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PREFACE
Two successive eras of investigations of the foundations of mathematics 

in the nineteenth century, culminating in the theory of sets and the 
arithmetization of analysis, led around 1900 to a new crisis, and a new 
era dominated by the programs of Russell and Whitehead, Hilbert and of 
Brouwer.

The appearance in 1931 of Godel’s two incompleteness theorems, 
in 1933 of Tarski’s work on the concept of truth in formalized languages, 
in 1934 of the Herbrand-Godel notion of 'general recursive function’, 
and in 1936 of Church’s thesis concerning it, inaugurate a still newer 
era in which mathematical tools are being applied both to evaluating the 
earlier programs and in unforeseen directions.

The aim of this book is to provide a connected introduction to the 
subjects df mathematical logic and recursive functions in particular, and 
to the newer foundational investigations in general.

Some selection was necessary. The main choice has been to concentrate 
after Part I on the metamathematical investigation of elementary number 
theory with the requisite mathematical logic, leaving aside the higher 
predicate calculi, analysis, type theory and set theory. This choice was 
made because in number theory one finds the first and simplest exempli
fication of the newer methods and concepts, although the extension to 
other branches of mathematics is well under way and promises to be 
increasingly important in the immediate future.

The book is written to be usable as a text book by first year graduate 
students in mathematics (and above) and others at that level of mathe
matical facility, irrespective of their knowledge of any particular mathe
matical subject matter.

In using the book as a text book, it is intended that Part I (Chapters 
I — III), which provides the necessary background, should be covered 
rapidly (in two or three weeks by a class meeting three times a week). The 
intensive study should begin with Part II (Chapter IV), where it is es
sential that the student concentrate upon acquiring a firm grasp of 
metamathematical method.

The starred sections can be omitted on a first reading or examined in
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a cursory manner. Sometimes it will then be necessary later to go back and 
study an earlier starred section (e.g. § 37 will have to be studied for § 72).

Godel’s two famous incompleteness theorems are reached in Chapter 
VIII, leaving a lemma to be proved in Chapter X. The author has found 
it feasible to complete these ten chapters (and sometimes a bit more) 
in the semester course which he has given along these lines at the Uni
versity of Wisconsin.

The remaining five chapters can be used to extend such a course to a 
year course, or as collateral reading to accompany a seminar.

A semester course on recursive functions for students having some prior 
acquaintance with mathematical logic, or under an instructor with such 
acquaintance, could start with Part III (Chapter IX). There are other 
possibilities for selecting material; e.g. much of Part IV can follow directly 
Part II or even Chapter VII for students primarily interested in mathe
matical logic.

The author is indebted to Saunders MacLane for encouraging him to 
write this book and for valuable criticism of an early draft of several 
chapters. John Addison read the entire first printer’s proof with great care, 
independently of the author. Among many others who have been of as
sistance are Evert Beth, Robert Breusch, Arend Heyting, Nancy Kleene, 
Leonard Linski, David Nelson, James Renno and Gene Rose. Scientific 
indebtedness is acknowledged by references to the Bibliography; especially 
extensive use has been made of Hilbert and Bemays’ "Grundlagen der 
Mathematik” in two volumes 1934 and 1939.

July 1952 S. C. Kleene

N ote to the Sixth R eprin t (1971). In successive reprints various errors have been 
corrected, the principal corrections being those listed in Jour, symbolic logic vol. 19 
(1954) p. 216 and vol. 33 (1968) pp. 290-291, and: on p. 505 bottom paragraph 
sg((r)0) 'p{(r)-d +  Wo '^(Wi) replaced by a function x{P> r ) defined by Theorem 
XX (c); on p. 506 allowance made in the middle paragraph for x possibly occurring 
free in t, and line 5 from below " =  ” changed to Moreover, in this sixth
reprint eleven bibliographical references have been updated (cf. end p. 517) and 
two short notes have been added (on pp. 65 and 316).
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PART I
THE PROBLEM OF FOUNDATIONS





C h a p t e r  I

THE THEORY OF SETS
§ 1. Enumerable sets. Before turning to our main subject, it will 

be appropriate to notice briefly Cantor's theory of sets.
A flock of four sheep and a grove of four trees are related to each other 

in a way in which neither is related to a pile of three stones or a grove of 
seven trees. Although the words for numbers have been used to state this 
truism on the printed page, the relationship to which we refer underlies 
the concept of cardinal number. Without counting the sheep or the trees, 
one can pair them with each other, for example by tethering the sheep 
to the trees, so that each sheep and each tree belongs to exactly one of the 
pairs. Such* a pairing between the members of two collections or 'sets' 
of objects is called a one-to-one (1-1) correspondence.

In 1638 Galileo remarked that the squares of the positive integers can 
be placed in a 1-1 correspondence with the positive integers them
selves, thus

4, 9, 16, . . . ,  n2, . . .

of 3, 4, . . . ,  n, . . .
despite the ancient axiom that the whole is greater than any of its parts. 
Cantor, between 1874 and 1897, first undertook systematically to compare 
infinite sets in terms of the possibility of establishing 1-1 correspond
ences.

The two sets in Galileo's "paradox" and the set of the natural numbers 
0, 1, 2, 3, . . . ,  n 1,

are examples of infinite sets which are 'enumerable'. Choosing the last 
named as the standard, we define an infinite set to be enumerable (or 
denumerable or countable), if it can be placed in a 1-1 correspondence 
with the natural numbers.

To show that an infinite set is enumerable, we need merely indicate 
how its members can be given (without repetitions) in an 'infinite list';

3



4 THE THEORY OF SETS CH. I

then the first in the list corresponds to 0, the second to 1, and so on. 
Although the list itself is infinite, each member occupies a finite position 
in the list.

A particular infinite list (without repetitions) of the members of the 
set, or 1-1 correspondence between the set and the natural numbers, 
is called an enumeration of the set; the number corresponding to a given 
member is the index of the member in the enumeration.

The members of a finite set can also be given in a list, i.e. a finite list. 
Hence the term enumerable is sometimes applied to sets which are either 
infinite and enumerable, i.e. enumerably infinite, or else finite.

The set of the integers can be enumerated, by listing them in the 
following order,

0, 1, - 1 , 2, - 2 ,  3, —3 ,----
The set of the rational numbers is also enumerable, a fact which is 

surprising if one first compares them with the integers in the usual 
algebraic order. The points on the #-axis with integral abscissas are isolat
ed, while those with rational abscissas are 'everywhere dense', i.e. between 
each two no matter how close there are others. The enumeration can be 
accomplished by a device which we shall present for the positive rational 
numbers, leaving the case of all the rationals to the reader. Let the 
fractions of positive integers be arranged in an infinite matrix, thus,

Vi v.-> Vs 7 4 -  •••
/ s

7x 7. 7s 7 4✓  ^3/l 7a 7s 7 4  • •.*
7 1 % 7s 7 4  . . •

Then let these fractions be enumerated by following the arrows. A rational 
number is one which can be expressed as a fraction of integers. Go 
through the' enumeration of fractions striking out each one which is 
equal in value to one that has preceded it. This leaves the following 
enumeration of the positive rational numbers,

1, 2, i/„ V* 3, 4, »/,. •/* 'U.........
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The device of the matrix constitutes a general one for enumerating the 
ordered pairs of members of an enumerable setf e.g. the ordered pairs of 
natural numbers, or the ordered pairs of integers. The rows of the matrix 
are the enumerations of the pairs with the first member of the pair fixed. 
The ordered triples of members of an enumerable set can then be enumer
ated by another application of the matrix, taking as the rows the 
enumerations already won of the triples with the first member of the 
triple fixed. Successively we can win enumerations of the ordered 
n-tuples of members of an enumerable set for each fixed positive integer 
n. All of these enumerations, including the enumeration of the original 
set, can be taken as the rows of a new matrix to obtain an enum
eration of the ordered n-tuples for variable n, i.e. the finite sequences of 
members of an enumerable set.

This result can be applied to obtain an enumeration of the algebraic 
equations

a0xn +  axxn~x +  . . .  +  an_xx + an = 0 (aQ ^  0)
with integral coefficientsy since each equation can be described by giving
the sequence

(#Q, . . . , &n—1> ^n)
of its coefficients. A '(real) algebraic number' is a real root of an equation 
of this sort. Since a given equation has at most n different roots, the 
algebraic numbers are enumerable.

Another device will illustrate the possibilities for enumerating sets. 
In dealing with an enumerable set (finite or infinite), the numbers which 
correspond to the members in some specified enumeration can be used 
to designate or name the members individually. Now conversely, if a 
name or explicit expression can be assigned to every one of the members 
of a set individually, in a preassigned and unambiguous system of nota
tion, the set is enumerable (finite or infinite). We stipulate that a name or 
expression shall be a finite sequence of symbols chosen from a given 
finite alphabet of available symbols. For example, the algebraic equations 
with integral coefficients can be written using decimal notation for the 
coefficients and exponents. The raised exponents are an inessential feature 
of the notation, which can be removed by a suitable convention. Indeed, 
so long as we are dealing only with these equations, we may simply write 
the exponents on the line. The symbols required are then precisely

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, x9 + ,
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The first symbol in an equation is not a 0. Reinterpret these symbols as 
the digits (!) in a quattuordecimal number system, i.e. a number system 
based on 14 in the same way that the decimal system is based on 10. 
Every equation becomes a natural number (distinct equations becoming 
distinct numbers). Enumerate the equations in the order of magnitude of 
these numbers.

§ 2. Cantor’s diagonal method. That there are infinite sets con
sidered in mathematics which cannot be enumerated was shown by 
Cantor's famous 'diagonal method'. The set of the real numbers is 
non-enumerable.

Let us first consider the real numbers x in the interval 0 <  x <; 1. 
Each real number in this interval is represented uniquely by a proper 
non-terminating decimal fraction, i.e. a decimal fraction having its first 
significant digit to the right of the decimal point, and having infinitely 
many digits that are not 0. A number may have a terminating decimal 
fraction, i.e. one with repeating 0's, but that fraction is replaceable by a 
non-terminating fraction with repeating 9's. For example .483 or 
.483000... can be replaced by .482999__ Conversely every proper non
terminating decimal fraction represents a unique real number in the 
interval.

Now suppose that
x0, xv x2f x3f . . .

is an infinite list or enumeration of some but not necessarily all of the 
real numbers belonging to the interval. Write down one below another 
their respective non-terminating decimal fractions,

• * o o *01 *02 *03

\
*10 *11 *12 *13

V
*20 *21 *22 *23

\
•*30 *31 *32 *33

\

Select the diagonal fraction shown by the arrows. In this change 
each of the successive digits xnn to a different digit xnni but avoid 
producing a terminating fraction. Say, let xnn =  5 if xnn ^  5, and 
x* = 6  if x = 5 .*nn nn
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The resulting fraction
/ r t r

.# 0 0  # 1 1  # 2 2  # 3 3  *  *  *

represents a real number % which belongs to the interval but not to the 
enumeration. For the fraction differs from the first of the given fractions 
in the tenths place, from the second in the hundredths place, from the 
third in the thousandths place, and so on.

Hence the given enumeration is not an enumeration of all the real 
numbers in the interval. An enumeration of all the real numbers in the 
interval is non-existent.

To apply the diagonal method to the real numbers without restriction 
to the interval 0 <  x <  1, it is only necessary to represent the real numbers 
in the characteristic-plus-mantissa form, e.g. 37.142... =  37 +  .142, 
— 2,813... =  — 3 +  .186..., and to apply the method to the man
tissas.

It is clear that an essential difference has been revealed between 
the set of the rational numbers or the set of the algebraic numbers on the 
one hand, and the set of the real numbers on the other.

It is interesting historically to note how Cantor's discoveries in 1874 
(see the bibliography) illuminated an earlier discovery of Liouville in 1844. 
Liouville had been able to construct by a special method certain tran
scendental (i.e. non-algebraic) real numbers. Cantor's diagonal method 
makes the existence of transcendental numbers apparent from only the 
very general considerations presented above. In fact, to any given 
enumeration #0, xv #2, #3, . . .  of the algebraic numbers, particular 
transcendentals can be obtained by the diagonal method.

The (real) transcendental numbers are not enumerable. For if they 
were, like the algebraic numbers, enumerations of the two sets could 
be combined to produce an enumeration of all the real numbers. Thus, 
in a sense, most real numbers are transcendental.

Another example of a non-enumerable set is the set of the (single
valued) functions for which the independent and dependent variables 
each range on an enumerable set. For definiteness, consider the set of the 
functions of a natural number taking a natural number as value (or infinite 
sequences of natural numbers). Suppose an enumeration is given of some 
but not necessarily all of them,

/o(«). /l(«)> /*(»). /s(»)........
Write the sequences of the values of the successive functions one below 
another, as the rows of an infinite matrix.
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/o(0) /o(l) /o(2) /o(3) . . .
\

/i(0) /x(l) A(2) A(3) . . .
\

/2(0) /,(1) /,(2) /,(3) . . .
\

/.(0) /8(1) /,(2) /,(3) . . .
\

Take the sequence of values given by the diagonal. Change every one of 
these values to a different value, say by adding 1. The function /(«) with 
the resulting sequence of values, which we may write

f(n) =  /„(*) +  1,
cannot belong to the enumeration, since it differs from the first of the 
enumerated functions in the value taken for 0, from the second in the 
value taken for 1, and so on.

To phrase the argument differently, suppose that the function f(n) 
were in the enumeration; i.e. suppose that for some natural number q,

m  =  /.(*)
for every natural number n. Substituting the number q for the variable 
n in this and the preceding equation,

m  =  /.(?)=  /.(?) + 1.
This is impossible, since the natural number f q(q) cannot equal itself in
creased by 1.

Still another example of a non-enumerable set is the set of the sets 
of natural numbers, (But the set of the finite sets of natural numbers is 
enumerable. Why?) We can represent a set of natural numbers by a 
representing function, which takes the value 0 for a natural number 
belonging to the set and the value 1 for a natural number not belonging 
to the set. The sequence of the values of the representing function of a 
set of natural numbers is an infinite sequence of 0's and 1 's. For example, 
the sequence for a set containing 0, 2 and 3 but not 1 and 4 starts out
0 10 0 1 __These sequences are taken as the rows of the infinite matrix.
The alteration performed on the diagonal is the interchange of 0's and 1 's.

Can these, several non-enumerable sets be placed in 1-1 corres
pondence with one another, and are there still other types of infinite 
sets? The reader may profit by attempting to answer these questions 
himself (answers are given in § 5). We shall now look at Cantor's theory in 
its general formulation.
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§ 3. Cardinal number. Cantor’s theory of ‘abstract sets’ deals with 
sets in general. (He gave also a theory of 'point sets’.) Cantor describes 
his terms set and element as follows. "By a ‘set’ we understand any col
lection M  of definite well-distinguished objects m of our perception or our 
thought (which are called the 'elements’ of M) into a whole.” (1895 p. 481.)

The sets include the empty or null or vacuous or void set which has no 
elements, and the unit sets which have a single element each. We write 
the empty set as O; the unit set with sole element a as [a] ; and the set 
having a, b, c, . . .  as its elements as {a, b, c, . ..}.

A set may also be called an aggregate or collection or class or domain or 
totality. That a is an element of M  may also be expressed by saying that a 
is a member of M  or belongs to M  or is in M f or in symbols, a 8 M. If a is 
not an element of M , in symbols, a$M .

