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FIGURE 1
Types of docking. (a) classic docking process, which involves finding the optimal ligand for a given protein. (b) inverse docking process involves finding the
optimal target for a given ligand.
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Researchers and pharmaceutical industries aim to reduce both
the time and cost associated with drug development. Molecular
docking can be used as a complex filter to highlight only the
most interesting drug candidates. Molecular docking can also
be used to detect potential drug side effects or molecule toxici-
ties. Molecular docking uses the 3D structures of two molecules,
the ligand and the target, to predict the preferred orientation of
the first with respect to the second when bound to each other to
form a stable complex.2 Usually, the ligand is the smallest mole-
cule, although the denomination choice is project dependent. In
drug discovery, the ligand is an active principle, and the target is
a biological macromolecule (e.g., a protein or DNA). However,
the docking covers a wider range of pair possibilities: protein–
DNA, protein–RNA, protein–sugar, protein–peptide, and pro-
tein–small compounds. We focus here on protein–small com-
pound (commonly called protein–ligand) molecular docking
because it covers an important selection of existing docking
methods. We present concepts for ligand–protein docking that
are also usable for other docking types. Several experimental
methods can be used to obtain the 3D structure of a molecule.
Although X-ray-based methods are by far the most prominent,
nuclear magnetic resonance (NMR)-based and electron micro-
scopy (EM)-based methods also feature. For instance, the Protein
Data Bank (PDB), a database of protein 3D structures, includes
almost 90% of the structures solved with X-ray crystallography
(and almost 99% if only the structures for which the ligand–pro-
tein binding affinity is known are taken into account)3 and
almost 8% solved with NMR. Information about methods and
statistics are available on the PDB4 website (www.rcsb.org).

Drug discovery often requires tests against a comprehensive
ligand library on one target. This process is called virtual screen-
ing (VS)5 or high-throughput VS (HTVS). It is used to reduce the
number of tested ligands with in vitro and in vivo experiments;
the ranking of the ligands allows the elimination of candidates
displaying very low affinities and, thus, not interesting from a
pharmaceutical perspective. Finally, through VS, the most inter-
esting molecules are selected for further in vitro and in vivo test-
ing. VS can be ligand based (i.e., only ligand information is
used): depending on the method, its structure, chemical proper-
ties, or a combination thereof are used to predict the binding,
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given that similar ligands will bind similar targets. VS can also
be structure based, using the complex molecular structure to
determine whether the ligand will bind the target. Molecular
docking can be used to perform a structure-based VS campaign.
Some papers use the molecular docking expression as a
structure-based VS synonym.6–8 Here, we focus only on
structure-based methods.

Detecting the optimally bound ligand among a database is an
important use for molecular docking. However, it can also be the
basis of research to find new targets (in the case of drug reposi-
tioning) or to characterize potential side-effects, such as toxic-
ity,9 whereby the protein and ligand roles are switched (Fig. 1).
The authors call this process variously inverse docking,10 reverse
docking,11 inverse VS,9 or target screening.12 Additionally,
inverse docking processes are performed using classical docking
methods structured in a specific pipeline.

In recent years, ML methods, such as DL, have been imple-
mented to optimize the docking process. In this review, we dis-
cuss ligand–protein docking and the associated ML approaches.
Ligand–protein molecular docking
Based on 3D structures, a molecular docking13 experiment can
predict the conformation of a complex and its binding affinity.
Molecular docking is a combination of two processes. The first
is sampling, which involves generating a set of conformations
from a rigid 3D ligand. The method is evaluated on its capacity
to explore the conformational space of the ligand. This space
gathers all theoretically possible conformations. The second step
is scoring, which evaluates the binding affinity of each protein–
ligand complex formed (called a pose). Even if sampling and
scoring are introduced separately, they can be significantly corre-
lated because scoring functions (SF) often guide the sampling
method.

The main challenges for any molecular docking method
(Fig. 2) are dealing with molecular flexibility and faithfully
reflecting real binding, both with a reasonable computing time.
Here, we summarize problems associated with molecular dock-
ing, current challenges, and approaches to address them (with-
out ML).

https://www.rcsb.org
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FIGURE 2
A simplified workflow of the molecular docking process with sampling and scoring subprocesses.
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First challenge: Molecule flexibility
In real conditions, the flexibility of the molecules is reflected
through the vibrations of bounds, angles, and dihedrals. Even
though it is an essential element in molecular docking, many
of the pioneer methods considered molecules as rigid structures
and used the principle of lock-and-key14 to solve docking prob-
lems. New approaches based on heuristics and improvements
in computing capacity allowed the integration of ligand flexibil-
ity by exploring the conformational space of the ligand. These
methods are semiflexible because only the smallest molecule is
considered flexible, whereas the target is still rigid.15 Progres-
sively, other methods have been developed to consider both
molecules as flexible. Hence, the flexibility of the target can be
considered in different ways16: the conformational space of the
target can be assessed with extensive sampling (e.g., through
molecular dynamics), and relevant structures can be selected to
perform numerous rigid target docking experiments. Another
strategy considers the side-chain flexibility of the residues
around the binding site. Given the hypothesis that the presence
of the ligand induces these changes, it is known as ‘induced fit’.16
The ligand conformational space sampling
Amolecule can have several degrees of freedom (three to describe
its position, three its orientation, and the last to characterize its
intrinsic flexibility regarding rotatable bounds or dihedrals), all
of which generate the conformational space. Exploring this space
is computationally infeasible even for a small compound. Thus, a
range of sampling methods exists, each of which optimizes its
exploration and to find the best conformations. Sampling meth-
ods can be classified into shape matching, systematic, stochastic,
and simulation.17,18 Table 1 presents examples of docking soft-
ware and associated sampling techniques. Stochastic methods
are currently the most used and involve a broad panel of
methods.
Shape-matching methods
Shape matching is a method used by the first docking program,
DOCK.19 Such techniques represent molecules (the ligand and
the receptor) with geometrical shapes, such as spheres or polyhe-
drons, and use the principle of matching or complementary
shapes to find new conformations. However, because it does
not consider the internal ligand flexibility, one solution is to gen-
erate ligand conformations immediately before the search.16
Systematic methods
Systematic methods allow for quantitative exploration of the
conformational space of the ligand. Iterative methods (IM)
attempt to generate all conformations of a ligand, starting from
a given conformer. All degrees of freedom are explored, and a
given increment controls the size of the sampling. The generated
conformational space can be huge even for a small ligand.

