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Abstract: The current energy scenario has encouraged the replacement of carbon sources with renewable 
sources. Second-generation (2G) ethanol production from lignocellulosic material or agroindustrial 
biomass involves a three-step process consisting of pretreatment, saccharification and fermentation. 
Enzymatic saccharification is the most critical step for recovering fermentable sugars from biomass. Many 
factors such as pretreatment, enzyme load, pH, temperature, substrate and surfactant concentrations, 
and reaction time, among others, can affect biomass saccharification. In this sense, different design of 
experiment (DoE) tools together with response surface methodology (RSM) have been used as a viable 
strategy to determine how factors influence saccharification and to optimize this process. The strategy 
involves fewer experiments, less time and lower cost. This review summarizes how DoE and RSM tools 
have been used to optimize biomass saccharification. Moreover, an overview of the main experimental 
design tools used in this field is provided. © 2023 Society of Industrial Chemistry and John Wiley & Sons 
Ltd.
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Introduction

T
he current world energy consumption is estimated 
at 5.42 × 1017 BTU, and this number is expected to 
rise by 50% until 2050.1,2 In this scenario, replacing 

traditional carbon sources (non-renewable) with alternative 
ones has gained prominence worldwide,1,3–5 so the use 

of renewable energy sources such as solar power, wind, 
water and plant biomass is expected to grow and to meet 
approximately 85% of the world demand by 2050.1 Plant 
biomass has played a central role in this context: around 
1.5 × 1010 tons of lignocellulosic waste are generated every 
year around the world.3 According to a goal defined by 
COP21, these sources should be increasingly used to reduce 
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the production of greenhouse gases like CO2, NO2 and CH4 
by up to 43%.3,6–8

Lignocellulose is mainly composed of cellulose, 
hemicellulose and lignin. Cellulose strains are bundled 
together to form cellulose fibrils via hydrogen bonding, 
whereas hemicellulose serves as a connection between lignin 
and cellulose.1,4,9 Remarkably, cellulose is not only the most 
abundant fraction in lignocellulose, but also the fraction of 
greatest industrial interest.1,10 Cellulose is a homopolymer 
composed of 10 000–140 000 cellobiose subunits (glucose 
dimers) linked to each other by β-1,4 linkages. The hydroxyl 
groups in the chain axial regions establish intra- (same 
molecule) and intermolecular (with other molecules) 
hydrogen bonds, forming highly compact and insoluble 
microfibrils. Together, these microfibrils form macrofibrils 
that resist chemical and biological agents.10 The hemicellulose 
portion consists of polysaccharides with a highly variable 
configuration of hexose (such as glucose, galactose and 
mannose) and pentose (such as xylose and arabinose) 
monomers and uronic acid units (mainly 4-O-methyl-d-
glucuronic acid).1,10 Lignin involves cellulosic macrofibrils 
and is associated with different hemicellulosic matrix 
components, so it is the main physical barrier to physical, 
chemical and biological agents used in industrial processes 
and the portion that impacts lignocellulosic biomass 
recalcitrance the most. Recently, lignin has been the object of 
industrial interest for different purposes.1,6,10

Lignocellulosic biomass conversion to bioethanol 
requires several stages that include biomass pretreatment 
and fractionation, the production of suitable cellulolytic/
hemicellulolytic enzymes, enzymatic pretreated biomass 
hydrolysis, fermentation of enzymatic hydrolysate by suitable 
microorganisms and downstream processing.11 Pretreatment 
involves changing the cellulose–hemicellulose–lignin matrix 
structure12 by removing lignin, partially or totally hydrolyzing 
hemicellulose, and reducing the cellulose crystalline 
fraction (relative to amorphous cellulose) and the degree of 
polymerization, to allow subsequent hydrolytic processes 
and sugar release to occur.11,12 The lignocellulosic material 
pretreatment conditions depend on the type of biomass, 
which requires that process conditions for each biomass be 
studied and optimized.13

Saccharification of cellulose and hemicellulose 
polymers of pretreated biomass is the central step in 2G 
ethanol biorefineries.13 Cellulases like endoglucanases, 
cellobiohydrolases, and β-glucosidases have been used for 
enzymatic pre-treated biomass hydrolysis.12 Enzymatic 
hydrolysis of lignocellulosic biomass depends on enzyme-
related and substrate-related factors. Therefore, factors such 
as temperature, saccharification time, pH, enzyme loading, 

substrate loading, addition of chemical agents like surfactants 
and mechanical agitation should be studied and optimized, to 
increase the concentration of sugars, and consequently hence 
ethanol production.12 Biomass pre-treatment and enzymatic 
hydrolysis of recalcitrant biomass are among the major 
technical and economic impediments to the overall success 
of biorefineries.14 Thus, alternatives such as simultaneous 
saccharification and co-fermentation have been proposed to 
diminish production costs. This strategy allows enzymatic 
hydrolysis and fermentation to be carried out in the same 
reactor, thereby avoiding substrate repression during cell 
metabolism, reducing contamination risks and preventing 
enzyme inhibition.15 Given that many factors can be studied 
and optimized in the different strategies used to produce 
2G bioethanol, some researchers have employed design of 
experiment (DoE) tools and response surface methodology 
(RSM) to achieve this goal.

Design of experiment tools comprise a smart approach 
that provides fast, efficient and economical strategies—
these tools allow several factors and their interactions to 
be studied by means of fewer experiments than the one 
factor at a time approach.16 Design of experiment tools are 
commonly used to study and to optimize process conditions 
or formulations during the development of new products 
and include screening designs [Plackett–Burman design 
(PB), fractional factorial design and Full Factorial Design 
(FFD)] and RSM, which encompasses central composite 
design (CCD) and Box–Behnken design (BBD). Screening 
designs help to discriminate the critical process variables 
by means of a reduced number of experiments; CCD and 
BBD are subsequently applied to infer the best levels of the 
previously determined significant factors, to optimize the 
process. Choosing which variables to study depends on the 
criteria and the researcher’s knowledge about the evaluated 
system.17–19

Here, we analyze and discuss some papers on the 
application of DoE tools and RSM in biomass saccharification 
for 2G ethanol production published in the last 10 years. We 
show how these tools can be applied to study and to optimize 
the factors that influence biomass saccharification with a view 
to encouraging researchers to use these tools in future works 
in this area.

2G ethanol production  
in biorefineries

Agroindustrial biomass resulting of food harvest and 
processing is gaining researchers’ interest for 2G ethanol 
production owing to its cellulose and hemicellulose content, 
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which are sources fermentable sugars. Table 1 shows the 
content of cellulose, hemicellulose and lignin in some 
agroindustrial biomass. Small amounts of proteins, pectin 
and extractives are also found in lignocellulosic biomass.20

The rigid and complex structure resulting from the spatial 
interaction of cellulose, hemicellulose and lignin limits 
lignocellulosic biomass conversion to the desired product 
(Fig. 1).