We understand two sets M  and N  to be the same (in symbols, M  =  N), 
if they have the same elements; i.e. if for every object a, a 8 M  if and only 
if a& N.

Two sets M  and N  are said to be equivalent (in symbols, M  ~  N), 
if there exists a 1-1 correspondence (§ 1) between them. (Sometimes 
we say "the correspondence M  ~  jV” to refer to a particular 1-1 
correspondence between M  and N, which must exist if M  ~  N.)

The relation M ~  N  evidently possesses the 'reflexive’, 'symmetric’ 
and 'transitive’ properties, i.e. for any sets M, N  and P : M  ~  M. If 
M  ~  N , then N  ~  M . If M  ~  N  and N  ~  P, then M >—P.

The cardinal number of a set M  is introduced as an object M which 
is associated in common with all and only those sets (including M  itself) 
which are equivalent to M. By this definition: M =  N, if and only if 
M ~ N .

What cardinal numbers are, further than this, is perhaps immaterial; 
but we may notice several interpretations. Cantor describes them thus: 
"The general concept which with the aid of our active intelligence results 
from a set M, when we abstract from the nature of its various elements 
and from the order of their being given, we call the 'power’ or 'cardinal 
number’ of M .” This double abstraction suggests his notation "M ” for 
the cardinal of M. Frege 1884 and Russell 1902 identify the cardinal 
number M with the set of the sets equivalent to M ; while von Neumann 
1928 chooses from each of these sets of sets ('equivalence classes’) a par
ticular set to serve as the cardinal of any set in the class.

The notion of a 'part’ of a collection is introduced by the following 
definition. A set M ± is a subset of a set M  (in symbols, M x c  M), if each 
element of M x is an element of M.
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E xample 1. The set {a, b, c) of three elements a, b, c has eight (=  23) 
subsets: O, {a}, {b}f {c}t {a, b}f {a, c}, {b, c}, (a, b, c).

Note that the subsets of a set M  include the vacuous set O, and the 
set M  itself. The latter is the improper subset, and the other subsets are 
proper. Evidently, if M 2 C M x and M x C M  (abbreviated M 2 C M x C M), 
then M 2 C M.

The union or sum M  +  N  of two sets M  and N  is the set of the objects 
belonging to at least one of M  and N  (i.e. belonging to M  or to N ) ; and 
their intersection or product M  • N  is the set of the objects belonging to 
both of M  and N  (i.e. belonging to M  and to N). Similarly for more than 
two sets. The difference M  — N  of M  and N  (when N  C M y also called 
the complement of N  with respect to M) is the set of the objects belonging 
to M  but not to N.

E xample 2. {a, b, c} +  {5, d} =  {a, bt c, d}, {af b, c} • {b, d} =  {6}, 
{a, bf c} — {bt d) =  {a, b, cj — {bj =  {a, c).

Evidently M  — M 1 C M; and if M x C M, then (and only then) 
M x -)- (M — Mj) =  M. Two sets M  and N  are disjoint, if they have no 
common elements, i.e. if M  • N  =  O. For example, M x and M  — M x are 
disjoint sets. If M  and N  are disjoint, either M  ^  N  or M  = N  = O.

We turn to the important question of comparing cardinal numbers. 
Given two set9 M  and N, it may or may not be possible to put M  into 
1-1 correspondence with some subset N x of N. Vice versa, there may 
or may not exist a subset M x of M  which is equivalent to N. Combining 
these twp pairs of alternatives gives four cases, exactly one of which must 
apply to any given pair of sets M  and N :

(la) For some N lt M  ~ N 1 C N ; but for no M v N  ~  M l C M.
(lb) For no N lt M  ~ N 1 C N ; but for some M v N  ~  Mx C M.
(2) For some N v M  ~ N 1 c N ; and for some Mi, N  ~ M 1 c M .
(3) For no N v M  ~ N 1 c N ; and for no M v N  ~  M, C M.

In Case (la), the cardinal of M  is said to be less than the cardinal of N  
(in symbols, M < N ). To justify considering <  as a relation between the 
cardinals M and N, and not merely one between the sets M  and N t we 
must observe that if M ' ~  M  and N ' ~  N, then Case (la) applies to the 
pair of sets M 't IV' if and only if it applies to the pair M , N.

The order relation for cardinals is transitive, i.e. for any three cardinals 
M, N, P: If M <  N a n d < _ P ,  then M < P. =

We define M to be >  N, if N < M. Then M > N  exactly in Case (lb).
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The relationship M = ffi, i.e. M ~  N, evidently falls under Case (2) by 
taking as N x and M t the improper subsets. Hence, for any two_cardinals 
M and N, the three relationships M < N, M = N  and M > N  are ‘mu
tually exclusive', i.e. not more than one of them can hold.

It does not appear till an advanced stage of the theory (references in 
§ 5) whether they are 'exhaustive', i.e. whether at least one of the three 
must hold. The situation is partially clarified by the next theorem, 
after which the question remains only whether Case (3) can arise.

*§ 4. The equivalence th eorem , finite and infin ite sets. Theo
rem A. I f  M r^N x C N  and N  ~  M t c  M, then M ~ N .  In other words: 
In  Case (2) of § 3, M =  F . (F. Bernstein 1898.)

Proof. By the hypotheses, we may suppose given a particular 1-1 
correspondence M  ~  N x between M  and the subset N x of N ; and similarly 
N  ~  M v Our problem is to find a third 1-1 correspondence M  rL N.

Let A Q = M — M t. In the given correspondence M rL N v the elements 
of the subset A 0oiM  will correspond to elements forming a subset B1 of N 1 
(and hence of N), or in symbols A 0 rL Bv Then in the other given corres
pondence N  ~  M v the elements of the subset Bx of N  will correspond to 
elements forming a subset A x of M x (and hence of M), or in symbols 
B t rtj A x \ and so on. Thus

A 0 B± ~  A} rL B2 ris A 2 rL/ B% A% / i  . . . .
The situation may be grasped by picturing M  and N  as mirrors by which 
the part A 0 of M  outside M 1 is reflected back and forth to produce an 
infinite succession of images A v A 2, A 3, . . .  in M  and Bv B2, Bz, . . .  in 
N, as shown in the figure. (The sets M , M x and N  are represented by

the parts of the horizontal lines to the right of the labels “M ”, “M i ’ 
and “N “; the sets A 0, B v A v . . .  by the intercepted segments.)

Let A = A 0 +  A x +  A % +  A 3 + . . . ;  i.e. A is the subset of M  con
taining the elements which fall in A 0 or in any of its images A v A 2, 
A 3, . . .  in M. Also let B = Bt +  B2 + Bz +  . . . ;  i.e. B  is the subset
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of N  containing the elements which fall in any of the images Blt B2, 
J53, . . .  of A 0 in N.

To obtain the 1-1 correspondence M r tN ,  we state a rule which 
determines to each element m of M  a corresponding element n of N, 
and prove that the resulting correspondence is 1-1 between M  and N.

R u l e . Consider any element m of M .  Either m belongs to the subset 
A , or m does not belong to A , i.e. m belongs to M — A . If m belongs to A , 
the corresponding element n o iN  shall be that which corresponds to m in 
the correspondence M  rL N v If m belongs to M  — A (in which case m 
belongs to Mx), the corresponding element n o iN  shall be that to which m 
corresponds in the correspondence N  rL M v

The resulting correspondence is 1-1 between M  and N, for:
(a) To different elements m of M, say m1 and m2) there correspond 

different elements nt and n2 of N. This is clear when m1 and m2 both 
belong to A or both to M  — A. But it is also so when m1 £ A and 
m2 £ M  — A, since then nx £ B and n2 £ N  — B.

(b) Each element of N  corresponds to some element m of M. Namely, 
the elements of B  all correspond to elements in A, and the elements of 
N  — B all correspond to elements in M  — A.

The method of bringing M  and N  into 1-1 correspondence may be 
visualized as a shifting in the above picture of each of the parts A 0, 
A v A 2, A 3, . . .  of M one position to the right, so that A 0 takes the place 
of A v A x of A 2, A 2 of A s, __ This changes N  rL M t into N  rL M.

Corollary A. I f  M  c  N, then M <> N.
(M < N  means: M < N  or M =  N.) For if Af C IV, then either Case 

(la) or Case (2) applies with M  as the N v
The cardinal number of the empty set O we call 0. (N o t e : M' ~ Q  

onlyjf M' =  O.) The cardinal number of any set N  +  {a} where a t N  we 
call N  +  1 • (Note : For a given set N  -f {a} with a t  N , a set M' ~  
if and only if M' = N f +  {a'} where a' g N' and N' — N.)

Regarding the natural numbers 0, 1,2, . . . ,  n, n +  1, . . .  as a sequence 
of objects already known to us, the two definitions just stated correlate 
to each natural number n a respective cardinal number which we also 
write n. We call these cardinals finite cardinals, and sets which have these 
cardinals finite sets. The following two propositions will be proved in 
Example 1 § 7.

(1) For each natural number n, the finite cardinal n is the cardinal of the 
set of the natural numbers which precede the natural number n in the usual 
order of the natural numbers) or in symbols, n =  {0, 1, 2, . . . ,  n — 1}.
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(2) I f  M = n (for a natural number n) and M ~  c  M, then M t = M. 
Thus: A finite set is not equivalent to any proper subset of itself.

From these two propositions it is not hard to show that the equality 
relation m =  n and order relation m <  n as determined for finite cardinals 
by the definitions of § 3 agree with the familiar equality and order relation 
for the natural numbers (in particular, we do have n <  n +  1 for finite 
cardinals). Thus no confusion will result from identifying the natural 
numbers with the finite cardinals when we choose to do so.

A set which is not finite we call infinite, and its cardinal an infinite or 
transfinite cardinal. The cardinal number of the set of the natural numbers, 
and therefore of every enumerably infinite set (§ 1), we call K0 (read “alef 
null”).

Corollary B. I f  n is a finite cardinal, n < x0.
Proof. Because n is the cardinal of the subset {0, 1,2, . . . ,  n — 1} 

of the natural numbers, by Corollary A, n < K0. Assume, contrary to 
the corollary, that n =  R0. But n +  1 is also a finite cardinal, so similarly 
n +  1 <  which with n =  R0 gives n -\~ \ < n, contradicting n <  n +  1. 
Hence the assumption n =  R0 is untenable, and the remaining alternative 
n <  R0 is established.

Theorem B. An infinite set M has an enumerably infinite subset.
Proof. > M  is not empty, since otherwise it would have the finite 

cardinal 0. Thus M  has an element a0. Then M  — {a0} is not empty, since 
otherwise M  would have the finite cardinal 1. Thus M  has another element 
av Continuing thus, we select distinct elements a0, av a2, a3, . . .  corres
ponding to the natural numbers 0, 1, 2, 3, . . . ,  which proves the theorem. 
If P  is the set M  — {aQ, av a2, a3, . . .} of the elements of M  not selected,

M  =  P  +  {a0, av a2, a3, ...} .
Corollary A. I f  M is an infinite cardinal, then K0 <  M.
By the theorem with Corollary A Theorem A.
Corollary B. An infinite set M is equivalent to a proper subset of 

itself.
For M  (expressed as above) is equivalent to its proper subset 

M  — {a0} = P + {av a2, a3, a4, . .
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This with (2) above was proposed by Dedekind 1888 as an alternative 
definition of the distinction between finite and infinite sets. (We see that 
the property observed in Galileo's “paradox" is characteristic of infinite 
sets.)

Corollary C. The cardinal number of an infinite set M  is unchanged by 
the introduction of a finite or enumerably infinite set of elements.

For new elements bQf blt b2, bz, . . .  can be introduced thus,
M  +  {b0, blt b2,bz, . . .} =  P  +  {ao> b0, av blt ..,}.

Inversely, the corollary says that the removal of an enumerable set of 
elements from a set does not change the cardinal, provided the resulting 
set M  is infinite. If the original set is non-enumerable, the resulting set 
must be infinite, as otherwise there would be an obvious enumeration of 
the original set. Thus:

Corollary D. The cardinal number of a non-enumerable set is un
changed by the removal of a finite or enumerably infinite set of elements.

*§ 5. Higher transfinite cardinals. The first of the theorems of 
this section is a formulation in general terms of the situation which we 
met in the last example of § 2. The reader may also find it instructive to 
experiment with the theorem or its lemma for the case that M  is a small 
finite set. The second of the theorems is a generalization of the situation 
encountered in Corollary B of Theorem A.

We take advantage of the equivalence theorem, via its Corollary A, 
to simplify the presentation of the proofs. The theorems however can be 
proved, with only slight modifications in the argument, without the use of 
the equivalence theorem.

Lemma A. I f  S is a set of subsets of M , and M ~  S, then there is a 
subset T of M  which does not belong to S.

Proof, by Cantor's diagonal method. A subset of M  is defined when it 
is determined which of the elements of M  belong to the subset. This can 
be arranged by stating a general criterion, which, for any element m of M , 
determines whether that element belongs to the subset or does not belong 
to the subset. We now give a criterion of this sort to define T.

Criterion. In the 1-1 correspondence given by the hypothesis 
M ~  S, any element m of M  corresponds to an element S of S. But S 
is one of the subsets of M. Therefore either m belongs to S, or m does not
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belong to S. If m belongs to S, then m shall not belong to T. If m does not 
belong to S, then m shall belong to T.

Now suppose, contrary to what is to be shown, that T  belongs to S. 
Select that element of M , call it mlf which corresponds to T  in the 1 -1 
correspondence M ~  S.

Does m1 belong to T  ? We apply the criterion, with tn1 as the m. Since 
tn1 corresponds to T, the 5 of the criterion is now T. The criterion gives a 
contradiction, either if m1 belongs to T, or if nix does not belong to T.

The supposition that T  belongs to S thus leads to absurdity. Hence, by 
the method of reductio ad absurdum (in which the negation of a proposition 
is proved by deducing a contradiction from the proposition), we conclude 
that T  does not belong to S.

If M is a given set, then the set of the subsets of M , i.e. the set of which 
the elements are (all) the subsets of M, is designated as UM (“U” from 
the German “Untermenge”).

Theorem C. For any set M, M < UM. (Cantor's theorem.)
Proof. If N 1 is the set of the unit subsets of M, then M ~  N ± C UM. 

Hence by Corollary A Theorem A, M = Nx < UM. Suppose, contrary 
to the theorem, that M ^  UM, i.e. M UM. Then UM would satisfy 
the conditions for S in the lemma. By the lemma, there would be a subset 
T  of M which does not belong to UM. This is absurd, since UM is the set 
of all the subsets of M. Therefore the remaining alternative M <  UM 
must hold.

If we take as the M of the theorem a set with the transfinite cardinal K0, 
we discover sets UM, UUM, . . .  which have greater and greater transfinite
cardinals. These new cardinals are denoted by 22**0, __ (In fact, for
any set M, the cardinal of UM is denoted by UM. Note that this accords 
with the usual arithmetic when M is finite.)

Lemma B. I f  S is  a set, and M is a set of subsets ofS, and to each member 
M  of M there is another member M f of M such that M < M f, then M < 5 
for every member M  of M.

Proof. Since M C S, by Corollary A Theorem A, M ^  5. Assume, 
contrary to the lemma, that M = S. But similarly, M' < 5, which with 
M = S gives Mf < M, contradicting M < M'. Hence the assumption 
M =  5 is false, and the alternative M < 5 holds.