Database methods use databases of conformers, such as Flex-
ibase.20 These databases contain, for each ligand, a set of confor-
mations and, instead of computing all possible geometries, favor
communication with a database holding precomputed confor-
mations. Thus, the computing time is reduced at the expense
of important storage space for the databases.

Finally, fragment-based methods (FBs)21 can be used to search
for the best conformation, either through place-and-join strate-
gies or incremental strategies. Place-and-join methods cut the
ligand into fragments and place them around the target site.
Then, each fragment is moved to minimize its energy and,
finally, all fragments are joined to rebuild the ligand. By contrast,
incremental methods place the first fragment, minimize its
energy, and then add the next fragment, which is also mini-
mized. The process is repeated until the ligand is fully rebuilt.
Ligand cutting can bring uncertainty in the final ligand pose.
Indeed, energy minimization can differ between an isolated piece
of ligand and the whole molecule. The rebuilt poses can sum the
imprecision of all ligand pieces.
Stochastic methods
Unlike systematic methods, stochastic methods are used to
explore only a small part of the conformational space of the
ligand. These methods use pseudo-random functions to generate
conformations and SFs to guide them in their exploration of the
conformational space. The most used methods are Monte-Carlo
(MC),22 ant colony (AN), genetic algorithm (GA), and particle
swarm optimization (PSO).23 The choice of the hyperparameters
influences the stochastic methods and, thus, some relevant areas
might be forgotten.
Simulation methods
These methods explore the conformations of the molecule using
computed simulations, such as molecular dynamics. Simulation
methods use classic physics laws, such as Newton’s law, to simu-
late atomic and molecular motions and generate new conforma-
tions. For instance, De Azevebo24 used the program
www.drugdiscoverytoday.com 153
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TABLE 1

Examples of molecular docking software and their sampling and scoring methods.
a

Software Year Sampling Scoring Refs

ICM 1994 Stochastic (MC) Force field (ECEPP) 100

GOLD 1995 Stochastic (GA) Force field (AMBER) 101

SANDOCK 1998 Shape matching Empirical 102

MultiScoreb 2001 – Consensus 103

LigandFit 2003 Stochastic (MC) Empirical 104

DrugScoreb 2005 – Knowledge based 105

DFireb 2005 – Knowledge based 106

Glide 2006 Stochastic (MC) Empirical 107

PLANTS 2006 Stochastic (AC) Empirical 108

SODOCK 2007 Stochastic (PSO) Force field (AMBER) 109

eHiTS 2007 Systematic (FB) Empirical 110

KScoreb 2008 – Knowledge based 111

AutoDock 4 2009 Stochastic (GA) Force field (AMBER) 35

AutoDock Vina 2010 Stochastic (GA) Empirical 112

VoteScoreb 2011 – Consensus 113

FRED 2011 Systematic (IM) Customizable 114

D-Scoreb 2013 – Force field (Tripos) 115

FlexAID 2015 Stochastic (GA) Empirical 116

MOLS 2.0 2016 Systematic (IM) Force field (AMBER) 117

DINC 2.0 2017 Systematic (FB) Empirical 118

a Based on: R. Vasseur, PhD thesis, Université de Reims Champagne-Ardenne, 2015.
b Scoring functions only.
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GROMACS,25 a molecular dynamic solution. Simulation-based
methods notorious drawback is the compute time to explore
the conformational space, which is why these methods mainly
complement other methods.17

Second challenge: The binding scoring
Ranking of the bound conformation of the ligand is managed,
for all software, with a scoring function. The SF usually aims to
estimate the free energy of binding. Given that computing the
exact value of this energy is computing intensive, SFs can be
designed to produce a score accurate enough to be used in dock-
ing simulation, allowing for many evaluations. In addition, SFs
can be used to guide sampling algorithms. Among the different
classes of SF, historical and hierarchical families17,26,27 include
physics based, empirical, knowledge based, and consensus. First,
we review the mathematical foundations of scoring functions:
the scoring function space. Examples of software and standalone
SFs are presented in Table 1.

The scoring function space
A SF determines the conformation of the ligand that binds best
with a given protein. The first protein space definition deals only
with sequence.28 However, the most appropriate definition is ‘a
space containing all protein folds, where similar structures are
close together’.29 Hence, the ligand can be considered as a chem-
ical space item that gathers all small compounds.30

Each complex is a set comprising an item of the protein space
and an item of the chemical space. A third space is the SF space,
which contains all possible scoring functions. It assumes that at
least one SF space item can predict the binding affinity between
the structure of a protein space and a compound from the chem-
ical space. Computational methods enable this space to be
explored to determine the optimal SF for the considered protein
and chemical subsets.
154 www.drugdiscoverytoday.com
Physics-based scoring functions
The physics-based family was first introduced by Li et al.27 to
gather different SF types, the most well known of which is the
force field class. This subclass of SFs estimates the free energy
with a weighted sum of several energy terms. Which selection
depends on the chosen force field. The most common energy
terms are Van der Waals, electrostatic interactions, and hydrogen
bonds. Numerous force fields are available, including AMBER,31

GROMOS,32 OPLS,33 and CHARMM34. Force field-based SFs can
be designed using a single or a combination of different force
fields. Force field functions are often used for their accuracy
related to the use of atomic distances and separate computing
of bound and unbound complex energies, such as implemented
in AutoDock4.35 The physics-based family also comprises solvent
models and quantum mechanics classes. The former adds solva-
tion/desolvation effects and torsion entropy to classical force-
field terms.36 By contrast, the latter mixes quantum and molecu-
lar mechanics to improve SF accuracy in a reasonable computing
time.37 Li et al. found that quantummechanics-based SFs are cur-
rently the most promising physics-based subclass.27

Empirical scoring functions
Similar to force field-based methods, empirical methods estimate
the free energy of binding but without massive computing
requirements. This estimation is achieved by evaluating a
weighted sum of parameters, such as the number of hydrogen
bonds, hydrophobic/hydrophilic contacts, and so on. These
parameters are simpler than force-field parameters and, thus, also
quicker to compute.

