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1. Introduction

Drug discovery is a challenging process and identifying the right lead

compound is a determining factor of the overall success of the project. In

2016, the Tufts Center for the Study of Drug Development estimated that

the cost associated with developing and bringing a new drug to market has

Progress in Medicinal Chemistry, Volume 60 Copyright # 2021 Elsevier B.V.
ISSN 0079-6468 All rights reserved.
https://doi.org/10.1016/bs.pmch.2021.01.004

273

https://doi.org/10.1016/bs.pmch.2021.01.004


increased by almost 145% in the last decade [1]. Furthermore, while the

average time to bring a drug to clinical trials has decreased, the success rate

of drugs obtaining the US Food and Drug Administration (FDA) approval

has dropped to 12% [1]. Computer-aided drug design (CADD) has helped to

reduce the costs and the time associated with drug discovery by directing

experimental research towards optimal compounds more quickly. Within

CADD, techniques such as molecular docking and virtual screening (VS)

have provided a valuable complement to the time-consuming and expensive

experimental process of high-throughput screening (HTS).

Theability tocomputationally screen large librariesof compounds thateither

possess similarity towards known inhibitors (ligand-based) or complementarity

towards target structures (structure-based) has proven to be successful at iden-

tifying highly focused subsets fromwhich actives can then be experimentally

confirmed [2].Todate, generating such ‘educatedguesses’ has providedmany

examples of lead compounds. Several marketed drugs, such as imatinib [3],

zanamivir [4], nelfinavir [5], erdafitinib [6], and several clinical candidates

are known to have been discovered or optimised with the aid of computa-

tional methodologies [7–9]. We can only speculate as to the number of

unpublished examples that reside in corporate collections, butwe believe this

to be considerable.

In the case of molecular docking, the process of predicting the best posi-

tion, orientation and conformation of a small molecule (drug candidate)

when bound to a protein, provides the additional benefit of simplifying

future lead optimisation [10]. Knowing exactly how and where a ligand

binds helps to rationally design changes to optimise the protein-ligand inter-

action, to improve activity, and to avoid changes that could lead to protein-

ligand clashed.

2. Molecular docking

Molecular docking is the most common computational structure-

based drug design (SBDD) method and has been widely used ever since

the early 1980s [11]. It is the tool of choice when the three-dimensional

(3D) structure of the protein target is available. Molecular docking popular-

ity has been facilitated by the dramatic growth in availability and power of

computers, and the increasing number of and ease of access to small mole-

cule and protein structures.
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The main goal of molecular docking is to understand and predict molec-

ular recognition, both structurally (i.e. finding possible binding modes) and

energetically (i.e. predicting binding affinity). Molecular docking was orig-

inally designed to be performed between a small molecule (ligand) and a tar-

get macromolecule (protein) however, in the last decade there has been a

growing interest in protein-protein docking, nucleic acid (DNA and

RNA)-ligand docking and nucleic acid-protein-ligand docking. In this

chapter, we will focus on protein-ligand docking and we will provide an

overview on the challenges related to protein-protein docking, protein-

peptide docking and nucleic acid-ligand docking.

Molecular docking applications in drug discovery are varied, including

structure-activity studies, lead optimisation, finding potential leads by virtual

screening, providing binding hypotheses to facilitate predictions for muta-

genesis studies and also in assisting X-ray and cryogenic electron microscopy

(cryo-EM) crystallography in the fitting of substrates and inhibitors to elec-

tron density.

Docking has proved to be extremely successful in SBDD, therefore it has

been developed and improved for many years. Over the last 2 decades, more

than 60 different docking tools have been developed in academic and com-

mercial settings. Some of these programs will be mentioned in this chapter,

but there are several available reviews that detail evaluation and comparison

of the different docking programs [12–15].

2.1 Theory of docking
The molecular docking process involves two basic steps: prediction of the

ligand (usually a small molecule) conformation as well as its position and ori-

entation within the protein binding site (usually referred to as pose) and assess-

ment of the quality of the pose using a scoring function. Ideally, the sampling

algorithm should be able to reproduce the experimental bindingmode and the

scoring function should also rank it highest among all generated poses.

A further task of the docking procedure would be to score active com-

pounds higher than known inactives (predictive docking). However, this level

of accuracy is difficult to achieve and it is generally influenced by many fac-

tors that are external to the protein. Therefore, primarily a docking algo-

rithm only aims to get the prediction of the ligand pose and assessment of

quality of the pose correct (though many scoring functions are developed

with active/inactive ranking as a consideration too).
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2.2 Searching algorithm
The sampling process is non-trivial. The conformational space involves

many degrees of freedom including the rotation and translation of a mole-

cule relative to another, the additional conformational degrees of freedom of

both the ligand and the protein and sometimes degrees of freedom related to

the solvent [16]. In practice, with current computational resources, it is

impossible to explore the search space exhaustively by enumerating all pos-

sible conformations and all possible rotational and translational orientations

of a single molecule relative to a protein within a second of elapsed time (a

time scale that is realistically needed for virtual screening). Hence, efficient

sampling of conformational space is still a challenge in molecular docking.

Early approaches to account for these sampling problems treated both the

ligand and the protein as rigid bodies thereby reducing the number of

degrees of freedom to just six. Such approaches rely on the shape similarities

between the ligand and the protein binding site. A very well cited example

of a program using this algorithm is DOCK [17].

In a rigid docking approach, the ligand and the protein binding sites are

represented as pharmacophore spheres of varying radii and the search algo-

rithm tries to pair the ligand spheres with the protein spheres based on the

match of the internal distances of all the ligand’s spheres and the internal dis-

tances of all the protein binding site’s spheres. The ligand is then oriented

within the binding site using a least square fit of the atoms to the sphere cen-

tres [18,19]. In case of unacceptable orientation (e.g. clashes between the

ligand and the protein binding site), the ligand is reoriented until an accept-

able orientation is obtained. The orientation is then scored based on the

degree of overlap between the ligand and protein pharmacophore spheres

(Fig. 1).

Despite its computational efficiency, failing to model molecular flexibil-

ity limits effectiveness as the conformation is interlinked with protein-ligand

interactions; the optimal binding conformation of a small molecule is a com-

promise between the best internal geometry of said small molecule and the

interactions it forms with the binding site. Rigid docking fails to account for

this. This is even more relevant in predictive docking where there is the

additional complexity derived from the conformational change of the ligand

from its unbound (isolated) conformation and its bioactive (bound)

conformation.

To overcome to such limitations, most docking programs reached a trade-

off and started to account for the whole conformational space of the ligand

while limiting flexibility in the protein to regions of the receptor (e.g. binding
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Fig. 1 Rigid docking approach: (A) protein and ligand. (B) The initial pose generation through pharmacophore point matching.
Donor–acceptor pharmacophore point and hydrophobic pharmacophore points are added to the protein and the ligand. (C) The searching
algorithm tries to match the protein and the ligand fitting points by matching donor with acceptors and hydrophobic atoms with hydro-
phobic cavities. (D) Different solutions are found.



site), or keeping the entire protein rigid. The underlying reason is that, since

ligands are small molecules, they are likely to undergo larger conformational

change; furthermore, given their smaller size, accounting for ligand flexibility

is also computationally affordable. The ligand conformations can be sampled

with both systematic and stochastic methods (Fig. 2).

2.2.1 Systematic methods
Systematic search methods sample the ligand search space at predefined

intervals and are deterministic; they can be classified as exhaustive, fragmen-

tation or conformational ensemble methods. The main difference between

them is in the approach they take to deal with the ligand flexibility. In

exhaustive search methods, for example, the docking is performed by sys-

tematically rotating all possible rotatable bonds in the ligand at a given

Fig. 2 Small molecule conformational search methods. (A) A molecule containing two
bulky groups (red and yellow spheres) has its conformation defined by two internal
dihedrals Φ1 and Φ2. If we freeze the Φ2 dihedral, the energy variation due to rotation
of Φ1 can be plotted in a 1D energy landscape. The initial structure (grey spheres) is
modified by changing the Φ1 dihedral. (B) In the systematic search approach, the
changes are applied to all structural parameters until local (blue spheres) or global
(green sphere) energy minimum is reached; a few examples of docking programs using
systematic methods are also listed. (C) Stochastic search approaches explore the con-
formational space by generating distinct conformations, with an element of random-
ness, populating a broad range of the energy landscape. A few examples of docking
programs using stochastic search algorithms are also listed. Figure adapted from
Ferreira LG, dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-
based drug design strategies. Molecules 2015;20(7):13384–13421.
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interval. Despite its sampling completeness, the number of possible combi-

nations is huge and increases with the number of rotatable bonds in the

ligand (Fig. 2). Therefore, this approach is limited to small, relatively flexible

ligands and, in most cases, to make the docking ‘practical’, it is necessary to

apply geometrical or chemical constraints to the initial screening of the

ligand poses. A well cited example of a program using the exhaustive sam-

pling method is Glide [20,21].

The fragmentation method is an incremental approach where ligands are

divided into modular pieces. One of the fragments is anchored to the protein

binding site and then the ligand binding conformation is incrementally

grown by placing additional fragments one at the time. The anchor is gen-

erally chosen to be the fragment which shows maximum interaction com-

plementarity with the receptor surface (i.e. H-bonds), has the minimum

number of alternate conformations, and is fairly rigid (for example, a ring

system). One docking program that uses a fragmentation sampling approach

is FlexX [22]. A variation of this approach is to dock all the fragments into

the binding site and then link them covalently.

As for the exhaustive method, the fragmentation method is restricted to

medium and smaller sized ligands and it is not feasible for big ligands where

the number of fragments would be too large.

In conformational ensemble methods, the ligand flexibility is represented

by rigidly docking an ensemble of pre-generated ligand conformations.

Using such an approach removes the computational cost due to the explo-

ration of ligand conformational space, however, it involves additional tools

to generate the required ensemble of conformations of the ligand. One lim-

itation in this approach is that the ensemble of generated conformers may

not include the bioactive conformation of the ligand.

2.2.2 Stochastic methods
In stochastic algorithms, the ligand binding orientations and conformations

are sampled by making changes to the ligand that have some dependence on

one or more values generated at random at each step (Fig. 2). The change is

then accepted or rejected according to an algorithm-dependent criterion.

The advantage of stochastic algorithms is that they can generate large

ensembles of molecular conformations and explore a broad range of the

energy landscape increasing the probability of finding a global energy mini-

mum. However, this also means that computational costs associated with this

procedure represent an important limitation. Genetic algorithm, Monte

Carlo, ant colony optimization (ACO) and tabu search methods are a few
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examples of stochastic algorithms that differ in the way they generate given

moves and the probability criteria of acceptance.

In a genetic algorithmmethod, a population of potential solutions is set up

at random. Each member of the population is encoded as a ‘chromosome’,

which contains information about the mapping of ligand fitting points (e.g.

H-bond atoms) onto the complementary protein’s fitting points. Each

chromosome is assigned a fitness score based on its predicted binding affinity

and the chromosomes within the population are ranked according to fitness

score. At each step, a point mutation may occur in a chromosome, while the

crossover operator exchanges information between two chromosomes of the

population. Other operations are also used in some implementations (for

example, island migration). GOLD [23] is one of the well cited docking pro-

grams that uses a genetic algorithm to explore the ligand conformational space.

DockVision [24] is an example of docking program that uses Monte Carlo

stochastic method where the probability to accept a random change is calcu-

lated by using the Boltzmann probability function. PLANTS [25], instead, is

an example of a docking program based on ACO. ACO is inspired by the

behaviour of real ants finding the shortest path between their nest and a food

source. In the case of protein-ligand docking, an artificial ant colony is

employed to find a minimum energy conformation of the ligand in the bind-

ing site. These ants mimic the behaviour of real ants and mark low energy

ligand conformations with pheromone trails. The artificial pheromone trail

information is then modified in subsequent iterations to generate low energy

conformations with a higher probability [25].

The tabu search method is a variation of the Monte Carlo approach

which maintains a record of the search space of the binding site which

has already been visited and thus ensures that the binding site is explored

to the maximum. PSI-DOCK [26] is an example of a docking tool that uses

a tabu search.

2.2.3 Scoring functions
Scoring functions are fast approximate mathematical methods used to pre-

dict the strength of the interaction (or binding affinity) between two or more

molecules.

Four aspects should be considered when assessing the reliability of a scor-

ing function [27]: (1) scoring power: the ability to produce scores which lin-

early correlate with experimental binding affinity data, (2) ranking power: the

ability to correctly rank a given set of ligands that bind to a common target

protein by their binding affinities when their binding poses are known,
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(3) docking power: the ability to identify the native binding pose of a ligand as

the one with the best score, and when screening a large set of generated

decoy poses, (4) screening power: the ability to identify the true binders to a

given target protein among a library of random molecules. Ideally, an accu-

rate scoring function would perform equally well on all these four tasks;

however, each existing scoring function only perform well on one or

two of them at the same time.

Scoring functions can be grouped into four main classes: physics-based,

empirical,knowledge-basedandmachine learning-based scoring functions [28].

The first three types are commonly referred to as ‘classical’ scoring func-

tions and are based on the assumptions that the change in free energy upon

binding of a ligand to its target can be decomposed into a sum of individual

energy contributions, and that all these energy contributions are linearly

combined. In reality, such linear correlation may not always exist [29].

Two major limitations of classical scoring functions are their minimal

description of protein flexibility and the implicit treatment of solvent.

Machine learning-based scoring functions instead use more sophisticated

techniques, such as random forests (RF), support vector machines (SVM),

and deep learning (DL), to approximate non-linear problems (Fig. 3).

Physics-based or force-field based scoring functions compute the bind-

ing energy by summing up the contribution of the bonded interactions

(bond stretching, angle bending and torsion angles) and non-bonded inter-

actions (van der Waals and electrostatic interactions) within the

protein-ligand complex which accounts for the contribution of enthalpy

to energy. Hydrogen bonds are usually considered by adding an additional

term to the binding energy. Alternatively, they can be included implicitly in

the electrostatic energy term.