If M is a set of which the members are sets, then the set of (all) the 
objects each of which belongs to some member M of M is called the sum
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of the sets belonging to M and is designated by ©M. The set of the objects 
each of which belongs to every member M  of M is called the intersection or 
product of the sets belonging to M and is designated by 2)M (“®” from the 
German “Durchschnitt”). These notions are the same as were introduced 
in § 3, except that now they are expressed as operations on the set M of 
the sets M  which are added or multiplied. For example, M  +  N  =  
©{M, N), M  • N  = ${M, N}.

Theorem D. I f  M is a set of sets, and if to each member M  of M there 
ts another member M ' of M such that M < Mf, then M <  @M for every 
member M  of M.

Proof. From the definition of ©M, every element M  of M is a subset 
of ©M. The theorem now follows from the lemma with ©M as the S of the 
lemma.

By this theorem, the sum of the sets M, UM, VLUM, . . .  which have the 
increasing transfinite cardinals K0, 2 °̂, 22**0, . . .  is a set having a trans- 
finite cardinal greater still than any of those cardinals. This set can be 
used by Theorem C to start a new ascending series. This hierarchy extends 
indefinitely.

More will be found on Cantor’s theory of abstract sets in Cantor 1895-7, 
Hausdorff 1914 or 1927, or Fraenkel 1928 or 1953, for example. There is 
a cognate branch of the theory dealing with “ordinal numbers”. The 
“comparability theorem for cardinal numbers”, which asserts that 
M < N, M =  N  and M > N  are exhaustive (end § 3), appears as a cor
ollary of the “well-ordering theorem” of Zermelo 1904 (cf. e.g. Hausdorff 
1914 or 1927 p. 61, or Fraenkel 1928 p. 205). For a brief account of the 
celebrated “continuum problem”, which deals with the question whether 
any cardinal lies between K0 and 2 »̂, see Godel 1947.

We have begun with Cantor’s theory for two quite opposite reasons. 
First, some of the ideas and methods which will prove basic later appear 
in it in their original and simplest form. Second, the theory, pursued too 
far, reveals logical difficulties, which are a point of departure for our 
main investigation. This will appear in Chapter III.

E xamples. Sets of cardinal 2*k This is the cardinal assigned to the 
set of the subsets of the set of the natural numbers, which we described 
in § 2 as the set of the sets of natural numbers. There we represented the 
elements of the set by the infinite sequences of 0’s and 1 ’s. The 0’s and 
Ps can be interpreted as the digits in a dual (or dyadic) number system,
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i.e. a number system based on 2 as the decimal system is based on 10, so 
that we have the set of the proper dual fractions. Using Theorem B 
Corollary D to withdraw the terminating fractions, which are enumerable, 
we obtain the proper non-terminating dual fractions. These represent 
1-1 the real numbers x in the interval 0 < x < 1. From the proper 
non-terminating dual fractions we also obtain 1-1 the infinite se
quences of natural numbers or functions of a natural number taking 
a natural number as value, by coordinating to a fraction that func
tion f(n) for which /(0) =  the number of 0’s before the first 1 in the 
fraction, /(1) =  the number of 0’s between the first 1 and the second 1, 
and so on (for example, the function n2 corresponds to the fraction 
. 101000010000000001. . . ) .Now omit from the interval 0 <  a <  1 the number x =  1, leaving the 
real numbers x in the interval 0 <  a <  1. A function y = f(x) is easily 
found which, as a ranges over this interval, takes as value y exactly once 
each of the real numbers, e.g. the function y =  cot izx. Removing the 
rational numbers, the (real) irrational numbers are left; or removing 
the algebraic numbers, the transcendental numbers. In Cartesian 
coordinate geometry, the real numbers are coordinated to the points 
of the real Euclidean line. This set is the linear continuum’, and ac
cordingly the cardinal 2 °̂ is the 'power of the continuum’.

Next we can proceed as follows to obtain the set of the ordered 
pairs of real numbers, or regarding a pair (x} y) as Cartesian coor
dinates in the plane, the points of the real Euclidean plane. Under the 
equivalence already obtained between the real numbers and the infinite 
sequences of 0’s and 1 ’s, any two real numbers x, y correspond respectively 
to sequences of 0’s and 1 ’s

Xq Xi a2 x3 . . . ,
yo yi y2

which can be combined into a single sequence
xo ^  xi Vi x2 y% x3 ^3  • • • >

corresponding to a single real number. Conversely, any single sequence 
breaks up into a determinate pair of sequences under this method of 
combination. Similar procedure gives the n-tuples of real numbers or the 
points of real Euclidean n-dimensional space for any fixed positive integer 
n, and even the infinite sequences of real numbers or the points of real 
Etxclfdean X0-dimensional space. This last example is treated by using the 
method of § 1 to combine x0 sequences of 0’s and 1 ’s
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* 0 0 X 01~^ X q2 X 03~~̂
/  * S '

* 1 0 X 11 X 12 
/  /

X 13 . . .

* 2 0 X 21 X 22 X 23 . . .

1 /
* 3 0 X 31 X 32 X 33 . . .

. , ,

into a single sequence
X 00 X 10 X 01 X 02 X 11 X 20 X 33 X 21 X 12 X 03 *  •  •

in which each member ot each of the given sequences has a determinate 
position.

For any one of the real continuous functions of a real variable,
all the values of the function are determined by the continuity property 
as soon as the values are given for the rational values of the independent 
variable. These values can be given as an infinite sequence of real numbers, 
by following the order of the rational numbers in some fixed enumeration 
of the latter. Therefore by Theorem A Corollary A, the set of these func
tions has at most the cardinal But also it must have at least this 
cardinal, and hence exactly this cardinal, since the constant functions 
constitute a subset with the cardinal.

SETS OF cardinal 22**6. This is the cardinal of the sets of sets of 
natural numbers. From the equivalence between the sets of natural 
numbers and the real numbers or the points in ^-dimensional or No- 
dimensional space, it follows that the sets of real numbers and the point 
sets in real Euclidean fi-dimensional or N0-dimensional space have this 
cardinal. The real functions of a real variable can be represented by their 
graphs, which are point sets in the plane, and hence the set of them has 
at most the cardinal 22**0. It has exactly this cardinal, since those of the 
functions which take only 0 and 1 as values are the representing func
tions of the sets of real numbers, and so constitute a subset with the 
cardinal. If we extend geometric terminology to this example, we have 
the set of the points of real Euclidean 2^-dimensional space.



Ch a p t e r  I I

SOME FUNDAMENTAL CONCEPTS
§ 6. The natural numbers. The purpose of this chapter is to bring 

together, partly for reference and partly for closer inspection, some of the 
ideas and methods of mathematics.

When we write the natural number sequence
0, 1, 2, 3,

we rely on the dots “ . . to suggest the continuation of the sequence 
beyond the several members shown.

Kronecker remarked (1886), “God made the integers, all the rest is the 
work of man.” We cannot expect that the cognizance of the natural 
number sequence can be reduced to that of anything essentially more 
primitive than itself.

But by elaborating upon what our conception of it comprises, we may 
succeed in making clearer the bases of our reasoning with the natural 
numbers.

We begin by describing the natural numbers as the objects which can 
be generated by starting with an initial object 0 (zero) and successively 
passing from an object n already generated to another object n -f 1 or n' 
(the successor of n).

Here we conceive of it as possible, no matter how far we have already 
gone to reach n, to go the one step further to reach n'. The use of the accent 
notation “nf” instead of the more familiar ftn +  1” emphasizes that ' is 
a primitive unary operation or function used in generating the natural 
numbers, while +  can be defined at a later stage as a binary operation or 
function of two natural numbers.

To obtain the natural numbers with the usual notations, it remains 
only to explain 0, 1, 2, 3, . . .  as standing for

0, O', 0", 0' " , . . . ,
respectively. This is a matter of detail concerning decimal notation.

In the foregoing description, we have evoked the conception of a
19
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succession of discrete steps. These consist in starting with 0, and proceed
ing repeatedly from a number n to the next nf. The description can be 
broken into several clauses, as follows.

1. 0 is a natural number. 2. If n is a natural number, then nf is a natural 
number. 3. The only natural numbers are those given by 1 and 2.

In this format, the succession of discrete steps becomes an application 
of Clause 1 and a succession of applications of Clause 2. The three clauses 
together constitute an example of what we call an inductive definition. 
The term (‘natural number’) which is being defined is italicized. The 
clauses except the last, which provide instances of the term being defined, 
are called direct clauses; the last clause, which says that the only in
stances are those provided by the preceding clauses, is the extremal clause.

Not stated in this inductive definition is the condition for distinctness, 
namely that numbers generated by applications of Clauses 1 and 2 in 
distinct ways should be distinct objects. This can be separated into two 
further propositions.

4. For any natural numbers m and n, m' =  «' only if m =  n. 5. For any 
natural number n, n' ^  0.

Also it is understood that ' is a univalent operator or single-valued 
function, so that conversely to 4: For any natural numbers m and n, 
m' == n' if m =  n.

To see that Propositions 4 and 5 do require the distinctness of every 
two differently generated numbers, we can reason as follows. Suppose 
that at a given stage in the generation of the numbers, all the numbers 
0, 1, . . n so far generated are distinct. Then the next one generated n' 
must be distinct from the successors 1, . . . ,  n among those previously 
generated (by 4) and from 0 (by 5). So each successive step in the gener
ation produces a new number.

For example, 0"" 7̂  0", as may also be seen thus. By 4 applied with 
O'" as the m and 0' as the n, 0"" =  0" only if O'" =  O'. By 4 again, 
O'" =  0' only if 0" =  0. But by 5 with 0' as the n, 0" ^  0.

These five propositions 1—5, with one difference, were taken by 
Peano (1889, 1891*) as axioms characterizing the natural number sequence. 
Peano stated Proposition 3 instead as the principle of mathematical 
induction (§ 7), and placed it fifth on his list, 4 and 5 being moved up to 
third and fourth, respectively.

Here we are not considering what the natural numbers are intrinsically, 
but only how they form the natural number sequence. A particular nat
ural number is to be recognized as the object occupying a particular 
place in the sequence. In other words, a particular number is given when
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its generation under the inductive definition is given. For example, the 
natural number 4 is given as that object which is obtained by starting 
with the initial object 0 and applying the successor operation ' once, 
again, again and again; or briefly, 4 is given as 0"". A number such as 
872656 in decimal notation could in principle be exhibited by applications 
o f ' to 0, though in practice we do not do so.

Of course when we deal with propositions such as that a certain equation 
has two roots, we further employ the assignment of the natural numbers 
as cardinal numbers of finite sets (§ 4).

Order. Under the inductive definition of the natural numbers, they 
are generated in a certain order (the familiar one). Thus we define m 
to be <  n, if m is generated before n in the course of generating n. Dis
secting this, we have the following inductive definition of the relation 
m e n  (where m, n range over the natural numbers).

01. m < m'. 02. If m < n, then m <  n'. 03. m e n  only as required 
by 01 and 02.

When this definition is read, for a fixed m, as an inductive definition 
of the class of the numbers n greater than m, it has the form of the original 
inductive definition of the natural numbers, with m' replacing 0.

§ 7. Mathematical induction. Let P  be a property of natural 
numbers. Suppose that :

(1) 0 has the property P.
(2) If any natural number n has the property P, then its successor 

n ' has the property P.
Then: Every natural number n has the property P.
This is the principle of mathematical induction. We can state it a little 

more briefly using ‘V ’ as a natural number variable and “P(n)" as a 
notation for the proposition that n has the property P : If (1) P(0), and 
(2) for all n, if P(n) then P(n')t then, for all n, P(n).

The justification of the induction principle is almost immediate, when 
the natural numbers are conceived as the objects generated under the 
inductive definition 1—3 of § 6. Suppose we have a property P  for which 
(1) and (2) hold. Must then every natural number n have the property P? 
We interpret an affirmative answer to mean simply that, if any natural 
number n were given to us, we could be sure that that n has the property 
P. But a natural number n is given precisely when (actually or in principle) 
we are given its generation under the inductive definition, by starting 
with 0 and applying an exhibited number of times the successor operation '.
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Under these circumstances, we can use (1) and (2) to conclude that n, 
has the property P. For example, P(4) holds because 4 is given as 0"";
by (1), P(0); thence by (2), P{O'); by (2) again, P(0"); by (2) again, 
P(0'"); and by (2) again, P(0""),

Otherwise expressed, (1) and (2) are tools which enable us, while we 
are generating the natural numbers by Clauses 1 and 2 of the inductive 
definition, at the same time to verify for each number as we generate it 
that it has the property P.

This reasoning of course depends on the extremal clause 3 of the in
ductive definition. Conversely, the principle of induction can be used to 
prove Clause 3, by applying it with the following proposition as the P(n): 
n is given as a natural number by Clauses 1 and 2, i.e. can be generated by 
starting with 0 and applying the successor operation

In connection with a proof by mathematical induction, we use the 
following terminology. The proposition P(n) depending on a variable 
natural number n we call the induction proposition; and the variable n 
the induction variable or induction number or the variable on which the 
induction takes place. The part of the proof which consists in establishing 
(1), i.e. the proof that P(0), we call the basis of the induction. The part 
which consists in establishing (2), i.e. the proof that if P(n) then P(nf), 
we call the induction step. Within the induction step, the assumption 
P(n), from which we deduce P(n'), we call the hypothesis of the induction.

Sometimes, in order to carry through the induction step, it is necessary 
to assume as hypothesis of the induction, not simply P(n) but that P(m) 
for all m <; n. The reader may satisfy himself that the induction principle 
is valid in this modification, called a conrse-of-v alues induction. Induction 
may be applied to the proof of a proposition depending on a positive 
integer instead of a natural number, in which case the basis consists in 
proving P(l).

The student encounters mathematical induction in elementary algebra 
courses. Formulas for summing progressions are often given as examples 
of propositions to be proved by induction which are not obvious before 
the proofs have been given. Many propositions which we commonly take 
for granted depend on induction when explicitly proved; and in other 
cases an induction step is so simple that it is passed off with the phrase 
"and so on” or the like (e.g. Theorems A and B § 4).

E xample 1. Prove the propositions (1) and (2) of § 4 by induction 
on n . We do so for (2), leaving (1) to the reader. The induction proposition 
is: For any sets M and M v if M = n and M ~  M x c  M, then M x =  M.
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B a s is  : n == 0. Let M  and M 1 be sets such that M — 0, i.e. M  =  O, and 
O ^ M i C O .  Then M 1=  O. Induction step. Assume the induction 
proposition as stated (as hypothesis of the induction). Now let M  and M x 
be sets such that M  =  n +  1, i.e. M  == N  + {a} where N = n and a iN ,  
and N  +  {%} ~ M 1 C N  +  {«}. We must prove that then M x =  N  + {a}. 
In the given 1-1 correspondence iV +  W  ~  Afi, the element a of 
N  -j- {a} corresponds to some element b of M v Then N  ~  M x — {b} C 
(N +  {a}) —{6}. Moreover (N + {a}) — {b} ~ N .  Hence (.N +  {a}) — {b} 
=  n and (N +  {̂ }) — {b} ~  M x — {6} C (N +  {a}) — {6}. By the 
hypothesis of the induction, applied using (N +  {a}) — {b} as the M  and 
Mi — {b} as the M v M x — {b} = (N + {a}) — {6}. Hence (since b £ M x 
and b 6 IV +  {̂ })» =  A7 +  {a}.