In Brazil, the first efforts carried out by the researchers for 
the production of 2G ethanol used sugarcane bagasse as a 
raw material. Sugarcane is an important crop for the Brazilian 
economy; in 2022/2023, the harvest of sugarcane was 610.1 
million metric tons in Brazil, yielding approximately 37.0 
million metric tons of sugar and 2.4 billion liters of alcohol.30 
In Brazil, traditional 1G ethanol is obtained from sugarcane 
by fermentation, which occurs by adding Saccharomyces 
cerevisiae (approximately 10 g L−1) to the sugarcane juice.6 In 
the sugar and 1G ethanol production from sugarcane yields 
a large amount of bagasse (280 kg of bagasse are generated 
per ton of sugarcane). Most of this biomass is currently 
burned in sugarcane mills to produce energy, but a significant 
amount remains, representing great potential for sugar 
conversion into bio-based products, which defines second-
generation (2G) processes.31 The sugarcane bagasse that 
arrives at the biorefinery for 2G ethanol production (Fig. 2) 
contains impurities from the field, so it must first be washed 
with water. In the next step, washed sugarcane bagasse [1], 
with initial moisture of 50%, is subjected to pretreatment, 
to reduce its recalcitrance and to make the polysaccharide 

fraction more accessible to enzymatic action. Several 
pretreatment [2] methodologies (of a chemical, physical, 
physicochemical or biological nature) exist, and each has its 
pros and cons. Effective pretreatment should not result in 
hemicellulose or cellulose loss or form potential inhibitors 
of hydrolytic enzymes or microorganisms of ethanol 
fermentation.32 Pretreatment accounts for 20–25% of the total 
production costs and significantly impacts the effectiveness 
of subsequent unit processes, especially the efficiency with 
which monosaccharides are released from polysaccharides 
in the material. The degree of hydrolysis of polysaccharides 

Table 1. Lignocellulosic composition of different biomass.
Biomass Cellulose (%) Hemicellulose (%) Lignin (%) References
Apple bagasse 11.14 12.5 14.5 21

Barley straw 22.0–42 20.4–28 17.1–19.3 21,22

Bean straw 40.2 19.3 18.1 23

Coffee pulp 10.3 18.3 11.4 21

Corn straw 29.6–42.6 17.0–35.0 7.0–21.0 21,22

Elephant grass 15.2 14.0 10.3 21

Guinea grass 14.4 15.7 8.6 21

Grape stalk 14 11.7 23 23

Oat straw 37.6 23.34 12.85 22

Rice straw 32.0–47.0 16.0–28.0 5.5–24.0 22–25

Sisal fiber 64.9–78 10–25.4 8–11.7 26

Sorgum straw 32.4 27.0 7.0 22

Soybean straw 39.8 22.6 12.8 27

Sweet sorghum bagasse 42 23 14 28

Sugarcane bagasse 18.6–45.4 16.6–28.7 10.6–23.4 21,22

Wheat straw 33.0–45.0 19.0–32.0 8.0–28.0 22–29

Figure 1. General scheme for the main biomass 
components (Source: Author’s own figure).
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without pretreatment is lower than 20%, whereas 
pretreatment increases this degree to 90%.13,33 Usually, 2G 
ethanol plant operators prefer to adopt well-consolidated, 
low-cost strategies such as steam explosion, ammonia fiber 
explosion and diluted acid hydrolysis on a large scale.

Saccharification [4] is the stage in which polysaccharides 
from the pretreated lignocellulosic biomass are hydrolyzed 
to simple sugars by enzyme cocktails [3]. When it comes to 
using biomass to obtain biofuel and value-added products, 
efficient enzymatic cellulose and hemicellulose conversion 
remains a major bottleneck.11 Some authors suggest that 
the cost of enzymes for biomass depolymerization should 
not be more than US$0.10 per liter of ethanol product.34 
Therefore, enzyme cocktails have been produced in 
the units themselves by microorganisms of the genera 
Aspergillus, Trichoderma, Penicillium and Clostridium. In 
addition, efforts have been made to produce thermostable 
cellulases from bacteria (Bacillus, Geobacillus, Caldibacillus, 
Acidothermus, Caldocellum and Clostridium), fungi 
(Chaetomium, Talaromyces and Thermoascus) and even 
the metagenome.11,35 Regarding Fig. 2, unwanted fractions 
of the lignin cake obtained during saccharification are 
sent to the power generator [8]. Part of the obtained broth 
is used as a culture medium to produce enzymes. On the 

other hand, the lignocellusic substrate to be fermented 
[6] may contain a mixture of oligosaccharides, hexoses 
(glucose, mannose and galactose) and pentoses (xylose 
and arabinose), and inhibitors such as acids (formic, 
acetic and levulinic acids), furan derivatives (furfural and 
5-hydroxymethylfurfural) and lignin degradation products 
(vanillin and 4-hydroxybenzaldehyde).13 Microorganisms 
that are used to ferment sugars must be able to ferment both 
C5 and C6 sugars and to resist the presence of inhibitors 
and ethanol concentration over 40 g dm−3, to obtain ethanol 
production yields higher than 90%. Additionally, they must 
be resistant to high temperature and low pH and have low 
nutritional requirements. Various organisms are available 
for this step, including some genetically modified organisms; 
the yeast S. cerevisiae is the most popular. However, these 
yeasts do not have the enzymes that are necessary to ferment 
pentoses.36 Numerous bacterial (Thermus thermophilus and 
Clostridium thermosaccharolyticum) and yeast (Pichia stipitis, 
Candida shehatae, Pachysolen tannophilus and Debaryomyces 
hansenii) strains have been reported to employ pentoses, but 
lower ethanol yields are achieved.13 Other microorganisms 
such as Mucor rouxii (Mucor indicus) can ferment glucose, 
xylose, mannose, fructose and galactose, and Scheffersomyces 
stipitis can ferment both hexose and pentose sugars. Mucor 

Figure 2. Scheme for the 2G ethanol production plant (Source: Adapted from Maga et al.6).
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rouxii shows greater resistance to potential inhibitors 
present in lignocellulosic hydrolysates, mainly furfural, 
hydroxymethylfurfural and acetic acid.37

The inoculum produced in this stage [5] can be grown in 
sugarcane molasses containing 60% sugar supplemented with 
ammonium phosphate. In the end, the generated ethanol is 
distilled [7] (similarly to 1G ethanol production), and solid 
wastes are incinerated in the power generator to obtain steam 
and energy. The generated liquid wastes [9] are treated for 
water recycling or directed for anaerobic digestion to produce 
biogas, which in turn is also burned for energy production.3,6

Enzymatic saccharification

Enzymatic hydrolysis of lignocellulosic material is assisted 
by a set of enzymes, commonly classified as carbohydrate 
active enzymes (CAZymes), which are cataloged in the 
CAZy database (available at www.cazy.org). They are 
grouped into five different classes: glycosyl hydrolases (GH), 
polysaccharide liases (PL), carbohydrate esterases (CE), 
auxiliary activities (AA) and glycosyl transferases (GT). The 
first four act on glycan degradation.38–40 Such classification 
is based on the similarity of the primary structures, 
conservation of the secondary and tertiary structures, 
stereochemical architectures, and catalytic mechanisms.34 
Owing to their prominent role in cellulose and hemicellulose 
depolymerization, only the enzymes belonging to the GH and 
AA categories are discussed in more detail in this review.