Parameters for this type of scoring function are usually derived from both

experimental data and ab initio quantummechanical calculations. Themajor

challenge for physics-based scoring functions is the treatment of the solvent

in ligand binding. To overcome this limitation, implicit solvent approaches

like Poisson–Boltzmann (PB) or Generalised-Born (GB) continuum solva-

tion models have been widely used [30]. However, more computationally

expensive approaches that treat water molecules explicitly are also available

(such as free energy perturbation (FEP) and thermodynamic integration (TI)

techniques) [31] (Eq. 1).

Ebind ¼ Ebond + Eno�bond + EH�bond½ � + Esolv (1)
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Fig. 3 Scoring functions in docking. Scoring functions can be divided into classical and machine learning scoring functions. The classical scoring functions
are physics-based, empirical and knowledge-based. From a mathematical perspective, all classical scoring functions assume an additive functional form;
however, they are distinguished by the type of structural descriptors employed. By contrast, non-parametric machine learning scoring functions do not
make assumptions about the form of the functional. Instead, the functional form is inferred from training data in an unbiased manner. Machine
learning-based scoring functions use more sophisticated machine learning techniques, such as random forests (RF), support vector machines (SVM),
and deep learning (DL), to approximate non-linear problems.



In addition to the above, accounting for the entropic effect is an even more

severe challenge for physics-based scoring functions. This shortcoming is

due to the lack of a reasonable physical model to describe this phenomenon.

In principle, the individual terms in Eq. (1) account for the main energetic

contributions to the protein-ligand binding however, a separation into

individual terms is only possible if the system of interest is divided intomutu-

ally independent subsystems [32]. In fact, many of the individual terms are

highly correlated with each other and thus can affect the binding affinity in

more than one way (i.e. positive or negative contribution) [33]. Moreover,

whether the free energy of ligand binding can be decomposed into a linear

combination of individual interaction terms without calculating the parti-

tion function (ensemble average) also remains in question (the ‘non-

additive’ problem). Despite these approximations, physics-based scoring

functions are very appealing as the simplifications result in functions that

can be evaluated very rapidly, which is important in a high-throughput

docking setting. Another obvious advantage of physics-basedmethods is that

they can ride on the progress of modern force fields, quantum mechanics

methods, solvation models, and other developments.

Despite the lucid physical meaning, rigorous physics-based scoring func-

tions are normally computationally expensive. Examples of physics-based

scoring functions are GoldScore [34], AutoDock [35], Generalised-Born

Volume Integral/Weighted Surface area (GBVI/WSA) [36].

Empirical scoring functions estimate the binding affinity of a protein-

ligand complex by summing up different energetic factors involved in the

protein-ligand binding, such as hydrogen bonds, hydrophobic effects,

protein-ligand clashes, etc. (see Fig. 3). Each factor is multiplied by a coef-

ficient that is obtained from multiple linear regression analyses fitted to a

training set of protein-ligand complexes with known binding affinities.

Compared to force-field or physics-based scoring functions, empirical scor-

ing functions are much faster in binding score calculations due to their

simple treatment of the energy terms. However, the accuracy of empirical

scoring functions is directly correlated to the accuracy and the coverage of

the protein-ligand training set that is used to develop themodel. Examples of

empirical scoring functions are ChemScore [37], GlideScore [21] and

ChemPLP [25,38].

Knowledge-based scoring functions use statistical analyses to derive the

observed interatomic contact frequencies and/or distances in a large database

of crystal structures of protein-ligand complexes and employ the Boltzmann

law to transform the atom pair preferences into distance-dependent pairwise

potentials (Eq. 2).
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wij rð Þ ¼ �kBTln
ρij rð Þ
ρ∗ rð Þ

� �
(2)

In this equation kB is the Boltzmann constant, T is the absolute temperature

of the system, ρij(r) is the number density of the protein-ligand atom pair at

distance r in the training set, and ρ*(r) is the pair density in a reference state

where the interatomic interactions are zero. The protein-ligand density

functions ρij(r) are constructed by summing the static densities observed

in different proteins rather than by averaging different states of the same

protein.

The knowledge-based scoring functions assume that favourable interac-

tions occur with higher frequencies than less favourable interactions there-

fore, the final score is calculated by favouring preferred contacts and

penalising repulsive interactions between each atom in the ligand and pro-

tein within a given cut-off. Compared to the physics-based and empirical

scoring functions, knowledge-based scoring functions offer a good balance

between accuracy and speed, because they do not rely on ab initio calcula-

tions (physics-based methods) or reproducing binding affinities (empirical

methods). Also, because the training protein-ligand dataset database can

be large and diverse, they are insensitive to the training set [39].

The main challenge in deriving knowledge-based scoring functions is rep-

resented by the calculation of the reference state (ρ*(r)) [40]. Currently, there
are two classical strategies used to determine this: traditional atom-randomised

reference state and corrected reference state. Traditional methods approximate

the reference state by the randomdistribution of atomic pairs in the training set.

Examples include DrugScore [41,42] and GOLD/ASP [43]. The drawback of

the atom-randomisation approximation is the neglect of the effects of excluded

volume and interatomic connectivity [40]. To overcome these limitations,

later approaches introduced correction terms such as the volume factor correc-

tion term for the reference state [44,45]. Nevertheless, the accuracy of the

reference state remains a challenge for knowledge-based scoring functions.

The problem is more relevant for binding mode predictions and virtual

screening, as the pairwise potentials, derived from bound structures, are not

sufficiently sensitive to different ligand positions andmay give good scores even

to bad binding modes. A third approach to solving this problem, is to circum-

vent the accurate calculation of the reference state using iterative methods

[39,46]. The basic idea of this method is to adjust the pair potentials by iteration

until the interaction potentials reproduce the experimentally determined pair

distribution function in the training set, yielding a set of potentials that can
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discriminate the native structures from decoys. During the iteration procedure,

the improvement for the potentials is guided through the difference between

the predicted and experimentally observed pair distribution functions rather

than through accurate calculation of the reference state [47].

Other challenges for knowledge-based scoring functions include exten-

sion of the pairwise interactions to many-body interactions to account for

hydrogen bonding and other directional interactions [48,49] and the devel-

opment of an accurate method that includes the contributions from solva-

tion and entropy [30,50,51].

Over the years several studies have assessed and compared different scor-

ing functions; each one has its virtues and drawbacks. None of the scoring

functions available outperforms the others in all tasks but each scoring func-

tionmay perform better than others in a specific task [27,52]. To compensate

for drawbacks in individual scoring functions, the simultaneous use of dif-

ferent scoring functions, or even individual terms of multiple scoring func-

tions, has been widely used to obtain a consensus score [53]. One way to

perform consensus scoring is to re-evaluate the best docked pose of each

compound with other scoring functions. Only the top scored compounds

common to each scoring function will be identified as candidates for bioas-

say. Consensus ranking is thought to increase hit rates, either by reducing the

number of false positives or by statistically reducing the errors in the scores/

ranks [34,54,55]. On the other hand, in some cases, single-scoring-function

ranking has been shown to outperform consensus-ranking methods [56].

With the abundance of experimental biological, biochemical and biophys-

ical data becoming available, a direct link between energetic and structural

information of protein-ligand complexes has become accessible, leading to

the design of data-oriented scoring functions using machine learning (ML)

techniques [57]. These methods introduced quantitative structure-activity

relationship (QSAR) analysis into the protein-ligand interaction evaluation.

If the properties of the ligand and the protein, such as atom pairs or structural

interaction fingerprints, as well as their interaction patterns (electrostatic inter-

actions, hydrogen bonds, or aromatic stacking), geometrical descriptors (sur-

face or shape properties), and conventional ligand-based descriptors

(molecular weight, number of rotatable single bonds, etc.) can be encoded,

then ML techniques can be applied to derive statistical models that compute

protein-ligand binding scores [47].

Rather than the predetermined functional form,ML-based scoring func-

tions can automatically learn both generalised non-linear functional forms

and feature information from the training data. Thus, like empirical scoring
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functions, ML-based scoring functions also need a training set of protein-

ligand complexes with known structures and binding data to derive their

final models. Given a set of active and inactive ligands for training, ML-

based scoring functions can be trained to distinguish between known ligands

by potency with high accuracy. Thus, they have gradually emerged as

potential alternatives to classical scoring functions [58,59]. Recently, signif-

icant progress has been made on ML-based scoring. In particular a wide

range ofML algorithms, such as random forest (RF), support vector machine

(SVM), artificial neural network, gradient boosting decision tree (GBDT)

and convolutional neural network (CNN), have been applied to the devel-

opment of new scoring functions [28].

Machine learning scoring functions have been proved to outperform

classical scoring functions in such tasks as ranking and screening however,

they are rarely directly incorporated into docking software and are mostly

used for rescoring [57,58,60]. Examples of machine learning scoring func-

tions are RF-Score [61] and SVM-Score [62].

2.2.3.1 Tailored scoring functions
The intrinsic simplistic nature of the classic scoring functions cannot capture

all the features involved in the protein-ligand binding. Some of these scoring

functions performs better with one protein target or another based on their

structural and chemical features. For example, it was observed that among

metalloenzymes, the performance of different scoring functions varied based

on the specific metal in the protein, its location in the binding site, type of

dominant interactions, exposure to solvent, etc. [63]. Furthermore, the

chemical space and properties (such as protonation state, partial charge,

number of rotatable bonds) of the small molecules tested in docking has a

significant impact on the performance of one scoring function versus

another [64].

One can evaluate which scoring function to use for a target protein by

experimenting and optimising the choice based on an actives/decoys test set

for each specific protein target (Fig. 4).

This strategy is subject to the availability of experimental information on

active ligands. Several databases such as BindingDB [65–67], PDBbind

[68–70] and ChEMBL [71,72], store experimental binding affinity data of

ligands against several protein targets.

This information can be used to select active and inactive ligands for the

target of interest that can be used to test each scoring function. Alternatively,

services like the DUD-E (database of useful decoys-enhanced) decoys server
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Fig. 4 Approach to evaluate scoring function for a specific protein target. Known active ligands and inactive ligands are docked together to
evaluate the performance of different scoring functions. The performance of the docking run can be evaluated by the enrichment of anno-
tated ligands of known binders (True Positive Rate—TPR) from among of non-binding, or decoy molecules (False Positive Rate—FPR). The
area under the receiver operating characteristic (ROC) curve is widely used to evaluate its performance, where generally higher is better.



[73] can be adopted to generate decoy molecules with similar physicochem-

ical properties of the actives. The customised actives/decoys test set can

therefore be used to assess the performance of the different scoring functions

to find the best one available for the specific target for the virtual screening

campaign. In the absence of enough data (active ligands), scoring functions

are usually selected based on the ability to reproduce the native ligand bind-

ing conformation (self-docking). Success of such prediction is defined by the

Root Mean Square Deviation (RMSD) value between the top-ranked

ligand conformations and the experimentally observed (native) structure.

Generally, if the RMSD is 1.5 Å or below, the prediction is considered

successful.

Because of its simplicity, the RMSD criterion has been widely used to

evaluate the prediction power of scoring functions. However, it may not

be reliable for small or symmetrical ligands that are likely to have good

RMSD values even when they are randomly placed in a protein binding site.

On the other hand, for large flexible ligands, a large RMSD value due to a

solvent exposed and/or substituent groups, may hide the correctness in

prediction of the overall binding mode. To overcome these limitations, several

alternative methods have been proposed for pose evaluations, such as

interaction-based accuracy classification (IBAC) [74], real space R-factor

(RSR) [75] and Generally Applicable Replacement for RMSD (GARD) [76].

2.3 Practical aspects in molecular docking
Fig. 5 shows the key steps in molecular docking that are common to all

protocols. A molecular docking calculation needs 3D structures of the input

molecules, both protein and ligand(s). The structure of the protein target is

usually determined by experimental techniques such as X-ray crystallogra-

phy, nuclear magnetic resonance (NMR) or cryogenic electron microscopy

(cryo-EM), and can frequently be downloaded from the Protein Data Bank

(PDB) (https://www.rcsb.org/) [77]. Other sources of crystallographic

structure of proteins and protein-ligands complexes are listed in Table 1.

There are several aspects that should be considered when assessing the

quality of the protein target [78].

First is the crystal structure resolution, which is a measure of the degree of

measurable diffraction observed in the crystallographic experiment using the

protein or nucleic acid. This measure is conveniently represented in a form

that expresses the level of details that could be observable when the electron

density map is calculated. The crystal resolution depends on the degree of
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Fig. 5 A typical docking workflow. This flowchart shows the key steps common to all docking protocols. The 3D structures of the target
macromolecule and the small molecule must first be chosen, and then each structure must be prepared in accordance with the requirements
of the docking method being used. The binding site should be defined using computational tools or using experimental information. Active
or structural water should be included as well. Following the docking, the results must be analysed, selecting the bindingmodes with the best
scores, and evaluated.



Table 1 Sources of crystallographic structure of proteins and protein-ligands
complexes.

wwPDB: worldwide Protein

Data Bank

https://www.wwpdb.org/

www.rcsb.org

www.pdbe.org

www.pdbj.org

www.bmrb.wisc.edu

PDB is the central archive of all

experimentally determined protein

structure data. Today the PDB is

maintained by an international consortium

known as wwPDB.

wwPDB has four members:

• Research Collaboratory for Structural

Bioinformatics Protein Database

(RCSB PDB)

• Protein Data Bank in Europe (PDBe)

• Protein Data Bank Japan (PDBj)

• Biological Magnetic Resonance Data

Bank (BMRB)

Among these, rcsb acts as archive keeper to

ensure that there is only one version of the

data which is identical for all users

BindingDB

https://www.bindingdb.org/

bind/index.jsp

Rich repository of structural and

thermocalorimetric data about

ligand-protein interactions, including

standard free energy, enthalpy and entropy

changes upon binding, ΔG°, ΔH°, and
�TΔS° for a small but growing number

of complexes

BindingMOAD—Mother Of All

Databases

https://bindingmoad.org/

Subset of the PDB containing every

high-quality example of protein crystal

with clearly identified biologically relevant

ligands annotated with experimentally

determined binding data extracted from

literature. Ligands may be a peptide of

10 amino acids or less; oligonucleotide of

4 nucleotides or less; small organic

molecule, and cofactors. Small molecules

like crystallographic additives, salts, metals

or solvent are not considered as ligands

PDBbind

http://www.pdbbind-cn.org/

Comprehensive collection of measured

binding affinity data (Kd, Ki, and IC50)

exclusively for the protein-ligand

complexes available in the PDB. It thus

provides an essential linkage between

energetic and structural information of

these complexes, which is helpful for

various computational and statistical

studies on molecular recognition occurred

in biological systems
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order of the crystal and the intensity and coherence of the diffraction beam

used in the experiment. If a crystal is highly ordered and atoms are in

well-defined positions throughout the crystal and remain so over time, then

they will scatter X-rays the same way, and the diffraction pattern will show

the fine details of the crystal.