E x a m p l e  2. In mathematical formulas parentheses are introduced in 
pairs to show which way the parts of the formula should be associated. 
In complicated cases different species of parentheses such as ( ), { }, [ ] 
may be employed; and very complicated cases may be avoided by various 
abbreviations. However, the question exists in principle whether, using 
one species of parentheses only, the association of a formula is unam
biguously fixed by its parentheses. (The question is equivalent to a ge
ometrical one concerning nesting of intervals.)

To make the question precise, suppose we have 2n parentheses, n of 
them being left parentheses (, and n of them right parentheses ), and that 
they occur in linear order from left to right. This is the way they would 
occur in a mathematical formula, the other symbols of the formula which 
we need not notice now being interspersed among them.

We say that two pairs of parentheses separate each other, if they 
occur in the order (t- Q ){ )h where the i ’s identify either pair and the j ’s 
the other, and other parentheses may occur interspersed among the four 
shown.

We define a 1-1 pairing of the n left parentheses with the n right 
parentheses (briefly, a pairing of the 2n parentheses) to be proper, if a left 
parenthesis is always paired with a right parenthesis to the right of it, 
and if no two of the pairs separate each other.

It is almost immediate that if 2n parentheses are properly paired, on 
removing any of the pairs, the remaining parentheses are properly paired. 
Also the parentheses included between a given pair in the proper pairing 
of the 2n parentheses are properly paired.

The following three lemmas contain the answer to the proposed question 
and some related information.
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Lemma 1. A proper pairing of 2n parentheses (n >  0) contains an 
innermost pair, i.e. a pair which includes no other of the parentheses between 
them.

Prove by a course-of-values induction on n. One may choose to consider 
n either a positive integer or a natural number. If the latter, the basis is 
vacuously true, i.e. true because its hypothesis is not satisfied. (Hin t : 
Under the induction step, the leftmost parenthesis will be a left paren
thesis (,, and this with its mate )t- either themselves constitute an innermost 
pair, or else include a set of parentheses lying between them to which 
the hypothesis of the induction can be applied.)

Lemma 2 . A set of 2n parentheses admits at most one proper pairing.
Prove by a (simple) induction on n. (Hin t : Under the induction step, 

by Lemma 1 the given parentheses contain an innermost pair. With
drawing this, the hypothesis of the induction applies to the set of the pa
rentheses remaining.)

Lemma 3 . If 2n parentheses and a consecutive subset of 2m of them both 
admit proper pairings, then the proper pairing in the subset forms a part of 
the proper pairing in the whole set, i.e. each parenthesis of the subset has the 
same mate in both pairings.

Prove by induction on m.
For illustration, consider the 22 parentheses

/ I  / 2  / 3  / 4  / 5  \ 6  \ 7  / 8  \ 9  \ 1 0  / I I  \ 1 2  \ 1 3  \ 1 4  / 1 5  / 1 6  / 1 7  \ 1 8  / 1 9  \ 2 0  \ 2 1  \ 2 2  

\ 7  \ 6  V 4  \ 2  V l  / I  / 2  V 3  / 3  / 4  \ 5  / 5  / 6  / 7  V l l  U 0  V 8  / 8  \ 9  / 9  ' 1 0  / I I *

A proper pairing, indicated by the subscripts, is discovered by the fol
lowing ‘algorithm' (suggested by the proof of Lemma 2): at each stage, 
proceeding from the left, search out the first innermost pair among those 
not already used, and let this pair belong to the pairing. By Lemma 2, it 
would be futile to search for any other proper pairing than this. The third 
to the twelfth parentheses are a consecutive subset, in which a proper 
pairing has already been established in the process of pairing the whole 
set. By Lemma 3, it would be futile to search for any consecutive subset 
admitting a proper pairing other than one of those already properly paired 
in pairing the whole.

§ 8. System s of objects. By a system S of objects we mean a (non
empty) set or class or domain D (or possibly several such sets) of objects 
among which are established certain relationships.

For example, the natural number sequence (§ 6) constitutes a system of
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the type (Z), 0,') where Z) is a set, 0 is a member of the set D f and ' a unary 
operation on a member of the set D. Another simple type of system is 
(D» <) where D is a set and <  is a binary relation between members of 
the set.

When the objects of the system are known only through the relation
ships of the system, the system is abstract. What is established in this 
case is the structure of the system, and what the objects are, in any 
respects other than how they fit into the structure, is left unspecified.

Then any further specification of what the objects are gives a rep
resentation (or model) of the abstract system, i.e. a system of objects 
which satisfy the relationships of the abstract system and have some 
further status as well. These objects are not necessarily more con
crete, as they may be chosen from some other abstract system (or even 
from the same one under a reinterpretation of the relationships).

Several representations of the abstract natural number sequence are
(a) the natural numbers as cardinals of finite sets, (b) the positive integers 
(1 representing the abstract 0), (c) the even natural numbers (+2 re
presenting the abstract '). (d) Commercial products are sometimes pack
aged in containers which carry advertizing matter including a picture of 
the container itself. Physically, the picture must be limited in accuracy. 
But if we suppose perfect accuracy, we can represent 0 by the container, 
1 by the picture of the container on the container, 2 by the picture of 
the container in the picture of the container on the container, and so on.

Two representations of the same abstract system are {simply) isomorphic,
i.e. can be put into a 1-1 correspondence preserving the relationships. 
More precisely, two systems {DX) 01# and (D2, 02, '2) of the type (Z), 0 ,') 
are simply isomorphic, if there exists a 1-1 correspondence between 
Dx and D2 such that 0X corresponds to 02 (in symbols, 01 <—>- 02), and 
whenever mx <—► m2 then mx \  <—> m2 '2. Two systems (Dlf <*) and 
(D 2, < 2) of the type (Z), <) are simply isomorphic, if there exists a 1-1 
correspondence between Dx and D2 such that, if m1 <—>■ m2 and n± > n2 
then: mx < x % if and only if m2 < 2 n2.

Conversely, any two simply isomorphic systems constitute represen
tations of the same abstract system, which is obtained by abstracting 
from either of them, i.e. by leaving out of account all relationships and 
properties except the ones to be considered for the abstract system.

As a second example of an abstract system of the type (Z), 0 ,'), let 
D have just two (distinct) objects 0 and 1, and let O' =  1 and 1' =  0. 
We call this system the residues modulo 2. The natural number sequence 
becomes this when each number is replaced by its remainder after division
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by 2 (i.e. is reduced mod 2), thus,
0 , 1, 0 , 1, 0 , 1, . . . .

(Systems of residues were first considered by Gauss, 1801.)
As a third example, let S consist of two sequences

0, 1, 2, 3, . . . ;  to, to -f- 1, to +  2, co -j- 3 , . . . ,
each by itself of the same structure as the natural numbers, and with 
no member of either sequence in the relation of successor to a member 
of the other.

We can modify each of these three examples obviously to consider it 
as a system of the type (D, <). In the third example, we then take the 
elements in the order shown; and we call them the ordinals <  2<o (from 
Cantor’s theory of ordinal numbers).

The residues mod 2 (or a representation of them) are not isomorphic 
with the natural numbers (or a representation of them), since it is im
possible to establish a 1-1 correspondence. The ordinals <  2co are not 
isomorphic with the natural numbers, for it is not possible in establishing 
a 1-1 correspondence to preserve the successor operation ' (or the order 
relation <).

In this section, we are writing “S” for a system and “D” for its set of 
objects, in the case of systems having one set. The notation can often be 
simplified without confusion to use one letter for both. It can e.g. in 
speaking of the natural numbers N  as above. It cannot e.g. in speaking of 
the system (N, <) consisting of the natural numbers, with the even 
numbers (odd numbers) ordered among themselves as usual, and all the 
even numbers preceding all the odd numbers. (This system is a repre
sentation of the ordinals <  2o>.)

Systems of objects are introduced in mathematics under two con
trasting methods or points of view (cf. Hilbert 1900).

The genetic or constructive method is illustrated by the inductive defi
nition of the natural numbers (§ 6). There we conceived of the natural 
numbers as being generated or constructed in a certain orderly manner. 
(This did not prevent our treating them abstractly.)

In the axiomatic or postulational method, on the other hand, some 
propositions, called axioms or postulates, are put down at the outset as 
assumptions or conditions on a system 5 of objects. The consequences of 
the axioms are then developed as a theory about any existing system S 
of objects which satisfies the axioms.

To illustrate, we can take as the axioms Peano's five axioms. To
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make the point clear, let us rewrite the Peano axioms substituting 
“member of D” for “natural number”.
PI. 0 ED. P2. If nZ D , then n' £ D. P3. If m Z D  and n £ D, then 
m' =  n' only if m = n. P4. If n £  D, then n' ^  0. P5. If P c  D and 
(1) OS P and (2) whenever m£ P  then n' £ P, then P = D.

We already know that exactly one abstract system S satisfies these 
five axioms, namely the natural numbers which we previously introduced 
from the genetic standpoint.

But from the axiomatic standpoint, we can equally well consider other 
lists of axioms, for example P I—P4. Then S can be the natural numbers, 
or the ordinals <  2co, or any one of many other abstractly differing, i.e. 
non-isomorphic, systems.

If instead the axioms are PI — P3, P5, then the different abstract 
systems which satisfy are precisely the natural numbers and the systems 
of residues mod m for each positive integer m.

Next suppose we not merely remove P4, but substitute for it:
P6. If n £ D, then n' ^  n but n" =  n.
Now again exactly one abstract system satisfies, the residues mod 2.

The six axioms PI—P6 together are satisfied by no system S at all, 
since only the natural numbers satisfy PI—P5 and only the residues mod 
2 satisfy P I—P3, P5, P6.

The axioms of an axiomatic theory are sometimes said to constitute 
an implicit definition of the system of the objects of the theory; but this 
can only mean that the axioms determine to which systems, defined from 
outside the theory, the theory applies. Then three cases arise. The axioms 
may be satisfied by no system of objects (e.g. P I—P6); or by exactly 
one abstract system, any two systems which satisfy being isomorphic 
(e.g. P I—P5, or P I—P3, P5, P6); or by more than one abstract system,
i.e. non-isomorphic systems exist which satisfy (e.g. P I—P4, or P I—P3, 
P5). In the first case we may call the set of axioms vacuous; in the other 
two non-vacuous, and furthermore in the second categorical (Veblen 1904) 
and in the third ambiguous. (In the genetic method, on the other hand, the 
generation process is ordinarily intended to determine the abstract 
structure of the system completely, i.e. to constitute a categorical def
inition of the system.)

It may be by no means evident for a given axiomatic theory which 
of the three possibilities is the case. This is illustrated historically by the 
example of Euclidean geometry without Euclid’s parallel postulate, on 
which depends the theorem that through a given point not on a given line 
there passes exactly one line parallel to the given line. From Euclid’s
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"Elements” (c. 330—320B.C.) until the discovery of a non-Euclidean geome
try by Lobatchevsky (1829) and Bolyai (1833), it was generally supposed 
that the axioms are categorical; or at least if the question had been asked 
in these terms, it would probably have been so answered.

The Greek’s belief that they were dealing with a unique structure of 
space was not formulated in the present terminology. Euclid thought of 
his axioms as expressing certain fundamental properties of real space. 
The axiomatic method in this older sense, wherein the objects of the system 
S are supposed to be known prior to the axioms, may be distinguished as 
informal or material axiomatics. In this, the axioms merely express those 
properties of the objects which are being taken initially as evident from 
their construction, or in the case of theories applying to the empirical 
world as abstracted directly from experience or as postulated about 
that world.

The axiomatic method as described above, wherein the axioms are 
prior to any specification of the system 5 of objects which the axioms 
are about (and serve to introduce or "define implicitly” the S), was 
first developed systematically in Hilbert’s "Grundlagen der Geometrie 
(Foundations of Geometry)” (1899), and may be distinguished as formal 
or existential axiomatics. We note that it is only from outside a formal 
axiomatic theory (i.e. in some other theory) that one can investigate 
whether one, or more than one, or no abstract system S satisfies the 
axioms. Within the formal axiomatic theory, the domain D for S plays 
the role of a fixed and completed set of objects, assumed as existing all 
at once apart from any order of generation, to which the operations, 
relations, etc. of S apply.

For a system S of the type (D, 0, ') , 0 and ', or D, 0 and ', are then 
called the primitive or technical or undefined notions, i.e. they are un
defined prior to the introduction of the axioms. The other terms in the 
axioms are ordinary or logical or defined, i.e. their meanings must be pre
viously understood. About D , 0 and ', it has only to be understood in 
advance that D is a set, 0 an object belonging to D , and ' an operation on 
a member of D; i.e. only the grammatical categories to which "0” 
and " ' ” belong are defined in advance. Similarly for a system of the form 
(D, <), the undefined notions are < , or D and < .

In mathematical practice there is often an interplay between the genetic 
and axiomatic methods of introducing systems of objects, as when an 
example of a system of objects satisfying the axioms is provided genet
ically. At other times an example may be drawn from another formal 
axiomatic theory. (In either case, as soon as the S for a given formal
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axiomatic theory is identified with a system of objects provided from 
outside the theory, we have an application of the formal axiomatic theory, 
in which application it becomes a material axiomatic theory.)

The formal axiomatic method is often used to advantage with am
biguous axiom systems, so as to develop simultaneously a common 
portion of theory for many different systems. The example of 'groups' 
in algebra is celebrated.

As another example, consider the following axioms for linear order, 
which apply to systems of the type (D, <).

LI. If m < n and n < p, then m < p. L2. At most one of m < n, 
m—n and m > n  holds. L3. At least one o im < n , m=n  andm > n  holds.

Here m > n means n < m. The variables m, n, p refer to any elements 
of D. These axioms are satisfied taking as D the natural numbers, the 
ordinals <  2co, the integers, the rational numbers, or the real numbers, 
and as <  the usual order relation for the same; and by many other 
systems. Omitting L3, we have a set of axioms for partial order.

*§ 9. N um ber theory vs. analysis. Arithmetic or number theory 
may be described as the branch of mathematics which deals with the 
natural numbers and other (categorically defined) enumerable systems 
of objects, such as the integers or the rational numbers. A particular such 
system (or the theory of it) may be called an arithmetic. The treatment 
is usually abstract (§ 8). The objects are usually treated as individuals 
(i.e. they are not analyzed as composed out of other objects), except e.g. 
when the fundamental properties of non-negative rational numbers are 
being developed by representing them as ordered pairs of natural numbers.

In arithmetic in the narrower sense one is mainly concerned with par
ticular operations called +  (addition) and (multiplication), or also a few 
other related operations. In arithmetic in the wider sense or number theory 
a wider fund of concepts is employed.

These definitions are given to clarify our terminology. Sometimes 
"arithmetic" is encountered referring to the theory of +  and • for systems 
of numbers that are not enumerable (e.g. the 'arithmetic of transfinite 
cardinals’).

While the cardinal numbers of the systems studied in arithmetic or 
number theory are 8o (or sometimes finite), analysis on the other hand 
deals with the real numbers and other systems of objects having the car
dinal 2̂ 0 (or sometimes a higher cardinal). As with number theory, the 
systems of objects employed in analysis are usually taken to be cate
gorically determined.
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Results of analysis are sometimes applied in number-theoretic in
vestigations, which then constitute analytic number theory. Number 
theory without help from analysis is pure or elementary number theory.

