 2011).

This article is intended as an overview of the possibilities of particle-based simulation and its
combination with the QSAR/QSPR models to address problems in food science. We review the
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Figure 2

A schematic showing some of the types of molecular descriptors, such as molecular connectivity, formula,
geometry, chemical fragments, physicochemical properties, and biological activity, that can be used to fit a
quantitative structure–activity relationship (QSAR)/quantitative structure–property relationship (QSPR)
model to make predictions.

simulation toolbox for the food scientist and briefly describe particle simulation methods along
with the most popular and potent open-source, freely available software packages. These method-
ologies are illustrated with representative cutting-edge examples. We conclude our discussion by
surveying some of the current challenges for particle-based simulation in food science.

MOLECULAR SIMULATION TOOLBOX FOR FOOD SCIENTISTS

The previous discussion has summarized how different simulationmethods can help address prob-
lems involving different length scales and timescales within food science and how they can be
augmented/complemented by QSAR/QSPRmodels. In practice, simulating systems consisting of
hundreds, thousands, or even millions of particles for a billion time-steps is daunting. Although
the brave may choose to develop their own in-house simulation engines, most users and, indeed,
developers rely on free, community-developed software packages, which are becoming increas-
ingly user-friendly and adaptable, including the Groningen Machine for Chemical Simulations
(GROMACS) (Berendsen et al. 1995, Pronk et al. 2013), Amber (Case et al. 2005, Salomon-Ferrer
et al. 2013), Open Molecular Mechanics (OpenMM) (Eastman et al. 2017), Nanoscale Molecular
Dynamics (NAMD) (Phillips et al. 2005), and the Large-Scale Atomic/Molecular Massively Par-
allel Simulator (LAMMPS) (Plimpton 1995). All of these can run on hardware ranging from good
laptops to massively parallel supercomputers. The first four engines are used primarily for biosys-
tems and include tools to facilitate biosystem preparation, simulation, and analysis. LAMMPS,
although capable of simulating biosystems, is more often used for advanced materials and, re-
cently, even quantum problems in the context of machine learning. All are capable of simulating
both thermodynamic equilibrium properties (i.e., free-energy properties) and dynamical/kinetic
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properties. Most of the MD engines mentioned above are also capable of running CG and MC
simulations. In addition, several other engines have been built specifically for CG and multiscale/
hybrid simulations, including Espresso (Weik et al. 2019) and the Daresbury Labs mesoscale sim-
ulation package (DL-MESO).Hybrid molecular CG schemes have also been developed (Krekeler
et al. 2018, Tarenzi et al. 2019) in which critically important fine-scale details are treated atomisti-
cally, with all other features treated at a CG or even continuum level. Many MD engines include
rare-event software and can also be interfaced with software such as the Plugin for Molecular
Dynamics (PLUMED) developed specifically for rare-event methods (Bonomi et al. 2009). In ad-
dition to their use for characterizing thermodynamic equilibrium properties, rare-event methods
can be used for kinetics such as estimating reaction and nucleation rates (Casasnovas et al. 2017,
Swenson et al. 2019).

The power of simulation to investigate the molecular and mesoscale mechanisms taking place
in food materials is best shown through practical examples. As a first example, consider the case
of pH-controlled immobilization and release of biomolecules.

pH-Controlled Immobilization and Release of Biomolecules
in Whey Protein Isolate–Based Microgels

Whey protein isolate (WPI) can be formed into microgels used as matrices to immobilize and
release a variety of bioactives. These mesoscale structures can function as smart delivery systems
in which uptake and release of bioactives are facilitated by environmental pH changes (Egan et al.
2014). A semiempirical analytical model to predict the conditions of attractive and repulsive in-
teractions between the constituents of the microgel–bioactives complex can be made based on
the electrostatic charge expected for each constituent given their pKa values and the solution pH.
Although uptake by these microgels of single AAs (histidine, arginine, and lysine) was adequately
described by this simple model, interactions with either cationic KHIQK or anionic WENGE
peptides were only partially described. In particular, although the maximum experimental inter-
action is well predicted, some attractive interaction is observed when both WPI microgel and
peptide carry a similar net charge, in sharp contradiction with Coulomb’s law. This attraction on
the wrong side of the isoelectric point (pI) has been reported for other experimental systems, such
as quinoa proteins–carrageenan (Montellano et al. 2018).

Simulations can improve our ability to control and release bioactives from microgels, or any
microencapsulation process, in several ways. First, predicting the pKa value of large proteins can
be extremely difficult experimentally, particularly if they can fold/unfold as solution conditions
change. Second, important interactions take place through different electrostatic mechanisms,
such as charge fluctuation (Barroso da Silva & Jönsson 2009; Barroso da Silva et al. 2006, 2014;
Jönsson et al. 2007) and dipole interactions (Barroso da Silva et al. 2016), that are difficult to
elucidate experimentally. Conversely, molecular simulation methods that incorporate pH effects
can address these problems, including the puzzle of complexation on the wrong side of pI (Barroso
da Silva & Dias 2017, Barroso da Silva et al. 2019, Chen et al. 2014), in good agreement with
experiment.