Table 1 Sources of crystallographic structure of proteins and protein-ligands
complexes.—cont’d

ModBase: Database of

Comparative Protein Structure

Models

https://modbase.compbio.ucsf.

edu/

Database of theoretically calculated

protein structure models. The models are

derived from an automated modelling

pipeline relying on PSI-BLAST and

MODELLER. In addition to the protein

structure models ModBase contains

information about putative ligand binding

sites, SNP annotation and protein-protein

interactions

PDB-REDO databank

https://pdb-redo.eu/

Database of optimised existing PDB

entries with electron density maps, a

description of model changes, and a wealth

of model validation data. It is a good

starting point for any structural biology

project. All the entries are treated with a

consistent protocol that reduces the effects

of differences in age, software, and

depositors

EBI: The European

Bioinformatics Institute

https://www.ebi.ac.uk/services/

structures

EBI provide access to several data

resources including:

• EMDB, a public repository for electron

microscopy (EM) density maps of

macromolecular complexes and

subcellular structures

• EMPIAR-Electron Microscopy Public

Image Archive, a public resource for

raw, 2D electron microscopy images. It

allows users to upload, and download

and reprocess the thousands of raw, 2D

images used to build a 3D structure

• PDBe, the European resource for the

collection, organisation and

dissemination of 3D structural data

(from PDB and EMDB) on biological

macromolecules and their complexes)
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In contrast, if atomsmove over time or the content of one unit cell differs

from the other, the diffraction pattern will not contain as much fine infor-

mation. The highest resolution structures, with resolution values of 1 Å or

so, are highly ordered and it is easy to see every atom in the electron density

map. Lower resolution structures, with resolution of 3 Å or higher, show

only the basic contours of the protein chain, and the atomic structure must

be inferred (Fig. 6). As a rule of thumb, we have more confidence in the

location of atoms in structures with resolution values that are lower than

2Å, called ‘high-resolution structures’.

Although the resolution of the data provides information about the the-

oretical limits on the precision of the model, it does not say anything about

the quality or the completeness of the data. Any missing data leads to a dete-

rioration of the model parameters in the same way as reduced resolution

does. Therefore, if two data sets are collected at the same resolution, the

one with the lower completeness has the poorer data set and will more likely

result in a less precise model.

Moreover, the experimental electron density data can be used to calcu-

late several values such as the R-factor and Rfree that can be used to address

the quality of the data instead [79].

R-factor is a measure of the difference between measured data and

data predicted from the model. A totally random set of atoms will give an

Fig. 6 Electron density maps for structures with a range of resolutions. The three struc-
tures on the top panel show tryptophan 28 from Lysozyme C, from PDB entries 2vb1
(0.65Å resolution), 4e3u (1.5Å resolution), and 3wum (2Å resolution), respectively.
The three structures on the bottom panel show tryptophan 28 from Lysozyme C, from
PDB entries 4wmg (2.5Å), 3txk (3.0Å resolution) and 4gcf (3.5Å resolution), respectively.
The protein backbone is displayed as a ribbon cartoon and coloured in green, the tryp-
tophan residue is rendered as green sticks and the electron density map surrounding
regions of high electron density is coloured in yellow mesh.
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R-factor of about 0.63, whereas a perfect fit would have a value of zero.

A small difference indicates a more consistent model and therefore if two

structures have similar resolutions the one with lower R-factor is the model

that best fits the experimental data.

One potential problem with using R-factor to assess the quality of a

structure is that it reflects the fit of the calculated and observed reflection

data, the very thing that the refinement process uses to improve the atomic

model. In effect, using the R-factor means we are evaluating the refinement

model against the data used to train that model and so its value can be

artificially low.

A less biased approach is to remove some of the experimental data (usu-

ally about 10%) before starting the refinement process, in this way only the

remaining data (90%) are used for the refinement while the 10% is used for

cross-validation during the refinement process to avoid over-fitting to the

data. The Rfree value represents how well the model predicts the 10% of data

that were not used in refinement. However, over-fitting may still occur

because there are usually insufficient data to uniquely determine all atom

coordinates. For an ideal model that is not over-fitting the data, the Rfreewill

be similar to the R-factor with a value of about 0.26 [80]. Another aspect to

consider when evaluating the quality of a protein structure is the Debye

Waller factors (DWF), or B-factors which are used to describe the relative

vibrational motion of different parts of the protein. Atoms with low

B-factors belong to well-ordered regions of the protein target while atoms

with large B-factors belong to regions of the protein that are very flexible. It

is important to ensure that atoms included in the binding site of the protein

structure have a low B-factor, as high values imply that their coordinates are

less reliable, and the docking experiment could then be affected. Finally,

atomic occupancies should be considered. In some structures, regions are

so labile that it is impossible to identify atomic positions at all. If prior to

refinement a crystallographer knows that a given residue is of a given type

from sequence information, they may choose to include a set of model coor-

dinates for it with occupancies set to zero. These atomswill not contribute to

the fit and so are, in effect, being placed by the refinement program in an

arbitrary single position that may not be accurate.

When the 3D structure of the target protein is not available, protein

structure prediction techniques such as homology modelling and protein

threading are commonly used to obtain a 3D model of the target protein

[81]. Homology modelling or comparative modelling relies on the correla-

tion between the sequence of the target protein and its homologous protein

293Use of molecular docking computational tools in drug discovery



structures (template) available in the PDB (Fig. 7). Such approaches can also

be used to generate a variety of receptor conformations using either

single-template or multiple-template structures enhancing the understand-

ing of selectivity. Homology modelling can produce high-quality structural

models when the protein target and template are closely related. Above 50%

sequence identity, structural models tend to be reliable, with only minor

errors in side chain packing. In the 30–50% identity range, errors can be

more severe and are often located in flexible regions of the proteins (i.e. loop

regions). For structures with lower sequence identities (<30%) homology

modelling can be extremely difficult and other modelling techniques such

as protein threading are then recommended. In protein threading or fold

recognition techniques, the protein modelling is not based on the sequence

Fig. 7 Outline of the homology modelling process. Given the sequence of a protein
with unknown structure, the first step is the identification of a related protein with
known 3D structure that serves as a template. An alignment of the target and template
sequences is necessary to assign the correspondence between target and template
residues. A model is then built for the target based on the alignment and structure
of the template, and further refined and validated.
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similarities, but on structural fit of the target sequence against different known

folds. Protein threading is based on two basic observations. Firstly, the number

of different folds in nature is quite small (approximately 1000). Secondly, 90%

of the new crystallographic structures added to the PDB have similar structural

folds to ones already deposited [82].

2.3.1 Protein preparation
Once the 3D structure of the protein target has been obtained (either down-

loaded from the PDB or generated using protein prediction methods), there

are several protein and ligand preparation steps that should be followed

before starting a docking run (Fig. 5). Here we will discuss the protein prep-

aration procedure while the procedure for ligand preparation will be cov-

ered later in the chapter (see Section 2.3.2).

Due to insufficient resolution, most of the entries in the PDB only con-

tain coordinates of non-hydrogen atoms. To work with these entries, the

most common protein preparation task is the placement of the missing

hydrogen atoms. This is not trivial, as it should account for the important

ambiguities of protein structures, such as rotatable hydrogens, tautomers

and protonation states of particular amino acids, alternative water orienta-

tions, and terminal side chain flips.

In addition, during protein preparation it is important to ensure that

missing side chains are added, missing bonds are detected and fixed, bond

orders are assigned, and where alternate locations are present, the atoms with

highest frequencies are selected.

Other, more complex, procedures in protein preparation include predic-

tion of protonation states and identification of which water molecules (if

any) should be retained in the protein target structure.

The following subsections will look at the methods used to predict the

protonation/tautomer states and at how to identify structural water molecules

that are known to be vital in mediating hydrogen-bonding interactions, even

in some cases key for facilitating tight binding, and hence should be considered

part of the protein target structure.

2.3.1.1 Protonation state
Assigning the aqueous protonation state to protein residues is a key pre-

processing step when working with crystal structures of protein-ligand com-

plexes, and plays an important role in the prediction of the correct binding

mode or binding affinity [64,83,84] of a ligand. This is even more relevant in
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virtual screening where an incorrect predicted binding mode could lead to

the identification of false positives or miss potential true binders.

It is worth mentioning that not all the scoring functions are equally

affected by an incorrect protonation; in general, the physics-based scoring

functions are likely to be more susceptible in comparison to knowledge-

based or empirical scoring functions [85].

Protonation states of ionisable amino acids residues are constantly chang-

ing due to the dynamic nature of a protein. This effect is particularly relevant

in protein-ligand complexes, where the ionisation states of residues in the

binding site could vary, affecting the protein-ligand interactions. To accu-

rately predict the conformation of a ligand in a protein binding site, the pro-

tonation state of the protein must be relevant to the bound conformation

and in accordance with the pH of the experimental conditions [85].

Inspection of crystal structures and known, experimentally identified

active ligands can yield a wealth of knowledge on the protonation state, ste-

ric clashes, and hydrogen-bonding networks between ligand and receptor

[86]. Assigning protonation states to aspartic acid (Asp), glutamic acid

(Glu), arginine (Arg) and lysine (Lys) during the protein preparation is

generally straightforward, with deprotonated acids (Asp and Glu) and pro-

tonated bases (Arg and Lys) [86]. Histidine (His), however, provides a

unique challenge in terms of protonation, as it can be protonated in three

different ways. The imidazole ring of the His side chain can be protonated

in a neutral form at either the ε-nitrogen or the δ-nitrogen, or in a charged

(+1) form where both the ε- and δ-nitrogens are protonated. To further

complicate choosing the correct form of the imidazole side chain ring, ambi-

guities in crystal structures, due usually to poor resolution, often switch the

carbon and nitrogen, creating an additional three rotameric conformations,

termed ‘flipped’ [86,87]. In addition, His is a weak base (pKa �6.0) and its

protonation state is highly affected by the surrounding environment. To

determine the correct protonation state of histidine residues, it is good prac-

tice to look at each His in the binding site individually; analysis of

hydrogen-bonding networks is likely to yield the most detail about the cor-

rect side chain protonation [88]. Glutamine (Glu) and asparagine (Asp) too

can be problematic: in poorly resolved crystal structures, the side chain termi-

nal amides can, on occasion, be flipped so that the oxygen andNH2 groups are

misplaced.

Most of the available docking tools provide a set of protocols to prepare

the protein target however, because most of these are automatic, it is always

good practice to check particularly challenging residues like histidine, aspar-

agine and glutamine.
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2.3.1.2 Binding site definition and cavity detection
When targeting a protein, one wants to bind potential small molecule ther-

apeutics to locations that induce a therapeutic effect (Fig. 5). A protein will

typically have a key binding site where a given substrate will bind and will

possibly have other sites of an allosteric nature. Binding to these sites is desir-

able, but first such sites need to be identified. They are usually determined

experimentally, so that the structure of the protein-ligand complex is avail-

able, however, the process of identification of the active site in proteins

becomes critical when the bound ligand is absent in the crystal structure.

With protein-ligand docking, a user typically provides guidance to the

software to ensure that the predictions generated are placed in the correct

regions of the protein. (We note that there is active research into ‘blind’

docking where no cavity information is assumed up front, which will be dis-

cussed later in the chapter.)

To identify likely binding regions, users will typically use cavity detec-

tion methods prior to docking. In some cases, the binding sites generated

will be further validated experimentally: one can use single point site muta-

genesis, for example, to identify whether given residues are essential for

binding of known substrates. If a given residue is indeed critical, one can

infer that the residue is likely to be in a therapeutically active region of a

protein and so researchers will tend to examine the region containing said

residue more closely with a view to designing new therapeutic agents.

Programmatic cavity detection is a well-researched field [89]. Many

methods using a variety of different algorithmic approaches exist. For exam-

ple, the classical algorithm LIGSITE [90] uses grid-based ray tracing to iden-

tify pockets and GHECOM [91] uses recursive sphere-based detection

whereas newer methods, such as CavVis [92], use methods inspired from

computer graphics [93]. The best methodology will be open to debate,

however, for most docking algorithms the more critical component is iden-

tifying the set of atoms to be treated as active in docking.

If there are pre-existing known binding ligands, one can use them as a

basis for the docking cavity. A common problem in the evaluation of dock-

ing is how to define the cavity in this case; if a cavity definition only encap-

sulates the close residues to a known binder, it is likely that the performance

of the software will be over-represented when redocking the known binder;

conversely if the cavity is very large, the search space for the algorithm is

made far larger. Experience suggests that a reasonable compromise appears

to be to include all the residues within 7 Å of the atoms of a known binder,

though a user should visually inspect this cavity: in some cases one can have a

larger cavity, particularly if one is starting from a fragment bound to a protein

297Use of molecular docking computational tools in drug discovery



structure.Wewould recommend surveying the protein using a cavity detec-

tion algorithm, even if there are structures of known binders.

2.3.1.3 Protein flexibility
As mentioned earlier in the chapter, due to the large computational

resources required for fully sampling both protein and ligand conformations,

the standard approach in docking and particularly in structure-based virtual

screening is to dock fully flexible ligands in a rigid protein. Moreover, sep-

arating the contribution of protein effects on ligand conformation and

simultaneous ligand effects on protein conformation, while developing

the algorithms to handle such complex interactions, is still a significant chal-

lenge in molecular docking.