We now examine briefly the fundamental system of objects for analysis, 
namely the continuum of the real numbers.

The theory of real numbers which is currently used as the basis for 
analysis (except by critics of its foundations) is the product of an earlier 
critical movement initiated by Gauss (1777—1855), Cauchy (1789— 
1857) and Abel (1802—1829).

This led late in the nineteenth century to the arithmetization of analysis, 
so called, by Weierstrass (1815—1897), Dedekind (1831—1916), Meray 
(1835—1911) and Cantor (1845—1918). Reliance on somewhat vague 
geometrical intuitions was replaced by a definition of the real numbers 
as certain objects constructed out of natural numbers, integers or rational 
numbers. The properties of the real numbers were thereby reduced ul
timately to properties of natural numbers. As Poincar£ said in 1900, 
“Today there remain in analysis only integers or finite or infinite systems 
of integers, interrelated by a net of relations of equality or inequality.”

The definition of the real numbers from natural numbers, integers 
or rationals can be given in several ways. All lead to the same abstract 
structure of the real number continuum. In other words, what each of 
the definitions accomplishes is to provide a representation (§ 8) of the real 
numbers by objects constructed (directly or indirectly) out of natural 
numbers.

We have used the representations by the infinite decimal or dual fractions 
(§§ 2, 5). In principle any one of the sets proved equivalent to these (§ 5), 
e.g. the sets of natural numbers, could be used, but in practice one will 
choose a representation which makes it simple to define the properties 
of the real numbers.

A representation which makes the ordering of the real numbers es
pecially perspicuous is that by Dedekind cuts (1872). Suppose the rational 
numbers R have been separated into two non-empty classes X lt X 2 such 
that every rational in X x is <  every rational in X 2. Such a separation is 
called a Dedekind cut {in R). In case there is neither a greatest rational in 
the lower set X x nor a least in the upper X 2, the cut is called open. Dede
kind's insight was that irrationals are called for exactly where the open 
cuts occur. A rational goes with either of two closed cuts, one for which it 
is the greatest in X v and the other for which it is the least in X 2. In order 
to have a unique representative of each real number (rational or irra
tional), we can use the lower sets X x of the cuts for which X 1 has no great
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est. This gives us the following definition (writing x in place of X v and 
R — x in place of X 2).

A real number is a set x of rationals such th a t:
(a) Neither x nor R — x is empty, (b) x contains no greatest rational,
(c) Every rational in x is <  every rational in R  — x.
The set C of reals is the set of all such sets x of rationals.

This definition makes use of the presupposed system R  of rationals 
to construct the representatives of the reals, without taking R into the 
resulting system C as a subsystem. (If the members of R are individuals, 
the members of C are sets of those individuals.)

We now define a real number x to be rational, if R — x has a least 
member in which case x is said to correspond to the rational x (of the 
system R). Otherwise, x is irrational.

The rationals among the reals form a subsystem CR of C which is 
isomorphic (§ 8) to the original system R of rationals, as we verify each 
time we use the representation to define a notion for the reals which 
has previously been defined for the rationals.

E xamples. The real 2 is the set of the rationals <  the rational 2, 
to which it corresponds. The real \/2  is the set of the rationals which are 
either negative or have squares <  the rational 2 (among which there is 
no greatest). Since the square of no rational =  2 (as Pythagoras discovered 
in the sixth century B.C.), R — \/2  consists of the positive rationals 
having squares >  2 (among which there is no least), so \/2  is irrational.

The order relation for reals is defined thus: x <  y, if there exists a 
rational r which is in y but not in x. (Now prove that C is linearly ordered 
by < , and that (CR, < ) is isomorphic to (R, <).)

A real number v is an upper bound of a set M of real numbers, if v >  x 
for every real number x belonging to M.

(A) I f  a non-vacuous set M of real numbers has an upper bound, it has 
a least upper bound u (=  l.u.b. M).

Proof. We must construct u as a set of rationals having Properties 
(a) — (c). We are given M as a set of such sets of rationals. The definition 
of the set u is th is: a rational r C u when and only when, for some real 
number x which 8 M, r £ x. In the symbolism of § 5, u =  ©M. It is left 
to the reader to show now that u  =  l.u.b. M. (Prove that u  is a real 
number, u  is an upper bound of M, and M has no upper bound v  <  u.)

Lower bounds are defined similarly. If the real x is rational, let 
x == x -f {%}; otherwise, let x =  x. Let — x be the set of the rationals
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—  r for r £ R  —  x . (If x is rational, then —  x corresponds to  —  x.) 
L e t —  M be the set of the reals —  x  for x 8 M. If  w  is a lower bound of 

M, then —  w is an upper bound of —  M, so —  M has a l.u.b., and

-  (l.u.b. -  M) =  g.l.b. M.
G iven  reals x and y, let x +  y be the set of the rationals r +  s for 

r  £x  and sZ  y ;  let x —  y =  x +  (—  y ) ; and let [xf =  x  if x >  0 and  

|x| =  —  x if x <  0. (D o not confuse +  and —  w ith  addition and  

subtraction of sets, w hich are w ritten  +  and — .)

G iven  an infinite sequence a0, ax, . . . ,  an, . . .  of reals and a real 

a, w e sa y  th a t lim  an =  a, if for ev e ry  real e >  0, there is a natural 

num ber ne such th at, for ev e ry  n >  ne, |an — a| <  e. F o r exam ple, 

lim  l/2 n =  0 (where l/2 n is the real corresponding to  the rational l/2n).

(B) I f  u  =  l.u.b. M (as in (A)), there exists a sequence a0, a  ̂ . . . ,  
an, . . .  of members of M such that lim  an =  u.

P roof. L e t Mn —  the set of the reals w hich 8 M and are >  u  — l/2n. 
(Prove th a t Mn is not em p ty.) L e t an be a n y  real chosen from  Mn. 

(Prove th a t lim  an =  u.)
N o tw ith stan d in g th a t in this theory analysis is “ arith m etized ” , the  

distinction betw een arithm etic and analysis rem ains sharp, in th a t  

analysis finds it necessary to em p loy infinite sets of the objects of arithm e

tic as its objects.

§  10. Functions. In  the m ost general sense, a (single-valued) function 
f or f(x) or y = f(x) of one variable x is a correspondence b y  w hich, to each  

elem ent # of a  set X  there corresponds a single elem ent y of a set Y .

T h e set X  is the range of the independent variable, or the domain of the 
function. T h e function m a y  be called a function from X  to Y  (or a function 
of a m em ber of X  taking a m em ber of Y  as value, or an operation on a  

m em ber of X  producing a m em ber of Y, etc.).

T h e  range of the dependent variable y or f(x) is the subset Y x of Y 
com prising the elem ents of Y used in the correspondence, i.e. those w hich  

correspond b y  the function / to some elem ent of X. T h en  X  and Y x 

are in  many-one correspondence, since to each elem ent of X  there cor

responds ju st one elem ent of Y v b u t an elem ent of Yx w ill (in general) 

correspond to  m an y elem ents of X. A n  elem ent x of X  is an argument of 
the function or a value of the independent variable. T h e  corresponding  

elem ent y of Y is the corresponding value of the function or of the dependent 
variable, or the value of the function for that argument. (Som etim es “ ar

gu m en t”  is encountered m eaning “ independent va riab le” .)
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A  (single-valued) function f or /(% , . . xn) or y — f(xv . . . ,  xn) of 
n variables xv  . . . ,  xn is a correspondence b y  w hich, to each ordered  

ft-tuple (xv . . xn) of objects where xxZ X lt x28 X 2, . . . ,  xnZ X n> there 

corresponds a single ob ject y where y E Y . A  fu n ction  of n variables can  

be considered as a function of one variable, w ith  X  as the class of all the  

ordered n-tuples (xv . . . , x n). Sim ilar term inology applies. T h u s X x is 

the range of xlf X 2 of x2, . . . ,  X n of xn. H ere X lf X 2, . . . ,  X n m a y  all be  

the sam e set, or there m a y  be several (up to n) different ranges. A  par

ticular sequence xlf . . . ,  xn of elem ents from  X v . . . ,  X n, resp ectively, is 

a set (or n-tuple) of arguments.
In this plethora o f term inology, one m a y recognize a m ixtu re of 

term inologies based on tw o id e a s: the idea of a function as a m an y-on e  

correspondence, and the idea of a function as a variable y w hich ranges 

in relation to another variab le x so th a t the valu e of y is alw ays fixed  b y  

th a t of x.
T h e first idea is the more com prehensive one, w hich the studen t  

should keep upperm ost in his m ind. T h e second idea how ever gives rise 

in a natural w a y  to the useful n otation al convention, w hereby if "/(#)”  

for ihstance stands for a certain function of the independent variab le  

x, and a, b, etc. are values of the independent variab le (i.e. argum ents), 

then “{ ( a y ’ stands for the valu e of the function for the argum ent a , 

"/(£>)” f ° r the va lu e w hen x =  b, etc.

One should be aw are th a t then  “f(x)” m a y  h ave either of tw o m ea n in gs: 

1. T h e function itself (i.e. the m any-on e correspondence betw een X  and  

Y x). 2 . W hen x stands for an ob ject from  the dom ain, the corresponding  

valu e of the function (i.e. a m em ber y of Y x). W hen x is unspecified, the  

latter is called the ambiguous value of the function.

E xample 1. W hen w e sa y  “x +  y is sym m etric” w e m ean b y  “x + y ” 
the fhnction. W h en  w e say  " th e  sum  x +  y of a n y  tw o natural num bers  

x and y is >  x”, w e m ean b y  “x +  y” not a function b u t a num ber (the 

am biguous valu e of the function).

T h is situation can be avoid ed  b y  using instead of " /(*)”  f ° r the  

function, so long as w e are talk in g on ly about functions for each of 

which a sym bol such as “g”, " + ” or ‘V ’ has been introduced. B u t  

notations w hich show the independent variables are v e r y  con venient for 

nam ing other functions com posed out of those functions (and constants), 

e.g. "** +  3*” or > (2 ,* )”.
E xample 2. T o  consider this in m ore detail, sa y  th a t f and g are 

given  number-theoretic functions of one variable each, i.e. functions from
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th e set o f th e  n atu ral num bers to  the sam e set. L e t x  be a n y  n atu ral 

num ber. T h en  g(x) is a natural num ber, i.e. the valu e of g  for x  as argum ent, 

and f(g(x))  is a n atu ral num ber, i.e. the va lu e of / for the natural num ber  

g(x) as argum ent. So to  a n y  natural num ber x, another num ber f(g(x)) 
is determ ined. T h u s “ /(£(*))”  stands for the am biguous valu e of a new  

function (M eaning 2 ); and it is also convenient to use it as a name for 

the new  fu n ction  itself (M eaning 1).

T here is another n otation  (due to  Church 1932) in w hich the inde

penden t variables appear, b u t w hich represents the function / as distin ct  

from  its am biguous valu e, n a m e ly :' (\ x  f(x) ” , or for a  function of n  variables, 

“ l x 1 . . . x nf{x 1 , . . . , x n)" ;  e.g. <(\ x f ( g ( x ) y \ “ %xx* +  3 x " , “ X*<p(2 , * ) ” . W e  

shall use this X-notation for em phasis in situations where especial care is 

required.

E xample 3 . L e t 9 b e a function of tw o num bers. U sin g the X-notation  

con sisten tly, i.e. w henever w e m ean the function instead of the am biguous  

valu e, w e can distinguish (a) th e  num ber y (x ,  y), (b) the function Xx 9 (x, y) 
of one variab le  x t w ith  y  as param eter, (c) the function X*y<p(#, y )  of tw o  

variables, w ith  x  as first and y  as second variable, (d) the function  

\ y x  9 (xf y), w ith  y  as first and x  as second variable, (e) the function X#Xy 9 (x, y )  
of one variab le x , w hose valu es are functions of another variab le y, etc. 

(Schonfinkel 1924 and Church id en tify  (c) and (e), b u t th a t is not necessary  

for us.)

F o r a n y  w -tuple tv  . . . ,  t n of argum ents for /,

{ X % . . .  x nf{x v . ..,# „ )} (* !,.  . . , * » ) =  * •>*»)•

F o r exam ple, { k x x 2 +  3#}(2) =  10, {Xx<p(x, y)}(0 ) =  9(0, y),

{kyx  9(x, y)}(0 , 3 ) =  9(3, 0 ), {X*y 9(3, y )}{z , x) =  9(2, x).
W e h a ve described a function as a m an y-on e correspondence. O ne  

m a y  go further in sayin g w h a t a m any-on e correspondence is to  be, 

according to the k in d  of th eory one is w orking in. In  set-theoretic term s, 

the correspondence can b e identified w ith  the set of all the ordered pairs 

(x, y )  of corresponding elem ents of X  and Y v  O ne m a y  speak instead of 

th e  law  or rule establishin g the correspondence, at least in dealing w ith  

such function s th a t a law  or rule in som e understood sense can be given  

for each function. In  th e case th a t X  is a finite set, a function can be given  

as a table.

E xample 4 . L e t X  and Y  b o th  be the residues m odulo 2, i.e. 

X  =  y  =  {0, 1}. T h e functions x' and x  • y  can be defined b y  the follow 
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ing ta b le s:

%' x  • y

y 0 i

X 0 1 * 0 0 0

i 0 i 0 i

T h u s b y  the second table, 0  • 0  =  0  • 1 =  1 - 0  =  0  and 1-1 =  1.



Ch a p t e r  III
A  C R I T I Q U E  O F  M A T H E M A T I C A L  R E A S O N I N G

§ 11. T h e  p a r a d o x e s . This chapter is intended to  present the problem  

situ ation  o u t of w hich the investigations to be reported in the rest of the  

book arose, i.e. the situation preceding those investigations (but not 

how  it has since changed).

In  th e  arithm etization of analysis (§ 9), an infinite collection (of ra

t io n a l  form ing the lower half of a D edekind cut, or of digits in sequence  

form ing a non-term inating decim al, etc.) is con stitu ted  an object, and the  

set of all such objects is considered as a new  collection. From  this it  is a  

n atu ral step to Cantor's general set theory.

H a r d ly  had these theories been consolidated, w hen the v a lid ity  of 

the w hole construction w as cast into doubt b y  the discovery of paradoxes  

or antinom ies in the fringes of the theory of sets.

(A) T h e B u ra li-F o rti paradox  18 97*, also know n to  C antor in 1895 , 

arises in C an to r’s theory of transfinite ordinals.

(B) Som ew hat sim ilar antinom ies occur in the theory of transfinite  

cardinals, p articu larly  C antor's paradox  (found b y  him  in 1899). Consider 

th e set of all s e ts ; call it M. B y  C an tor’s theorem  (Theorem  C § 5 ), UM >  M. 

A lso, since M is the set of all sets, and UM is a set of sets (nam ely, the set 

of the subsets of M), UM C M. H ence b y  Corollary A  Theorem  A ,  

UM <  M; and so b y  § 3 , not UM >  M- T h u s w e h ave proved b oth  th a t  

UM >  M and th a t not UM >  M.

S tartin g  w ith  the sam e M, we can also reach a paradox thus. T o  each  

m em ber M  of M, i.e. to  a n y  set M , b y  Theorem  C there is another m em ber 

M '  of M, n am ely U M , such th a t M  <  M '. H ence b y  Theorem  D , M  <  @M 

for ev ery m em ber M  of M. B u t M is the set of all sets, so @M is one of its  

m em bers. T a k in g  the M  in the in equ ality  ju st proved to be this m em ber, 

w e h ave @M <  @M. B u t b y  § 3 , for an y set M , not M  <  M ;  hence in  

particular, not @M <  @M.

