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The upside of being a digital pharma
player

Alexander Schuhmacher1, alexander.schuhmacher@reutlingen-university.de, Alexander Gatto2,
Markus Hinder3, Michael Kuss4 and Oliver Gassmann5

We investigated the state of artificial intelligence (AI) in pharmaceutical research and development

(R&D) and outline here a risk and reward perspective regarding digital R&D. Given the novelty of the

research area, a combined qualitative and quantitative research method was chosen, including the

analysis of annual company reports, investor relations information, patent applications, and scientific

publications of 21 pharmaceutical companies for the years 2014 to 2019. As a result, we can confirm that

the industry is in an ‘early mature’ phase of using AI in R&D. Furthermore, we can demonstrate that,

despite the efforts that need to be managed, recent developments in the industry indicate that it is

worthwhile to invest to become a ‘digital pharma player’.
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Introduction
Pharmaceutical R&D has used elements of AI for

at least the past 20 years. The few fields of

application of AI have been predominantly in

drug discovery. Most probably because of

technical limitations, such as the lack of com-

puter power or the limited availability of large

data sets, AI did not generate the expected

added value to the R&D process. Moreover, the

deep learning revolution only began with the

breakthrough of the deep neural network ‘Alex

net’ in 2012. It was recently reported that

pharmaceutical companies have now started to

reconsider the role of AI and to develop AI

business cases for R&D [1]. In particular, we

expect four archetypes to develop in the in-

dustry in the coming years. We call them

‘Conservative Pharma Players’, ‘Selective AI

Explorers’, ‘Digital Pharma Players’, and ‘New

Analytical Entrants’, whereby the latter are
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technology companies, such as Google, more

rooted in data analytics than in healthcare. Here,

we analyze and describe the state of AI appli-

cation in pharmaceutical R&D, and outline a risk

and reward perspective toward a digital R&D as

the determining factors of the currently varying

use of AI by pharmaceutical companies.

State of AI in pharmaceutical R&D
Information from annual company reports, in-

vestor relations information, scientific publica-

tions, and patent applications of the top 20

pharmaceutical companies by total revenues in

2018 (plus Merck KGaA) show that AI does not

yet have market relevance for the core strategies

of most of these leading firms. Quite the con-

trary, because only Johnson&Johnson and

Novartis have started to commercialize AI by

launching products and services in healthcare,

such as chatbots to exchange information in a
e upside of being a digital pharma player, Drug Discov Today 
human-like manner with patients and physi-

cians. For example, Johnson&Johnson is offering

one AI-based product to monitor infants’

sleeping behavior (NodTM), whereas Novartis

(together with Microsoft) is supporting physi-

cians in disease diagnosing with its product

‘Assess MS’. We could identify only 18 AI-related

patent applications filed in the last years on

behalf of the evaluated pharmaceutical com-

panies. Compared with the thousands of

applications that have been filed by leading

technology companies, such as Microsoft,

Alphabet, or Samsung in recent years, it is ap-

parent that the pharmaceutical industry is only

just beginning to apply AI [2]. The overall AI

status of the pharmaceutical industry appears to

be ‘early mature’: The activities of all 21 sample

companies for the years 2014–2019 are repre-

sented by 417 publications (including 398 R&D-

related AI publications), 73 company-internal
(2020), https://doi.org/10.1016/j.drudis.2020.06.002
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FIGURE 1

Categories and associated sub-categories of artificial intelligence (AI) applications in (a) drug discovery
and (b) drug development for 2014–2019.
Pharmaceutical firms are using AI in drug discovery (a) within the research and development (R&D) value
chain in four specific categories overall (represented by the segments of the inner ring). The main
categories are labeled ‘compound’, ‘genomics’, ‘target’, and ‘antibody’. There are seven associated
subcategories (the segments of the outer ring). In drug development (b), pharmaceutical firms are using
AI in four main categories (the segments of the inner rings): ‘clinical development’, ‘toxicology’, ‘chemistry,
manufacturing and controls’ (CMC), and ‘pharmacovigilance’ (PV). There are 16 subcategories (the
segments of the outer ring). The categories were identified and compiled by manually reviewing the
abstracts of all scientific publications listed in the publication database SciFinder (https://scifinder.cas.
org/) for the 21 investigated pharmaceutical companies examined for the period 2014–2019. The search
term ‘artificial intelligence OR deep learning OR machine learning’ was used. Figures in brackets
represent the number of publications identified per category. Following abbreviations were used: T-
activity, target activity; C-activity, compound activity; PV-others, pharmacovigilance, others; and CMC-
others, chemistry, manufacturing and controls, others.
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research projects utilizing AI technologies, 61

collaborations with AI start-ups, seven research

alliances/consortia, 11 acquisitions/investments

in start-ups, and two joint ventures.