While conformational variability in different apo structures (i.e. without

bound ligands) of the same protein suggests intrinsic disorder, variability in

different ligand-bound states seems to be related to the presence of the ligand

[94]. Ligands with diverse chemical scaffolds and of different sizes can induce

different types, or different extents, of changes in protein conformation.

Several studies have proven that the incorporation of protein flexibility in

automated docking algorithms enables more accurate binding pose predic-

tion and better virtual screening enrichments [95–97], in addition to provid-
ing a more realistic description of the physics of the protein-ligand binding

interaction. The drawback is the required computational cost; docking with

flexible ligands and a flexible protein usually requires the use of supercom-

puters to be achieved in a reasonable timeframe.

A statistical analysis of the PDB revealed that 85% of the proteins contain

only one to three flexible residues in the active site and that single rigid pro-

tein dockings predict an incorrect binding pose for 50–70% of all ligands

[94,95,98]. These flexible residues are subject to conformational changes

ranging from simple side chain movements (rearrangement) to backbone-

loopmovements, to major domain rearrangements. Combinatorial approaches

making use of side chain rotamer libraries and soft potentials are considered

very efficient to account for small movement of the protein side chains, while

the ensemble of rigid protein structures (ensemble docking) has been proven

successful to account for larger changes in the protein [95,96,99,100].

2.3.1.3.1 Soft docking and side chain rotamer libraries Soft docking

attempts to treat flexibility by allowing a small degree of overlap between

the protein and the ligand. This implicitly models protein accommodation

298 Francesca Stanzione et al.



by loosening the criterion for steric fit. This is achieved by reducing the steep-

ness of the repulsion term in the Lennard-Jones potential function [101].

Soft docking has the advantage of being computationally efficient (only

the scoring function parameters need to be changed), however, it can take

care of only minor side chain movements. Applications of such an approach

have been used for both protein-protein docking [102] and protein-ligand

docking [103,104].

Side chain rotamer exploration offers an alternative way to model recep-

tor flexibility and is similar in spirit to the approach of exploring multiple

ligand conformations for simulating ligand flexibility. Side chain rotamer

libraries are usually knowledge-based and generated from experimentally

determined structures [105]. Such libraries also tabulate the probability

with which different rotamers are observed, therefore in principle, rotamer

libraries can also help to decrease conformational search space with the use of

rotamers as representative conformations of energetically favourable states

[106]. Side chain rotamer exploration can be applied to several amino acid

side chains in the binding site. However, based on the conformational

space to explore, a computational cost must be added to the docking run.

Generally, it is good practice to limit the side chain rotamer library only

to those residues that have a large conformational change when comparing

unbound and bound forms of the protein structures. One should also note

that adding protein flexibility introduces additional scoring terms, extending

the necessary approximations made to the scoring functions further than in

rigid protein docking.

2.3.1.3.2 Ensemble docking An ensemble docking methodology aims to

address protein flexibility by docking flexible ligands against multiple con-

formations of the target protein rather than just the single rigid protein struc-

ture used in standard docking (Fig. 8).

The ensemble of protein conformations mimics the conformational

equilibrium which characterises the native state of the target protein and

provides a structural degree of freedom by which the conformation of the

protein may be matched to fit any particular ligand [107]. Ensemble docking

is a two-step process including generation of an ensemble of protein confor-

mations and the actual docking to the selected protein structures.

The ensemble of protein structures can be generated by using available

crystal structures of the same protein target that have been isolated and/or

co-crystallised with various ligands. Such an approach accounts for induced

fit changes occurring upon ligand binding.
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The protein ensemble can also be generated by molecular dynamics

(MD) simulations, where different snapshots are isolated from single or mul-

tiple trajectories, thus helping to explore possible protein conformation

changes across time [100].

To balance the computational efficacy and prediction accuracy of ensem-

ble docking, a relatively small set of representative structures should be

selected. Several studies have explored the best way to select experimental

protein structures and the best number of structures for ensemble docking,

finding in general that the use of many receptor conformations may not nec-

essarily improve the docking performance because a large number of false pos-

itives may reduce the enrichment rate in virtual screening [97,107,108]. These

studies tend to focus on specific systems however, to our knowledge, there is

no general automated solution to the problemof optimal ensemble selection; a

key part in ensemble docking [99,109].

2.3.1.4 Structural water molecules
The presence of structural or labile water molecules in the protein binding site

plays an important role in protein-ligand binding and therefore can affect the

accuracy of protein-ligand docking predictions (Fig. 4). Labile waters can

either stabilise a protein-ligand complex by mediating hydrogen bonding

Fig. 8 Ensemble docking workflow for the TKHSV1 protein. TKHSV1 has been determined
in both apo form (PDB entry 1e2h displayed in yellow cartoon), and in complex with
different nucleoside prodrug ligands (PDB entries 1e2i, 1of1 and 4ivq shown as cyan,
magenta, and green cartoon, respectively). Ensemble docking is a two-step process
including generation of an ensemble of protein conformations (overlay) and the actual
docking to the selected protein structures.
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between the ligand and the protein, or they can be displaced by the binding

ligand. They can also contribute significantly to entropic and enthalpic

changes in the protein-ligand complex, where the entropic loss associated

with transferring a water molecule from the bulk solvent to protein-ligand

binding is compensated for by the enthalpic contribution of the additional

hydrogen bonds.

The importance of water molecules is well recognised in structure-based

drug design, where displacing, mimicking, and/or targeting of bound water

molecules can improve the binding affinity of ligand molecules [110]. For

this reason, understanding the role of active water molecules has drawn

extensive attention in the past decade, and many tools and strategies have

been developed to predict the locations and thermodynamic profile of water

molecules in the binding site [111–114].
Most of the commercially-available docking programs are able to deal with

active water molecules [115–117]. When water molecules are implicitly or

explicitly included in a docking run, the docking algorithm will try to find

the best docking pose with a binding site occupied by the water molecule.

Among them, GOLD has the additional feature to treat active water mole-

cules as switchable (i.e. the water can be bound or displaced by the ligand)

and flexible (i.e. the water can rotate and translate within a given distance

to optimise hydrogen bonding). The position of water molecules within an

active site can be highly variable. Treating them as static in nature can bias

towards ligands that complement the specific orientation and prejudice those

that would physiologically replace the given water molecule, leading to an

increase in false negatives [86,118]. In GOLD, a simple entropy penalty term

has been introduced to account for the unfavourable loss of rotational and

translational entropy that accompanies the tight binding of a water molecule

to a protein surface; only water molecules with binding affinity that outweighs

the loss of rigid-body entropy on binding are considered to be bound [115].

Several studies have proven that docking and virtual screening with

active water molecules can improve ligand docking poses and greatly

increase the ligand enrichment, however, particularly in a virtual screening

context, the addition of water is frequently neglected as the additional com-

putational cost required affects the rapid screening of a large library

[119–121]. It is therefore important to determine which water molecules

must be kept and exclude those water molecules that are not essential.

2.3.1.4.1 How to recognise active water? One approach to assess which

water molecule(s) should be kept for docking is to attempt to replicate the

binding mode of experimental ligand structures in the absence of explicit
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waters. If the accuracy is diminished by the absence of waters in the binding

site, then it is important to identify those water molecules which are crucial

for binding [86].

In general, waters that are not hydrogen bonded to the protein, and those

that are located outside the binding site, have little or no effect on ligand

binding and can be removed [86,121]. However, waters that form hydrogen

bonds with the receptor, or those with low B-factors, are likely to be highly

stable within the protein binding site and should be included in docking

studies as they are likely to stabilise the protein and they will be difficult

to displace on ligand binding [110].Waters that form hydrogen bond bridges

between the ligand and protein are also likely to be important in ligand bind-

ing. However, a hydrogen bond network may be ligand-specific and its

importance in virtual screening, where a diverse set of compounds are under

study, should be thoughtfully assessed in advance. For this reason, when

active water molecules are included in docking, and more importantly in

virtual screening, they should, ideally be treated as flexible [121]. As an alter-

native, several computational methods have been developed to predict the

locations of the water molecules in the protein binding site [122–125].

2.3.2 Ligand preparation
Ligand preparation consists of generation, optimisation, and validation of its

3D structure.

3D structures of ligands can be obtained experimentally, for example

from protein-ligand co-crystal complexes, or they can be generated using

software able to convert 1D and 2D structures (e.g. SMILES, SMARTS,

InChi) into 3D molecular structures (Fig. 9).

The 3D structure of the ligand must have realistic bond lengths and angles

as these will not usually change during docking. Optimisation of the starting

ligand geometry is sometimes required for particularly complex molecules.

Several programs exist to generate and optimise the 3D structure of a

ligand (e.g. CSD Conformer Generator [126,127], Omega [128,129],

Confab [130], Confect [131], RDKit [132]). They differ in the algorithm

used; some systems use force fields to infer intramolecular geometries, whereas

others including the CSDConformerGenerator, rely directly on crystal struc-

ture data derived from the Cambridge Structural Database (CSD) [133] to

produce realistic ensembles of high probability ligand structures.

As in the protein, hydrogens and formal charges must be added to the 3D

structure of the ligand. The protonation state should be set according to the

physiological pH or the pH of the simulation, and tautomeric states of the
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ligand should also be defined. In some cases, it may be worth generating

multiple possible protonation states for a given ligand, with a view to dock-

ing all forms (in particular, if the pKa of a given proton dissociation is close in

numerical value to the physiological pH).

Tautomers are isomers differing only in the positions of hydrogen atoms

and electrons, therefore even a simple molecule can have several different

tautomeric forms. Moreover, the protonation and deprotonation of the ion-

isable sites in the molecule produces additional forms called protomers.

Tautomers and protomers differ in shape, functional groups, surface, and

hydrogen bonding. Therefore, tautomerism and protonation may result

in alternative binding modes that can affect the efficiency of docking and

virtual screening [64,84]. For chiral compounds, proper enumeration of

the relevant stereoisomers is also necessary to effectively use docking and vir-

tual screening as a drug discovery tool. Since enantiomers of a chiral com-

pound might have different binding affinities for a given receptor, it is

important that both enantiomers are used for docking. The docking software

should be able to produce different docking scores for enantiomers that bind

to the protein receptor. Failure to include appropriate diastereomers and/or

Fig. 9 1D to 3D workflow for a small molecule.
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enantiomers of compounds could significantly increase the number of false

negatives and adversely affect enrichments in virtual screening [134].

2.4 Small molecule databases
Several databases of lead and drug-like small molecules are available for virtual

screening purposes. Although a substantial overlap is found among some of the

collections, each database has unique features that may make it better than

others for a particular virtual screening project. A relevant number of unique

compounds is found within each database that makes it worth considering

more than one library if possible. Many chemical databases are freely available

andmay be designed to possess desirable characteristics such as ‘drug-likeness’,

dictated by the ‘Lipinski’s rule of five’ which states that drug-like compounds

should have molecular weight lower than 500, lipophilicity (logP) lower than

5, less than 5 hydrogen bond donors, and less than 10 hydrogen bond accep-

tors [135]. However, over the years, an increasing number of compounds vio-

lating some of these rules have been approved as drugs and entered the market

(e.g. many natural product drugs as well as 50% of marketed drugs do not

comply with the rule of five) [136]. A strict compliance to this rule can

strongly limit the variety of chemotypes, indicating that it is advisable to follow

it with a certain degree of flexibility [136]. Other available databases contain

chemical structures from natural products or approved drugs therefore include

compounds that break the rule of five.

Here we are going to provide a brief overview of some of the most com-

mon chemical databases that are used for virtual screening. A more exhaus-

tive list is provided in Table 2.

2.4.1 ZINC database
ZINC is a free database of commercially-available compounds developed in

the Department of Pharmaceutical Chemistry at the University of California,

San Francisco [137]. It contains a constantly growing number of 3D structures

ready-to-dock from catalogues of several vendors with annotated relevant

information about protonation and tautomeric states, and properties such as

size, calculated logP, number of rotatable bonds, etc. Each molecule in the

database also contains purchasability and vendor information, making this

ZINC’s focus on docking and availability the main distinctive characteristic

from other databases.

In its latest version, ZINC20 [138] comprises over 736 million lead-like

compounds (molecular weight less than 400 g/mol, calculated logP less than

4 and rotatable bonds less than 7), 509 million of these compounds are avail-

able for download in 3D ready for docking, together with information
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Table 2 List of available small molecule databases.
Database

ZINC

https://zinc.docking.org/

Free database of commercially-available and

annotated compounds for virtual screening.

ZINC contains over 736 million lead-like

compounds of which 509 million are in ready-

to-dock, 3D formats. ZINC also contains over

1.3 billion purchasable compounds which you

can rapidly search for analogues

ENAMINE

https://enamine.net/

11-databases

The world’s largest collections of novel building

blocks (225,000+) and screening compound

libraries (2,740,000+)

NCI Open Database

https://cactus.nci.nih.gov/

download/nci/

NCI database has more than 275,000 small

molecules structures, a very useful resource for

researchers working in the fields of cancer and

AIDS

ChEMBL

https://www.ebi.ac.uk/

chembl/

ChEMBL provides comprehensive information

about 1 million bioactive compounds (small

drug-like molecules) with 8200 drug targets

DrugBank

https://www.drugbank.

com/

The database combines detailed drug data with

comprehensive drug target information. It

contains 6,712 drug entries including 1,448

FDA-approved small molecule drugs, 131

FDA-approved biotech (protein/peptide) drugs,

85 nutraceuticals and 5,080 experimental drugs

ASINEX Database

http://www.asinex.com/

The ASINEX database is a commercial collection

of compounds which contains more than

600,000 screening compounds, 27,000

macrocycles, 20,000 fragments and over 22,000

building blocks

Cambridge Structural

Database (CSD)

https://www.ccdc.cam.ac.

uk/solutions/csd-system/

components/csd/

The Cambridge Structural Database (CSD) is a

repository for small molecule organic and

metal-organic crystal structures. With over 1

million structures from X-ray and neutron

diffraction analyses, the CSD includes several

subsets, such as the CSDDrug Subset with entries

that feature in the approved drug list provided by

DrugBank and a CSD COVID-19 subset that

includes structures of interest in the fight against

COVID-19

Continued
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regarding target and biological activity, related scaffolds and bioactive and

biogenic compounds (with a Tanimoto likeness index of 0.6). ZINC also

offers other features such as the possibility to define target-focused libraries

and to download subsets of a physical property space (fragment-like,

lead-like and drug-like subsets) [139].