Cellulose hydrolysis requires several enzymes, such 
as: endo-1,4-glucanases (EC 3.2.1.4), which hydrolyze 
amorphous cellulose internal structures; exo-1,4-glucanases 
(EC 3.2.1.91, also known as cellobiohydrolases), which 
detach cellobiose molecules from the ends of cellulose; and 
β-glucosidases (EC 3.2.1.21), which hydrolyze cellobiose 
to glucose.40–42 In addition, the recently discovered lytic 
polysaccharide monooxygenases belonging to families AA9 
and AA10 assist in cellulose degradation through an oxidative 
mechanism.42,43 The optimum conditions for cellulases to 
operate include a temperature of 50°C and pH 4.0–5.0.44 
On the other hand, the use of hemicellulases in biomass 
saccharification is also essential because they increase 
accessibility to cellulose by solubilizing the hemicellulose 
structure, which acts as a barrier.11 Hemicellulose 
depolymerization requires a more diverse range of CAZymes 
because this fraction of the biomass comprises a group of 
heterogeneous polyaccharides.34,45,46 In the case of xylan, for 
example, the degradation mechanism involves the hydrolytic 
enzymes endo-1,4-β-xylanases and β-xylosidases, which 
catalyze the deconstruction of the main homopolymer 
chain to d-xylose monomers, and enzymes such as α-l-

arabinofuranosidases, α-d-glucuronidases, acetyl xylan 
esterases, ferulic acid and p-coumaric acid esterases, which 
act to remove the branches.45 Furthermore, ligninolytic 
enzymes are important for removing lignin, thereby 
facilitating enzymatic saccharification of biomass. Laccase, 
manganese peroxidase and lignin peroxidase are the key 
enzymes for lignin degradation.47 Laccases oxidize aromatic 
amines and phenolic compounds using molecular oxygen 
as a terminal electron acceptor. Manganese peroxidase and 
lignin peroxidase can oxidize lignin at the non-phenolic 
and phenolic aryl-ether positions, respectively.48 Therefore, 
complete carbohydrate hydrolysis in pretreated biomass 
demands a multienzyme complex.

Commercial cellulase and hemicellulase preparations can 
be obtained from filamentous fungi of the genus Trichoderma 
(Trichoderma viride and Trichoderma longibrachiatum), 
which are considered the most productive and efficient. 
Novozymes, Genencor and DuPont Industrial Biosciences 
(DuPont) are the main players: they offer innovative 
solutions for industrial biorefineries by developing 
commercial enzymatic preparations that contain cellulase and 
hemicellulase complexes.14

Because the lignocellulosic material has recalcitrant 
structure, large amounts of enzymes are required to 
deconstruct it, so the process is costly.49–52 Thus, the costs of 
cellulases and enzymatic hydrolysis are the two important 
constraints in biorefinery commercialization.14 In general, 
between 10 and 30 mg g−1 cellulase is required for biomass 
saccharification, which hydrolyzes from 30 to 70% of the 
cellulose content, to give a hydrolysis rate of 70–90%. The 
cost of celullase lies between 3 and 8 EUR kg−1, contributing 
approximately 0.095 EUR kg−1 to the hydrolysis cost and 0.18 
EUR kg−1 to the lignocellulose biomass cost.53,54 Therefore, 
enzymatic hydrolysis of biomass remains one of the greatest 
challenges in biorefineries for 2G ethanol production.

To improve the process yield and hydrolysis rate, research 
has been geared toward optimizing process conditions 
and improving enzymatic activities using DoE tools.50,55,56 
Parameters such as enzyme load, pH, temperature, substrate 
and surfactant concentration, and reaction time govern 
hydrolysis, so optimizing them is key to enhancing process 
efficiency.51,57–61 Besides that, pretreatment optimization 
can maximize sugar release from sugarcane bagasse because 
pretreatment makes the biomass more accessible to enzymatic 
hydrolysis. Thus, DoE tools have been used to optimize the 
lignocellulosic biomass pre-treatment.12

Enzymatic hydrolysis and fermentation can be performed 
separately (SHF, separate hydrolysis and fermentation) or 
simultaneously (SSF, simultaneous saccharification and 
fermentation), or may even entail pre-saccharification 

http://www.cazy.org
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followed by simultaneous saccharification and fermentation 
(PSSSF, pre-saccharification and simultaneous 
saccharification and fermentation).49,62 The advantages and 
disadvantages of each strategy are detailed in the following 
topics.

Separated hydrolysis  
and fermentation

As the name suggests, this type of strategy consists of carrying 
out hydrolysis and fermentation separately. In the first 
stage, the pretreated lignocellulosic material is subjected to 
saccharification mediated by CAZymes, to release glucose 
and other hexoses/pentoses. Subsequently, the produced 
monomeric sugars are converted to ethanol by fermentation, 
which is usually carried out by the yeast species S. cerevisiae.49

Given that each step occurs separately, they can be 
performed in their respective ideal operating conditions. 
Enzymatic hydrolysis is commonly carried out between 
45 and 50°C and pH 4.5–5.0.63 On the other hand, the best 
ethanol yields are obtained when fermentation occurs at 
28–37°C.49 Despite these positive points, decreased enzymatic 
activities owing to sugar accumulation in the medium 
(inhibition by product) and contamination risks are the main 
disadvantages associated with SHF.49

Simultaneous saccharification  
and fermentation

To overcome the problems involved in SHF, another approach 
is SSF.55 As simple sugars are released during hydrolysis, they 
are consumed and converted to ethanol during fermentation, 
to give greater ethanol productivity and efficiency.62 In this 
way, the rate of enzyme inhibition by the product is reduced, 
so costs are associated with the large amount of enzymes 
required in the SHF.49 Nevertheless, operating under the 
optimum conditions of both processes is impossible, which 
constitutes the main limitation of this strategy and makes its 
implementation difficult.55,64

Pre-saccharification and 
simultaneous saccharification  
and fermentation

As described previously, SSF was primarily developed to 
alleviate the problems associated with enzyme inhibition by 
hydrolysis products. However, carrying out this step under 
ideal conditions is unfeasible and may result in lower sugar 
yield compared with SHF.62 In this sense, the PSSSF principle 

is to conduct preliminary lignocellulosic material hydrolysis 
at a temperature that is optimum for enzymatic activity (45–
50°C), followed by a decrease in the process temperature to 
the indirect value for hydrolysis and fermentation (usually 
optimum for ethanol-producing microorganisms).65 Thus, 
PSSSF provides higher sugar yields compared with SSF and 
higher ethanol productivity compared with SHF.62