The first few steps of simulation.The first step of a simulation is preparing its initial condi-
tions. For simulations at the molecular level, the best initial structures are usually experimentally
determined, either by X-ray or NMR, and are available in the Protein Data Bank (PDB) (Berman
et al. 2014).When experimental structural information is lacking, estimates can often be obtained
using bioinformatics, usually through homology modeling (Leach 1996) or machine learning ap-
plied to PDB libraries, to statistically predict likely structures employing software/servers such as
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I-TASSER (Yang et al. 2014), SWISS-MODEL (Biasini et al. 2014), and INTFOLD (McGuffin
et al. 2019). Large proteins and protein adducts are generally too complex to predict using bioin-
formatics in isolation, but they can often be built from smaller ones predicted from bioinfor-
matics. These are then stitched (i.e., bonded) together using homology tools such as Modeller
(https://salilab.org/modeller/), although the task of determining the native structure can be very
complex. For example, beta-lactoglobulin (β-lac), a milk protein, consists of 160 AAs, each com-
prising some 20 atoms, and is already too complex to be realistically simulated from arbitrary
initial configurations.

The second step involves adjusting components of the complex, such as the inclusion of coun-
terions, solvation, and protonation/deprotonation of titratable sites [constant-charge or constant-
pH (CpH) approach (Barroso da Silva & Dias 2017)]. Also needed for a more realistic description
of the real systems is the possible creation of bonds that may exist within and between proteins,
such as between cysteine residues in the case of WPI microgels or between glycans and proteins.
Although it is often difficult to know which titratable sites should be protonated or deprotonated,
or where bonds should be created or broken, powerful user-friendly software tools to make such
changes are available for constant-charge simulations, including PROPKA (Olsson et al. 2011)
and/or the CHARMM-GUI ( Jo et al. 2008).

The third step is the actual simulation of the complex. Molecular simulations require interac-
tion energy models (FFs), as mentioned above (see also van Gunsteren & Berendsen 1990, Leach
1996, Schlick 2010), and suitable molecular simulation software. In some instances, steps 2 and 3
can be intertwined, as illustrated below.

Constant-pH simulation methods for food proteins. Predicting molecular-level changes to
protein complexes or other macromolecules occurring as pH and salt concentration change can
be extremely difficult, from both experimental and simulation/theoretical perspectives, as the
binding/unbinding and transport of protons between titratable sites are fundamentally quantum
effects. Even assuming that these effects can be adequately modeled considering only the quantum
ground state, a realistic quantum simulation can handle at most a tiny peptide consisting of 1–3
residues together with water and relevant ions (such as Na+, K+, Cl−). Because proteins of interest
are generally far larger, a wide variety of approximate simulation methods have been developed
over the past two decades to describe their molecular properties and the conditions that control
their aggregation as complexes. A great variety of CpH simulation methods are available to study
biomolecular phenomena (Barroso da Silva & Dias 2017; Barroso da Silva & MacKernan 2017;
Barroso da Silva et al. 2019; Bennett et al. 2013; Chen & Roux 2015; Delboni & Barroso da Silva
2016; Donnini et al. 2016, 2011). Here, we describe two methods that involve different CG levels.
In both methods, each titratable site is either an acid or a base. In the absence of interactions be-
tween sites, the probability of a site being deprotonated or protonated is entirely determined by
the pKa value of the isolated site and the pH of the solvent. In reality, titratable sites interact pri-
marily through Coulomb interactions and are affected by all other charges. In the first approach, a
mesoscale semiempirical description, several physical chemistry features are considered, including
the empirical pKa values of the isolated sites (usually pKa values of the free AA in solution), the
charges due to possible transfers of protons to/from sites, the location of sites, the salt concen-
tration (treated implicitly), the temperature, and, as a phenomenological parameter, the solution
pH (Barroso da Silva et al. 2006, Srivastava et al. 2017, Teixeira et al. 2010). The second approach,
known as CpH MD simulations, uses a finer level of description in which the partial charges and
dynamical/instantaneous positions of each atom are considered. The approach uses an atomistic
representation of water, added salt, protons, and counterions, ensuring that the system remains
charge neutral overall (Donnini et al. 2016, 2011).
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Although the two approaches have certain similarities, in practice they are very different. The
statistics for the first approach are generated through MC sampling and, unlike the second, can-
not account for structural changes such as protein folding/unfolding, because of the use of a fixed
protein structure. However, it has three distinct advantages. First, empirical data can be easily
incorporated; second, the system size that can be investigated is very large; and third, the con-
vergence rate of sampling can be rapid, enabling the calculation of interaction free energies at
different experimental conditions (Srivastava et al. 2017). Furthermore, notwithstanding its sim-
plicity, it turns out to be surprisingly accurate for several (but not all) proteins, RNA, and DNA
systems (Barroso da Silva & Dias 2017, Barroso da Silva & MacKernan 2017).