Table 2 List of available small molecule databases.—cont’d
Database

PubChem

https://pubchem.ncbi.nlm.

nih.gov/

Database of chemical molecules which maintains

three types of information namely, substance,

compound and BioAssays

SPECS Database

https://www.specs.net/

SPECS database (>240,000 compounds) is

composed of novel drug-like small molecules

obtained from academia and research institutes.

SPECS contains available compounds that can be

purchased upon request. Every molecule in the

collection must fulfil structural characteristics of a

biologically active compound and meet ADMET

requirements

MAYBRIDGE Database

https:/maybridge.com/

Maybridge Screening Hit Discovery collection

(over 53,000 compounds) is a commercial library

of small hit-like and lead-like organic compounds

that covers�87% of the 400,000 theoretical drug

pharmacophores complying with the rule of five

and of good ADMET properties. Maybridge also

offers a fragment library (30,000 fragments) and a

hit-to-lead building block collection

LIFE CHEMICALS

Database

https://lifechemicals.com/

Contains a commercial compound collection for

HTS of 1,213,000 lead-like and drug-like new

diverse chemical entities that follow Lipinski’s

rules. Furthermore, it offers several different

diversity libraries on demand: i.e. building blocks,

fragment- and scaffold-based libraries, natural

product-like compounds, covalent inhibitors,

etc.

CHEMBRIDGE Database

https://www.chembridge.

com/

Contains 1 million drug-like and lead-like

compounds in 2 non-overlapping collections of

respectively 460,000 and 620,000 compounds,

that cover different chemical spaces and that can

be customised to create diversity libraries,

targeted libraries (KINASet, CNS-Set, and

IONSet libraries) and fragment libraries, which

can be purchased upon request
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2.4.2 ENAMINE database
ENAMINE provides several different commercial collections of compounds

for screening. The screening collection currently contains over 2 million low

molecular weight organic compounds. The HTS collection (>2,115,000

compounds) represents a highly diverse set of chemotypes developed from

in-house research and partner academic organisations, while the Advanced

Collection (>493,000 compounds) is intended for lead discovery. This library

has been designed according to lead-like properties and/or valuable

pharmacophores such as carboxylic, primary amino and amide groups. The

Premium collection (>44,500 compounds), instead, contains compounds

with the most favourable physicochemical properties (high Fsp3, low logP

and MW).

Enamine also provides a pharmacologically diverse set (10,240 drug-like

compounds clustered by activities from biologically relevant chemical

space), a 3D diversity set (50,240 compounds from conformational analysis

and shape clustering of the HTS collection) and a covalent screening library

(10,480 compounds of well validated covalent binders) as well as targeted

libraries (e.g. central nervous system (CNS), antibacterial, ion channel,

coronavirus, kinase and lipid G protein-coupled receptor (GPCR) libraries)

and fragment libraries (e.g. covalent, sp3-rich, Protein-Protein Interactions

(PPI), fluorinated and brominated fragments).

The largest Enamine database is called theREAL database and is a virtual

collection of over 1.36 billion molecules that can be used to find new hit

molecules using large-scale virtual screening and to search for analogues

of hit compounds. Each molecule in the REAL database complies with

the rule of five and also the Veber criteria (rotatable bonds�10, and TPSA�
140) [140].

The structure data files of these various collections are regularly updated

and can either be directly downloaded from the ENAMINE webpage in

MDL SD (.sdf ) or MDL ISIS (.db) formats or obtained by request. Along

with SMILES and catalogue IDs, the entry for each molecule in the database

lists important physicochemical parameters (MW, sLogP, HBA, HBD, etc.),

structural alerts (PAINS, Brenk, and Eli Lilly medchem rules), type of chem-

istry and the difficulty of synthesis (‘s’, simple chemistry, standard effort, ‘m’,

advanced chemistry, higher effort).

2.4.3 NCI open database
The NCI Open Database is a freely accessible database developed by the

Developmental Therapeutics Program of the National Cancer Institute
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(NCI). This database contains a set of compounds that have been collected

by the NCI, since 1955 for testing in anticancer, and from the 1980s for

anti-AIDS screens, that are not covered by confidentiality agreements.

The database currently contains more than 260,000 molecules both from

organic synthesis and natural source extracts that can be downloaded in .sdf

format [141]. The compounds in the database are annotated with information

fields including release, structure source and evaluation, calculated/predicted

logP, biological activity and commercial availability in addition to 3D atom

coordinates, added hydrogens, number of rotatable bonds, stereocentres

and bond stereocentres [141].

2.4.4 ChEMBL
ChEMBL is a manually curated database of bioactive molecules with drug-

like properties [71,72]. The ChEMBL database contains more than 1.8 mil-

lion compounds and over 15 million records of their effects on biological

systems. It contains information about how small molecules interact with

their targets, how the compounds affect cells and the whole organism,

and information on absorption, distribution, metabolism, excretion and tox-

icity (ADMET). Additional data on clinical progress of compounds has been

integrated into ChEMBL (ChEMBL Drugs). This highly curated dataset

includes marketed compounds and compounds that are or have previously

been in clinical development and are annotated with information about their

known therapeutic targets and associated indications.

The data in ChEMBL are extracted and curated from the primary medic-

inal chemistry and pharmacology literature and cover a significant fraction of

the SAR and discovery of modern drugs. Additionally, the ChEMBL data-

base contains data deposited by researchers and data extracted from other

public databases.

ChEMBL includes 2D structures with calculated molecular properties

(e.g. logP, molecular weight, Lipinski parameters) and bioactivity data (such

as binding constants, pharmacology and ADMET) with the bioactivity data

tagged to show links between molecular targets and published assays.

2.4.5 DrugBank
DrugBank is a web-enabled curated database containing comprehensive

molecular information about FDA-approved drugs as well as experimental

drugs going through FDA approval [142]. As both a bioinformatics and a

cheminformatics resource, DrugBank combines detailed drug data (i.e.

chemical, pharmacological and pharmaceutical) with comprehensive drug
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target (i.e. sequence, structure, and pathway) information. All data in

DrugBank is non-proprietary or is derived from a non-proprietary source.

It is freely accessible and available to anyone and nearly all data are fully

traceable and explicitly referenced to their original source.

To date, DrugBank contains over 13,700 drug entries including approved

small molecule drugs, approved biologics (proteins, peptides, vaccines, and

allergenics), nutraceuticals and over 6,000 experimental (discovery-phase)

drugs. Additionally, over 5,000 non-redundant protein (i.e. drug target, car-

rier, transporter and enzyme) sequences are linked to the drug entries together

with drug-drug and drug-food interactions [143]. All the chemical structures

in DrugBank are accessible in canonical SMILES, sdf, .mol, .pdb, InChI and

InChIKey formats.

2.4.6 ASINEX database
The ASINEX database is a commercial collection of compounds which

contains more than 600,000 screening compounds, 27,000 macrocycles,

20,000 fragments and over 22,000 building blocks [144]. The screening

compounds are organised in different libraries that cover different chemical

characteristics and try to address different steps in the drug discovery process.

The Gold & Platinum Collections of over 260,000 compounds includes

diverse and cost-effective coverage of drug-like chemical space. Most com-

pounds have a high degree of drug-likeness, in accordance with Lipinski’s

rule of five. Other libraries are focused on lead-like compounds are intended

for the early stages of drug discovery. For example the ASINEX Synergy and

Elite Library of more than 91,000 compounds has been screened against a

panel of early ADMET tests to make sure screening hits do not have poten-

tial ADMET problems and are amenable for rapid hit-to-lead optimisation.

A subset of over 170,000 compounds (BioDesign) incorporates key

structural features of known pharmacologically relevant natural products

(e.g. alkaloids and other secondary metabolites) into synthetically feasible

medicinal chemistry scaffolds. ASINEX also offers targeted libraries includ-

ing those focused on CNS disorders, immuno-oncology, PPI, GPCRs,

peptide-mimetics, nucleoside-mimetics, etc. All the libraries can be down-

loaded in SDF format and can be directly purchased.

2.4.7 Cambridge structural database (CSD)
The Cambridge Structural Database (CSD) is the world’s leading repository

for small molecule organic and metal-organic crystal structures. It contains

over 1 million structures from X-ray and neutron diffraction analyses
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forming a unique database of accurate 3D structures [133,145,146]. Every

entry is manually curated and each structure in the CSD is enriched with

chemical representations, as well as bibliographic, chemical, and physical

property information.

The CSD comes with several subsets including CSD entries that feature

in the approved drug list provided by DrugBank. This subset has a wide

scope; it contains any solvates, co-crystals or hydrated forms, and currently

provides a set of 12,277 entries to help users gather insights into drug-like

compound. A single-component CSD drug subset is also available and

includes 1,989 CSD entries where a drug molecule is the only modelled

component in the crystal structure. Recent additions to the CSD subsets

are: the CSD COVID-19 subset with 121 structures of interest in the fight

against COVID-19 and the CSD Pesticides subset with 972 entries.

2.4.8 PubChem
PubChem is an open chemistry database managed by the National Institutes

of Health (NHI). It contains mostly small molecules, but also larger mole-

cules such as lipids, carbohydrates, nucleotides, peptides and other chemi-

cally modified macromolecules. The data in PubChem are organised into

three interlinked databases: Substance (as of writing more than 286 million

substance descriptions), Compound (over 111 million unique chemical

structures) and BioAssay (1.2 million biological assays covering more than

10,000 target protein sequences).

Most of the structures in PubChem are drug-like compounds that satisfy

Lipinski’s rule of five. Among them more than 10 million are fragment-like

compounds which satisfy Congreve’s rule of three (molecular weight of a frag-

ment is <300, the cLogP is �3, the number of hydrogen bond donors is �3

and the number of hydrogen bond acceptors is �3) [147]. In addition to bio-

activity data, PubChem contains compound information that can be useful for

virtual screening. Because of the data integration with DrugBank, PubChem

includes comprehensive information on FDA-approved and investigational

drugs, including their drug indications, mechanisms of action, target macro-

molecules, interactions with proteins and genes, ADMET properties andmany

others. In addition, PubChem provides links to crystal structures available from

the CSD. PubChem also offers links between about 6 million patent docu-

ments and more than 16 million unique chemical structures, with over 336

million chemical substance-patent links covering the USA.
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3. Fragment-based screening

Fragment-based screening aims to identify small chemical fragments

which bind weakly to the binding site of a target protein. Although weak,

given the limited numbers of interactions those fragments can make with the

protein, these are high-quality interactions as they must overcome a substan-

tial entropic barrier to binding [148]. This approach is useful for identifying

interaction hot spots for the protein-ligand binding. The key principle in

fragment screening is the ability to sample the chemical space more effi-

ciently than when using larger complex molecules. Thus, in theory, this

allows sampling of a broader and more diverse chemical space than in cur-

rently practical to achieve via standard screening methods. Moreover,

smaller fragments are less likely to contain interfering moieties that could

block an otherwise favourable ligand–protein interaction, thus optimal

binding spots are less likely to be hidden by non-binding elements

(Fig. 10). In principle it is possible to use molecular docking for virtual

fragment-based screening, however, by definition, fragments are relatively

small compared to lead-like or drug-like compounds, which makes molec-

ular docking more challenging. Fragments only form few, key interactions

with the binding site, and this usually results in a low docking score, with the

risk of missing potential fragment hits if they have weak interactions with the

protein. Free energy differences between different binding modes of a frag-

ment are much smaller than those of larger compounds therefore, given the

inaccuracies inherent in current scoring functions, they make it more diffi-

cult to distinguish the correct/incorrect binding mode of a fragment.

Additionally, due to the relatively small size, docking poses for fragments

can be promiscuous, with fragments binding to multiple sub-regions show-

ing similar physicochemical properties inside a binding pocket. In these cases

docking results are hard to interpret and post-processing the results can be

time-consuming [150].

As for a standard docking screening, to perform a fragment screening one

would need access to the 3D structure of the target protein and to the frag-

ment library to be screened. The protein target could be obtained from an

experimental or theoretical model and should be prepared as discussed in

Section 2.3.1.

Fragment libraries tend to be small because the fragment space is smaller

than the chemical space and can be more effectively probed with a relatively
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small library. Screening a few thousand fragments would search a greater

fraction of the chemical space than could be achieved by screening over a

million full-sized compounds (Fig. 10) [149,151].

Fragment libraries should be chemically diverse, synthetically expandable

and should represent a wide range of physicochemical properties, aqueous sol-

ubility, molecular diversity, and drug-likeness with medicinal chemistry

scaffolds. They contain fragments that comply with the rule of three [147].

Although the validity of this rule is a debatable topic [152], it still remains the

preferred reference for fragment selection and fragment library generation. A

growing number of commercial companies are nowofferingwell-defined frag-

ment libraries for screening [153]. For instance, the Diamond-SGC Poised

Library (DSPL) [154] is a library containing about 760 fragments with at least

one functional group that is open to rapid follow-up synthesiswhilstmaximising

chemical diversity. While the majority of fragment libraries are chemically

diverse, they still lack shape diversity. To overcome this limitation, the UK

3D Fragments Consortium is working on generating a library focused on frag-

ments that incorporate 3D structures [155].