Application of DoE to optimize 
enzymatic saccharification

As previously mentioned, enzymatic saccharification is 
the critical step for releasing monomeric sugars during 
2G ethanol production and constitutes a challenge for 
researchers attempting to make bioethanol production more 
economically viable.58,66,67 The performance of this stage is 
governed by numerous parameters, so optimizing them is 
key to increasing process efficiency.57 Fig. 3 illustrates the 
saccharification process, the several factors (independent 
variables) that could affect this process in 2G ethanol 
refineries, and the most important responses (dependent 
variables) to be analyzed in the final broth. For simplification, 
the biomass is represented only by deconstructed cellulose 
and xylose (main hemicellulose component) fibers. 
The represented cellulases are endoglucanases (red), 
cellobiohydrolases (yellow) and β-glucosidases (light green), 
and the represented hemicellulases are endoxylanases (pink), 
exoxylanases (orange) and β-xylosidases (dark green). In 
purple, lytic polysaccharide monooxygenase represents the 
only redox enzyme acting on biomass along with the other 
hydrolytic enzymes. In this representation, some enzymes 
are attached to carbohydrate binding molecules by linker 
regions.

To study how factors or independent variables affect 
the dependent variables shown in Fig. 3, some researches 
have used DoE tools for determining the simultaneous 
or individual influence of all the factors involved in 
the process using a minimum number of experiments, 
aiming at an optimized scenario.62 Briefly, the application 
of any experimental design involves the following steps: 
(1) stipulating experimental limits; (2) defining specific 
experimental conditions; and (3) using mathematical analysis 
to predict the response at any point within the pre-stipulated 
experimental limits.68

Design of experiments generally involves two main 
strategies. The first strategy encompasses the use of screening 
experiments to identify and to select the factors that 
significantly affect the responses, which is then followed by 
optimization. Screening design tools to select factors includes 
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full or fractional factorial and Plackett–Burman designs. 
On the other hand, the second strategy is to perform direct 
optimization of the factors that the researcher considers 
significant. Central composite design, Box–Behnken design 
and RSM can be used to optimize the process.69

Table 2 lists some of the main experimental design 
tools found in the literature for optimizing enzymatic 
saccharification.

Screening design for selecting 
factors

Screening experiments are applied as a preliminary step 
before optimization itself to select the factors and their 
levels that significantly affect the desired response. The 
most commonly used tools include fractional factorial and 
Plackett–Burman designs.56,69

Fractional factorial design

Experiments outlined in full factorial schemes involve all the 
possible interactions between levels of two or more factors. 
In the case of a two-level FFD, a number of experiments 
correspond to 2k, with k being the number of factors 
involved; each factor has a high (represented by +1) and a low 

(represented by −1) value.69,77 However, if the interactions 
between the studied parameters are believed to be negligible, 
or if the overall number of experiments is simply too high 
(e.g. the two-level FFD for seven tested factors constitutes 128 
experiments), FFD might become unnecessary. In such case, 
FFD is a finite fraction (1/xr) of a complete or ‘full’ FD, where 
r is the degree of fractionation, and xk – r is the total number 
of required experiments. This type of design experimental is 
more suitable when k > 4.

Noratiqah et al.70 applied a 25 FFD to detect the factors that 
most impacted on concentration of reducing sugars from 
enzymatic OPEFB (oil palm empty fruit bunch) biomass 
degradation. The authors evaluated the effects of the five 
independent variables – OPEFB concentration, temperature, 
incubation time, Tween 80 concentration and agitation speed 
– under 37 experiments (including five central points). All 
of the evaluated independent variables significantly affected 
hydrolysis in the stipulated confidence interval (α = 0.05), 
so they were selected for the subsequent step involving 
optimization of the parameters through CCD.

Plackett–Burman design

The statistical design tool developed by Plackett and Burman 
corresponds to a fractional factorial of two levels (−1, +1) that 
involves constructing Hadamard matrices.77 Such orthogonal 

Figure 3. Saccharification step variables in 2G ethanol refineries and illustration of the enzymatic action on pretreated 
biomass (Source: Author’s own figure).
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Table 2. Design of experiments applied in to optimize enzymatic saccharification of different biomasses.
Experimental 
design

Biomass Factors or independent variables Optimum 
conditions

Responses 
or dependent 
variables

Optimum 
response 
predicted

Reference

Plackett–Burman 
and CCD

Rock-rose 
(Cistus 
ladanifer)

Temperature (°C) 50 Glucose production 
(g g−1 of biomass)

0.326 56

pH 4.86

Cellulase (FPU g−1) 60

PEG 4000 (g g−1) 0.4

Incubation time (h) 72

Broom 
(Cytisus 
striatus)

Temperature (°C) 50 0.427

pH 4.53

Cellulase (FPU g−1) 60

PEG 4000 (g g−1) 0.27

Incubation time (h) 72

Full factorial 
and CCD

OPEFB OPEFB concentration (% g m−3) 1.95 Reducing sugar 
concentration (g L−1)

1.171 70

Temperature (°C) 55

Incubation time 3 days and 16 h

Tween-80 concentration (%) 0.5

Stirring speed (rpm) 87.5

CCD Rice straw Enzyme concentration (FPU g−1) 37.5 Saccharification 
yield (%)

88.9 71

Substrate concentration (%) 2.4

Temperature (°C) 35.4

pH 5.2

CCD Poplar 
wood

Enzyme concentration (FPU g−1) 65 Reducing sugar 
concentration (g L−1)

29.8 66

Substrate concentration (%) 10

Temperature (°C) 40

pH —

CCD Parthenium 
sp.

Temperature (°C) 50 Saccharification 
yield (%)

80.08 50

pH 4.53

Enzyme loading (mL) 0.8

Amount of substrate (g) 0.24

CCD Corn straw Novozyme 188 (μg g−1) 377 Saccharification 
yield (%)

45.8% 72

Pectinase (μg g−1) 171

Sodium thiosulfate (mg mL−1) 1

CCD SSB Substrate concentration (%) 15 Glucose 
concentration 
(g mL−1)

68.58 73

Incubation time (h) 58

Celluclast (IU m L−1) 20

Temperature (°C) 60

CCD Cane straw Enzyme loading (FPU g−1) 14.5 Ethanol yield (%) 
and productivity 
(g L−1 h−1)

70.63 and 
0.74

62

Biomass concentration (% g m−3) 19.3

Pre-saccharification time (h) 33

CCD Kans grass Solid loading (%, w v−1) 24 Ethanol 
concentration (%, 
v/v), productivity 
(g L−1 h−1), ethanol 
conversion efficiency 
(%), and yield (g g−1).