The second approach has a distinct advantage over the first when working with flexible macro-
molecules. An example is the implementation of a CpHMD (Donnini et al. 2011, 2016) based on
the λ-dynamics approach (Kong & Brooks 1996, Lee et al. 2004). The protonation coordinate (λ)
is a continuous degree of freedom, varying between 0 (protonated site) and 1 (deprotonated site).λ
can be imagined as a particle that is incorporated in the interaction potential of the system and fluc-
tuates between the protonation states of a site. The pH dependency of protonation/deprotonation
is included in the potential function using a phenomenological description dependent on the ex-
perimentally determined pKa values of the isolated sites. At each step during the simulation, the
force acting on λ is computed as it is for other particles in the system. The coupling of sites is
directly accounted for through the potential energy of the system.

In this approach, protons are not modeled explicitly. Therefore, when the protonation state
of a site changes, the total charge of the system (protein and solvent) changes as well, and the
system is no longer neutral. Because this may lead to artifacts in MD simulations (Hub et al.
2014), protonation of a site on the protein is usually coupled to deprotonation of a counterion in
solution (Chen & Roux 2015, Chen et al. 2013, Dobrev et al. 2017). Such an approach becomes
laborious when the number of titratable sites is large. In proteins with many sites, however, the
fluctuation of the overall protein charge is typically much smaller than the number of titratable
sites. Therefore, a small proton buffer can be introduced such that a change in the total number
of protons of the protein is compensated by an opposite change in the number of protons in the
buffer. This reduces the computational effort without affecting the relative free energies of the
different charge states. Successful examples of applications can be found in the literature (Bennett
et al. 2013, Donnini et al. 2016).

Taste Receptors and Glycophores

One key molecular event contributing to consumers’ likes and dislikes of foods is the interaction
between tastants and their target receptors in the tongue. Taste, combined with the other senses
of smell, sight, hearing, and touch (texture), provides an overall sensory evaluation of food. In
addition, bitter taste receptors have also been found elsewhere in the human body, for example,
in the palate, brain, upper esophagus, and larynx, and are associated with a variety of diseases
(Alfonso-Prieto et al. 2019). The five basic tastes salty, sweet, bitter, sour, and umami are sensed
through different receptors. Ion channels are responsible for the perception of saltiness, whereas
the nature of the receptors for sour tastants is still an object of debate. G-protein-coupled recep-
tors (GPCRs) detect sweet, bitter, and umami. GPCRs are transmembrane proteins composing
three domains: the extracellular domain (ECD), which is outside the cell (ligands such as tastants
or odorants bind to it); the transverse membrane domain (TMD); and the intracellular domain
(ICD), to which cognate G-proteins are attached. Agonist ligands (e.g., tastants) binding to the
receptor result in conformational changes that may lead to release from the ICD of parts of the
G-protein, leading to a complex set of downstream intracellular signaling events. As GPCRs
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ln l
MM

CG

Figure 3

Multiscale hybrid molecular mechanics (MM)/coarse-grained (CG) simulation approach for human
G-protein-coupled receptors (hGPCRs). Here, a fine level of detail is retained for the binding region of the
receptor and a coarser level of detail is used for the rest of the system. Figure courtesy of Ksenia Korshunova.

function at a molecular level, simulation can be used to reveal aspects of structure and function
and facilitate the development of new tastants.

The main preparatory steps required for such a simulation are the same as those described for
WPI microgels. However, additional steps are often required to prepare a detailed taste-receptor
system, as accurate information regarding the 3D structure for most human GPCRs (hGPCRs)
is unfortunately lacking. This is the case for some 400 receptors involved in chemical sensing,
representing about half of all hGPCRs, and includes those devoted to taste and smell sensing.
Bioinformatics predictions are poor here because of the lack of good templates, as applying X-ray
crystallography to transmembrane proteins is challenging (Fierro et al. 2017).

A receptor model may be built by stitching together the ECD,TMD, and ICD using homology
modeling software such as Modeller, with individual domains extracted from either PDB, or using
bioinformatics tools mentioned above (see Figures 3 and 4 for illustrations). Although some G-
protein-coupled taste receptors function as monomers (e.g., for bitterness), others may function
as dimers, and for such cases (Hiller et al. 2013) the corresponding GPCR pair may need to flank
each other.Next, themembrane–GPCR complexmust be built.Themembrane is usuallymodeled
as a lipid bilayer created with hundreds of lipid molecules, which must be appropriately placed
about the transcellular domain of the GPCR dimer (or oligomer). Various packages, for example,
Membrane Builder, are available to build protein membrane complexes (Wu et al. 2014). Third,
water and salt at physiological levels are added and the protonation state of each residue is suitably
adjusted using, for example, the PROPKA server (Rostkowski et al. 2011). After these steps, the
receptor complex typically contains some 500 residues, a lipid bilayer, water, and salts, amounting
to more than 200,000 atoms.