Here, we analyze what leading pharmaceuti-

cal companies are doing in the field of AI in R&D

and why, as well as in which specific areas and to

what extent firms are active. The question of

why pharmaceutical companies are using AI in

R&D can be derived from information disclosed

in annual company reports and investor rela-

tions information. In general, the purpose of

applying AI in pharmaceutical R&D is to un-

derstand, to predict and to support: (i) under-

stand: covers activities that extend and refine an

existing knowledge base. In this context, com-

panies utilize AI to better understand the basic

mechanisms of diseases, to explore molecular

interactions, or to understand the principal

impact of drugs on various types of patient; (ii)

predict: refers to research activities in the field of

pharmacokinetics, for instance to replace animal

tests or to predict drug action in the body. Other

predicting activities deal with treatment

responses or mortality rates in clinical trials; and

(iii) support: relates to the use of AI in target

identification, lead finding, drug candidate se-

lection, or patient selection in clinical trials.

Today, all leading pharmaceutical companies

have at least one research collaboration with AI

specialists to gain access to AI technologies. Of

the evaluated companies, 12 participate in AI

consortia and 11 acquired and/or invested in AI

companies, most notably the acquisitions of

Flatiron Health and Foundation Medicine by

Roche in 2018. Annual company reports and

investor relations information indicate that 11 of

the companies analyzed are active in alliances,

such as the AI innovation of Sweden (www.ai.se/

en), Alliance for Artificial Intelligence in

Healthcare (AAIH, www.theaaih.org), Accelerat-

ing Therapeutics for Opportunities in Medicine

(ATOM, https://atomscience.org), Machine

Learning Ledger Orchestration for Drug Dis-

covery (MELLODY, www.melloddy.eu), MIT in-

dustry consortium of Machine Learning for

Pharmaceutical Discovery and Synthesis

(https://mLpds.mit.edu), or TriNetX.

By reviewing scientific literature published by

the leading pharmaceutical companies in the

2014–2019 period, we gained insight into where

the pharmaceutical industry is using AI in R&D

(Fig. 1). With regard to the drug discovery phase,

we identified 218 scientific publications that can

be structured in four categories and seven
Please cite this article in press as: Schuhmacher, A. et al. The upside of being a digital pharma player, Drug Discov Today (2020), https://doi.org/10.1016/j.drudis.2020.06.002
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associated subcategories: (1) ‘compound’, (2)

‘genomics’, (3) ‘target’, and (4) ‘antibody’. For

example, the category ‘compound’ covers all

activities that are related to the identification,
Please cite this article in press as: Schuhmacher, A. et al. Th
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Artificial intelligence (AI)-related activities and public
Companies focus their AI-related activities (a) on fou
consortia, starting collaborations with start-ups or othe
identified activities of AstraZeneca and Novartis amou
the companies and their investor relations for the perio
2019 was excluded for reasons as stated in the legen
company (b) broken down into drug discovery and dru
this regards. The category ‘others’ comprises publicatio
legend to Fig. 1, only publications found in SciFinder
design, and synthesis of a compound in drug

discovery, the prediction of its activity, the

prediction of its binding behavior and molecular

properties, and the prediction of adverse effects
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and optimization strategies. With respect to

drug development, we structured the 180

identified publications into four categories of

AI use in R&D: (1) ‘clinical development’, (2)
(2020), https://doi.org/10.1016/j.drudis.2020.06.002
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‘toxicology’, (3) ‘chemistry, manufacturing and

controls’, and (4) ‘pharmacovigilance’, which

cover 16 subcategories. We conclude from this

that the pharmaceutical industry is applying AI

along the entire R&D value chain, from drug

discovery to drug development.

As illustrated in Fig. 2, there is a wide variation

in how much the leading pharmaceutical

companies are doing with respect to AI in R&D.

Two notable outliers in this context are Novartis

and AstraZeneca. With, respectively, eight and

seven active collaborations, 20 and nine

reported internal research projects, as well as 54

and 65 scientific publications relating to AI,

these two firms are by far the most active

pharmaceutical companies in the AI field (Fig. 2).

We also categorized the state of AI by con-

trasting the total revenues of the pharmaceu-

tical companies (an indicator of their financial

power) with the number of scientific publica-

tions they issued relating to AI in drug discovery

and development in the 2014–2018 period

(Fig. 3). Again, Novartis and AstraZeneca appear

to be more involved than might be inferred from

their financial position in the AI field, whereas

peers, such as AbbVie, Gilead Sciences, Sanofi,
Please cite this article in press as: Schuhmacher, A. et al. Th

FIGURE 3

Status of artificial intelligence (AI)-application in rese
The use of AI in R&D of the leading pharmaceutical 

publications for the period of 2014–2018. As a referenc
the chart formed by taking the maximum total revenu
revenues from this reference line determines the bor
Gilead Sciences or Sanofi), ‘do as much as expected’
revenues were taken from the annual reports of each
legend accompanying Fig. 1). The period 2014–2018 w
2019, Allergan, Celgene, Gilead Sciences, and Shire did
annual report of Takeda was pending at the time of

4 www.drugdiscoverytoday.com
and Takeda, appear to be doing less than

expected.