Knowledge-based scoring functions
Knowledge-based SFs rely on the elaboration of a potential of
mean force.38 Based on the statistical analysis of intermolecular
interactions within large 3D structural databases of complexes,
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TABLE 2

Machine learning methods for ligand–protein docking.
a

Name Year Input Usage Refs

Linear regression
TABA 2020 Mass-Spring system Scoring 61

Random Forest
RF-Score 2010 Set of descriptors Scoring 62

RF-Score-v2 2014 Set of descriptors Scoring 119

RF-Score-v3 2015 Set of descriptors Scoring 63

RF-Score-VS 2017 Set of descriptors VS 64

SIEVE-Score 2019 Energy vectors VS 65

Gradient boosting trees
AGL-Score 2019 Multiscale weighted colored subgraphs Scoring, VS 66

Support vector machines
SVR-KB 2011 Pairwise potential vector Scoring 67

SVR-EP 2011 Set of descriptors Scoring
ID-Score (SVR) 2013 Set of descriptors Scoring 68

PLEIC-SVM 2017 PLEIC Fingerprint Target-specific VSa 69

a Method developed for a specific type of target.
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the score attributed to a new complex considers that intermolec-
ular interactions between certain types of atom or functional
group are more probable than others.

Consensus scoring functions
Each choice has compromises, and some SFs perform better on
an entire class of complex but poorer on others. Through the
combination of different types of SF, consensus SFs aim to opti-
mize their respective advantages. This can be achieved in differ-
ent ways, such as number-by-number, rank-by-number, vote-by-
number, or through a linear combination.26

Third challenge: Computing time
Computing time is a key metric for both sampling (huge space to
explore) and scoring (invoking occurrences). In both cases, the
choice of algorithm and its implementation are crucial. Regard-
ing the sampling, a way to reduce computing time involves dock-
ing the ligand on a delimited zone of the protein surface (e.g., a
cube with a 20 Å edge centered on a specific point of interest is
regularly used). Therefore, knowledge of the localization of the
interaction site on the target is crucial and is often related to bio-
logical results. The drawback associated with this method lies in
the fact that it is not possible to generalize the results to unchar-
acterized or different systems easily. Indeed, if known ligands are
bound on the site of a particular target, there is no guarantee that
new ligands bind in the same site. Similarly, a localized search
can not be transposed to a new target. Some studies use more
demanding docking simulations without any a priori knowledge
and explore the surface of whole target to overcome these limita-
tions: this process is called blind docking. The choice of a delim-
ited area significantly impacts the docking accuracy: if the box
does not contain the binding site or only a part of it, then dock-
ing will be erroneous.

Furthermore, some methods, such as binding site detection,
allow the use of delimited searches on a target without a priori
information by predicting putative binding sites on the target
surface. Commonly, this search is done either by a geometrical
search, such as FPocket,39 or by looking for the most interesting
zones regarding the free energy of binding, as in Q-SiteFinder,
which uses a � CH3 probe to detect such zones.40 Usually, no
information about the ligand is necessary. Another way to reduce
time is to use integrative docking methods, which integrate
experimental data to drive the model.41

Finally, another way to accelerate computing is to use a high-
performance computing (HPC) environment. Even if this avenue
is independent of the docking software, it should not be dis-
missed. A parallel approach was recently developed, called Auto-
matic Molecular Inverse Docking Engine (AMIDE),42 initially
intended for inverse docking and fitted for a classic approach.
AMIDE is based on AutoDock4 and its default SF and includes
a set of scripts allowing parallel execution on HPC environments.

Data
Data have a key role in the development of molecular docking
methods, especially for ML-based methods. Data quantity, and
quality, and how the model represents them significantly impact
performance and accuracy. Regarding data volume, the PDB pro-
vides an extensive database of molecular complexes.

Data quality
When developing ML models for molecular docking, it is impor-
tant to train and validate the models over established data sets
instead of using synthetic or augmented data sets. This guaran-
tees representativeness, exhaustiveness, and variety for the train-
ing set, and allows for intermethod comparisons of objective
criteria. Common data sets include: (i) PDBbind,43 which is based
on the PDB and updated each year with new complexes; each
new version comes with three sets of different sizes: General
(21 382), Refined (4852), and Core (285) for the 2019 version;
(ii) Directory of Useful Decoys (DUD)44 and DUD-E45 (for
Enhanced) contain 40 and 102 target molecules and 2950 and
22 886 active ligands, respectively. Each ligand has 36 or 50
decoys, respectively that are physically close but topologically
different; (iii) the Maximum Unbiased Validation (MUV)46 data
set contains 17 targets, ligands (30 per target), and decoys (50
per ligand). It is based on the National Institute of Health
(NIH) PubChem database; (iv) The Community Structure-
Activity Resource (CSAR),47 which is a docked-complex database;
www.drugdiscoverytoday.com 155
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TABLE 3

Deep learning methods for ligand–protein docking.

Name Year Input Usage Refs

Multilayer perceptrons
NNscore 2010 Set of descriptors VS 70

NNscore 2.0 2011 Set of descriptors Scoring
Deep docking 2020 2D fingerprints VS 72