T h e  paradox w ith  @M results likewise, if we start out w ith  the set of 

all cardinal num bers, and choose as M a set containing, to each cardinal 

num ber, a set M  h avin g th a t cardinal.

36
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If the notion of sets of arbitrary elem ents used here is thou gh t to be  

too va gu e and hence unm athem atical, w e can prescribe as adm issible  

elem ents of sets (ax) the natural num bers 0, 1 , 2,  . . .  (or (a2) the e m p ty  set 

O) and (b) arbitrary sets whose m em bers are adm issible elem ents. W ith  

this prescription, the above paradoxes and the n e x t arise as before (with  

(ax), G en tzen 1936).

(C) T h e R u ssell paradox  1902-3*, discovered indepen dently b y  Zerm elo, 

deals w ith  the set of all sets w hich are not m em bers of them selves. C all 

this set T. Is T  a m em ber of itself ?

L e t us assume, for the sake of the argum ent, th a t T  is a m em ber of 

itself, i.e. in sym bols T  £ T . T h e assum ption says th a t T  is a m em ber of 

T f i.e. T  is a m em ber of the set of all sets which are not m em bers of 

them selves, i.e. T  is a set w hich is not a m em ber of itself, i.e. in sym bols  

T$T.  This contradicts the assum ption T&T. T hus far we h a ve  no paradox, 

as the contradiction betw een T& T  and T t  T  has arisen only under the  

assum ption T & T .  B y  reductio ad absurdum , w e conclude th a t the  

assum ption is false. T h u s we h ave now  proved outright, w ith ou t as

sum ption, th a t T I T .
From  the established result T t  T, w e can argue further. T h e result says  

th a t T  is not a m em ber of the set of all sets w hich are not m em bers of 

them selves, i.e. T  is not a set w hich is not a m em ber of itself, i.e. T  is 

a  set w hich is a m em ber of itself, i.e. in sym bols T& T. N ow  T t  T  and  

T & T  are b oth  established, so we h ave a paradox.

This paradox can be extracted  from  C antor's thus. If w e prescribe  

(a2) and (b) as adm issible elem ents, so th a t sets h ave on ly sets as m em bers, 

then when M is the set of all sets, UM =  M, and the set T  of th e p aradox  

is obtained b y  a p p ly in g  the proof of L em m a A  § 5 to  the identical 1-1 

correspondence M ^  UM in w hich each elem ent of M corresponds to itself 

in UM.

A  popularization of the paradox (Russell 1919) concerns the barber in 

a certain village, w ho shaves all and on ly those persons in the village who  

do not shave them selves. D oes he shave him self ? (Of course here we can  

escape the paradox sim p ly  b y  concluding th a t there never w as such a  

barber.)

E v e r y  m u n icipality  in H olland m ust h ave a m ayor, and no tw o m a y  

have the sam e m ayor. Som etim es it happens th a t the m ayor is a non

resident of the m un icipality. Suppose a law  is passed settin g aside a  

special area S  exclu sively  for such non-resident m ayors, and com pelling  

all non-resident m ayors to  reside there.

Suppose further th a t there are so m a n y non-resident m ayors th a t S
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has to  be co n stitu ted  a m u n icipality. W here shall the m ayor of S  reside ? 

(M annoury, cf. v a n  D a n tzig  1948.)

Suppose the Librarian of Congress com piles, for inclusion in the  

L ib ra ry  of Congress, a b ib liograp h y of all those bibliographies in the L i

b ra ry  of Congress w hich  do not list them selves. (Gonseth 1933.)

R ussell also showed how  to recast his paradox in logical instead of set- 

theoretic term inology. A  p rop erty is called 'predicable* if it applies to  

itself, ‘im predicable* if it does not a p p ly  to  itself. F or exam ple, the prop

e rty  'abstract* is abstract, and hence predicable; b u t 'concrete* is also  

ab stract and not concrete, and hence is im predicable. W h a t abou t the  

p rop erty 'im predicable* ?

(D) T h e  R ich ard  p aradox  1905, also su b stan tially  given  b y  D ix o n  1906, 

deals w ith  the notion of finite definability. F or definiteness, let this refer 

to  a giv en  language, sa y  the E n glish  language w ith  a preassigned alphabet, 

diction ary and gram m ar. T h e alphabet w e m a y  tak e as consisting of 

the b lan k space (to separate words), the 26  L a tin  letters, and the com m a. 

B y  an 'expression* in the language w e m a y  understand sim ply a n y  finite  

sequence of these 28  sym bols not beginning w ith  a b la n k space. T h e  

expressions in the E n glish  language can then be enum erated b y  the device  

w hich w e applied at the end of § 1 to  th e enum eration of the algebraic  

equations.

A n  expression m a y  define a num ber-theoretic function of one variab le  

(i.e. a function of a  natural num ber takin g a natural num ber as value). 

From  the specified enum eration of all the expressions in the E n glish  

language, b y  striking out those w hich do not define a num ber-theoretic  

function, w e obtain  an enum eration (say E 0, E lf E 2, . . . )  of those w hich  

do (say the functions defined are resp ectively fQ(n), i2{n), . . . ).
N o w  consider the follow ing expression, "th e  function whose value, for 

a n y  given  natural num ber as argum ent, is equal to one m ore than the  

valu e, for the given  natural num ber as argum ent, of the function defined  

b y  the expression w hich corresponds to the given  natural num ber in the  

last described enum eration’ *.

In the quoted expression we refer to the above described enum eration  

of the expressions in the E n glish  language defining a num ber-theoretic  

function, w ithout defining it. B u t we could easily h a ve w ritten  in the  

definition of th at enum eration in full, as part of the quoted expression. 

W e should then h ave before us a definition of a function (briefly, the  

function f n(n) +  1), b y  an expression in the E n glish  language. T h is  

function, b y  its definition, m ust differ from every function definable b y  

an expression in the English language.
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T h is paradox is especially interesting for its im plications concerning  

languages such as E n glish, and because it runs so close to C antor's proof 

of the non -en um erability of the num ber-theoretic functions (§ 2). R ich ard  

g a v e  the paradox in a form  relating to  the definition of a real num ber, 

paralleling C antor's proof of the non -en um erability of the real num bers.

Consider the expression, “ the least natural num ber not nam eable  

in fewer th an  tw e n ty -tw o  syllab les". T h is expression nam es in tw e n ty -  

one syllables a natural num ber w hich b y  definition cannot be nam ed in  

fewer th an  tw e n ty -tw o  sy lla b le s! (Berry 1906.)

(E) These m odem  paradoxes, w hich fall m ore or less w ithin the co n text  

of set theory, are related to  a v e r y  ancient one.

T h e statem en t “ Cretans are alw ays liars . . . "  is a ttrib u ted  to  the  

philosopher E pim en ides of Crete (sixth cen tu ry B .C .). (The statem en t w as  

quoted b y  P au l in “ E p istle  to  T itu s " , I, 12, as b y  a C retan “ p rop h et", 

w hom  early Christian tradition, according to  m ore recent sources, id en ti

fied w ith  Epim enides. Cf. W e y l 1949 p. 2 2 8 .)

Suppose w e distinguish tw o kinds of lia rs: liars of the first kind, w ho  

tell the tru th  some of the tim e, and liars of the second kind, w ho tell on ly  

lies. L e t  us interpret Epim en ides' statem ent to  m ean th a t all C retans are 

liars of the second kind. Suppose his statem en t were true. B y  w h a t it  

says and the fa ct he is a Cretan, it m ust then  b e false. T h is is a  con

tradiction ; hence b y  reductio ad absurdum , the statem en t m ust b e  false. 

T h e fa lsity  of the statem en t requires th a t there has been, or w ill ev e n tu a lly  

be, a C retan w ho a t som e tim e tells the truth. H a d  the qu oted  statem en t  

been the o n ly one a n y C retan m akes, w e should h a ve  a paradox. I t  is 

logically  u n satisfactory th a t w e should escape parado x on ly through th e his

torical accident th a t some Cretan existed w ho som etim e told  the truth.

T h e  E p im en id es  p a ra d o x , know n also as the l ia r , appears in stark form , 

if a person says sim ply, “ T h is statem ent I am  now  m akin g is a  lie." T h e  

quoted statem en t can neither be true nor false w ith ou t en tailin g a con

tradiction. T h is version of the p aradox is a ttrib u ted  to  E u bu lid es (fourth  

cen tu ry B .C .), and w as w ell know n in ancient tim es. (Cf. R iisto w  1910. 

If  the statem en t “ Cretans are alw ays liars . . . "  is not au th e n tically  

E pim en ides', or w as not originally recognized as paradoxical, the E u b u li

des version of the L iar m a y  then be older th an  the “ lyin g  C retan " version.)

In  the an cient “ dilem m a of th e crocodile", a crocodile has stolen a  

child. T h e  crocodile prom ises the ch ild ’s father to return the child, p rovid 

ed th a t the father guesses w hether the crocodile w ill return the child  

or not. W h a t should th e crocodile do, if the father guesses th a t the  

crocodile w ill not return the child ? (Cf. P ra n tl 1855 p. 4 9 3 .)
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T h e  follow ing riddle also turns upon the paradox. A  traveller has fallen  

am ong cannibals. T h e y  offer him  the op p ortu n ity  to  m ake a statem en t, 

atta ch in g the conditions th a t if his statem en t be true, he w ill be boiled, 

and if it  be false, he w ill be roasted. W h a t statem en t should he m ake?  

(A  form  of this riddle occurs in Cervantes' " D o n  Q u ix o te "  (1605), II , 5 1 .)

§ 12. First inferences from the paradoxes. T h e  reader m a y  tr y  

his h an d  a t solvin g the paradoxes. In  the half cen tu ry since the problem  has  

been open, no solution has been found w hich is u n iversally agreed upon.

T h e  sim plest kind of solution w ould be to  locate a specific fallacy, like  

a m istake in a stu d en t's algebra exercise or geom etry proof, w ith  nothing  

else needing to  b e changed.

Ideas for solvin g th e paradoxes in this sense com e to  m ind on first 

considering them . O ne m a y  propose th a t the error in the paradoxes

(A) —  (C) consists in using too large sets, such as the set of all sets or 

the set of all cardinal num bers; or in p erm ittin g sets to  be considered as 

m em bers of them selves, w hich  again argues against th e set of all sets. 

These suggestions are not necessarily w rong, b u t th e y  are not after all 

sim ple. T h e y  leave us th e problem  of refounding set theory on a d rastically  

altered basis, the details of w hich are not fu lly  im plicit in the suggestions. 

F o r exam ple, if w e ban  th e set of all cardinal num bers, w e are unable  

to  introduce the set of the natural num bers, unless w e already know  th a t  

th e y  are not all th e cardinal num bers; and the sam e d ifficu lty  w ill arise 

a t higher stages. If  w e b an  the set of all sets, we find ourselves in con flict  

w ith  C antor's definition of set. In  order to  h ave set theory a t all, w e m ust  

h a v e  theorem s abou t all sets, and all sets then con stitu te a  set under  

C an tor's definition. If  not so, w e m ust sa y  w h at other definition of set w e  

shall use instead, or w e m ust supplem ent C antor's definition w ith  som e 

further criterion to  determ ine w hen a collection of objects as described  

in his definition shall con stitu te a set (Skolem  1929-30).

Axiomatic set theory. R econstructions of set th eory can be given , 

placin g around th e notion of set as few  restrictions to  exclude too large  

sets as appear to  be required to forestall the know n antinom ies. Since  

th e free use of our conceptions in constructing sets under C antor's def

inition led to disaster, the notions of set theory are governed b y  axiom s, 

like those governin g ‘poin t' and ‘line' in E u clidean  plane geom etry. T h e  

first system  of ax iom atic  set theory  w as Zerm elo's (1908). R efinem ents  

in  the axio m atic treatm en t of sets are due to  F raenkel (1922, 1925), 

Skolem  (1922-3, 1929), vo n  N eum ann (1925, 1928), B ern ays (1937-48), 

and others. A n alysis can b e founded on the basis of axiom atic set theory,
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w hich perhaps is the sim plest basis set up since the paradoxes for th e  

deduction of existin g m athem atics. Som e v e ry  interesting discoveries 

h ave been m ade in connection w ith  axiom atic set theory, n o ta b ly  b y  

Skolem  (1922-3; cf. § 7 5  below) and G odel (1938, 1939, 1940).

The broader problem of foundations. A ssum ing th a t the para

doxes are avoided in the axiom atization  of set theory —  and of this the  

only assurance w e h a ve is the n egative one th a t so far none h ave been  

encountered —  does it con stitu te a full solution of the problem  posed  

b y  the paradoxes?

In  the case of geom etry, m athem aticians h a ve recognized since the  

d iscovery of a n on -E uclidean geom etry th a t m ore than  one kind of space  

is possible. A x io m  system s serve to  single out one or another kind of space, 

or certain com m on features of several spaces, for the geom eter to  stu d y. 

A  con tradiction arising in a form al axiom atic theory can m ean sim p ly  

th a t an unrealizable com bination of features has been postulated.

B u t in the case of arithm etic and analysis, theories culm inating in  

set theory, m athem aticians prior to the current epoch of criticism  general

ly  supposed th a t th e y  were dealing w ith  system s of objects, set u p  

gen etically, b y  definitions purporting to establish their structure com 

pletely. T h e theorem s were th ou gh t of as expressing tru ths ab ou t these  

system s, rather than  as propositions ap p lyin g h yp o th e tica lly  to w h a tever  

system s of objects (if any) satisfy  the axiom s. B u t then how  could con

tradictions h a ve arisen in these subjects, unless there is som e defect in  

the logic, som e error in the m ethods of con structing and reasoning abou t  

m ath em atical objects, w hich w e had hitherto trusted?

T o  sa y  th a t now  these subjects should instead be established on an  

axio m atic basis does not of itself dispose of the problem . A fte r  axiom atic  

zation, there m ust still be some level a t w hich we h a ve tru th  and fa lsity. 

If  the axiom atics is inform al, the axiom s m ust be true. If the axiom atics  

is form al, a t least w e m ust believe th a t the theorem s do follow  from  the  

axiom s; and also there m ust be some relationship betw een these results  

and som e a c tu a lity  outside the axiom atic theory, if the m athem aticians' 

a c tiv ity  is not to  reduce to  nonsense. T h e  form ally axiom atized  propo

sitions of m ath em atics cannot con stitu te the w hole of m ath em atics; 

there m ust also be an in tu itiv e ly  understood m athem atics. If w e m ust  

giv e  up our form er belief th a t it com prises .all of arithm etic, analysis and  

set theory, w e shall not be w h o lly  satisfied unless w e learn wherein th a t  

belief w as m istaken, and where now  instead to  draw  a line of separation.

T h e im m ediate problem  of elim inating the paradoxes thus m erges 

w ith  the broader problem  of the foundations of m athem atics and logic.
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W h a t is the nature of m ath em atical tru th  ? W h a t m eaning do m ath em at

ical propositions h ave, and on w hat evidence do th e y  rest ? T h is broad  

problem , or com plex of problem s, exists for philosophy apart from  the  

circum stance th a t paradoxes h a ve arisen in the fringes of m athem atics. 