7.62, 2.50, 
65.01, 
0.249

74

Incubation time (h) 24

Temperature (°C) 37

Inoculum volume (%, v v−1) 8.8

Laccase to cellulase ratio 1:6
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matrices are constructed by considering the maximum 
number of factors (columns) to be examined as N−1 in a total 
of N performed experiments (N is defined as a multiple of 
4).77,78 This type of design does not consider any interactions 
between the factors, so it is only useful for estimating the 
main effect of the factors involved in the process and cannot 
be used to obtain surface response during optimization 
of said process.53 Therefore, the PB design constitutes an 
important tool to select variables and is only an intermediate 
step that guides and leads to the final design.53,59,61

Ferreira et al.56 used PB to identify the factors that 
significantly affected the enzymatic hydrolysis of the 
lignocellulosic substrates Cistus ladanifer (rock rose) and 
Cytisus striatus (broom). The authors screened 11 variables 
(pH, temperature, buffer, buffer concentration, cellulase 
concentration, β-glucosidase concentration, substrate 
concentration, reaction volume, incubation time, agitation 
and PEG 4000 concentration) through 12 experimental 
runs, to find that five of these variables – pH, temperature, 
cellulase concentration, incubation time and PEG4000 

Experimental 
design

Biomass Factors or independent variables Optimum 
conditions

Responses 
or dependent 
variables

Optimum 
response 
predicted

Reference

Box–Behnken Rice straw Temperature (°C) 51.45 Hydrolysis yield (%) 1.42 75

Reaction time (h) 3.84

pH —

Enzyme loading (mL) —

Box–Behnken Water 
hyacinth 
biomass

Substrate concentration (% g g−1) 9.92 Total of reducing 
sugars (g g−1)

0.5447 60

Cellulase (U g−1) 49.56

Xylanase (U g−1) 280.33

Surfactant concentration (% g g−1) 0.13

Box–Behnken Potato peel 
residue

Temperature (°C) 45 Reducing sugars 
(g L−1)

77.1 57

pH 5.0

Substrate concentration (% g m−3) 10

Tween-80 concentration (%) 0.5

Box–Behnken Bombax 
seiba seed 
pods

Substrate loading (%) 10 Cellulose content 
(%), total sugars 
(mg mL−1), reducing 
sugars (mg mL−1) 
and total phenol 
(mg mL−1) released

60, 233.7, 
17.8 and 
128.1

76

NaOH concentration (%) 5

Pretreatment time (h) 4

Substrate loading (%) 15 54, 259.5, 
53.5 and 
119.3

NaOH concentration (%) 5

Pretreatment time (h) 6

Substrate loading (%) 15 36, 169.1, 
87.4 and 
204.6

NaOH concentration (%) 1

Pretreatment time (h) 6

Substrate loading (%) 15 54, 223.6, 
59.9 and 
246.8

NaOH concentration (%) 3

Pretreatment time (h) 4

Box–Behnken Corncob PSSSF Yeast (cells mL−1) 5.40 × 106 Ethanol 
concentration (g L−1) 
and conversion (%)

41.78 and 
70.52

64

Amount of biomass (% g m−3) 17.5

Enzyme loading (FPU g−1) 30

SSF Yeast (cells mL−1) 2.70 × 106 39.99 and 
66.46Amount of biomass (% g m−3) 17.82

Enzyme loading (FPU g−1) 30

CCD, central composite design; OPEFB, oil palm empty fruit bunch; PSSSF, pre-saccharification and simultaneous saccharification and 
fermentation; SSF, simultaneous saccharification and fermentation; SSB, sweet sorghum bagasse. One FPU of enzyme is defined as the 
amount of enzyme catalyzing the release of 1 μmol of glucose equivalent per min.

Table 2.  (Continued).
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concentration – significantly and positively affected the 
hydrolysis of at least one of the substrates. Among these 
variables, cellulase concentration was the most significant 
and positively impacted both responses. After screening, 
the next step was to determine the optimum values of the 
five factors selected for study by using CCD to generate the 
response surface.

Response surface methodology  
as a tool for optimization

After screening experiments are accomplished, the selected 
factors can be optimized through the RSM: a set of statistical 
and mathematical techniques developed by Box and 
Wilson in the 1950s.69 Response surface methodology plays 
an essential role in visualizing the relationship between 
independent (factors) and dependent variables (response) 
through second-order mathematic models that include the 
linear, interaction and quadratic effects (Eqn 1).57,79

where y is the predicted mean response, βo is the constant 
term of the model, βi are the coefficients of the linear terms, 
βii are the coefficients of the quadratic terms, βij are the 
coefficients of the interaction terms and ε is the random 
error component that is determined by fitting the model to 
the data.

This second-order polynomial model is reasonably flexible 
and accurately describes the curvature and interactions, 
which makes it a suitable model to optimize the process 
and to infer nontrivial phenomena.50,56,72 The mathematical 
model can be considered adequate and predictive when the 
regression is statically significant (FRegression > > Ftab, P-
value < α) mathematic model) and does not present an error 
(Flack of fit < Ftab, P-value > α, lack of fit is not significant). The 
significance level, also called α, can be 0.05 or 0.1. Besides 
that, the coefficient of determination (R2) and the adjusted 
coefficient of determination (Radj

2) represent the percentage 
of variance explained by the model, and these coefficients 
should be analyzed. Thus, the response surface can be obtained 
with a significant regression and can be used to find the 
maximum region (Fig. 4).80 Other profiles for the quadratic 
response surface plot in the optimization of two variables can 
be obtained, such as surfaces with a plateau in relation to one 
variable, the surface showing the maximum point outside the 

experimental region, the surface with a minimum point and 
the surface with a saddle point as the critical point.81

When a large number of responses must be optimized, 
the desirability function is the most popular strategy to be 
performed.82 The combined application of RSM and the 
desirability approach, called the ‘desirability optimization 
methodology’, represents an efficient tool even when it involves 
antagonistic responses (multi-objective optimization).62,83 
The desirability optimization methodology initially involves 
transforming each estimated response (yi) into a d(yi) function, 
called desirability, which ranges from 0 (undesirable response) 
to 1 (most desirable response). Then, an overall desirability 
function (D) is calculated as a geometric average of all the 
individual desirability functions (d), as shown in Eqn (2):

where n denotes the number of responses.
In general, the desirability function allows multivariate 

optimization problems to be condensed into univariate 
ones, in which the optimum solutions are determined by 
maximizing the D value with respect to the independent 
factors.83,84

The desirability function for a nominal the best type 
response is defined as follows (Eqn 3):

(1)y = �o +

k∑
i=1

� ixi +

k∑
i=1

� iix
2

i
+

k∑

i=1

i=1

� ijxixj + �

(2)D =
(
d1×d2×d3× … ×dn

) 1

n

Figure 4. Surface response with a maximum region 
generated from a quadratic model in the optimization of two 
variables (Source: Author’s own figure).
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where di(yi(x)) is the desirability function of yi(x); 
Yi

min and Yi
max are the lower and upper bounds on the 

response, respectively; Ti
min and Ti

max (Ti
min ≤ Ti

max) are 
the lower and upper targets of the response, respectively; 
and si and ti are the parameters that determine the shape 
of di(yi(x)). If si (or ti) = 1, the shape is linear; if si (or 
ti) > 1, the shape is convex; and if 0 < si (or ti) < 1, the shape 
is concave.85

Some studies have shown that RSM can be successfully 
applied to optimize the enzymatic hydrolysis of numerous 
substrates.56,57 Among the most used designs in RSM, the 
CCD and the BBD stand out.56 The topics below detail these 
designs and provide some works that have used these tools to 
optimize saccharification.