Convolutional neural networks
AtomNet 2015 3D grid with descriptors VS 75

DeepVS 2016 Set of descriptors VS 76

Ragoza2017 2017 3D grid of 34 channels VS 77

Atomic CNN 2017 3D structure Scoring 78

DeepSitea 2017 3D grid of eight channels Binding-site detection 79

DenseFS 2018 3D grid of 34 channels VS 80

Pafnucy 2018 3D grid of 19 channels Scoring 82

DeepAffinity 2019 Fingerprints Scoring 83

DeepBindRG 2019 2D matrix Scoring 84

OnionNet 2019 64 descriptors for each shell Scoring 86

FRSitea 2019 3D grid of eight channels Binding site detection 87

Francoeur2020 2020 3D grid of 28 channels Scoring 89

Kalasantya 2020 3D grid of 18 channels Binding site detection 90

DeepSurfa 2020 3D grid of 18 channels Binding site detection 92

Graph neural networks
PotentialNet 2018 Atom bond graph Scoring 93

Lim2019 2019 Atom bond graph VS 94

Torgn2019a 2019 Residue graph of target + Ligand graph VS 95

Tanebe2019a 2019 Residue graph of target + ligand graph VS 97

Tsubaki2019a 2019 Sequence of target + ligand graph VS 98

Morrone2020 2020 Ligand bond graph + contact graph VS 55

bIndicates end-to-end methods.
a Based on CNN terminology, channels are used to represent descriptors.
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(v) the sc-PDB,48 which is a database based on the PDB, but com-
pared with the previously mentioned data set, it also contains
information about protein binding sites.
Data representation
Data representation is a central piece of the data science response
to a specific problem. Data have becomemore detailed and incor-
porate increasingly complex pieces of information. The choice of
representation type has a significant impact on docking perfor-
mance. Even though 3D coordinates can be directly used as
input, methods often use other representations produced from
3D coordinates, including descriptors, molecule fingerprints, or
interaction fingerprints, image-based, or graphs.

A set of descriptors is the easiest way to represent a molecular
complex. A descriptor is a hand-engineered feature characteriz-
ing a variable degree of the fidelity of a complex or a molecule.
Descriptors can also reflect physiochemical properties, such as a
list of atoms of certain types, the number of atom pairs between
the ligand and the target for a given threshold, or an energy
term. Descriptors can also be geometrical if they are derived from
the 3D structure of a molecule. Finally, a combination of several
of these descriptors is usually used to represent a complex. This
descriptors class is often easily understandable and usable, but
the descriptors can only represent the complex as a unique
object, limiting the model performances.

Fingerprints are a high-level representation of molecules or
complexes. The first category relies on the molecular fingerprint,
in which 3D data are converted into 1D data, commonly a string
of bits, integers, or characters. The chemical formula is not
156 www.drugdiscoverytoday.com
detailed, whereas the structural formula has more details but
might be less suitable from a computing standpoint. Fingerprints
can represent 2D structures, such as the MACCS molecular fin-
gerprint, which accounts for additional chemical properties,49

or encode 3D structures, such as FuzCav, which represents the
protein binding site 3D structure combined with chemical prop-
erties.50 DL can also be used with Molecular Surface Interaction
Fingerprinting (MaSIF) to encode a protein.51 The second cate-
gory is based on interaction fingerprinting, the most well known
of which are Structural Interaction Fingerprint (SIFt)52 and Struc-
tural Protein-Ligand Interaction Fingerprint (SPLIF).53 Finger-
prints allow improved complex description abstraction.
Compared with a set of descriptors that list some chemical/geo-
metrical properties, a fingerprint projects the elements to a latent
space more suited for ML. In some ways, they behave like autoen-
coders, a class of dimensionality reduction algorithms54 used to
reduce the input dimensions.

The emergence of DL and particularly convolutional neural
networks (CNNs) has made possible the use of a new kind of data
representation in the form of its actual 3D structure. Complexes
are first discretized on a 3D grid, in which each cell of the lattice
is a voxel (volumetric pixel). Atoms are sparsely distributed in the
lattice. Additionally, voxels have channels (e.g., RGB for images)
that can complement the set of features with properties such as
atom type, charge, and hybridization. Image-based data repre-
sentations better reflect the complexity, including the 3D struc-
ture, compared with a classic fingerprints method. Moreover,
even if a lot of information is integrated into this representation,
it remains concise. However, the main drawback is that this data
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TABLE 4

Assessment of VS methods with DUD, DUD-E, and MUV data sets.

Presented method Docking engine Assessed method First data set used AUC Second data set used AUC Refsa

PLEIC-SVM Glide Gscore DUD 0.82 69

PLEIC-SVM 0.93
NN-Score methods Vina Vina DUD 0.70 70

NNScore-v1 0.78
NNScore-v2 0.76

DeepVS Dock 6.6 Dock 6.6 DUD 0.48 76

DeepVS 0.74
Vina Vina DUD 0.62

DeepVS 0.81
RF-Score-VS Vina Vina DUD-E 0.74 64

RF-Score-V3 0.67
RF-Score-VS 0.84

Dock 6.6 Dock 6.6 DUD-E 0.61
RF-Score-V3 0.66
RF-Score-VS 0.80

AtomNet Smina Smina DUD-E 0.696 75

AtomNet c 0.895
Ragoza’s method Smina Smina DUD-E 0.716 MUV 0.549 77

RF-Score 0.622 0.512
NN-Score 0.584 0.441
Ragoza’s method 0.868 0.522

DenseFS Vina Vina DUD-E 0.703 MUV 0.546 80

Ragoza’s method 0.862 0.507
DenseFS 0.917 0.534

Lim’s method Smina Smina DUD-E 0.689 MUV 0.533 94

AtomNet 0.855
Ragoza’s method 0.868 0.518
Lim’s method 0.968 0.536

Torgn’s method Vina DUD-E 0.716 MUV 0.538 95

RF-Score 0.622 0.536
NNScore 0.584 0.454
Ragoza’s method 0.868 0.567
Torgn’s method 0.886 0.621

Morrone’s methods Vina Vina DUD-E 0.70 55

Morrone L 0.82
Morrone LP 0.65
Morrone L + LP 0.81

a Listed scores are sometimes in supplemental information. The same method can have different performances on the same data set and with the same docking engine, because of the impact of
data preparation and docking engine settings.
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representation is sensitive to noise because a slight rotation
(nudge) of the molecule in one direction results in a completely
different data point. Moreover, the discretization of the coordi-
nates of an atom might involve a loss of accuracy of the confor-
mation of the molecule. These issues can be partially fixed, with
data augmentation for the first problem, and a coarser molecular
representation (considering residues rather than atoms) for the
latter.