The next step is usually determining the equilibrium structure(s) of the GPCR complex, which
is often very challenging, requiring sophisticated sampling methods and significant computational
resources.We shouldmention, however, that there are ingenious ways to sometimes avoid some or
all of the above tasks.One example is based on the fact that the general structure ofGPCRproteins
is known, and the ICDs are not thought to vary greatly within each GPCR family. Therefore, it
can be argued that only the ECD needs to be known accurately, as it provides the binding sites for
ligands and is typically much more variable than the other domains. Following this logic, one can
use bioinformatics and multiscale simulation to predict the pose of bitter taste receptors’ agonists.

Alternatively, a multiscale, hybrid molecular mechanics (MM)/CG simulation approach tai-
lored for GPCRs can be used (Alfonso-Prieto et al. 2019, Sandal et al. 2015), which describes
explicitly the ligand, its binding site, and a solvation sphere, as illustrated in Figure 3. The rest of
the protein and the bulk solvent are included using a simplified CG representation (Tarenzi et al.
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Loop 1

Loop 3

Loop 2

Loop 4

Loop 5Loop 5Loop 5

Figure 4

The graphic representation of the GLP-1R (glucagon-like peptide-1 receptor). The red loops are
accelerated by temperature-accelerated molecular dynamics. In addition to the loops, the mass center of the
extracellular domain (ECD) is accelerated (yellow region), the intracellular domain (ICD) is the lower part of
the protein in the vicinity of and including loops 2 and 4, and the transverse membrane domain lies between
the ECD and ICD. The lipid membrane, water, and salt ions are not rendered for clarity.

2019, 2017). The method allows for sampling of longer timescales, crucial for GPCR homology
models with low sequence identity with the template (Rayan 2010).

Probing the structure of G-protein-coupled receptors close to equilibrium. As discussed
above, rare-event methods can be used to explore relevant conformations of the GPCR complex
close to and at equilibrium through the application of artificial biasing forces, provided suitable
order parameters are known. As an example, consider a complex consisting of two β-lac molecules
in water and salt. Depending on the solvent conditions, the pair may bind together or may dissoci-
ate. The simplest order parameter to characterize this would be the distance between the centers
of mass of the proteins, but others describing, for instance, the solvent structure in the vicinity of
the pair may be needed to fully characterize the dissociation process. Identifying suitable order
parameters for GPCR proteins is more difficult, as illustrated by a representative and important
example, GPL-1R (see Figure 4), which is involved in the control of blood sugar via secretion of
insulin. Patients with type 2 diabetes have a reduced ability to produce GLP-1, and its adminis-
tration to patients is not practical because of its very short half-life in the body. GLP-1 analogs
with much longer lifetimes are currently used in treatment, but there are concerns that most effec-
tive ones may be carcinogenic. Interestingly, experimental findings from food and health sciences
indicate that certain milk peptides may also act as GLP-1 analogs, but to be exploitable further
confirmatory evidence is needed at a molecular level. Acquiring confirmatory evidence requires
representative structures of the receptor that are close to equilibrium,which first entailed building
the GPCR complex as described above.

As these are expected to be associated with very flexible regions of the receptor,we used TAMD
applied to the most flexible regions (mass centers of five loops and the ECD) of the receptor (see
Figure 4) and a schedule of heating and cooling of the TAMD temperature to drive the receptor
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to low-energy conformations (Lucid et al. 2013) and collect a very large number of representative
snapshots of the complex.This data, in turn, allowed us to perform a demixed principal component
analysis (DPCA) of the motion of dihedral angles of the protein backbone to extract the dominant
(slowest) modes of DPCA, which were, in turn, used to estimate the corresponding free energy
surface and the slowest dynamical modes of the receptor.

Glycophores and sweet taste. A useful QSAR to study taste perception is the glycophore the-
ory.The perception of sweetness involves complex molecular interactions between foods and taste
receptors in the tongue. Nevertheless, there are known chemical motifs that lead to sweet taste,
or glycophores. In 1967, Shallenberger & Acree (1967), introduced the AH-B theory of sweet-
ness, an early QSAR positing that sweet taste results from a basic structural unit common to all
sweet molecules. The unit consists of two electronegative atoms, A and B, one of which (A) has
a hydrogen atom attached to it. AH is therefore a proton donor and B a proton acceptor. This
theory was later refined by Kier (1972), who observed that a third, polarizable moiety X should
also be present to produce a sweet taste. Glycophores provide a quick but powerful route to assess
sweetness at the molecular scale without the need for dealing explicitly with taste receptors and
can be used in combination with enhanced sampling and machine learning techniques to discover
new sweeteners. In the language of descriptor dimensionality discussed above, this would be an
example of a 3D descriptor.