Risk and reward perspective of a digital
pharma R&D
In our view, the factors determining the varying

use of AI by firms are the R&D strategies, the

therapeutic areas, and the fact that pharma-

ceutical companies usually face significant risks

when navigating towards a digital R&D. In this

context, a qualitative distinction among the

types of risk that pharmaceutical R&D decision-

makers are facing can be made between

preventable, strategic and external.

First, external risks are related to complexities

that are beyond the control of a company, such

as the dynamic regulatory environment or

that AI talents expect high market rates of

remuneration for their services [3].

Second, pharmaceutical companies need to

overcome preventable risks, which are internal

risks that could be managed and avoided by the

company, such as the costs of a digital R&D,

inflexible processes, the social dynamics of a

digital transformation, and incomplete and in-

homogeneous data records. Subcategories
e upside of being a digital pharma player, Drug Discov Today

arch and development (R&D) of leading pharmaceuti
companies in our sample can be classified by plotting
e, a straight (the solid blue) line is drawn from zero (no r
es and the maximum number of publications identified
der (the broken blue lines) of three groups, which rep

 (e.g., Boehringer Ingelheim or Pfizer), and ‘do more a
 company and the number of publications was taken
as selected, because annual reports for all of the compa

 not issue an annual report because they had been ac
 the analysis because its fiscal year ends in March.
thereof are (1) technical; (2) performance; (3)

control; (4) ethical; and (5) economic risks. The

typical technical risks are: a mismatch of the AI

systems with the business requirements, a lack of

clear ownership and classification of data, and a

lack of data integrity. This often implies the threat

of a lack of confidence in the new system and,

consequently, some of the potential of AI might

be ‘left on the table.’ The typical performance risks

associated with AI are discussed herein.

‘Old data’ are used and ‘nothing new’ is

generated, because AI systems usually use his-

torical data sets. AI can create a kind of ‘black

box,’ whereby an AI system produces an out-

come without knowing how it arrives at the

result and the conclusions. Or inadequate in-

formation is used so that the result of applying

AI might resemble a correlation even though the

outcome is not significant. These examples

imply the threat of misinterpretation and bias,

which can have important consequences, such

as selecting the wrong patient population for a

trial or making incorrectly informed project and

investment decisions. Next, standard AI use runs

the risk of being ‘out-of-the-box’, lacking suffi-

cient configuration and specifications when
 (2020), https://doi.org/10.1016/j.drudis.2020.06.002
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cal companies for 2014–2018.
 total revenues against the number of scientific
evenue, no publication) to the coordinate point on

 in the sample. The standard deviation of the total
resent companies that ‘do less as expected’ (e.g.,
s expected’ (e.g., AstraZeneca or Novartis). Total
 from the SciFinder database (further details, see
nies in the sample were available for these years. In
quired in the same or the previous year. The 2019
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implemented, and might not be tailored to the

specific goals and needs of a company (control

risk). This implies the threats of neglected value

propositions and flawed business cases. Fur-

thermore, the use of AI to make decisions that

lead directly to action or the application of AI in

making completely autonomous decisions

raises ethical risks. According to a recent PwC

Global CEO survey, 84% of CEOs agree that AI-

based decisions need to be explained if they are

to be trusted [4]. Otherwise, there are threats of

a loss of trust and the rejection of AI-based

outcomes. Finally, pharmaceutical companies

need to deal with the economic risks associated

with AI in R&D.

Third, strategic risks relate to the business

challenge of taking higher risk for higher reward.

For example, because AI has the potential to be

a game changer, the path towards a digital

pharma R&D might be very costly, without even

knowing whether AI in R&D will materialize and

keep its promises.