Graph data can circumvent previous representation limita-
tions because they change the absolute character of the frame
of reference to a relative, more flexible one. Additionally, consid-
ering the unstructured nature of their data, graphs are a natural
way to represent molecules. A general formalism allows filling
nodes, edges, and global properties with all kinds of attribute.
Even though molecule representation as a graph is more instinc-
tive, Morrone et al.55 used a graph to represent the interaction
between a ligand and a target.
Machine learning for ligand–protein molecular
docking
ML can bring new strategies to score a complex, either by opti-
mizing an existing SF (e.g., refining the weights of an empirical
function) or by developing a new SF taking the structure of a
complex as input.56 Moreover, ML is sometimes used for VS (clas-
sification mode) and binding site detection. Once the data set is
chosen and the data representation is decided, the ML model can
be developed. The use of ML in molecular docking has evolved
rapidly, and the previous decade saw the emergence of numerous
methods, all bringing significant improvement.

Here, we provide a comprehensive overview of ML methods
used in the context of ligand–protein molecular docking, pre-
senting functions used for scoring, classification (VS mode),
and binding site detection. Existing studies57–60 provide a com-
prehensive overall view of the domain, detailed in Tables 2 and
3 for ML and DL, respectively. Although the ML renaissance is
more than a decade old, MLmethods were introduced to the field
www.drugdiscoverytoday.com 157



TABLE 5

Assessment of SF methods.

Method Data set Assessed SF Rp SD Refsa

RF-Score PDBbind 2007 core set ChemScore 0.441 2.15 62

GoldScore 0.295 2.29
RF-Score 0.776 1.58

RF-Score-v2 PDBbind 2007 core set RF-Score-v2 0.803 1.54 119

RF-Score-v3 PDBbind 2007 core set RF-Score-v3 0.803 1.42 63

SVR-KB and SVR-EP CSAR-SETI1 SVR-KB 0.59b 67

SVR-EP 0.55b

CSAR-SETI2 SVR-KB 0.67b

SVR-EP 0.50b

ID-Score PDBbind 2007 core set ID-Score 0.753 1.63 68

Atomic CNN PDBbind 2015 core set Atomic CNN 0.448b 78

PDBbind 2015 refined set Atomic CNN 0.529b

Pafnucy PDBbind 2016 core set Pafnucy 0.78 1.37 82

CASF-2013 Pafnucy 0.70 1.61
DeepBindRG CASF-2013 Vina 0.5725 84

DeepBindRG 0.6394
AGL-Score CASF-2007 ID-Score 0.753 66

Vina 0.554
AGL-Score 0.830

CASF-2013 AGL-Score 0.792
OnionNet PDBbind 2013 core set AutoDock 0.54 1.61 86

Vina 0.54 1.60
ChemScore 0.592 1.82
Pafnucy 0.70 1.61
RF-Score-V3 0.74 1.51
AGL-Score 0.792 1.45
OnionNet 0.78 1.45

PDBbind 2016 core set Pafnucy 0.78
RF-Score-V3 0.80
AGL-Score 0.833
OnionNet 0.816

Francoeur’s method PDBbind 2016 core set Francoeur 0.733 89

a Listed scores are sometimes in supplemental information.
b Values = (Rp)
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of molecular docking relatively recently. Therefore, we classify
the methods according to their type.

Linear regression
The most basic use of ML is linear regression, which determines
the weights of the linear equation. For instance, Tool to Ana-
lyze the Binding Affinity (TABA)61 represents a ligand-protein
interaction as a set of mass-spring contacts and then uses ML
methods to parametrize the affinity equation of the complex.

Random Forest methods
Random Forests (RF) were the first attempt to use ML methods
for molecular docking. A RF is an ensemble method that builds
upon and smooths the results of an ensemble of decision trees.
Each tree is built with nodes representing a split on a single
and unique criterion. Additionally, training on different random-
ized subsets reduces variance, thus improving with overfitting
issues, a method called ‘bagging’.

The first version of RF-Score62 takes a set of descriptors as
input that describe the number of atom pairs from both mole-
cules involved in the docking. Pairs are conserved if the distance
between two atoms is less than a certain cut-off (which is a
hyperparameter), and atoms belong to one of these types: C, N,
O, S, P, F, Cl, Br, or I, for a total of 36 descriptors. RF-Score was
158 www.drugdiscoverytoday.com
updated twice, and the last revision uses energy terms from Auto-
Dock Vina’s SF to improve the complex description.63 All three
versions use a set of 500 trees to run their models. In 2017, the
same set of models had been trained against the DUD-E data
set under the name RF-Score-VS64 to classify complexes instead
of scoring them. More recently, Yasuo et al. introduced Similarity
of Interaction Energy VEctor-Score (SIEVE-Score).65 Compared
with RF-Scores, SIEVE-Score performs the search on 1000 random
trees and uses a residues level representation: for each residue in
the targets, three interaction energies with the ligand (Van der
Waals, Coulomb, and hydrogen bonds) are computed. A com-
plex is represented by a vector of size 3 ⁄ nres , where nres is the
number of residues, called the interaction fingerprint of the com-
plex. This method is simple and powerful but still problematic
because variable-length input vectors tend to be limiting for
many ML models.
Gradient boosting trees method
In Gradient Boosting, submodels are trained sequentially instead
of simultaneously and from a residual set of its predecessor. It is a
form of knowledge distillation and often shows better results
compared with standard bagging.

In 2019, Nguyen et al. proposed the Algebraic Graph Learning
Score (AGL-Score),66 which uses a multiscale, multiclass weight-
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colored subgraph data representation. The entire molecule is a
graph in which the attributes of the nodes express the type of
a selection of atoms along with spatial positioning, and edges
represent noncovalent bonds, such as Van-der-Waals or hydro-
gen bonds between the connected atoms. Once the graph is
built, a series of descriptive statistics is produced from the eigen-
values of the adjacency matrix (or the Laplacian matrix) and is
used as the input vector to train a Boosted Tree.

Support vector machine methods
Support vector machines (SVMs) were a popular class of ML algo-
rithms before the development of DL. First introduced for classi-
fication problems, SVMs were then adapted for regression (SVRs).
The model not only separates classes, but also maximizes the
margin between elements closest to its center. Combined with
kernel methods, they are a tool capable of solving nonlinear
problems.