Fig. 10 High-throughput screening (HTS) and fragment-based screening overview. HTS
enables testing of a large number of diverse drug-like and lead-like compounds
(MW>300Da) against protein targets. In order to efficiently cover all the chemical space,
the database should contain more than 100,000 compounds. In a fragment screening
approach, a database of simple molecules or fragments with MW <300Da are screened
against targets. Due to the small size of fragments, they often have low potency, but
high-quality interactions and can be further optimised into potent leads by linkage.
Fragment libraries usually are of a small size (�1,000s) because the fragment space is
smaller than chemical space and can be more effectively probed with a relatively small
library [149]. Adapted from https://figshare.com/articles/SSIEM_presentation_Fragment_
screening_for_drug_discovery_in_primary_hyperoxaluria_type_1/7057826.
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Once the fragment identification step is completed, these fragments can be

grown, linked, ormerged to develop the potential lead compounds. Fragment

growing is the most used strategy in fragment-based lead design. As the name

suggests, the core fragment is modified to increase its size to improve its

properties and affinity for the target [150,156]. Fragment growing strategies

have been successfully applied to various targets [150,157–160] including
Alzheimer’s Disease target BACE1 [161] and matrix metalloproteinases [162].

Fragment merging can be used in cases where two distinct fragments par-

tially occupy the same region, or when two binding sites have regions in com-

mon and therefore their ligands are partially competitivewith respect to the site.

In such cases the overlapping parts can be fused into a single molecule [156].

Fragmentmerging is not only used in novel compound design but also remains

a tool for chemical modification and derivative generation [150]. While less

commonthan thegrowingmethodology, a fewsuccessful examplesof fragment

merging have been discussed in the literature with targets including Hsp90

[163], PIγ kinase [164] andmycobacterial transcriptional repressor EthR [165].

Fragment linking describes the process of joining two non-competitive

fragments (i.e. fragments that bind in two different sub-pockets of the bind-

ing site) with a chemical linker or spacer. Suitable linkers should respect the

original conformational constraints of the two initial fragments while mak-

ing favourable interactions within the protein binding site. Linking strategies

have been successfully applied to different targets [160,166,167] including

protein kinase ck2 [168] and thrombin [169].

4. Protein-protein docking

Protein-protein docking is an emerging research topic, due to its

potential for predicting protein-protein interactions (PPIs) and identifying

hot spot residues at the protein-protein interface.

Although protein-protein docking shares the principles of protein-small

molecule docking, sampling of the conformational space in protein-protein

docking is extremely challenging. Even for relatively rigid proteins, it is dif-

ficult to explore the rotational-conformational space of mutual orientations

potentially sampled by a pair of proteins as they interact. Due to the huge

number of degrees of freedom the computational cost of the search algo-

rithms is considerable for protein-protein docking.

Because of the large size of binding sites in PPIs, the orientational search

algorithm often requires strategies for protein-protein docking that aredifferent

from those for protein-ligand docking. Additionally, contact surfaces where
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two proteins interact with each other are significantly different from ligand-

protein binding cavities. Protein-protein binding sites are often relatively flat

interfaces with no single large and well-defined pocket [170]. Predicting the

association of proteins is further complicated by their flexibility. Proteins are

dynamic; they constantly interconvert between conformers of varying energies

and capturing this flexibility is still a challenge in molecular docking.

Despite the complexity of the problem, a variety of docking methods is

currently available for predicting the structures of protein-protein com-

plexes. The choice of the method to use depends on the nature of the dock-

ing problem [171]. Rigid docking procedures are generally used when the

crystallographic structures of the proteins to dock (or of their very close

homologues) and their complex are available. Knowledge of the protein-

protein complex makes the prediction of related protein complexes feasible

for template-based and homology modelling methods, even when the struc-

tures of component proteins are not available. The general idea is to separate

the two proteins from the complex structure and use a rigid docking pro-

cedure to try to reproduce a near-native approximation of the complex

(bound docking) as shown in Fig. 11.

Bound docking is the easiest docking case, because, by definition, it does

not involve conformational change and existing rigid-body procedures

Fig. 11 Example of bound docking procedure. Protein A, in cartoon with the surface
coloured in pink, represents the Human Atg4B (HsAtg4B; a mammalian orthologue
of yeast Atg4) and protein B, in cartoon with the surface coloured in blue represents
the LC3 protein (a mammalian orthologue of yeast Atg8). The complex A–B is HsAtg4B–
LC3 complex (PDB code 2z0d).
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generally result in good (i.e. near-native) structures of the complex among

the top pose predictions.

When the crystallographic structure of the complex is not available, the

docking algorithm should be able to predict the complex from the separately

determined protein structures (unbound docking). In such cases, the dock-

ing algorithm has to deal with the conformational difference between the

unbound and the bound structures [172] thus, the landscape of docking solu-

tions could also include many false positives with good surface complemen-

tarity that differ considerably from the native complex.

In the case of unbound docking, one approach is to combine a rigid-

body searchwith flexible rescoring and refinementof thedocked conformations

[173,174]. Other strategies include rigid-body docking of ensembles of struc-

tures [175,176], scoring functions that feature soft potentials to allow minor

molecular overlaps [177,178], simplified protein representations (coarse-

grained),where at such low levels of structural resolution thedifferencebetween

unbound and bound conformations is less significant [179], and relaxing the

interface of docking poses using techniques such as molecular dynamics

(MD),MonteCarlo, or simulated annealing [177,179,180].Additional docking

strategies include scoring functions that use a combination of terms to describe

physical interactions and penalise models that do not recapitulate the available

experimental data. Thismethod allows side chain flexibility at the PPI interface,

which is a key aspect to improve the accuracy of the results. Examples of such

approaches are HADDOCK [181] and IMP [182].

Protein-protein docking methods have improved substantially over the

past few years (as demonstrated by the results of the Critical Assessment of

PRedicted Interactions (CAPRI) [183]) but there are still many scenarios

that are particularly challenging and pose limitations to current docking

approaches. Examples of unsolved challenges are: large movements upon

binding; weak or transient binding; and unavailability of 3D structure for

one or both subunits. The protein-protein docking field needs to improve

not only in optimising and/or developing new docking methods to over-

come these challenges but also in identifying those problematic cases and

evaluating the reliability of the predictions.

5. Protein-peptide docking

Peptide drugs are gaining attention in drug discovery as a solution for

targeting ‘undruggable’ intracellular protein-protein interfaces characterised

by large and relatively featureless interfaces. Peptides can bind large protein
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interfaces with high potency and great selectivity, which translates into

fewer off-target side effects and less potential for toxicity than small molecule

drugs [184].

Computational methods, including docking, have proven to be success-

ful in the discovery and design of small molecule drugs as well as in the field

of peptide therapeutics.

Protein-peptide docking involves computation steps such as conforma-

tional sampling, structural refinement and scoring, similar to traditional

protein-small molecule docking techniques. However, peptides are more

flexible than small molecules and tend to adopt numerous conformations.

Thus, modelling protein-peptide interactions is a challenging and time-

consuming task.

Over the past decades a wide range of docking methods has been devel-

oped that can be used directly or indirectly for docking peptides on a protein

with various degree of success. These methods are described in Fig. 12 and

include protein-small molecule docking, protein-protein docking and

protein-peptide docking. Due to the limitation of the search algorithm,

protein-small molecule docking approaches are currently limited to short

peptides (up to 15 amino acids) with a well-structured conformation.

However, modelling long peptides can be overcome by docking peptide

fragments followed by their merging [185].

Protein-protein docking methods, such as ZDOCK [186], and Hex [187]

have also been used to dock peptides onto a protein. However, compared to

proteins, peptide molecules are much more flexible and less stable. Protein

partners usually have well-defined 3D structures before forming protein-

protein complexes while peptides usually do not. Furthermore, peptide-

mediated interactions are often transient and weaker than protein-protein

interactions due to the smaller interface between peptides and their protein

partners.

Therefore, protein docking approaches need to address these challenges

before they can routinely be used to predict peptide–protein binding.

The dramatic increase of peptide–protein structures available in the PDB

has facilitated the development of more powerful docking and refinement

methods for predicting peptide–protein interactions. Peptide-docking

approaches can be classified as template-based docking or template-free

docking, according to the amount of required input data. Template-based

docking methods, or comparative methods, use known structures (tem-

plates) as a scaffold to generate a model of the desired complex [188].

These methods are favoured when the template is similar to the investigated
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Fig. 12 Different methods in peptide docking. These methods include protein-small molecule docking, protein-protein docking and ad hoc protein-peptide docking.
Due to the limitation of the searching algorithm, protein-small molecule docking approaches are limited to short peptides (up to 15 amino acids). Protein-protein
approaches instead are limited to large peptides characterised by low flexibility. Ad hoc protein-peptide docking can be divided into two categories: template-based
methods that utilise knowledge about the structure of similar complexes (templates) and template-free methods that can be implemented when no templates are
available. Template-free methods are further divided in two categories according to the amount of required input data: local docking methods that require some
knowledge about the binding site; and global docking methods that assume no knowledge about the peptide beyond its sequence. Different approaches have dif-
ferent level of difficulty and offer different levels of prediction accuracy, often determined by the amount of interaction information provided as input.



complex. Although several successful examples have been published, the

main limitation of template-based docking methods is the number of known

templates available, thus resulting in an innate limitation for general appli-

cation [189]. An example of template-based method is GalaxyPepDock, a

popular server that performs similarity-based docking by using experimen-

tally determined protein-peptide structures to generate high-resolution

complexes [190,191]. A recently developed machine learning-based

method, PBRpredict, uses models trained from peptide binding residues

of diverse types of domains to build models that robustly predict interacting

residues in peptide binding [192].

Alternatively, users can use template-free methods. These methods are

further classified based on the amount of information available for the pro-

tein and the protein-peptide binding site. Local docking methods require

some knowledge about the binding site while global docking methods

assume no prior knowledge about the peptide beyond its sequence [193].

Local docking methods are the mostly commonly used strategies and

require an initial model of the complex prepared by the user to perform a

search for a peptide binding pose in the proximity of a user-defined binding

site. DynaDock [194], Rosetta FlexPepDock [195] and PepCrawler [196]

are the most popular methods and provide different approaches to defining

peptide binding sites.

However, when backbone conformational information of the query

peptide is not available, sampling methods that allow acquisition of near-

native peptide conformations are essential prior to performing local docking

[188]. Rosetta FlexPepDock ab initio, for example, combines ab initio pep-

tide folding with local docking by placing the query peptide into a user-

defined binding site from any arbitrary backbone conformation [188,197].

Global docking methods combine the search of the binding pose with

the search of the binding site. This makes global docking the method of

choice when no prior information is available on the protein binding sites.

The simplest approach in such docking is to treat the protein and the peptide

input as rigid and to perform exhaustive rigid-body docking. More sophis-

ticated approaches automatically predict the peptide conformation using a

sequence provided by the user [188]. Alternatively, global docking can be

combined with predictions of the binding site such as in in AnchorDock,

which automatically identifies potential binding sites in the target protein

and docks a flexible peptide in the proximity of these spots [198].

Although several docking programs have been developed, there is still a

lack of a systematic evaluation to reveal the advantages and limitations of
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these docking programs for protein-peptide systems. A recent effort to system-

atically assess the performance of docking programs was published by Weng

et al. [199] using a large benchmark called PepSet composed of 185

protein-peptide complexeswith peptide lengths ranging from5 to 20 residues.

Despite the advances in computational modelling of peptide–protein struc-

tures, authors show that major challenges still remain. First among these is

flexibility; simultaneously modelling the backbone and side chain conforma-

tional change of both peptide and its target protein. Another is the integration

of experimental data; combining all available experimental data to solve data

ambiguity. For example, NMR experiments to identify native contacts,

small-angle X-ray scattering (SAXS) or high-resolution cryo-EM to provide

the shape of the bound complex. A third challenge is scoring; many lower-

ranked poses were found to be of higher quality in the docking results than

the top-ranked poses and vice versa. Interestingly, CAPRI experiments have

revealed that hybrid approaches, using energy-based scoring as well as other

methods such as mutagenesis, co-evolutionary information, sequence- or

structural-clustering function can improve the docking performances and

generate accurate peptide–protein docking results that are closer to native

models [188].

6. Nucleic acid docking

Nucleic acids (NAs) play important roles in a large number of cellular

processes, including cellular reproduction and protein synthesis. Thus DNA

binders could interfere with the DNA replication process which affects cell

proliferation or regulate the transcription process, and may result in the inhi-

bition of gene expression. Similarly, RNA binders could interfere with the

transcription and translation processes. Consequently NAs are potential drug

targets for a number of diseases particularly in the area of anticancer,

antibacterial and antivirus therapy (Fig. 13) [200].

Small molecules interact with NAs using different mechanisms: interca-

lation, cross-linkage, strand-cleavage, and reading-molecules. At the time of

writing, there are 523 RNA-ligand co-crystalised structures and 730 DNA-

ligand co-crystalised structures in the PDB, and the number is increasing

year-on-year. These structural data provide not only the opportunity for

investigating the molecular interaction between NAs and ligands but they

enable structure-based computational methods for the design of nucleic

acid-targeting ligands for specific diseases.
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Fig. 13 Example of nucleic acid targets: (A) DNA duplex target; 3D structure of DNA duplex bound by psoralen molecule (PDB code 1fhz).
(B) DNA quadruplex targets; 3D structure of DNA quadruplex bound by BSU6039 molecule (PDB code 1l1h). (C) RNA targets; 3D structure of
HIV-1 TAR RNA bound to an inhibitor small molecule (PDB code 1uud). (D) Extended repeats target; 3D structure of the RNA duplex containing
the CUG repeats associated with several neurodegenerative diseases, including myotonic dystrophy type 1 (PDB code 3gm7).

http://firstglance.jmol.org/fg.htm?mol=1fhz
http://firstglance.jmol.org/fg.htm?mol=1l1h
http://firstglance.jmol.org/fg.htm?mol=1uud
http://firstglance.jmol.org/fg.htm?mol=3gm7


Generally, most of the protein-ligand docking programs can be used to

dock small molecules intoNAs, as they follow similar physicochemical bind-

ing principles. However, these programs often fail because of incomplete

sampling of the conformational space and/or deficiencies of their internal

scoring functions, which were not designed for docking of NAs (Fig. 14)

[183,201].