Notwithstanding all these risks that compa-

nies face on their AI journeys, the use of AI has

the potential to provide great rewards by: (i)

supporting de novo small-molecule design [5];

(ii) better predicting links between drug

structure and activity, which can result in more

efficacious and safer drugs [6]; (iii) better per-

forming 3D protein structure simulation [7],

which can increase the effectiveness of drug

research; (iv) finding biomarkers, such as for

invasive breast cancer, Alzheimer’s disease, or

other neuropsychiatric disorders [8,9]; (v) pre-

dicting the blood–brain barrier permeability of

drugs [10]; (vi) predicting cancer drug responses

[11,12]; (vii) predicting unknown drug–drug

interactions [13]; (viii) predicting the risk of

kidney disease/injury [14,15]; (ix) predicting the

responses of patients with cancer to chemo-

therapeutic drugs [16]; (x) analyzing digital

images or videos, and recording the presence of

pain [17]; (xi) predicting mortality to forecast the

risk of early death from chronic diseases [18]; (xii)

analyzing mammograms 30 times faster than

clinicians, and with 99% accuracy [19]; (xiii)

enhancing the prediction of adverse drug

reactions [20]; (xiv) diagnosing diseases in their

initial stages [21]; (xv) analyzing cells in real time,

allowing the development of targeted therapies

based on the diagnoses of the specific genomic

mutation that occur [22]; (xvi) predicting

patients who would likely skip appointments

[23]; (xvii) facilitating drug repositioning [24];

(xviii) streamlining clinical trial operations [25];

(xix) reanalyzing large trials or data sets for

clinical signals of efficacy or safety in new

indications [26]; and (xx) analyzing markers and
Please cite this article in press as: Schuhmacher, A. et al. Th
predictors of drug response to identify patients

who can benefit most from treatment [27].

These examples demonstrate the potential of a

digital pharma R&D: data analytical and algo-

rithm-based R&D can be used to improve the

speed, focus, and quality of drug discovery and

development. Besides drug discovery, which has

traditionally been a field for the application of AI,

translational and clinical development will profit

from the application of AI and data analytics in the

future. For example, predictive analytics using

real-world data can help set up hypotheses, which

can be verified through prospective investiga-

tions, likely increasing their success rate. Second,

AI can revolutionize operational study conduct.

This includes predicting enrolment and improv-

ing the identification of study centers. Analysis of

big data sets enables better defined (stratified)

patient groups, ultimately helping to develop

precision-targeted therapies, which increase

success rates. By analyzing data over time and

using real-world data, better insights can be de-

livered, predictions improved, and trial designs

adapted and optimized. Through flexible trials,

efficiency can be improved, and drugs could well

be approved earlier, because targeted trials allow

for smaller patient samples. AI can help reduce

trial sizes only if those sites are selected where it is

more likely that endpoints can be detected. Better

selection of trial sites means more efficient trials

with fewer patients screened and lower costs [28].

First successes in this transformation process

towards a digital pharma R&D have been re-

cently reported by IQVIA: a 20.6% increase in the

enrolment rate was recorded, 70% of adverse

drug reaction case reports could be processed

automatically, and the precision rate in screen-

ing of a predictive algorithm was 79% [29].

Concluding remarks: the path towards a
digital pharma R&D
In our view, leading pharmaceutical companies

of today are in an ‘early mature’ phase of using AI

in R&D. The impact of its application is still not

proven: AI has not yet contributed to a sufficient

extent to R&D efficiency, effectiveness, or pro-

ductivity. Nevertheless, AI holds promise for the

future of pharma R&D and we foresee that more

and more pharmaceutical companies might

evolve into ‘digital pharma players’.

Ontheirpathtowards a digital pharmaR&Dand

to benefit fully from AI, pharmaceutical executives

must decide whether they want to start their AI

journeyand take therelatedstrategic risks. To fully

benefit from it, pharmaceutical companies will

need to set up digital strategies, develop related

business cases, andprovide AI-specific budgets. In

this context, decision-makers need to decide how
e upside of being a digital pharma player, Drug Discov Today 
they want gradually to redirect their human and

financial resources from traditional R&D units to

the new AI-related data science functions. They

also need to improve their brand as an employer

to become more attractive to data scientists. In

addition, they must accept the high wages of data

experts and the related high costs for digital

upskilling of their R&D functions. In particular,

they further need to consider that, in an AI-driven

world, the pharmaceutical company with the best

data and the best abilities to analyze it will be able

to develop the best products. In our view, only

leading pharmaceutical companies with exten-

sive R&D portfolios have sufficiently large data

sets to enable the systematic use of AI in R&D.

Their challenge is to make the information they

have (more) accessible and analyzable. Other

leading companies with fewer R&D projects

might have difficulties to tap into sufficiently large

data sets that are useful for AI. Hence, they will

need to collaborate with peers, create consortia,

or acquire external data. This implies more pre-

ventable risks, such as the efforts of coordination

or the ‘not invented here’ (NIH) syndrome. In

addition, they need to take the external risk that

acquired data are not proprietary (rather com-

modity) and might result in less innovation.

Without exclusive data, pharmaceutical compa-

nies will face the unnecessary (external) risk that

the digital pharma R&D will miss the expected

upside, similar to the discussions that we know

from externally acquired compound libraries and

high-throughput screening [30].
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