Li et al.67 introduce two models of this kind. The first is based
on a knowledge-based pairwise potential vector (SVR-KB). The
other approach takes a set of physicochemical (Van der Waals
energy, ratio of ligand-buried solvent-accessible surface area,
and hydrophobic effect) descriptors as input (SVR-EP). ID-
Score68 is another SVR for scoring. This method is based on the
same representation as SVR-EP only with additional descriptors,
such as metal–ligand bonding interactions or desolvation effects.
Finally, PLEIC-SVM is a SVM for specific-target VS that relies on
an embedding of a fingerprint called the Protein-Ligand Empiri-
cal Interaction Component (PLEIC) fingerprint.69 Three values
are computed for the residue of each target: Van der Waals inter-
actions, hydrophobic contacts, and hydrogen bonding. All resi-
due feature vectors are then concatenated to produce the
feature vector of the complex used as input by a SVM.

Multilayer perceptron methods
Multilayer perceptrons (MLPs) were the first deep neural network
topologies developed, and were inspired by the Perceptron. They
comprise stacks of layers formed of a series of units, all connected
from layer to layer.

NNscore v170 was the first attempt to bring artificial neural
networks to molecular docking. It is a simple feed-forward MLP
with an input vector of 194 features (including basic pairwise
atom binding, energy terms, or the number of rotatable bonds),
a single 5-unit hidden layer, and a classification output layer
(‘good’ or ‘poor’ binder). A year later, its v270 made use of energy
terms from Vina’s SF as primary descriptors and added features
from BINding ANAlyser71 (including v10s descriptors). In addi-
tion, the network is rewritten to deal with regression (one output
neuron), having a better capacity (hidden layer pushed to ten
neurons). In 2020, Gentille et al. introduced Deep Docking,72

in which the labels are produced by performing molecular dock-
ing on a subset of the ZINC1573 ligand database with a specific
set of proteins. Given that there is no mention of the network
topology, a set of physicochemical descriptors is used instead.
Deep Docking takes the Morgan fingerprint74 to represent the
molecular structure of the ligand. Deep Docking trains its net-
work on the previously mentioned subset of ZINC15 and classi-
fies the other ligands between two classes (binder and non-
binder).
Convolutional neural network methods
CNNs comprise convolutional layers and a tool to catch spatial
correlations. Filter weights are learned from sliding across the
layer input to build a relevant abstract representation of the orig-
inal data.

AtomNet75 is a commercial molecular docking software and
one of the first to rely on CNN. It uses a 3D grid, in which each
cell represents some basic structural features (e.g., atom types or
SPLIF, SIFt fingerprints). The input of the network is a vectorized
grid with a 20 Å edge and 1 Å spacing, with four convolutional
layers, followed by two hidden layers of 1024 neurons. A logistic
regression classifies the input between two classes. For DeepVS,
also a CNN, Pereira et al.76 defined the initial atom feature set
with a context (atom types, atomic partial charges, amino-acid
types, and distance to neighbors) for the atoms of each complex.
To compensate for variable input size, the network incorporates a
lookup table. The resulting vector is a fixed-size float array that
summarizes input data. It is then processed by a single 2D convo-
lutional layer to extract abstract information and two classic lay-
ers to produce a classification. Ragoza et al. introduced a CNN-
based SF77 that works on similar 3D grid images. The novelty
here is that each atom is represented by an uncertainty distribu-
tion around the center of the atom instead of a fixed value. The
network is a succession of three blocks (convolution and pool-
ing) followed by a fully connected (FC) binary classification
layer.

Atomic CNN78 is built from two types of unique operation:
atom type-specialized convolutions of 1 � 1 filters and radial
pooling that filters across the atom neighbors. This approach
uses atom coordinates and atom types as inputs, the former
builds the interatomic distance matrix, and the latter is used to
prepare the atom type matrix. The first layer (atomic convolu-
tion) combines matrices with each other, and the radial pooling
layer is then used to reduce the dimension of the matrix. Finally,
an atomistic FC layer flattens the feature volume (signature vec-
tor), followed by two FC layers, producing a final regression out-
put. Although previous methods focused exclusively on binding
scoring or classification, DeepSite79 aims to find potential bind-
ing sites. The 3D input protein grid is augmented along the chan-
nel axis with eight physicochemical descriptors, and the network
is a standard CNN (3D convolution followed by MaxPooling),
leading to a regression score of potential. Imrie et al. developed
DenseFS,80 which combines Ragoza’s data representation and a
skip-connection network called a Densely Connected Convolu-
tional Network (DenseNet).81 Stepniewska-Dziubinska et al.
designed Pafnucy,82 a classic CNN built to estimate affinity
between a ligand and a target from an initial 4D tensor (3D coor-
dinates discretized on a 3D grid and 19 features). The network
comprises three convolutional layers followed by three FC layers
that produce a binding score. DeepAffinity83 is another unusual
network engineered around recurrent neural networks (RNNs)
for scoring, taking a SMILES representation of the ligand,
whereas the target embedding is a string called the Structural
Property Sequence. Both terms are then independently milled
into a sequence-to-sequence (autoencoder) model, their latent
vectors processed each by a 1D convolutional layer and then
concatenated before a FC layer produces the affinity score.
www.drugdiscoverytoday.com 159
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In DeepBindRG,84 Zhang et al. cleverly flatten the input com-
plex into a projected 2D image and perform residual network
(ResNet)85 computations to produce an affinity score. In
OnionNet,86 Zheng et al. suggested a multilayer intermolecular
contact, in which a series of shells is built around a central atom.
Inside each onion layer, there is a relevant feature set (depending
on its encapsulating atoms). This allows the authors to account
for nonlocal interactions. Eight atom types (leading to 64 pairs)
and 60 shells are stacked for a total of 3840 features. The model
is formed of three convolutional layers followed by three FC
CNNs. FRSite87 for faster R-CNN site predictor was developed
to predict protein binding sites. It takes a 3D grid with eight com-
monly used channels to represent the target. The authors used a
particular 3D CNN adapted from the Faster R-CNN.88 This net-
work is split into three subnetworks: the first is a 3D CNN feature
extractor, the output of which is fed to the second and third parts
of the network. The second part is a 3D region proposal network,
which allows extraction of putative binding sites. Finally, the
outputs of the first and second parts are given to the third to clas-
sify the resulting sites.