While small molecule targeted proteins usually contain a well defined,

generally hydrophobic binding site, NAs are characterised by more solvent

exposed binding pockets with a high charge density and polarity. These dif-

ferences require modifications to existing protein-ligand docking programs

before they can be used for docking small molecules to NAs. Moreover,

most of the current docking methods ignore flexibility and treat NAs as rigid

receptors. However, NAs, and RNA in particular, are not rigid; they are

usually characterised by induced fit movements and conformational changes

in response to ligand binding (e.g. riboswitch) [202,203]. To handle flexi-

bility, specific docking tools such as MORDOR [204] have been developed

to allow induced fit binding of small molecule ligands with RNA targets

via flexible receptors. MORDOR allows flexibility on both ligand and

NAs by applying molecular mechanics minimisation with a restrained con-

formational search based on the X-ray or NMR experimental structure

[205]. Despite the high accuracy, the energy minimisation step is time-

consuming and makes this method less satisfactory for screening large librar-

ies [204]. A more computationally efficient approach to deal with NA

flexibility is to use ensemble docking, using a set of predetermined NA con-

formations that can be obtained from different X-ray crystal structures,

NMR models, or normal-mode analysis of an MD simulation.

Additionally, scoring functions have been specifically designed for

predicting NA-ligand affinities to address the high polarity of NAs compared

to proteins and the interactions that require more attention in NAs (e.g. elec-

trostatic interaction, and solvation). RiboDock [206] for example, includes an

empirical scoring function with a number of extensions to capture important

NA-ligand interaction motifs, such as the interaction between positively

charged carbons (e.g. guanidinium) and negatively charged groups (e.g. car-

bonyl), and an energetic term for parallel π-systems (stacking) to account for

electrostatic interactions that characterise NA-ligand complexes.

Two novel knowledge-based scoring functions are DrugScoreRNA

[207], which was trained from statistical analyses of a set of NA-ligand com-

plexes, and LigandRNA [208] which, in contrast to DrugScoreRNA con-

siders the directionality of hydrogen bonds.
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Fig. 14 Main differences between protein-small molecule docking and NAs-small molecule docking.



Another challenge in docking into NAs is the presence of water mole-

cules andmetal ions. The highly charged nature of NAs leads to strong inter-

actions with water molecules and metal ions that are not only essential for

stabilising and shaping NA structures, but are often necessary for optimal

ligand binding. Therefore, docking tools that allow explicit treatment of

waters are highly recommended when docking small molecules into NAs

[209,210].

Inclusion of water molecules in the docking run has shown better success

rate with redocking (or self-docking procedures) [14]. However, caution

should be used with cross-docking whichmay require a different set of water

molecules for different ligands. To address this issue, virtually ‘displaceable’

molecules and a GB/SA model (Generalised-Born model with solvent

accessible surface area (SA) term) has been implemented in the solvation

module of DOCK [209] to reproduce the electrostatic contribution of waters

and ions. The combination with explicit water and counterions in DOCK

reaches accuracy values comparable to DrugScoreRNA when applied to

RNA. Metal ions such as Mg2+ and Mn2+ are often found at the binding site

of NAs, acting as a ‘metal bridge’ coordinating interactions between ligand

and NA residues. When metal ions are included as part of the NA target,

it results in improved pose prediction of several targets including TPP

riboswitch [211].

Despite the limitations, docking-based screens have already helped

medicinal chemists identifying novel NA binders of DNA quadruplex

[212,213], triple helix DNA [214] and RNA [215]. These prospective

investigations reveal the potential of docking programs in NA binders dis-

covery campaigns [201].

7. Current challenges

Docking is currently in a mature stage of development, but it is still far

from perfect.

Most docking programs available are normally able to predict known

binding poses with averaged accuracies of about 1.5–2Å with reported suc-

cess rates in the range of 70–80% [12]. However, the calculation of accurate

binding energies is one of the major limitations in molecular docking,

directly correlated with all the approximations made during a docking

run (e.g. the treatment of solvent and the flexibility of the macromolecular

system).
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The lack of a suitable scoring function and searching algorithm, able to

efficiently combine both accuracy and speed, are perhaps the most detri-

mental weakness of docking and have been widely discussed elsewhere in

the chapter.

Therefore, despite its invaluable contribution to understanding target-

ligand interactions in support of drug discovery projects, the results of a

docking experiment should not be taken as the end result, but rather as a

good starting point or as part of a workflow for a deeper and more accurate

analysis.

In Section 7.1, we will focus on some of the areas where the above-

mentioned limitations are likely to impact.

7.1 Blind docking
Blind docking refers to docking a ligand to the whole surface of a protein

without any prior knowledge of the target pocket. In blind docking, the

entire protein is considered as a region where a ligand might bind leading

to a much larger search space with a corresponding increase in the running

time. Moreover, the complexity of blind docking grows exponentially

according to the number of possible binding sites, which severely limits

its use in practice. However, blind docking methods which can predict

bound conformations with no a priori knowledge of binding site locations

will be needed for fully automated computational approaches for in silico

drug design.

The enormous search space is the principal problem blind docking must

tackle. Two possible ways to mitigate this are either to reduce the search

complexity and split the docking box into multiple boxes, sacrificing the

flexibility of some parts of the ligand, or to repeat the search several times

using different seeds and then merge the results together, as opposed to

one larger blind docking run that covers the complete protein structure.

An alternative approach to decrease the computational complexity of

blind docking is to combine binding site prediction tools to identify putative

ligand binding sites, with the docking experiment followed by fine-tuning

and ranking of the initial solutions using scoring functions and optimisation

methods. An example of such approach is BSP-SLIM, an integrated tool in

which algorithms for the template-based ligand binding site prediction are

incorporated with the SLIM docking method [216].

A more advanced approach for sampling flexibility in blind docking is

represented by the Protein Energy Landscape Exploration (PELE), a
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Monte Carlo-based technique combined with a protein structure prediction

algorithm. Three main steps are performed. Firstly, the ligand and protein

perturbation (using a rotamer library), secondly, side chain sampling (via

algorithms), and lastly minimisation and acceptance using the Metropolis

acceptance criteria. Although such an approach is computationally expen-

sive, it is still lower than for MD simulations [217].

7.2 Covalent docking
Historically, drug discovery mainly focuses on non-covalent drugs due to

potential off-target effects and toxicity issues of irreversible covalent drugs.

However, in recent years and with the outbreak of Covid-19, we have

witnessed the resurgence of covalent drugs [218–221]. Compared to

non-covalent drugs, covalent drugs might have extra advantages, including

better efficacy, since they are more competitive than non-covalent endog-

enous substrates. They also offer a lower patient burden and less drug resis-

tance due to lower and less frequent dosing and improved target specificity

by careful designs that target specific protein residues [219].

The rational design of covalent ligands is still faced with particular chal-

lenges, mostly related to the fact that covalent bond formation, bond breaking

and bond rearrangements are quantum mechanical (QM) phenomena which

cannot adequately be handled by the force fields or empirical approaches typ-

ically used for non-covalent protein-ligand interactions [222].

Historically, to overcome such limitations, many manual interventions

and ad hoc solutions have been used to adapt existing docking tools for

application with covalent ligands [222]. This has changed more recently,

and dedicated workflows and protocols for handling covalent ligands and

covalent docking in virtual screening have started to emerge. Even though

contributions fromQMmethods are increasingly incorporated into docking

applications, a full QM treatment is still unfeasible in routine applications,

given the size of the molecular systems and the number of configurations

and compounds to consider. However, the need for QM calculations in

covalent docking could be circumvented with faster and simpler modelling

approaches and in many cases the QM treatment of docking process may not

be required.

Is the binding site known? Is the targeted amino acid and its reactivity

known? Is the type of electrophilic warhead of the ligands known?

Depending on the answer to these questions different scenarios and different

requirements apply. In the simplest case where the target site is well known,
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particular nucleophilic amino acids featuring in the binding site can be

targeted; frequently, the nucleophilic amino acid to target is also known

in advance (i.e. from previous experiments). In these cases, the primary task

for docking is just to elucidate the binding modes and/or to rank the com-

pounds of interest according to their suitability to fit into the active site after

covalent linking to the protein. Therefore, a reactivity assessment is not

really required, and classical scoring functions developed on non-covalent

interactions are sufficient for the task as are most of the docking programs.

For advanced tasks such as the design of covalent ligands for systems without

much prior knowledge, more sophisticated approaches are required. A

QM-based scoring function has been developed to describe covalent bind-

ing of ligands by providing firstly a description of covalent bond breakage

using hybrid-QM/semiempirical-QM restrained optimisations starting

from the covalent complex (crystal structure or a modelled structure derived

thereof ) and, second, the addition of a new term (ΔG0
cov), to the non-

covalent score. This term describes the ‘free’ energy difference between

the covalent and non-covalent complex [223]. Such an approach helps to

overcome the common neglection of the energy contributions from cova-

lent bond formation however, it is computationally demanding and more

suitable as a post-docking rescoring procedure for selected candidates.

Despite recent advances in QM-based methods [222], an approach in

which the covalent docking process itself is driven by QM calculations is

not yet on the horizon. Similarly, blind docking remains impossible for

covalent ligands because for all approaches available the binding site and

the targeted reactive residue must be known in advance.

7.3 Reverse docking
Reverse docking (RD) or inverse docking, as the name suggests, involves

docking of a set of one or a few ligands against an array of protein families

with the aim of identifying a potential target, their binding affinity or poly-

pharmacology profile (Fig. 15). Additionally, RD can provide a valuable con-

tribution in drug repositioning or drug repurposing and drug rescue, it may

reveal targets of drugs with so far unknown mechanism, and contribute to

rationally designing less toxic or multitarget drugs [224]. Therefore, clinically

approved drugs could be repurposed for other diseases, different from the one

they were originally designed for [225,226]; a well-known example is silden-

afil [227] a phosphodiesterase-5 (PDE5) inhibitor, used to treat erectile dys-

function but which was first developed for the treatment of angina. Another
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example of a profitable drug repurposing is Minoxidil, which was originally

developed for hypertension but was later repositioned to treat male hair loss

[228]. While RD was not employed in the discovery of these materials they

spurred the application of computational approaches for repurposing [229]

that are for example being utilised in the search for treatments for infectious

diseases, including Covid-19 [230].

With the development of computing resources, RD has drawnmore and

more attention in recent years and has had some success in target identifica-

tion with the predicted results verified by bioassays and crystallographic

studies [231,232]. These successful cases show that reverse docking is playing

an important role in protein target predictions of small molecules. RD

approaches have also proved successful for identifying adverse effects of

drugs. For example, RD screenings of a series of anti-HIV drugs highlighted

several proteins whose modulation has been associated with adverse reac-

tions in literature [233].

With the increasing amount of crystallographic data available, several

databases of protein targets are available to help preform RD screens, pro-

viding information about protein structures, diseases, biological functions,

Fig. 15 A flowchart of reverse docking. In a reverse docking a ligand (or multiple
ligands) is docked against an array of protein families with the aim of identifying poten-
tial targets.
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and drugs [234]. Moreover, tailored libraries of targets can also be manually

built upon publicly available databases of crystal structures and binding

pockets, such as PDB [77], sc-PDB [235] and the Therapeutic Target

Database (TTD) [236] or can be additionally extended through homology

modelling techniques. Because these libraries were not specifically designed

for RD, each structure in the databases needs to be properly prepared for the

docking calculations. Depending on the library and the number of targets

included this step can be time-consuming. These databases are far from

exhaustive. Using the data in DrugPort (http://www.ebi.ac.uk/thornton-

srv/databases/drugport/) as an example, there are a total of 1664 known

druggable protein targets in the database, but only about half of them have

3D structures in the PDB [237]. Furthermore, targets with known structures

are not evenly distributed among different superfamilies, due to experimen-

tal limitations. For example, the superfamily of membrane proteins, the

GPCR, is one of the most important targets in drug design; they account

for over a quarter of the known drug targets and about half of the drugs

on the market target GPCRs specifically. However, only a fraction of the

GPCRs have experimental structures because the structural resolution of

membrane proteins like GPCRs is much more complicated and difficult

to elucidate than globular proteins such as enzymes [237].

The main limitation of RD approaches is primarily related to the accu-

racy of current scoring functions to distinguish true target from non-target

proteins. Many (if not all) contemporary scoring functions are designed for

docking or screening small molecules in protein binding sites without special

optimisation for RD, which certainly would be influenced by the properties

of protein pockets, resulting in scoring bias to the proteins with particular

properties. This bias would produce large number of false positives, inter-

fering with the identification of true targets. In recent years, several attempts

have been made to improve the accuracy of docking scores in reverse dock-

ing [238–240]. Thus, the docking score or the scoring functions of current
docking programs should be rationalised to suit the reverse docking.

Very recently, integration of a docking approach with more sophisti-

cated ML-based methods has also been explored for target prediction

[241–243]. Although such methods have achieved notable prediction per-

formances, both in terms of target ranking and on multitarget selectivity

predictions [241] they are time-consuming and computationally demand-

ing; moreover, they also need a large amount of bioactivity data to train

the models, which will not always be available for some of the targets under

study [244].
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8. Looking forward

The modalities by which docking is used to assist the different tasks of

drug discovery have changed over time. Although it was initially developed

and used as a standalone method, docking is now mostly employed in com-

bination with other computational approaches within integrated workflows,

to overcome some of the most relevant intrinsic limitations characterising

molecular docking.

Applications of combined workflows which include docking, have been

explored to assist different tasks of drug discovery. For example, docking has

been used in tandem with ligand-based, binding free energy calculations,

and AI/ML approaches to improve the prediction performances in de novo

virtual screening, as well as to assist target fishing, adverse drug reactions (ADR)

prediction and drug repurposing [244]. Likewise, different approaches can also

be applied at different phases of the screening workflow to improve docking

predictions. For example, MD could be combined with AI-based methods

to identify suitable receptor conformations for docking. Then, ligand-based

approaches could be applied for rescoring the predicted docking poses.

Considering the number of in silico tools and techniques currently avail-

able, there are still countless opportunities for docking to be explored in

integrated workflows. Moreover, their integration has also been facilitated

by the continuous improvements in hardware and software engineering. For

example, parallelisation of molecular docking has enabled the in silico

screening of millions of compounds in affordable time by processing the

most computationally consuming task (the energy calculation phase) on

multiple CPUs using distributed computing infrastructures (DCIs).