The glycophore theory has been a powerful tool to understand sweet taste behavior, even in
complex systems. A recent example is the work of Chopade et al. (2015) investigating the unusual
behavior of the steviol glycoside rebaudioside-A (Reb-A), a high-potency noncaloric sweetener
extracted from the leaves of Stevia rebaudiana. Reb-A exhibits a nonmonotonic dependence of
sweetness with temperature, with maximum sweetness close to 0°C and minimum around 40°C,
beyond which sweetness increases again. The work combined 2D NMR techniques and steered
MD simulations, in conjunction with the glycophore theory, to show that changes in intramolec-
ular hydrogen bonding patterns with temperature result in different numbers of AH-B-X motifs
being presented by Reb-A in solution, following the same trend observed in taste panels with tem-
perature (Figure 5). This illustrates the power of combining molecular simulation,QSPRmodels,
and experiments to link taste perception to the molecular physics of sweet molecules.

Protein-Interface Interactions and Nanoparticle Uptake

Liquid and gel-like foods as well as pharmaceutical products use protein-based emulsions (Ubbink
2012), in which proteins provide a biocompatible, stabilizing coating and the core can be used
to encapsulate bioactive components. The behavior of these systems is determined in part by the

a b c

Figure 5

Snapshots from molecular dynamics simulations of rebaudioside-A, highlighting AH-B-X motifs presented at different temperatures.
Motif 1 only appears at low temperature, whereas motif 2 is present at low and high temperatures, but not at the sweetness minimum.
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properties of the stabilizing interfacial film.Understanding protein structure at liquid interfaces is
key for controlling emulsion formation (He et al. 2013) and stabilizing the dispersed phase against
flocculation and coalescence. In food processing, molecular adsorption and fouling on equipment
can cause major problems, particularly in the dairy industry (Wilson 2018). Because of its ability
to access length scales characterizing interfacial systems, mesoscale simulation is ideally suited to
the study of essential food components at interfaces.

Molecular dynamics investigation of protein behavior at liquid interfaces.The conforma-
tions that proteins adopt at liquid interfaces are a key factor determining the behavior of protein-
based emulsions. Adsorption on interfaces affects the conformation, as hydrophobic AAs normally
residing in the protein core partition into the hydrophobic medium. The resulting protein con-
formations determine their interfacial aggregation and assembly. To test the ability of molecular
simulation to investigate protein structure at liquid interfaces, recent work studied the confor-
mations of two peptides derived from myoglobin (PDB_ID 1MBN) at the air–water interface
(Cheung 2016). Previous experimental work (Poon et al. 1999) showed that one of these peptides,
consisting of the first 55 residues of myoglobin, was an effective emulsifier, whereas the other
(residues 56–131) was less effective.MD simulation with GROMACS, using replica exchange and
solute tempering to enhance conformational sampling in pure water at 25°C, showed that these
two peptides adopt various different conformations at the air–water interface. Peptide 1–55 pref-
erentially adopts extended conformations, allowing it to form a well-defined monolayer at the in-
terface. Conversely, peptide 56–131 predominantly adopts compact conformations, which results
in a less strongly bound interfacial layer, explaining its lower emulsification ability. Simulations
of the globular proteins α-lactalbumin and lysozyme showed similar results (Cheung 2017), with
α-lactalbumin (the more effective emulsifier) more frequently adopting extended states.

Another factor determining the behavior of proteins at interfaces is their interfacial adsorption
strength. Simulation has been used to determine the adsorption strengths of the hydrophobins
HFBI and HFBII at water–octane interfaces (Cheung 2012). The adsorption free energy for the
hydrophobins was calculated using steered MD with LAMMPS (Plimpton 1995). This showed
that the adsorption free energy was on the order of 102–103 kJ/mol, indicating essentially irre-
versible adsorption. These proteins have similar sequences and solution structures but show dif-
ferent characters (HFBII being slightly hydrophilic and HFBI slightly hydrophobic). Like most
hydrophobins, these proteins have a large hydrophobic patch on their surface. To determine the
effect of this patch on their interfacial behavior, simulations of HFBII pseudo-proteins with iden-
tical interactions (either hydrophilic, hydrophobic, or average) between all protein residues and
both solvents were performed. Uniformly hydrophilic and hydrophobic pseudo-proteins prefer-
entially resided in the water and octane phases, respectively. The average protein, however, was
surface active but slightly hydrophobic, contrary to the native protein.

Protein–solid surface interactions. In food processing equipment, adsorbed proteins may cre-
ate an insulating layer between the heater and the bulk material, reducing the heating efficiency
(Bansal et al. 2006). This leads to inefficient sterilization and pasteurization specifically in milk.
Furthermore, in filtration processes, protein aggregates deposited on the surface of the filter can
block the flow, thus greatly affecting the filter throughput capacity. Enabling control over these
processes requires a quantitative understanding of the interactions between biomolecules and ma-
terials used in food processing.

Because of their large molecular size and surface charge, the electrostatic and VDW inter-
actions of proteins with solid surfaces are very strong, with typical adhesion energies of 102–
103 kJ/mol (Power et al. 2019), thus making the adsorption process practically irreversible.
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Furthermore, the amount and diversity of adsorbed material prohibit its direct atomistic simu-
lation. In these conditions, the size, shape, dipole, and charge distribution on the protein are the
most important parameters determining its ability to stick to the surface. Protein conformations,
in contrast, are not expected to strongly affect the binding process.