Francoeur et al.89 extended work by Ragoza et al.,77 taking the
same input data representation and general model architecture
but performing a comprehensive hyperoptimization to produce
more convolutional layers and average pooling instead of max-
pooling. The authors of Pafnucy82 also worked on binding site
detection with the same protein representation used in Pafnucy
and proposed Kalasanty,90 in which the protein is discretized
on a 3D grid, and 18 descriptors are used for each atom. Taking
inspiration from semantic image segmentation, Stepniewska-
Dziubinska et al. used a U-Net91 to identify potential binding
sites. The Kalasanty data representation was adapted by the
DeepSurf92 authors: instead of discretizing all the molecule
atoms as in the original paper, the authors selected only a few
points of interest from a solvent-accessible surface mesh. Each
point neighborhood is then discretized on a 3D grid with the
same features as Kalasanty. Finally, the resulting model is Bottle-
neck 3D-LDS-Resnet, itself an evolution of ResNet.85

Graph neural networks
Graph neural networks (GNNs) are a variety of neural networks
that work on graph-formatted data. They have evolved from
spectral methods to a more flexible comprehensive modeling
tool. Graph convolutional networks (GCNs) are a particular class
of GNNs, applying convolution and pooling operations from
CNNs to graphs.

The first molecular docking method to use graph data was
PotentialNet.93 Instead of only covalent bonds, it considers addi-
tional bonds with one adjacency matrix for each bond type, con-
catenated along the channel and resulting in a 3D adjacency
matrix. Moreover, it uses a distance matrix that indicates the dis-
tance between each atom pair. The network is a GCN split into
three stages: in the first stage, only covalent bonds are used for
the propagation; then, both covalent and noncovalent bonds
are used for propagation, and, finally, a ‘graph gather’ step,
which gathers matrix rows by summing, is followed by a FC layer
used to produce a binding score. Lim et al.94 introduced a GNN
with a gated-augmented attention layer (GAT). For each node,
in addition to regular edges, atoms in a close neighborhood
160 www.drugdiscoverytoday.com
(5 Å) are also connected. This method works on three matrices:
the first is the node features matrix, the second is the adjacency
for only covalent bonds (in the ligand and the protein), and the
third is adjacency for intermolecular interactions (in which the
second matrix is included). In each step of the network, the node
feature matrix is updated by a GAT, and the second matrix is
updated by another GAT, which uses the third matrix. Then,
the second updated node feature matrix is subtracted from the
first. After additional steps, all node feature vectors are summed,
and a FC layer uses this vector to classify the complex.

Torgn et al. proposed a VS method that uses two graphs to rep-
resent the target and the ligand.95 On the target side, graph
nodes are the residues (restricted to the binding site), edges con-
nect every neighbor in a sphere of 7 Å, and the features are
extracted from the FEATURE program.96 The ligand graph is a
classic 2D molecular graph. The training is a two-step process:
the first encodes the binding site graph (dimensionality reduc-
tion). This encoder is kept for the second step, which concate-
nates its output to a second GCN trained on ligand graphs. The
result is fed to the FC layer and a Softmax classifier. Tanebe et al.97

used GNNs to classify good or bad binders. This approach repre-
sents the ligand by a graph generated from SMILES string in
which nodes are atoms and edges are bonds. The target is a graph
in which nodes are residues, and edge types (five in total) depend
only on the distance between the Ca of each residue. A GNN then
embeds both graphs, and the resulting concatenation is used to
classify the complex. In the Tsubaki et al. method,98 the authors
used the SMILES representation of the ligand to produce a graph
and a GNN to embed this graph into a vector. For the target, the
amino acid sequence is embedded by a CNN. Both are concate-
nated, and an FC followed by Softmax makes a prediction.
Recently, Morrone et al. proposed a new DLmethod for the dock-
ing problem using GCN.55 This method uses two graphs as input.
The first represents the covalent ligand graph (L). The second
graph is a contact graph built by hopping from the protein atoms
to the ligand atoms in a 4 Å neighborhood (LP). This modular
method can take L, LP, or L + LP as input. In each case, the input
is embedded by a GCN and fed to a CNN for prediction.

Comparison of network architectures
The DL family is divided into three classes: MLPs, CNNs, and
GNNs. We have discussed three MLPs, but only two describe
their architectures, which is not enough to understand the evo-
lution of MLP architecture. Moreover, the two with known archi-
tectures are different versions of the same underlying method.

Regarding CNNs, a variety of networks (e.g., ResNet and UNet)
bring many architectural possibilities. For CNNs, the main archi-
tecture is adapted from 3D grids (3DCNN), such as AtomNet or
Pafnucy. The topologies are not identical, but use common
CNN layers. However, some methods propose original architec-
tures, such as the Atomic CNN, or use well-known architecture,
such as Kalansaty, which is based on UNet, a network historically
created for image segmentation. Given the black-box nature of
DL-based models, it is difficult to assess the superiority of a
CNN topology with regards to its counterparts because this
depends on the chosen data representation.

For GNNs, the limited number of available methods does not
allow a particular architecture to be highlighted. Some methods
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use GNNs as a first step to embed the inputs and then use FC lay-
ers or a CNN to produce an output.
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Performance measurement
So far, we have focused on modeling only; however, data sets are
dedicated not only to training, but also to evaluating and assess-
ing the methods used. Therefore, we present here performance
metrics for classification methods (VS), SF, and binding site
detection.

VS assessment
In addition to data sets, authors also use a series of metrics to
compare with other existing contributions. In VS, the model is
evaluated on its capacity to distinguish between binding and
nonbinding ligands. Generally, the enrichment factor (EF) or
the area under the curve (AUC) of the receiver operating charac-
teristic curve (ROC) are used. EF evaluates whether selected
ligands are better binders than randomly selected ones and takes
only real positive values: a poor classifier has EF �1, whereas a
better-than-random one has EF > 1. This metric allows the rate
of true binders among the top-ranked ligands (in the top
{1%,2%,5%,10%}) to be compared with the rate in a random
selection. By contrast, ROC curve is used to visually assess the
quality of a classifier as its discrimination threshold varies. The
optimal AUC value is 1.0, whereas 0.0 is the worst case (random
case being 0.5).