In the context of blind docking this computationally expensive task has

to be multiplied by the number of binding sites which can also be very large,

thus it is of great interest to find different ways to speed-up the whole dock-

ing process. A DCI can be a cloud computing resource. Cloud computing is

now available on-demand and users are typically charged on a pay-per-use

basis. This can make scientific applications, such as VS, more accessible for

scientists around the world, lowering the cost of using complex computing

infrastructure.

Over the years, there has been rapid progress in developing faster archi-

tecture based on graphics processing unit (GPU) clusters, more adequate

algorithms for optimised computational analysis, and the tracking of ligand-

receptor binding expressed in scoring functions.
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Though the initial applications of GPUs were exclusively for creation of

computer graphics, GPUs have now matured to a state where they can be

successfully applied for non-graphical purposes. For example, GPUs are

widely used in drug discovery to deal with demanding computational tasks

such as MD simulation or QM calculations. In the context of docking and

VS, GPU calculations are particularly appealing to enable one to explore the

large conformational landscape potentially accessible to proteins, in shorter

times compared to CPUs. GPU-optimised docking and cloud solutions may

become the standard soon. Lastly, GPU computing made big-data driven

computation tasks more generally accessible, and it is expected to play a

prominent role, not only in docking but in future in silico drug design in

general.

Another important factor to consider in the further development and

optimisation of the docking methodologies is the availability of 3D data.

In recent decades, the number of crystallographic data has increased expo-

nentially and new technologies such as cryo-EM and NMR have filled

several gaps left by the limitation of X-ray crystallography. Of the three,

cryo-EM has emerged as successful for determining the structures of large

and dynamic complexes that have proved difficult to obtain by other

approaches.

Despite the fact that cryo-EM is a decades-old technique, it has garnered

increasing interest since around 2013 due to a series of technological and

algorithmic advances that together drove a striking improvement in the res-

olution obtainable by this technique. Recently, Yip et al. [245] and Nakane

et al. [246] reported the sharpest images yet obtained, with a resolution of

1.2 Å, by using a method termed single-particle cryo-EM, enabling the loca-

tion of individual atoms in a protein to be determined for the first time.

Ultimately, these developments will help researchers gain a better under-

standing, at unprecedented resolution, of how proteins work in health

and disease, with the potential to aid the design of better therapeutics.

Advancements in cryo-EM have also increased the rate at which structures

are solved, such that many general AI-based methods for protein-ligand

docking will be applied to modelling protein-ligand recognition in the

future. The improved quality of molecular structures has the additional

advantage of improving ML and AI-based tools where the main limitation

for their application in drug discovery is the lack of large, annotated, unbi-

ased, high-quality data. As a data mining technology, the amount of available

data directly affects the performance of the related deep learning models

since the successful training of deep neural networks highly relies on a large

amount of data.
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Developments in computing power coupled to imaging techniques, AI

approaches and protein fold prediction tools (i.e. AlphaFold [247]) point to a

golden age for the application of computational approaches to drug discov-

ery, where understanding the protein’s shape and knowing its role within

the cell, provides better protein structures for molecular docking, contrib-

uting to the development of specific and selective new therapeutics, while

also reducing the costs associated with experimentation.

References
[1] DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry:

new estimates of R&D costs. J Health Econ 2016;47:20–33.
[2] Ripphausen P, Nisius B, Peltason L, Bajorath J. Quo vadis, virtual screening? A com-

prehensive survey of prospective applications. J Med Chem 2010;53(24):8461–7.
[3] Druker BJ, Lydon NB. Lessons learned from the development of an Abl tyrosine

kinase inhibitor. J Clin Invest 2000;105(1):3–7.
[4] Von Itzstein M,WuWY, Kok GB, Pegg MS, Dyason JC, Jin B, et al. Rational design

of potent sialidase-based inhibitors of influenza virus replication. Nature 1993;363
(6428):418–23.

[5] Kaldor SW, Kalish VJ, Davies JF, Shetty BV, Fritz JE, Appelt K, et al. Viracept
(nelfinavir mesylate, AG 1343): a potent, orally bioavailable inhibitor of HIV-1
protease. J Med Chem 1997;40(24):3979–85.

[6] Squires M, Ward G, Saxty G, Berdini V, Cleasby A, King P, et al. Potent, selective
inhibitors of fibroblast growth factor receptor define fibroblast growth factor depen-
dence in preclinical cancer models. Mol Cancer Ther 2011;10(9):1542–52.

[7] Talele T, Khedkar S, Rigby A. Successful applications of computer aided drug discov-
ery: moving drugs from concept to the clinic. Curr Top Med Chem 2010;10
(1):127–41.

[8] Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screen-
ing for drug discovery: methods and applications. Nat Rev Drug Discov 2004;3
(11):935–49.

[9] Clark DE. What has computer-aided molecular design ever done for drug discovery?
Expert Opin Drug Discov 2006;1(2):103–10.

[10] Joseph-McCarthy D, Baber JC, Feyfant E, Thompson DC, Humblet C. Lead optimi-
zation via high-throughput molecular docking. Curr Opin Drug Discov Devel 2007;
10(3):264–74.

[11] Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to
macromolecule-ligand interactions. J Mol Biol 1982;161(2):269–88.

[12] Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys
Rev 2017;9(2):91–102.

[13] Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, et al. Comprehensive evaluation of ten
docking programs on a diverse set of protein–ligand complexes: the prediction accu-
racy of sampling power and scoring power. Phys Chem Chem Phys 2016;18
(18):12964–75.

[14] Li Y, Shen J, Sun X, Li W, Liu G, Tang Y. Accuracy assessment of protein-based
docking programs against RNA targets. J Chem Inf Model 2010;50(6):1134–46.

[15] Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, et al. Comparison of sev-
eral molecular docking programs: pose prediction and virtual screening accuracy. J
Chem Inf Model 2009;49(6):1455–74.

[16] Ferreira LG, dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and
structure-based drug design strategies. Molecules 2015;20(7):13384–421.

331Use of molecular docking computational tools in drug discovery

http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0010
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0010
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0015
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0015
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0020
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0020
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0025
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0025
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0025
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0030
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0030
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0030
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0035
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0035
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0035
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0040
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0040
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0040
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0045
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0045
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0045
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0050
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0050
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0055
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0055
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0055
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0060
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0060
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0065
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0065
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0070
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0070
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0070
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0070
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0075
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0075
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0080
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0080
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0080
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0085
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0085


[17] Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to
macromolecule-ligand interactions. J Mol Biol 1982;161(2):269–88.

[18] Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta
Crystallogr Sect A 1976;32(5):922–3.

[19] Kabsch W. A discussion of the solution for the best rotation to relate two sets of
vectors. Acta Crystallogr Sect A 1978;34(5):827–8.

[20] Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a
new approach for rapid, accurate docking and scoring. 1. Method and assessment of
docking accuracy. J Med Chem 2004;47(7):1739–49.

[21] Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide:
a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in data-
base screening. J Med Chem 2004;47(7):1750–9.

[22] Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an
incremental construction algorithm. J Mol Biol 1996;261(3):470–89.

[23] Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a
genetic algorithm for flexible docking 1. J Mol Biol 1997;267(3):727–48.

[24] Hart TN, Read RJ. A multiple-start Monte Carlo docking method. Proteins 1992;13
(3):206–22.

[25] Korb O, St€utzle T, Exner TE. PLANTS: application of ant colony optimization to
structure-based drug design. In: Dorigo M, Gambardella LM, Birattari M,
Martinoli A, Poli R, St€utzle T, editors. Ant colony optimization and swarm intelli-
gence. Berlin Heidelberg: Springer; 2006. p. 247–58.

[26] Pei J, Wang Q, Liu Z, Li Q, Yang K, Lai L. PSI-DOCK: towards highly efficient and
accurate flexible ligand docking. Proteins 2006;62(4):934–46.

[27] Li Y, Han L, Liu Z, Wang R. Comparative assessment of scoring functions on an
updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model
2014;54(6):1717–36.

[28] Li J, Fu A, Zhang L. An overview of scoring functions used for protein–ligand inter-
actions in molecular docking. Interdiscip Sci Comput Life Sci 2019;11(2):320–8.

[29] Ain QU. Machine-learning scoring functions to improve structure-based binding
affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci
2015;5:405–24.

[30] Zou X, Yaxiong, Kuntz ID. Inclusion of solvation in ligand binding free energy
calculations using the generalized-born model. J AmChem Soc 1999;121(35):8033–43.

[31] Cournia Z, Allen B, Sherman W. Relative binding free energy calculations in drug
discovery: recent advances and practical considerations. J Chem Inf Model 2017;57
(12):2911–37.

[32] Mark AE, van Gunsteren WF. Decomposition of the free energy of a system in terms
of specific interactions: implications for theoretical and experimental studies. J Mol
Biol 1994;240(2):167–76.

[33] Williams DH, Maguire AJ, Tsuzuki W, Westwell MS. An analysis of the origins of a
cooperative binding energy of dimerization. Science 1998;280(5364):711–4.

[34] Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved
protein-ligand docking using GOLD. Proteins 2003;52(4):609–23.

[35] Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al.
Automated docking using a Lamarckian genetic algorithm and an empirical binding
free energy function. J Comput Chem 1998;19(14):1639–62.

[36] Corbeil CR, Williams CI, Labute P. Variability in docking success rates due to dataset
preparation. J Comput Aided Mol Des 2012;26(6):775–86.

[37] Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. Empirical scoring func-
tions: I. The development of a fast empirical scoring function to estimate the binding
affinity of ligands in receptor complexes. J Comput AidedMol Des 1997;11(5):425–45.

332 Francesca Stanzione et al.

http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0090
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0090
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0095
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0095
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0100
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0100
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0105
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0105
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0105
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0110
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0110
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0110
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0115
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0115
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0120
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0120
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0125
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0125
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0130
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0130
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0130
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0130
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0130
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0130
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0135
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0135
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0140
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0140
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0140
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0145
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0145
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0150
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0150
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0150
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0155
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0155
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0160
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0160
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0160
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0165
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0165
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0165
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0170
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0170
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0175
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0175
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0180
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0180
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0180
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0185
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0185
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0190
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0190
http://refhub.elsevier.com/S0079-6468(21)00004-7/rf0190


[38] Korb O, St€utzle T, Exner TE. Empirical scoring functions for advanced
protein–ligand docking with PLANTS. J Chem Inf Model 2009;49(1):84–96.

[39] Huang S-Y, Zou X. An iterative knowledge-based scoring function to predict
protein-ligand interactions: II. Validation of the scoring function. J Comput Chem
2006;27(15):1876–82.

[40] Thomas PD, Dill KA. Statistical potentials extracted from protein structures: how
accurate are they? J Mol Biol 1996;257(2):457–69.

[41] Velec HFG, Gohlke H, Klebe G. Drug score CSD-knowledge-based scoring function
derived from small molecule crystal data with superior recognition rate of near-native
ligand poses and better affinity prediction. J Med Chem 2005;48(20):6296–303.

[42] Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict
protein-ligand interactions. J Mol Biol 2000;295(2):337–56.

[43] Mooij WTM, Verdonk ML. General and targeted statistical potentials for protein–
ligand interactions. Proteins Struct Funct Bioinf 2005;61(2):272–87.

[44] Muegge I, Martin YC. A general and fast scoring function for protein–ligand interac-
tions: a simplified potential approach. J Med Chem 1999;42(5):791–804.

[45] Muegge I. PMF scoring revisited. J Med Chem 2006;49(20):5895–902.
[46] Huang S-Y, Zou X. An iterative knowledge-based scoring function to predict

protein-ligand interactions: I. Derivation of interaction potentials. J Comput Chem
2006;27(15):1866–75.

[47] Huang S-Y, Grinter SZ, Zou X. Scoring functions and their evaluation methods for
protein–ligand docking: recent advances and future directions. Phys Chem Chem
Phys 2010;12(40):12899–908.

[48] VerdonkML, LudlowRF, Giangreco I, Rathi PC. Protein–ligand informatics force field
(PLIff ): toward a fully knowledge driven “force field” for biomolecular interactions. J
Med Chem 2016;59(14):6891–902.

[49] ZhengM, Xiong B, LuoC, Li S, Liu X, ShenQ, et al. Knowledge-based scoring func-
tions in drug design: 3. A two-dimensional knowledge-based hydrogen-bonding
potential for the prediction of protein–ligand interactions. J Chem Inf Model 2011;
51(11):2994–3004.

[50] Neudert G, Klebe G. DSX: a knowledge-based scoring function for the assessment of
protein–ligand complexes. J Chem Inf Model 2011;51(10):2731–45.

[51] Iruela-Arispe ML, Liska DJ, Sage EH, Bornstein P. Differential expression of throm-
bospondin 1, 2, and 3 during murine development. Dev Dyn 1993;197(1):40–56.

[52] Cheng T, Li X, Li Y, Liu Z,Wang R. Comparative assessment of scoring functions on
a diverse test set. J Chem Inf Model 2009;49(4):1079–93.

[53] Charifson PS, Corkery JJ, MurckoMA,WaltersWP. Consensus scoring: a method for
obtaining improved hit rates from docking databases of three-dimensional structures
into proteins. J Med Chem 1999;42(25):5100–9.

[54] O’Boyle NM, Liebeschuetz JW, Cole JC. Testing assumptions and hypotheses
for rescoring success in protein� ligand docking. J Chem Inf Model 2009;49(8):
1871–8.

[55] Palacio-Rodrı́guez K, Lans I, Cavasotto CN, Cossio P. Exponential consensus ranking
improves the outcome in docking and receptor ensemble docking. Sci Rep 2019;9
(1):5142.

[56] VerdonkML, Berdini V, HartshornMJ,MooijWTM,Murray CW, Taylor RD, et al.
Virtual screening using protein � ligand docking: avoiding artificial enrichment. J
Chem Inf Comput Sci 2004;44(3):793–806.

[57] Khamis MA, Gomaa W, Ahmed WF. Machine learning in computational docking.
Artif Intell Med 2015;63(3):135–52.
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