A wide variety of models have been proposed to describe competitive adsorption of proteins at
solid interfaces (Bellion et al. 2008, Lopez et al. 2015,Oberle et al. 2015, Rabe et al. 2011,Vilanova
et al. 2016, Vilaseca et al. 2013). The simplest models treat proteins as single spherical beads
with sizes reflecting their hydrodynamic radius. Although such models allow easier numerical
and analytical solutions, they cannot provide any information on the preferred orientation of the
molecule at the surface, which is needed to estimate the amount of adsorbed protein and of the
structure of the corona. To achieve higher resolution without making the model too complex,
one can use the fact that all proteins contain multiple copies of the same AAs, and multiple lipids
contain the same alkyl groups. In this approach, one can precalculate the interactions of each
repeat unit with the surface and quickly evaluate the potential energy for the entire protein as a
sum of energies of nonbonded (VDW + excluded volume) and electrostatic interactions between
the AA and segments of the surface. The outer layer on the solid surface is directly in contact with
the solvent, and the interactions with the protein residues must include solvent effects and the
chemical composition, charge, and hydrophilicity/hydrophobicity of the substrate. Therefore, the
interaction of each residue with the nearest part of the surface should include these details (Brandt
et al. 2015). The remaining part of the interaction, from the parts not in direct contact, can be
evaluated using mean-field and continuum approaches from colloid science (Power et al. 2019).

Although strong assumptions such as pairwise additivity of the AA-surface potentials may af-
fect the absolute adsorption energies, they are still robust in relative terms and allow for screening
thousands of molecules, ranking them on the basis of how strongly they attach to the specific sur-
face. This ranking constitutes a unique fingerprint of the material’s surface, which can be related
to its activity toward food components. Using the same bottom-up approach, one can engineer an
ultra-CG model [united AA (UAA)] that closely reproduces the total protein–protein interaction
energy profiles obtained in the united-atom (UA) model (Power et al. 2020). The UAA model
typically requires 5 to 30 UAAs to capture the geometry and reproduce the adsorption character-
istics of the original protein. This second coarse graining can be based on the mass distribution in
the complete protein and then be optimized by tuning the protein diffusion coefficients to those
obtained using the UAmodel. The interaction potentials with the surface can be derived from the
UA interaction map by least-squares minimization of the deviations between the UA and UAA
models. The UAAmodel is then suitable for modeling competitive protein adsorption and forma-
tion of the protein corona. Examples of the all-atom, UA, and UAA models for the same protein
are shown in Figure 6.

Recent studies using this technique have found mean adsorption free energies on metals like
gold and silver, as well as on metal oxides of the order of 102–103 kJ/mol (Power et al. 2019) for
common globular proteins, and were in agreement with the Vroman effect, i.e., the replacement
of small and abundant proteins on the surface by larger ones during the competitive adsorption
process (Vroman & Adams 1969).

Nanotechnology in food.Various nanoscale technologies are used to process, package, and en-
hance food materials (Chellaram et al. 2014). NP additives can be in the form of nanoemulsions
for enhanced delivery of nutrients or nanoemulsions to serve as excipients (stabilizers) for longer
shelf life and preservation of color, texture, and flavor. One of the primary factors in the design of
NPs for food applications is the oral bioavailability (BA) of bioactive compounds in food. There
is a need to better understand the fate of bioactive compounds during their passage through the
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a b c

Figure 6

(a) All-atom, (b) united-atom, and (c) united–amino acid representations of bovine β-lactoglobulin A
(PDB_ID 1CJ5). The united-atom model is used to model the whole protein adsorption on solid foreign
surfaces, while the united–amino acid model is necessary to model competitive adsorption of proteins. In a
multiscale modeling framework, each coarse-grained model is parametrized using the more detailed model
to preserve their molecular specificity.

gastrointestinal tract (GIT) to formulate optimal excipient foods to enhance their oral BA. The
science behind NP transport through GIT is a multiscale problem. An integrated approach to de-
scribe the transport mechanism is to account for the main factors limiting the oral BA of bioactive
compounds (He & Hwang 2016, Salvia-Trujillo et al. 2016). The model can be expressed quali-
tatively through the equation BA = B∗ A∗ T∗. Here, BA is the oral bioavailability of a particular
bioactive compound, B∗ is the bioaccessibility, A∗ is the absorption, and T∗ is the molecular trans-
formation (McClements et al. 2015). While the first two terms, B∗ and A∗, describe the transport
and thermodynamic factors in the accessibility and absorption processes, the third factor T∗ ac-
counts for the fraction present in the active state after any changes in the molecular structure that
might have occurred during digestion. Factors determining B∗, A∗, and T∗ are governed by the
fundamental mechanisms by whichNPs interact with human physiology.Themechanisms involve
(a) overcoming transport barriers such as through mucus layer, tight junctions between epithelial
cells, and bilayer membranes of cells; (b) interaction of NPs with active transporters and cellular
efflux pumps; and (c) the transformation of bioactive compounds into more or less active forms
because of biochemical or metabolic mechanisms. Analogous multiscale considerations in vascular
transport of NPs for drug delivery have been discussed under the umbrella of pharmacokinetic
and pharmacodynamic models (Ayyaswamy et al. 2013, Li et al. 2010). As shown in other fields
such as drug delivery (Blanco et al. 2015),multiscale modeling (Farokhirad et al. 2017) can serve as
a quantitative platform for mechanistic models that account for BA and help guide rational design
of NPs in food nanotechnology. Finally, a clearer view of the potential hazards associated with
the functionality and applicability of NPs in food is imminently needed to establish regulatory
policies on the safety of food nanotechnology (Dimitrijevic et al. 2015, Gallocchio et al. 2015).
The progress in the safety assessment of nano-enabled foods can be achieved via knowledge of
the relationships between structure and activity of the NPs.