Central composite design

Central composite design is the most commonly used 
experimental design tool in RSM for fitted quadratic 
models.56,69 It is usually based on a two-level factorial design, 
with the addition of 2k axial points (where k is the number 
of factors), which represent the two new extreme values of 
each factor and an arbitrary number of repetitions at the 
central point.68 The addition of axial points is precisely the 
main difference between CCD and FFD, which enables the 
quadratic terms to be estimated.69 The axial points of a CCD 
are defined as ± α [where α = (2 k)1/4].77 A CCD generally 
involves a number of N experiments corresponding to 2k 
factorial points + 2 k axial points + n central points (‘n’ being 
an arbitrary number).77

Central composite design has been extensively applied to 
find the optimum conditions for the enzymatic hydrolysis 
of different lignocellulosic biomasses. Jeya et al.71 used 
CCD to optimize the saccharification of alkali-treated 
rice straw by RSM. The authors randomly conducted 
30 experiments (including eight axial points and six 
replications in the central point) to investigate how the 
parameters A (enzyme concentration, 7.5–37.5 filter paper 
units (FPU) g−1), B (substrate concentration, 0.75–3.75%), 
C (temperature, 15–55°C) and D (pH, 3–7) affected 
saccharification (%). They developed a second-order 

regression model using the experimental results. ANOVA 
revealed a high coefficient of determination (R2 = 0.9837) 
for the model, which proved that the experimental and 
predicted results agreed. The authors found that optimum 
saccharification (88.9%) could be obtained at 35.4°C and 
pH 5.2, with 2.4% substrate and 37.5 FPU g−1 of substrate. 
A subsequent experiment under the specified conditions 
allowed obtaining a yield of 88% (685 mg g−1 of substrate) 
in the biomass saccharification.

Similarly, Jeya et al.66 used CCD to determine the 
influence of enzyme and substrate concentrations, 
temperature and pH and to optimize these factors, aiming 
at maximum sugar production from poplar wood biomass 
hydrolysis. The F-test results showed that three linear 
terms, four quadratic terms and four interaction terms were 
significant. The maximum response (29.8 g L−1) with an 
enzyme level of 65 FPU g−1, 10% of substrate and 40°C was 
predicted. Experimental validation of optimized conditions 
resulted in total reducing sugar production of 29.3 g L−1 
(293 mg g−1 of substrate), so the model was considered valid 
and useful for predictions.

Pandiyan et al.50 optimized enzymatic saccharification 
of pretreated Parthenium sp. biomass through 24 CCD. 
By carrying out 30 experiments (24 factorial points + 2 × 4 
axial points + 6 repetitions in the central point), the authors 
investigated how A (temperature, 45–65°C), B (pH, 4–5), C 
(enzyme load, 0.2–1 mL) and D (substrate concentration, 
0.1–0.5 g) and the interactions between them affected the 
saccharification yield (%). They obtained a second-order 
polynomial equation describing the relationship between 
the independent variables from the experimental results; 
the coefficient of determination (R2) was 0.96, indicating 
good fit of the model. According to ANOVA, the terms 
A, C, D, AD, A2, B2 and C2 significantly influenced the 
response (‘P value’ < 0.05). These terms were considered 
in the mathematical model, which was used to predict 
the maximum sugar production yield (corresponding to 
80.08%). To obtain this yield, the biomass saccharification 
should be performed in the following conditions: pH 4.53, 
50°C, 0.8 mL of enzymes (7 FPU g−1) and 0.24 g of 
substrate. A triplicate experiment conducted under the 
best conditions resulted in 85.8% (574 mg per gram dry 
substrate (mg gds−1) hydrolysis yield, which was considered 
to agree well with the predicted value, thereby validating the 
mathematic model.

Yu et al.72 also applied CCD to determine the optimum 
values of the factors X1 (ovozyme 188, μg g−1), X2 (pectinase, 
μg g−1) and X3 (sodium thiosulfate, mg mL−1) to maximize 
glucose production from corn straw. Both the coefficients of 
the quadratic and linear of X1 (P < 0.01) and the coefficient 

(3)

di
�
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�
=
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of the X2 quadratic (P < 0.05) were significant. From the 
generated 2D contour graphs, the authors determined the 
optimum values of the three variables and understood the 
interactions between them. The analyses indicated that a 
maximum yield (45.8%) could be reached using 377 μg g−1 
of Novozyme 188, 171 μg g−1 of pectinase and 1 mg mL−1 
of thiosulfate. When the experiment was carried out in the 
optimum conditions, the maximum response was 44.9%, 
which was consistent with the predicted result, thus validating 
the statistical analysis.

Lavudi et al.73 used CCD to optimize both the alkaline 
pretreatment and enzymatic hydrolysis steps of sweet 
sorghum bagasse (SSB), to maximize the concentration 
of released sugars (glucose and xylose) and ethanol 
production from SHF and SSF. Regarding hydrolysis, the 
authors selected four factors: A (substrate concentration, 
7.5–17.5%), B (incubation time, 6–78 h), C (concentration 
of Celluclast® cocktail, 5–25 IU mL−1) and D (temperature, 
30–70°C) for optimization. The design matrix consisted of 
27 experiments. ANOVA indicated that the linear terms of 
A–D were substantially more pronounced than the other 
terms, so these were the most significant factors influencing 
enzyme saccharification of pretreated SSB. The mathematical 
model for glucose was statistically significant but it has lack 
of fit (P < 0.05). However, the authors considered that the 
high value of R2 value (0.9066) indicated that the model was 
suitable to predict enzymatic hydrolysis of pretreated SSB. On 
the other hand, the mathematical model obtained for xylose 
was statistically significant and predictive (lack of fit was not 
significant). By analyzing the generated response surfaces for 
glucose and xylose, the authors found that they could achieve 
the optimum response by applying 15% substrate, incubation 
for 58 h, 20 IU mL−1 of cellulases and 60°C during hydrolysis. 
Using the optimal conditions of enzymatic hydrolysis of 
pretreated SSB glucose, xylose, arabinose and cellobiose were 
obtained at concentrations of 53.02, 14.70, 2.10 and 0.97 g L−1, 
respectively.