H istorically, this circum stance has led to  a m ore intensive stu d y of the  

problem  on the part of m athem aticians th an  w ould otherwise h a ve  

been lik e ly ; and the paradoxes ob viou sly im pose conditions on the  

solution of the problem .

Impredicative definition. W h en  a set M  and a particular ob ject m  
are so defined th a t on the one hand m  is a m em ber of M ,  and on the  

other hand the definition of m  depends on M , we sa y  th a t the procedure  

(or the definition of m ,  or the definition of M )  is im pred ica tive . Sim ilarly, 

w hen a property P  is possessed b y  an ob ject m  w hose definition depends  

on P  (here M  is th e set of the objects w hich possess the p rop erty P). 
A n  im predicative definition is circular, at least on its face, as w h a t is 

defined participates in its own definition.

E a ch  of the antinom ies of § 11 in volves an im predicative definition. 

In  (B), the set M of all sets includes as m em bers the sets UM and @M 

defined from  M. T h e im p red icative procedure in the R ussell parado x (C) 

stands out w hen the definition of T  is elaborated thus. W e d ivide th e set 

M of all sets into tw o parts, the first com prising those m em bers w hich  

con tain  them selves, and th e second (which is T )  those w hich do not. 

T h en  we p u t T  (defined b y  this division of M into tw o parts) b a ck  into M, 

to  ask into w hich p art of M it falls. In  the R ich ard  paradox (D), th e  

to ta lity  of expressions in the E n glish  language w hich con stitu te def

initions of a function (real num ber, natural num ber) is taken  as including  

the quoted expression, w hich refers to th a t to ta lity . In  the E pim en ides  

p arado x (E), the to ta lity  of statem en ts is divid ed  in to tw o parts, the true  

and the false statem ents. A  statem en t w hich refers to  this division is 

reckoned as of th e original to ta lity , w hen w e ask w hether it  is true or 

false.

Poincar6 (1905-6,1908) ju d ged  the cause of the paradoxes to lie in these  

im p red icative definitions; and R ussell (1906, 1910) enunciated the sam e  

exp lan atio n  in his vicious circle principle: N o  to ta lity  can con tain  

m em bers definable o n ly  in term s of this to ta lity , or m em bers in vo lvin g or 

presupposing this to ta lity . T h u s it m ight appear th a t w e h a ve a  sufficient 

solution and adequate insight into the paradoxes, exce p t for one cir

cum stance : parts of m ath em atics we w an t to retain, p articu larly  analysis, 

also con tain im predicative definitions.

A n  exam ple is th e definition of u  =  l.u.b. M (§ 9  (A)). U nder the
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D edekin d cu t definition of the real num bers, the set C  of real num bers  

is the set of all sets x  of rationals h avin g three properties (a), (b), (c). 

N ow  this to ta lity  has been divid ed  into tw o parts, M and C  —  M. W e  

define u  as ©M, and then reckon this set ©M as a m em ber of C. T h is  

definition u  =  ©M depends on C  in the general case, since in the general 

case M w ill h ave been defined from  C  as the set of those m em bers of C  

w hich h a ve a certain property P .
One can atte m p t to  defend this im predicative definition b y  inter

preting it, not as defining or creating the real num ber u  for the first tim e  

(in w hich interpretation the definition of the to ta lity  C  of real num bers 

is circular), b u t as o n ly a description w hich singles out the particular  

num ber u  from an already existin g to ta lity  C  of real num bers. B u t the  

sam e argum ent can be used to uphold the im predicative definitions in the  

paradoxes.

Weyl's constructive continuum. T h e im predicative character of 

some of the definitions in analysis has been especially em phasized b y  

W eyl, w ho in his book “ D as K on tin u u m  (The continuum )” (1918) 

undertook to find out how  m uch of analysis could be reconstructed  

w ith ou t im predicative definitions. A  fund of operations can be provided  

for constructing m an y particular categories of irrationals. W e y l w as thus  

able to obtain a fair part of analysis, b u t not the theorem  th a t an ar

bitrary n o n -em p ty set M of real num bers h avin g an upper bound has a  

least upper bound. (Cf. also W e y l 1919.)

There h ave arisen three m ain schools of thou gh t on the foundations of 

m a th em a tics: (i) the logicistic school (Russell and W hitehead, E nglish),

(ii) the intuitionistic school (Brouwer, D u tch ), an d (iii) the form alistic or 

axiom atic school (H ilbert, Germ an). (Som etim es “ logistic”  is used instead  

of “ logicistic” ; b u t “ lo gistic” also has another m eaning § 15.) T h is broad  

classification does not include various other points of view , w hich h ave  

not been as w id e ly  cu ltiva te d  or do not com prise to  a sim ilar degree b oth  

a reconstruction of m ath em atics and a philosophy to  support it.

Logicism. T h e  logicistic thesis is th a t m athem atics is a  branch of 

logic. T h e m ath em atical notions are to be defined in term s of the logical 

notions. T h e theorem s of m athem atics are to  be proved as theorem s of logic.

Leibniz (1666) first conceived of logic as a science containing the ideas 

and principles underlying all other sciences. D edekin d (1888) and F rege  

(1884, 1893, 1903) were engaged in defining m ath em atical notions in  

term s of logical ones, and Peano (1889, 1894-1908) in expressing m ath e

m atical theorem s in a logical sym bolism .



4 4 A CRITIQUE OF MATHEMATICAL REASONING CH. I l l

To illustrate how mathematical notions can be defined from logical 
ones, let us presuppose the Frege-Russell definition of cardinal number 
(§ 3), and the definitions of the cardinal number 0 and of the cardinal 
number n +  1 for any cardinal number n (§ 4). Then a finite cardinal 
(or natural number) can be defined as a cardinal number which possesses 
every property P  such that (1) 0 has the property P  and (2) n +  1 has 
the property P  whenever n has the property P. In brief, a natural number 
is defined as a cardinal number for which mathematical induction holds. 
The viewpoint here is very different from that of §§ 6 and 7, where we 
presupposed an intuitive conception of the natural number sequence, 
and elicited from it the principle that, whenever a particular property 
P  of natural numbers is given such that (1) and (2), then any given natural 
number must have the property P. Here instead we presuppose the totality 
of all properties of cardinal numbers as existing in logic, prior to the def
inition of the natural number sequence. Note that this definition is im- 
predicative, because the property of being a natural number, which it 
defines, belongs to the totality of properties of cardinal numbers, which 
is presupposed in the definition.

To adapt the logicistic construction of mathematics to the situation 
arising from the discovery of the paradoxes, Russell excluded impred
icative definitions by his ramified theory of types (1908, 1910). Roughly, 
this is as follows. The primary objects or individuals (i.e. the given things 
not being subjected to logical analysis) are assigned to one type (say 
type 0), properties of individuals to type 1, properties of properties of 
individuals to type 2, etc.; and no properties are admitted which do not 
fall into one of these logical types (e.g. this puts the properties ‘pred
ic a te ’ and ‘impredicable’ of § 11 outside the pale of logic). A more 
detailed account would describe the admitted types for other objects, 
such as relations and classes. Then, to exclude impredicative definitions 
within a type, the types above type 0 are further separated into orders. 
Thus for type 1, properties defined without mentioning any totality 
belong to order 0, and properties defined using the totality of properties 
of a given order belong to the next higher order. (The logicistic definition 
of natural number now becomes predicative, when the P in it is specified 
to range only over properties of a given order, in which case the property 
of being a natural number is of the next higher order.) But this separation 
into orders makes it impossible to construct the familiar analysis, which 
as we saw above contains impredicative definitions. To escape this 
outcome, Russell postulated his axiom of reducibility, which asserts that to 
any property belonging to an order above the lowest, there is a coextensive



p roperty (i.e. one possessed b y  e x a c tly  the sam e objects) of order 0. I f  o n ly  

definable properties are considered to  exist, then  the axiom  m eans th a t  

to every im predicative definition w ith in  a g iven  ty p e  there is an eq u iva

lent predicative one.

T h e deduction of m ath em atics as a province of logic w as carried ou t on  

this basis, using a logical sym bolism , in the m onum ental “ Principia m ath e

matical of W h itehead and R ussell (three volum es, 1910 -13). T h is  w ork  

has had a great influence on subsequent developm ents in sym b olic logic.

T h is deduction of m athem atics from  logic w as offered as in tu itive  

axiom atics. T h e  axiom s were intended to  be believed, or a t least to  be  

accepted as plausible hypotheses concerning th e  world.

T h e  d ifficu lty  is now : on w h a t grounds shall w e believe in the axiom  

of redu cib ility? If  properties are to  be constructed, th e m atter should b e  

settled on th e basis of constructions, not b y  an axiom . A s  th e authors  

ad m itted  in the introduction to  their second edition (1925), “ T h is axiom  

has a p u rely pragm atic ju stification : it leads to  th e desired results, an d  

to no others [so far as is k n o w n ]. B u t clearly it  is not th e sort of axiom  

w ith  w hich w e can rest c o n te n t/ '

R a m sey 1926 found th a t th e desired results and no others can ap

p aren tly  be obtained w ith o u t the hierarchy of orders (i.e. w ith  a  sim p le  
theory of types). H e classified the know n antinom ies in to tw o sorts, now  

called lo g ic a l' (e.g. the B u rali-F orti, C antor and Russell) and 'epistem o

logical' or 'sem antical' (e.g. the R ich ard and E p im en id es); and he observed  

th a t the logical antinom ies are (apparently) stopped b y  the sim ple  

hierarchy of typ es, and the sem antical ones are (apparently) p reven ted  

from  arising w ith in  th e sym bolic language b y  the absence therein of the  

requisite m eans for referring to  expressions of the sam e language. B u t  

R a m sey's  argum ents to  ju s tify  im predicative definitions w ith in  a ty p e  

entail a conception of the to ta lity  of predicates of the ty p e  as existin g  

in d epen den tly of their con stru ctib ility  or d efin ability. T h is has been  

called “ th eo lo gica l'/ T h u s neither W h iteh ead  and R ussell nor R a m se y  

succeeded in a tta in in g the logicistic goal con stru ctively. (An interesting  

proposal for ju stifyin g  im predicative definitions w ith in  a typ e , b y  L a n g 

ford 1927 and C arnap 193 1-2 , is also not free of difficulties.)

W e y l 1946 says th a t, in the system  of “ Principia m ath em atica", 

“ m ath em atics is no longer founded on logic, b u t on a sort of logician 's  

paradise and he observes th a t one w ho is read y to  believe in this

“ transcendental w orld'' could also accept the system  of axio m atic set 

theory (Zermelo, Fraenkel, etc.), w hich, for the deduction of m athem atics, 

has the a d va n ta g e  of being sim pler in  structure.

§ 12 FIRST INFERENCES FROM THE PARADOXES 4 5
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Logicism  treats the existence of the natural num ber series as an  

hypothesis about the actu al world (‘axiom  of in fin ity ’). A  quite different 

handling of the problem  of in fin ity  is proposed b y  the intuitionists (§ 13) 

and th e form alists (§ 14).

From  b o th  the intuitionistic and the form alistic standpoints, the  

(abstract) natural num ber sequence is more elem entary th an  the notions  

of cardinal num ber and of all properties of cardinal num bers, w hich are 

used in the logicistic characterization of it.

T h e  logicistic thesis can be questioned fin ally  on the ground th a t logic  

already presupposes m ath em atical ideas in its form ulation. In  the in

tu ition istic view , an essential m ath em atical kernel is contained in the  

idea of iteration, w hich m ust be used e.g. in describing the hierarchy of 

ty p e s  or the notion of a deduction from  given  premises.

R ecen t w ork in the logicistic school is th a t of Q uine 1940*. A  critical 

b u t sym p ath etic discussion of the logicistic order of ideas is given  b y  G odel 

1944. In tro d u cto ry treatm ents are provided b y  Russell 1919  and B la ck  1933.

§  13 . I n t u it io n is m . In the 1880 ’s, w hen the m ethods of W eierstrass, 

D ed ekin d  and Cantor were flourishing, K ronecker argued vigorou sly  

th a t their fundam ental definitions were on ly  words, since th e y  do not 

enable one in general to  decide w hether a given  object satisfies the  

definition.

Poincare, w hen he defends m ath em atical induction as an irreducible  

tool of in tu itive m ath em atical reasoning (1902, 1905-6), is also a fore

runner of the m odern in tuitionistic school.

In 1908 Brouwer, in a paper en titled  “ T h e untrustw orthiness of the  

principles of lo gic” , challenged the belief th a t the rules of the classical 

logic, w hich h ave com e dow n to  us essentially from  A ristotle (384— 322  
B .C .), h ave an absolute v a lid ity , independent of the subject m atter to  

w hich th e y  are applied. Q u otin g from W e yl 1946, “ A ccording to his 

vie w  and reading of history, classical logic w as abstracted from  the  

m athem atics of finite sets and their subsets. . . .  F o rgetfu l of this lim ited  

origin, one afterw ards m istook th a t logic for som ething above and prior 

to  all m athem atics, and fin ally  applied it, w ith ou t justification, to the  

m ath em atics of infinite sets.”

T w o  obvious exam ples w ill illustrate th a t principles va lid  in thin king  

ab o u t finite sets do not necessarily carry over to  infinite sets. O ne is the  

principle th a t the whole is greater than  an y proper part, w hen applied  

to  1-1 correspondences betw een sets (§§ 1, 3 , 4 ). A nother is th a t a set of 

natural num bers contains a greatest.
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A  principle of classical logic, va lid  in reasoning about finite sets, w hich  

Brouw er does not accept for infinite sets, is the law  of the excluded m iddle. 

T h e law , in its general form, says for every proposition A , either A or not A, 
N ow  let A be the proposition there exists a member of the set (or domain) D 
having the property P . T h en  not A is equivalent to  every member of D does 
not have the property P , or in other words every member of D has the property 
not-P. T h e law , applied to this A, hence gives either there exists a member 
of D having the property P , or every member of D has the property not-P.

F o r definiteness, let us sp ecify  P  to  be a prop erty such th at, for a n y  

given m em ber of D ,  w e can determ ine w hether th a t m em ber has the  

property P  or does not.

N ow  suppose D is a finite set. T h en  we could exam ine every  m em ber of 

D in turn, and thus either find a m em ber h avin g the p roperty P , or ve rify  

th a t all m em bers h ave the p roperty not-P. There m ight be practical dif

ficulties, e.g. w hen D is a v e ry  large set h avin g sa y  a m illion m em bers, 

or even for a sm all D w hen the determ ination w hether or not a given  

m em ber has the property P  m a y  be tedious. B u t the p ossibility  of com 

pleting the search exists in principle. I t  is this possibility w hich for B rou w 

er m akes the law  of the excluded m iddle a va lid  principle for reasoning  

w ith  finite sets D and properties P  of the kind specified.

For an infinite set D, the situation is fu n d am en tally  different. I t  is no 

longer possible in principle to  search through the entire set D.
M oreover in this situation th e law  is not saved  for Brouw er b y  sub

stitu tin g, for the im possible search through all the m em bers of the  

infinite set Dt a  m ath em atical solution of the problem  posed. W e m a y  in 

some cases, i.e. for some sets D and properties P , succeed in finding a  

m em ber of D h a vin g the prop erty P ; and in other cases, succeed in show 

ing b y  m ath em atical reasoning th a t every m em ber of D has the p roperty  

not-P, e.g. b y  deducing a con tradiction from  the assum ption th a t an  

arbitrary (i.e. unspecified) m em ber of D has the p roperty P . (An exam ple  

for the second kind of solution is w hen D is the set of all the ordered pairs 

(m, n) of positive integers, and P  is the p roperty of a pair (m, n) th a t  

m l =  2n 2. T h e result is then P yth ago ras' discovery th a t y/ 2  is irrational.) 