Protein–Sugar Interactions

Two general types of interactions can occur between proteins and saccharides corresponding to
the reducing and nonreducing nature of the sugar. The former, essentially the Maillard reaction,
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starts with a carbonyl (possibly from an aldo or keto sugar) interacting with a primary amine (often
from a protein). This covalent interaction starts a cascade of reactions producing, e.g., aroma
compounds, reducing compounds, and pigment. Conversely, noncovalent interactions between
nonreducing sugars and proteins are involved in phenomena such as those that preserve protein
structure under conditions of low water content. In this section, we discuss recent studies on dry
heating of dairy proteins, where even residual amounts of reducing sugars can lead to dramatic
changes in protein functionality. We then present MD studies exploring noncovalent protein–
sugar interactions (specifically trehalose).

Reducing sugar–protein interactions. As recently reviewed by Guyomarc’h et al. (2015),
studies have shown that dry heat–induced denaturation/aggregation of whey proteins results in
extensive protein aggregation, with the quality of the final protein ingredient depending on both
the extent and size of protein aggregates formed during heat treatment, itself highly sensitive to
the physicochemical conditions of the medium and potentially the protein ingredient history. For
example, the extent of heat treatment (time and temperature; Norwood et al. 2017), the water
activity, and the pH of the powder (Gulzar et al. 2011) all seem to dramatically affect the reaction
rate and the nature of the end products formed. In this context, the impact of residual sugars
found in protein ingredients has been scarcely investigated. Although industrial WPI have highly
variable lactose contents, with most powders containing 2% lactose or less, most concentrates
have lactose contents above 3.5%, with a few as high as 10%, and questions remain about the
impact of these sugars on the protein aggregation mechanism (Gulzar & Jacquier 2018,Norwood
et al. 2017). Although dry heating results in extensive protein aggregation, and the size and stabil-
ity of aggregates depend on the sugar content and covalent crosslinks (X–X) other than disulfide
bonds (S–S), the exact nature of these interactions is not known. This is illustrated in Figure 7.

The bond creation and cleavage associated with reducing sugar–protein interactions areQM in
nature, yet the computational cost of a quantum simulation of an entire sugar–protein complex is
prohibitive. Fortunately, indirect treatments are increasingly possible and includemixedQM/MM
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Figure 7

Illustration of the impact of residual sugars on the size and extent of dry heat–induced denaturation/aggregation of whey proteins.
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approaches (Lu et al. 2016), in which only a small region where quantum effects are important is
treated at a quantum level, and the others are treated in the same way as a standard MD.

MD simulations using neural network–based potentials can also simulate large quantum sys-
tems (Singraber et al. 2019) but are currently limited to systems having nomore than four different
atomic species, precluding their use for the Maillard reaction. However, this limitation may soon
be overcome. It is also possible to glycolate specific residues within a protein using software such
as the CHARMM-GUI ( Jo et al. 2008) and explore the properties of the resulting system. Such
a pragmatic approach is reasonable when one knows which residues are glycosylated.

The protective effects on proteins of nonreducing disaccharides.When proteins are em-
bedded in highly concentrated solutions or glassy matrices of nonreducing disaccharides such
as sucrose and, in particular, trehalose, they are preserved from damage due to freezing, heating
(Ohtake & Wang 2011), or dehydration, resulting in the preservation of coloration and aroma in
related products. As a consequence, trehalose is increasingly used in the food industry, pharma-
ceuticals, and medicine.

Trehalose effectiveness has been related to its high glass-transition temperature (Green &
Angell 1989) or to specific interactions with biomolecules involving a substitution or modifica-
tion of their hydration layers [e.g., water replacement (Carpenter & Crowe 1989) or entrapment
(Belton &Gil 1994) hypotheses]. Furthermore, the high viscosity of sugar matrices inhibits large-
scale protein motions that lead to structural damage, inactivation, and denaturation (Sampedro
& Uribe 2004). The above mechanisms are not mutually exclusive and have been deduced from
experimental observations on concentrated solutions or glassy host matrices containing trehalose,
sucrose, maltose, and mono- and polysaccharides at different hydrations, temperatures, and com-
positions (Cordone et al. 2015,Giuffrida et al. 2018).Kinetic and thermodynamic aspects have also
been addressed (Semeraro et al. 2017), with the goal of understanding the preserving mechanisms
from the atomistic level to the supramolecular and macroscopic levels.