Table 4 details AUC performances from various methods,
including those drawn from53–54. This table shows the difficulty
in drawing a simple conclusion about VS performances. The data
set is the first problem that arises when trying to compare pure
performance. Second, most methods are not self-supporting
and require the adjunction of other classic sampling software.
Thus, even if two methods are assessed on the same data set,
their performances are impacted by the chosen sampling
method. Moreover, even though the sampling method is theo-
retically the same, they might differ on parameter initialization,
as explained by Shen et al.59 Consequently, we have to use raw
performances given in the same paper to compare methods.
For example, Lim’s method is better than AtomNet and Ragoza’s
method, according to Lim et al.94

SF assessment
Comparative Assessment of Scoring Functions (CASF),99 devel-
oped by Su et al., introduced three criteria to assess a SF method:
scoring power, ranking power, docking power.

Scoring reflects the ability of a SF ‘to produce binding scores in
a linear correlation with experimental binding data’. It uses Pear-

son’s correlation coefficient (Rp) (sometimes R2
p) and the standard

deviation in linear regression (SD). Rp can be between �1 and +1.
The closer to 1, the better the method assessed. For SD, the small-
est value is optimal. Rp and, to a lesser extent, SD are the most-
used criteria.

Ranking refers to the ability of a SF ‘to correctly rank the
known ligands of a certain target protein by their binding affini-
ties when the precise binding poses of those ligands are given’.
The assessment uses Spearman’s rank correlation coefficient (q),
Kendall’s rank correlation coefficient (s), and the Predictive
Index (PI). These criteria have values of [�1,1], whereby +1 indi-
cates a perfect ranking and �1 the reverse.99

Docking represents the ability of a SF ‘to identify the native
ligand binding pose among computer-generated decoys’. Assess-
ment uses RSMD (Eq. (1)) to compare top-ranked ligand by the SF
method and native ligand pose. A threshold is used to consider
docking as a success. Commonly, the cut-off used is 2.0 Å.
RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼0 Xi
E � Xi

S

� �2
n

s
ð1Þ
where E is the expected coordinates of the atoms, S is the simu-
lated coordinates of the atoms, and n is the number of atoms in
the ligand.

The CASF data set is identical to the PDBbind core set for the
corresponding year. Table 5 lists examples of method assess-
ments for scoring power. Compared with Table 4, the entries
in Table 5 are more comparable: to assess a SF, authors use a data
set of docked complexes. Consequently, the sampling step is
unnecessary and, thus, assessments differ only by the used data
set. However, a wide data set variety is available, each with sev-
eral subsets and versions (e.g., PDBbind). If the used data sets
are identical, then their respective performance can be com-
pared. For example, OnionNet has a better Rp score than Fran-
coeur’s method on the PDBbind 2017 core set.
Binding site detection assessment
There are two main options to assess binding site detection
methods. First, we can use a data set of already docked ligand–
protein complexes (e.g., PDBbind) and predict binding sites for
proteins. Then, for each complex, it is possible to consider the
method output as a success if at least one predicted protein site
is the real binding site. This approach is interesting if the binding
site composition is unknown.

However, all previously mentioned methods used the sc-
PDB48 data set for training and assessment. This data set contains
the atomic composition of the sites and, once the predicted sites
are defined, atomic compositions can be compared. The authors
used two metrics: the distance to the center of the binding site
(DCC) metric measures the distance either between the center
of the real binding site and the closest atom of the predicted site,
or between the center of the real binding site and the center of
the predicted site. In both cases, the site detection is a success
regarding a threshold fluctuating between 4 Å and 20 Å: the bet-
ter the success ratio, the better the method.

The second is the discretized volumetric overlap (DVO) met-
ric, which assesses the overlap between the predicted and real
binding sites. Authors use the Jaccard Index on the convex hull
of the sites. Both volumes are discretized, and the ratio between
the overlapping volume and merged volume is computed; the
closer to 1 the Jaccard Index, the better the method.

We have not provided a table of the performances of binding
site detection methods because data are often provided as charts
without the raw values. However, most recent methods are com-
pared by their authors to older methods in their respective
papers.
www.drugdiscoverytoday.com 161
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Concluding remarks
Here, we have discussed how ML and particularly DL can help us
tackle molecular docking challenges. We have presented three
challenges: sampling, scoring, and computing time. However,
in terms of the sampling challenge, a ML method that attempts
to tackle it has yet to be developed.

The scoring challenge is, without doubt, the most studied
problem. Indeed, ML scoring methods are interesting in terms
of scoring function space exploration. Many ML methods have
been developed, and most outperform classical methods. Thus,
ML SF can be regarded as a hybrid of knowledge-based and
empirical functions. Indeed, similar to knowledge-based
approaches, ML methods extract statistics from a comprehensive
database to build the most relevant model. By contrast, ML
methods use relatively simple inputs and find links between
them. It is even more evident for DL methods that aim to opti-
mize the weights of networks, which is similar to the goal of
an empirical function. Although they are not the main focus of
this review, a particular class of ML models called physics-
informed DL have potential because they incorporate physical
constraints in the learning process.

This review has shown that ML methods outperform classic
approaches, whether for scoring or classification. Moreover,
recently proposed GNN methods have interesting performances
162 www.drugdiscoverytoday.com
but remain underexplored. Therefore, more in-depth research is
required of these methods.

The last challenge is computing time. No ML scoring methods
are compared with others in terms of computing time required,
which makes it difficult to discuss the capacity of ML in terms
of time reduction. However, a delimited search can be used to
reduce time; some ML methods to predict binding sites are pre-
sented herein and outperform classical binding site detection
methods, according to their authors. Therefore, we consider
GNNs as an interesting approach for improving current ML
methods.

One general drawback is that most methods have not been
proposed and assessed in a complete docking pipeline; thus, it
would be interesting to compare classical methods, such as Auto-
Dock, with the ML workflow. Moreover, the training and infer-
ence times of ML methods are rarely mentioned by authors.
We believe that this information should be included in future
studies because it provides invaluable insights into the complex-
ity of these models.
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