Likewise, Pratto et al.62 sought to optimize pre-
saccharification (PS) of hydrothermally pre-treated cane 
straw to increase the ethanol yield (%) and productivity 
(g L−1 h−1) of PSSSF. The authors assessed how the factors 
X1 (enzymatic dosage, 5–15 FPU g−1 cellulose), X2 (biomass 
concentration, 5–25% g m−3) and X3 (pre-saccharification 
time, 6–42 h) influenced the response variables using CCD 
based on 20 experimental results (23 factorial points + 2 × 3 
axial points + 6 repetitions at the central point). The results 
were statically analyzed and a quadratic polynomial 
mathematic model was obtained presenting significance 
and without lack of fit, which ensured that the models were 
able to predict results within 95% confidence interval. To 

interpret the results better, the authors constructed 3D 
response surface graphs from the quadratic mathematical 
models. The authors achieved the highest ethanol yield 
(73.6%) when they applied 13 FPU g−1 of enzyme, 9.05% 
of biomass and reaction for 34.7 h during PS. On the 
other hand, the conditions of optimum productivity 
(0.92 g L−1 h−1) were 13 FPU g−1 of enzyme, 20.95% of 
biomass and reaction for 13.3 h. Then, to maximize both 
response variables simultaneously, the authors employed a 
multiresponse optimization method that used the overall 
desirability function (D). Thus, the authors found that 
PSSSF reactor operation with 14.5 FPU g−1 of enzyme, 
19.3% of biomass and pre-saccharification for 33 h provided 
the optimum values of ethanol yield (70.63 ± 5.6%) and 
productivity (0.74 ± 0.05 g L−1 h−1).

In other work, the ethanol production process from raw 
Kan grass was optimized by RSM, using a 25 full factorial 
CCD. However, the authors performed only 32 experiments 
(25), while the number of experiments to perform a 
centered composite design 25 should be 48 (25 + 2 × 5 + 6 
central points). The total number of experiments was 
lower because the authors used a fractional design 25−1 
(16 experiments) and not full factorial design (25 = 32 
experiments). Moreover, the authors reduced the number 
of levels of factors from 5 (−α, −1, 0, +1, +α) to 3 (−1, 0, 
+1) and applied −1 and + 1 as axial points. The factors 
(and their levels) were solid loading (15–25%, w v−1), 
incubation time (12–36 h), temperature (35–40°C), 
inoculum volume (8–12%, v v−1) and laccase to cellulase 
ratio (1:4–1:8). The activities of laccase (3125 IU g−1) and 
cellulase–xylanase had been previously studied and were 
maintained at 3125 and 75 IU g−1, respectively. The authors 
analyzed the response surfaces of laccase to cellulase 
ratio vs. temperature, temperature vs. inoculum volume, 
and laccase to cellulase ratio vs. solid loading for ethanol 
generation and concluded that the optimized conditions 
for Kans grass bioprocessing were solid loading of 24% (w 
v−1), an incubation time of 24 h, a temperature of 37°C, an 
inoculum volume of 8.8% (v v−1) and a laccase to cellulase 
ratio of 1:6. They did not use the multiresponse analysis 
methodology to find the optimal conditions for bioethanol 
production. By using these optimal conditions, 7.62% of 
ethanol was obtained, which was close to the predicted 
ethanol yield of 8.10% (v/v).74

Alkaline pretreatment for increased sugarcane bagasse 
saccharification was optimized by high-resolution FFD 
combined with a central composite orthogonal design. A 
total of 46 experimental conditions were evaluated, and the 
maximum sugar yield was determined. This robust DoE 
resulted in maximum enzymatic sugarcane bagasse hydrolysis 
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efficiency and further indicated that this combined approach 
is versatile for other lignocellulosic biomasses.86

Box–Behnken design

As well as CCD, BBD is commonly used in RSM. Box–
Behnken design is a second-order rotational design in which 
only three equidistant levels (high, medium and low) will be 
defined for each independent variable.68,69 The number of 
N experiments required to develop a BBD can be calculated 
as 2k(k−1) + n central points (with 3 ≤ n ≤ 5). Box–Behnken 
design is generally applied as an alternative to three-level 
factorial design because it requires a reduced number of 
experiments while producing satisfactory results.69

Chen et al.75 applied BBD to increase the hydrolysis 
efficiency of corn and rice straw by GH5 endoglucanase 
from Aspergillus glaucus, called AgCMCase. The authors 
carried out 29 experiments to obtain the optimal values of 
the parameters X1 (temperature, 50–70°C), X2 (reaction time, 
2–4 h), X3 (pH, 5.0–7.0) and X4 (enzyme dosage, 1–2 mL). 
They assessed the regression coefficients and the significance 
of each variable and determined their interactions. The 
analyses revealed that the linear coefficients X2 and X4, the 
quadratic coefficients X1

2 and X2
2, and the interactions 

between X1 and X2 were significant for the hydrolysis of both 
substrates. Three-dimensional response surface plots were 
able to estimate the optimum conditions to produce reducing 
sugars. According to the prediction data, the maximum 
yield (1.42% for rice straw) could be reached at medium 
temperatures in an appropriate reaction time (51.45°C and 
3.84 h for rice straw, respectively). The validation experiments 
resulted in 1.61% released sugars when the aforementioned 
optimum conditions were used in the reactions.

Similarly, Das et al.59 used BBD to estimate the optimum 
conditions for the enzymatic process, aiming to maximize 
reducing sugar production from water hyacinth biomass. 
The parameters A (substrate concentration, 4–10% g g−1), B 
(cellulase, 20–50 U g−1), C (xylanase, 150–300 U g−1) and (D, 
surfactant 0.1–0.2% g g−1) significantly affected the response 
variable in the stipulated confidence interval (P < 0.05), so the 
authors optimized them by RSM (29 experiments, including 
five central points). The significant and non-significant values 
for model regression and lack of fit, respectively, attested 
that the quadratic model was valid and predictive. Thus, the 
authors generated and analyzed the response surfaces and 
implemented a desirability function to increase the accuracy 
of the optimum experimental values for the reaction. They 
were able to determine that the maximum yield (0.5447 g g−1) 
could be achieved when operation conditions included 
9.92% (g g−1) substrate, 49.56 U g−1 cellulase, 280.33 U g−1 

xylanase and 0.13% (g g−1) Tween-80. This statistical forecast 
was experimentally validated, and a very similar yield was 
obtained, equivalent to 0.5524 g g−1.

Taher et al.57 adopted the same design tool to evaluate 
how V1 (temperature, 30–60°C), V2 (pH, 5–8), V3 
(substrate concentration, 2–10% g m−3) and V4 (Tween-80 
concentration, 0–1%) influenced on the yield of potato peel 
residue hydrolysis. After analyzing the generated response 
surfaces, the authors were able to predict that the release of 
reducing sugars from biomass was maximum (77.1 g L−1 or 
84%) when they carried out the reaction in the presence of 10 
and 0.5% substrate and surfactant, respectively, at 45°C and 
pH 5.0. They verified that the model was valid by conducting 
three experiments with different combinations of variable 
values within the experimental range stipulated in the design. 
When they compared the observed values with the predicted 
ones, they confirmed that the method was valid.