The steps involved in simulating nonreducing sugar–protein complexes in solution are the
same as those described in preceding sections. MD simulations have to date provided hints about
the effects of trehalose on protein internal dynamics, indicating a key role of residual water on
local flexibility. The analysis of solvent partitioning and hydrogen bond (HB) patterns at the
protein–solvent interface (Cottone 2007) suggests that preservation effectiveness is mostly due
to the sugar’s ability to anchor a thin water layer at the protein surface, preserving the native
solvation. Here, water molecules bridge protein and matrix dynamics, reducing protein nonhar-
monic motions, which results in stabilization of the protein conformation compared to water-
solvated systems. However, a few direct protein–trehalose HBs have been detected at very low
hydration, allowing visualization of the interchange between water entrapment and water replace-
ment models, depending on hydration. To this end, standard sampling state-of-the-art MD simu-
lations have proven adequate, provided a careful choice of FFs for all the components (Weng et al.
2019).

CONCLUSION AND OUTLOOK

The power of particle-based simulation to elucidate molecular processes taking place in food,
from processing and storage to taste, BA, and digestion, has grown dramatically because of im-
provements in molecular and CG FFs, rare-event methods, mesoscale and multiscale representa-
tions, software and methods for system preparation, fast simulation engines that scale extremely
well with increasing numbers of computing cores/threads, and inexpensive massively parallel
computers. A highly promising development is the emerging hybrid approaches that combine
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physics-basedmultiscalematerials modeling with statistical modeling (QSARs).These approaches
connect advanced molecular descriptors to the functionalities and action of food constituents and
thus extend the reach of the traditional schemes. In this context, the role of machine learning is
pervasive, ranging from improvements in FFs to the capability to relate atomic or molecular fea-
tures to physiological effects. Notwithstanding this progress, a number of challenges remain:

� Obtaining equilibrium structures remains very challenging for large or transmembrane pro-
teins even for NMR, X-ray, or cryo-electron microscopy.

� Mesoscale simulations of systems in which conformational changes take place and hydrogen
bonding effects are important remain difficult.

� Simulations at constant pH are still challenging, particularly where conformational changes
occur.

� Estimating kinetic properties from simulations longer than a millisecond is still challenging,
although tremendous progress has been made in the field.

� Simulations of systems far from equilibrium (e.g., systems subject to flow) are difficult to
justify theoretically yet important for processing.

� Simulating quantum effects for large biosystems relevant to food science (involving hun-
dreds of AAs) remains a major challenge.

� Organic–inorganic interactions (e.g., protein–metal) are difficult when good FFs are not
available.

� Machine learning applications in soft matter are in their infancy, and more work is needed,
including systematic dimensionality reduction, a problem shared with order parameters and
rare-event methods.

� Simulation is very powerful when combined with sophisticated sampling methods, but these
are still verymuch the domain of experts, andmuch needs to be done tomake them accessible
to nonexperts.
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José M. Lorenzo, Adriano G. Cruz, and Predrag Putnik � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �93

Whole Food–Based Approaches to Modulating Gut Microbiota
and Associated Diseases
Yanhui Han and Hang Xiao � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 119

The Colors of Health: Chemistry, Bioactivity, and Market Demand
for Colorful Foods and Natural Food Sources of Colorants
Elvira Gonzalez de Mejia, Qiaozhi Zhang, Kayla Penta,

Abdulkerim Eroglu, and Mary Ann Lila � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 145

Genetic Differences in Taste Receptors: Implications
for the Food Industry
Alissa A. Nolden and Emma L. Feeney � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 183

Effects of Nondigestible Oligosaccharides on Obesity
Qixing Nie, Haihong Chen, Jielun Hu, Huizi Tan,

Shaoping Nie, and Mingyong Xie � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 205

A
nn

u.
 R

ev
. F

oo
d 

Sc
i. 

T
ec

hn
ol

. 2
02

0.
11

:3
65

-3
87

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
N

or
th

 C
ar

ol
in

a 
St

at
e 

U
ni

ve
rs

ity
 o

n 
08

/1
6/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



FO11_TOC ARI 20 February 2020 9:46

Skin Health from the Inside Out
Brittany Woodby, Kayla Penta, Alessandra Pecorelli,

Mary Ann Lila, and Giuseppe Valacchi � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 235

Endospore Inactivation by Emerging Technologies:
A Review of Target Structures and Inactivation Mechanisms
Kai Reineke and Alexander Mathys � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 255

Extraintestinal Foodborne Pathogens
Lee W. Riley � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 275

Recent Advances in Recombinant Protein Production by Bacillus subtilis
Kang Zhang, Lingqia Su, and Jing Wu � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 295

Green Technologies for the Production of Modified Lipids
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