Sewsynker-Sukai and Kana64 also applied BBD to develop 
SSF with (PSSSF) and without pre-saccharification, to 
produce bioethanol from pre-treated corncob. The authors 
optimized the studied parameters A (yeast, 2.7 × 106–
1.35 × 107 cells mL−1), B (amount of biomass, 10–30% g 
m−3) and C (enzyme load, 10–30 FPU g−1) to maximize 
ethanol concentration and conversion. They accomplished 
17 experiments (including five central points) for each 
configuration (PSSSF and SSF) and obtained two mathematic 
models, corresponding to the two evaluated responses. For 
PSSSF, they estimated that maximum ethanol concentration 
(41.78 g L−1) and conversion (70.52%) could be reached using 
5.40 × 106 yeast cells mL−1, 17.5% substrate and 30 FPU g−1 
enzyme. For SSF performed without previous hydrolysis, they 
obtained similar results. When they used the same substrate 
and enzyme concentrations in addition to 2.70 × 106 yeast 
cells m L−1, the predicted optimum responses were 39.99 g L−1 
and 66.46%, respectively. Such predictions agreed with the 
maximum responses observed in the experimental validation 
for PSSSF (36.92 ± 1.34 g L−1 and 62.36 ± 2.27%) and SSF 
(35.04 ± 0.170 g L−1 and 58.13 ± 0.283%).

In other work, the BBD and RSM were used to optimize 
Bombax ceiba waste pretreatment.76 The optimal conditions 
allowed to obtain biomass with high cellulose content (60%). 
These conditions were: 10% substrate loading, 5% NaOH 
concentration, and 4 h residence time. The pretreated biomass 
was subjected to saccharification and fermentation using 
SHF and SSF with the commercial enzyme and S. cerevisae. 
The authors observed that SSF produced fermentable sugars 
(50.9% after 24 h) and bioethanol (54.51 g L−1after 96 h) more 
efficiently.

Optimization of enzymatic potato peel hydrolysis included 
a pretreatment step followed by enzymatic hydrolysis. 
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Pretreatment optimization by experimental design is also 
essential for maximizing biomass hydrolysis because it can 
improve the conditions for liquefaction, enzymatic hydrolysis 
and fermentation. A study found that eight experiments 
were enough to show the importance of optimizing enzyme 
loading by BBD. Three independent variables at three 
levels were able to determine the load Viscozyme and San 
super load that provided the highest ethanol production 
(117 g L−1).87

Comparison between the optimized 
and non-optimized processes

On the basis of the previous discussion about the results 
obtained by some authors after they applied DoE tools 
together with RSM to optimize enzymatic lignocellulosic 
biomass hydrolysis, we compared the yields of statistically 
optimized and non-optimized saccharification. Table 3 
summarizes such comparisons.

As expected, optimizations by RSM improved process 
performance. Noratiqah et al.70 reported a 1.07-fold higher 
concentration of reducing sugars from OPEFB hydrolysis 
after optimization with CCD. In another study, Jeya et 
al.66 obtained a 1.63-fold improvement in reducing sugar 
production from poplar wood biomass saccharification. 
Similarly, sugar yields from rice straw saccharification 
increased 1.2571 and 1.5275 fold after statistical optimization 
of the operational parameters by CCD and BBD, 
respectively. Likewise, optimizing potato peel residue 
hydrolysis by BBD yielded 1.3 times more sugars.57 
Finally, Pandiyan et al.50 reported that Parthenium sp. 
saccharification under the optimized conditions resulted in 
1.1-fold higher efficiency compared with the non-optimized 
process.

Song et al.88 optimized enzymatic hydrolysis of the pre-
treated rice straw to obtain maximum saccharification 
yield. This statistical optimization by RSM increased 
saccharification by 3.4-fold using parameters demonstrating 

that the model was significant and efficient for lignocellulosic 
biomass bioconversion to fermentable sugars on an industrial 
scale.

Conclusions and future 
perspectives

This review has shown that different experimental design 
tools (DoE) have been successful in optimizing biomass 
saccharification processes for production of bioethanol. 
We retrieved 134 publications in the period spanning from 
2012 to 2023 – according to Web of Science data (https://
apps.webof​k nowl​edge.com/) on 2 March 2023 (keywords: 
experimental design, saccharification and bioethanol). Some 
were analyzed in this review and allowed experimental 
design strategies used by researchers to be detailed. We 
consider that initially researchers should have knowledge 
about the relevant independent variables or factors for 
overall enzymatic saccharification of specific biomass 
in order to successfully apply experimental designs and 
RSM to process optimization. We have identified that the 
main factors studied by the authors included pretreatment 
conditions, temperature, pH, reaction time and 
concentrations of enzymes, substrates and surfactants. The 
values of these factors could be defined using preliminary 
tests or based on previous studies found in the literature. 
We have observed that few authors used screening methods 
to evaluate the effect of factors and select the most relevant 
factors and subsequently carry on the optimization study. 
Meanwhile most authors used CCD and BBD to generate 
response surfaces and obtain the optimum saccharification 
parameters. In addition, RSM was used as tool to obtain 
the response surface, which was analyzed to determine the 
maximum region that allowed the optimum conditions of 
the process to be found. All of the studies had the predicted 
and experimental values agreed satisfactorily. On the other 
hand, we observed that few studies used the multiresponse 
methodology to obtain the optimal condition to biomass 

Table 3. Comparison between optimized and non-optimized saccharification.
Biomass Reducing sugars References

Non-optimized process Optimized process
OPEFB 1.108 g L−1 1.183 g L−1 70

Poplar wood 180 mg g−1 substrate 293 mg g−1 substrate 66

Rice straw 546 mg g−1 substrate 685 mg g−1 substrate 71

Rice straw 1.06% 1.61% 75

Parthenium sp. 513 mg gds−1 574 mg gds−1 50

Potato peel residue 57.8 g L−1 77.1 g L−1 57

https://apps.webofknowledge.com/
https://apps.webofknowledge.com/
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saccharification process. We believe that this methodology 
can help to determine an optimal condition that satisfies 
different responses requirements.

Using the optimal conditions obtained by DoE tools 
and RSM, greater hydrolysis yields and productivity 
compared with the non-optimized process were achieved, 
corroborating that using DoE and RSM is an efficient 
statistical approach for optimizing saccharification. 
Regarding enzyme concentration, greater amounts of 
biocatalyst do not necessarily imply greater substrate 
conversion. Whereas the cost of enzymes is currently one 
of the main challenges for achieving economically viable 
production of 2G ethanol (among other bioproducts) 
in lignocellulosic biorefineries, an extra advantage of 
applying DoE in the hydrolysis step is to minimize the 
necessary amount of enzymes.

Finally, on the basis of the results and discussions presented 
here, we can make the following considerations: when DoE 
is correctly applied, it represents an essential approach for 
planning any research because it not only optimizes the target 
response(s) of a process, but also contributes to reducing 
the costs and time spent on carrying out the experiments. 
However, improper use of DoE tools can lead to wrong 
results. In this context, screening design cannot be used to 
optimize the process because a reduction in the number 
of experiments affects the design resolution and causes 
important information to be lost.
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