B u t w e h ave no ground for affirm ing the possibility of obtaining either  

one or the other of these kinds of solutions in every case.

A n  exam ple from  m odern m ath em atical history is afforded b y  F erm a t's  

“ last theorem ", w hich asserts th a t the equation xn +  yn =  zn has no 

solution in positive integers x, y, 2, n w ith  n >  2. (For n — 2 , there are 

triples of p ositive integers, called P yth agorean  num bers, w hich satisfy, 

e.g. x =  3 , y — 4 , z =  5 or x =  5 , y =  12, z =  13.) H ere D is the set of
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all ordered quadruples (x, y , z f n) of positive integers w ith  n  >  2, and  

P  is the p rop erty of a quadruple (x, y, z, w) th a t x n +  y n — z n. A b o u t 1637 
F erm a t w rote on the m argin of his co p y  of B a c h e t’s “ D io p h a n tu s”  th a t  

he h ad  discovered a tru ly  m arvellous dem onstration of this “ theorem ”  

w hich  the m argin w as too narrow to  contain. D esp ite an im m ense e x 

penditure of effort, no one since then has succeeded in p rovin g or dis

pro vin g th e  alleged “ theorem ” ; and m oreover w e lack  th e kn ow ledge of 

a n y  system a tic m ethod, th e pursuit of w hich m ust in principle u ltim a te ly  

lead  to  a determ ination as to  its tru th  or falsity. (Cf. V an d ive r 1946 for 

details.)

B rouw er’s non -acceptance of the law  of the excluded m iddle for in

fin ite sets D  does not rest on the failure of m athem aticians thus far to  

h a v e  solved this particu lar problem , or a n y  other particular problem . T o  

m eet his objection, one w ould h a ve to  provide a m ethod ad equ ate in  

principle for solvin g not o n ly  all the outstanding unsolved m ath em atical 

problem s, b u t a n y  others th a t m igh t ever be proposed in th e future. H o w  

lik e ly  it is th a t such a m ethod w ill be found, w e leave for th e tim e being  

to  th e reader to  speculate. L a te r in the book w e shall return to  the  

question (§ 60).

T h e  fam iliar m athem atics, w ith  its m ethods and logic, as developed  

prior to  B rou w er’s critique or disregarding it, w e call c la ss ica l; the  

m athem atics, m ethods or logic w hich Brouw er and his school allow , w e  

call in tu itio n is tic .  T h e  classical includes parts w hich are in tuition istic and  

parts w hich are non-intuitionistic.

T h e  n on -intuitionistic m ath em atics w hich culm inated in th e theories 

of W eierstrass, D edekin d and Cantor, and the in tuition istic m ath em atics  

of Brouw er, differ essentially in their view  of th e infinite. In  the former, 

th e  infinite is treated  as actual or com pleted  or extended  or existen tia l. A n  

in fin ite set is regarded as existin g as a com pleted to ta lity , prior to  or in

d ep en d en tly  of a n y  hum an process of generation or construction, an d as 

thou gh  it could be spread out com p letely  for our inspection. In  the latter, 

the infin ite is treated  o n ly  as po ten tia l  or becom ing  or constructive. T h e  

recognition of this distinction, in the case of infinite m agnitudes, goes 

b a ck  to  Gauss, w ho in 1831 w rote, “ I protest . . .  against the use of an  

infinite m agn itu d e as som ething com pleted, w hich is never perm issible  

in  m a th em atics.” (W erke V I I I  p. 2 1 6 .)

A ccord in g to  W e y l 1946, “ Brouw er m ade it clear, as I th in k b eyo n d  

a n y  doubt, th a t there is no evidence supporting the belief in the existen tial

character of the to ta lity  of all natural num bers ___T h e  sequence of

num bers w hich grows b eyo n d  a n y  stage alread y reached b y  passing to  the
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n ext num ber, is a m anifold of possibilities open tow ards in fin ity ; it  

remains forever in the statu s of creation, b u t is not a closed realm  of 

things existin g in them selves. T h a t we b lin d ly  con verted one into the  

other is the true source of our difficulties, including the antinom ies —  a  

source of m ore fundam ental nature than  R u ssell’s vicious circle principle  

indicated. Brouw er opened our eyes and m ade us see how  far classical 

m athem atics, nourished b y  a belief in the 'absolu te' th a t transcends all 

hum an possibilities of realization, goes b eyon d  such statem ents as can  

claim  real m eaning and tru th  founded on eviden ce.”

B rouw er’s criticism  of the classical logic as applied to an infinite set D 
(say the set of the natural numbers) arises from  this standpoint respecting  

infin ity. W e see this clearly b y  considering the m eanings w hich the in- 

tuition ist attach es to  various forms of statem ents.

A  gen erality statem en t all natural numbers n have the property P , or 

b riefly  for all ny P(n), is understood b y  the in tuitionist as an h yp o th etica l  

assertion to the effect th a t, if a n y  particular natural num ber n were given  

to us, w e could be sure th a t th a t num ber n has the p roperty P. T h is is a  

m eaning w hich does not require us to tak e into view  the classical com 

pleted in fin ity  of the natural num bers.

M athem atical induction is an exam ple of an in tuition istic m ethod for 

proving gen erality propositions about the natural num bers. A  proof b y  

induction of the proposition for all n, P(n) shows th a t a n y  g iven  n w ould  

h ave to h a ve the prop erty P ,  b y  reasoning w hich uses on ly the num bers 

from 0  u p  to n (§ 7 ). O f course, for a particular proof b y  induction to be  

intuitionistic, also the reasonings used w ith in  its basis and induction step  

m ust be intuitionistic.

A n  existence statem en t there exists a natural number n having the property 
P , or b riefly  there exists an n such that P(n), has its  in tuition istic m eaning  

as a partial com m unication (or abstract) of a statem en t g iv in g  a p ar

ticular exam ple of a natural num ber n w hich has the p rop erty P ,  or a t  

least g iv in g a m ethod b y  w hich in principle one could find such an  

exam ple.

Therefore an intuitionistic proof of the proposition there exists an n 
such that P(n) m ust be constructive in the follow ing (strict) sense. T h e  

proof a ctu a lly  exh ibits ail Exam ple of an n such th a t P(n), or at least in

dicates a m eth od b y  w hich one could in principle find such an exam ple.

In classical m ath em atics there occur non-constructive or indirect 
existence proofs, w hich the intuitionists do not accept. F or exam ple, to  

prove there exists an n such that P(n), the classical m ath em atician  m a y  

deduce a con tradiction from  the assum ption for all n, not P(n). U nder
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b o th  the classical and th e intuitionistic logic, b y  reductio ad absurdum  

th is gives not for all nt not P(w). T h e  classical logic allow s this result to  

b e transform ed into there exists an n such that P (n ),  b u t not (in general) 

the intuitionistic. Such a classical existence proof leaves us no nearer 

th an  before the proof w as given  to h avin g an exam ple of a num ber n such  

th a t P(n) (though som etim es w e m a y  afterw ards be able to  discover one 

b y  another m ethod). T h e intuitionist refrains from  accep tin g such an 

existence proof, because its conclusion there exists an n such that P(n) 
can h ave no m eaning for him  other than  as a reference to  an exam ple of 

a num ber n such th a t P(n), and this exam ple has not been produced. T h e  

classical m eaning, th a t som ewhere in the com pleted infinite to ta lity  of 

the natural num bers there occurs an n such th a t P(n), is not availab le to  

him , since he does not conceive the natural num beis as a com pleted  

to ta lity .

A s another exam ple of a non -con structive existence proof, suppose it 

has been shown for a certain P , b y  intuitionistic m ethods, th a t if F erm a t's  

“ last theorem " is true, then the num ber 5013  has the property P , and also 

th a t if F e r m a t’s “ last theorem " is false, then 10 has the property P .  

C lassically  this suffices to dem onstrate the existence of a num ber n such  

th a t P(n). B u t w ith  the problem  of the “ last theorem " unsolved, Brouw er  

w ould disallow  such an existence proof, because no exam ple has been  

given. W e do not kn ow  th a t 5013  is an exam ple, nor do w e know  th a t  

10 is an exam ple, nor do w e know  a n y procedure w hich w ould in principle  

(i.e. apart from  practical lim itations on the length  of procedures we can  

carry out) lead us to a particular num ber w hich w e could be sure is an 

exam ple. B rouw er w ould m erely accept w h at has been given  as proving  

the im plication (or conditional statem ent) if F  or not F , then there exists an 
n such that P(n), where F is the statem ent for all x ,y , z >  0 and n >  2, 

xn +  yn ¥= £n- T h e classical m athem atician, b y  his law  of the excluded  

m iddle, has the prem ise F  or not F  of this im plication, and so he can infer 

its conclusion there exists an n such that P(n). B u t in the present state of 

know ledge, Brouw er does not accept the prem ise F  or not F  as known.

A s appears in this exam ple, intuitionistic m ethods are to be dis

tinguished from  non -intuitionistic ones in the case of definitions as w ell 

as in the case of proofs. In  the present state  of our know ledge, Brouw er  

does not accept the number n which is equal to 5013  if F y and equal to 10 
if not F  a3 a va lid  definition of a natural num ber n.

A  disjunction A or B con stitutes for the in tuitionist an incom plete  

com m unication of a statem en t telling us th a t A holds or th a t B holds, 

or a t least givin g a m ethod b y  w hich we can choose from  A and B one
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w hich holds. A  conjunction A  an d B  m eans th a t b o th  A  and B  hold. A n  

im plication A  im p lie s  B  (or i f  A , then B ) expresses th a t B  follows from  A  
b y  in tu ition istic reasoning, or m ore ex p licitly  th a t one possesses a  

m ethod w hich, from a n y proof of A ,  w ould procure a proof of B ;  and a  

negation not A  (or A  is  absurd) th a t a contradiction B  an d  not B  follows 

from A  b y  intuitionistic reasoning, or more ex p licitly  th a t one possesses 

a m ethod w hich, from  a n y proof of A , w ould procure a proof of a contra

diction B  an d  not B  (or of a statem en t already know n to be absurd, such  

as 1 = 0 ). A d d itio n al com m ents on these intuitionistic m eanings w ill be  

given in § 8 2 . See N o te 1 on p. 6 5 .

Q u otin g from  H e y tin g  1934, “ A ccordin g to  Brouwer, m athem atics  

is identical w ith  the exact p art of our thinking. . . .  no science, in par

ticular not philosophy or logic, can be a presupposition for m athem atics. 

It  w ould be circular to a p p ly  a n y  philosophical or logical principles as 

m eans of proof, since m ath em atical conceptions are already presupposed  

in the form ulation of such principles.” There rem ains for m athem atics  

“ no other source than an intuition, w hich places its concepts and in

ferences before our eyes as im m ediately  clear.”  T h is intuition “ is nothing  

other than  the fa cu lty  of considering separately particular concepts and  

inferences w hich occur regularly in ordinary th in k in g.”  T h e idea of the  

natural num ber series can be an alyzed  as resting on the p ossibility, first 

of considering an object or experience as given  to  us separately from  the  

rest of the world, second of distinguishing one such from another, and  

third of im agining an un lim ited repetition of the second process. “ In  the  

intuitionistic m ath em atics, one does not draw  inferences according to  

fixed norms, w hich can be collected in a logic, b u t each single inference is 

im m ediately tested  on its eviden ce.”  B u t also “ There are general 

rules, b y  w hich from  given  m ath em atical theorem s new  theorem s can be  

form ed in an in tu itiv e ly  clear w a y ; the theory of these connections can  

be treated  in a ‘m ath em atical logic’ , w hich is then a branch of m ath e

m atics and is not sensibly applied outside of m ath em atics.”

W e tu rn  now  to  th e question: H ow  large a p art do the non -intui- 

tionistic m ethods p la y  in the classical m athem atics?

T h e fa ct th a t n on -intuitionistic m ethods occur in classical elem entary  

num ber theory is significant, since it  enables elem entary num ber theory  

to serve as the first and sim plest testin g ground in research on founda

tions grow ing out of the in tu ition istic and form alistic thinking. W e  

shall be alm ost w h o lly  concerned w ith  elem entary num ber theory in  

this book.

A c tu a lly , in the existin g b o d y  of elem entary num ber theory, the



5 2 A CRITIQUE OF MATHEMATICAL REASONING CH. Ill

non-intuitionistic m ethods do not p la y  a large part. M ost non -con structive  

existence proofs can be replaced b y  con structive ones.

O n the other hand, in an alysis (and still more transcendental branches  

of m athem atics) the non -intuitionistic m ethods of definition and proof 

perm eate th e whole m ethodology. T h e real num bers in the D edekin d cu t  

representation are infinite sets of rationals (§ 9). T h u s to treat them  as 

objects in the usual w a y , w e are already using the com pleted infinite. 

In  particular, w e do a p p ly  the law  of the exclu d ed  m iddle to these sets, 

in  connection w ith  the sim plest definitions of the subject. F or exam ple, 

to  show th a t for a n y  tw o real num bers x  and y , either x  <  y  or x  =  y  

or x  >  y , w e use it  tw ice, thu s: E ith er there exists a ration al r  in y  

w hich does not belong to x ,  or all rationals in y  belong to  x ;  and sim ilarly  

interchanging x  and y . In  the im predicative definition of l.u.b. M (§ 9
(A ) , § 12), w e use the to ta lity  of the real num bers in th e sam e w ay.  

A n other instance of non -con structive reasoning occurs in  the proof of

(B) § 9 , where w e assum ed the right to  choose an elem ent a n from  a set 

Mn, sim ultaneously for in fin itely  m a n y values of n , w ith ou t g iv in g  a n y  

p roperty to  determ ine w hich elem ent is chosen. (This is a  case of the  

‘axiom  of choice', first noticed as an assum ption b y  Zerm elo 1904. W e  

used it also for Theorem  B  § 4 .)

A lth o u gh  the com pleted infinite has been bann ed for m agnitudes (as 

Gauss called upon us to  do), it reappears in full force for collections. 

A s H ilbert and B e m a y s  describe th e situation in their “ G rundlagen der 

M ath em atik  (Foundations of m ath em atics)", vol. 1 (1934), p. 4 1 , “ T h e  

. . .  arithm etization of an alysis is not w ith ou t a residue left over, as certain  

system atic fundam ental conceptions are introduced w hich do not belong  

to  the dom ain of in tu itive  arith m etical thin king. T h e  insight w hich has  

given  us the rigorous foundation of analysis consists in th is : th a t these few  

fundam ental assum ptions do suffice for buildin g up the th eory of m agn i

tudes as a theory of sets of integers."

T h e  n ext question i s : W h a t kind of a  m athem atics can be b u ilt w ith in  

the intuitionistic restrictions ? If  th e existin g classical m ath em atics could  

be rebuilt w ithin the intuitionistic restrictions, w ith o u t too great increase 

in the labor required and too great sacrifices in the results achieved, the  

problem  of its foundations w ould appear to  be solved.

T h e in tu ition ists h ave created a w hole new  m athem atics, including  

a theory o f 'th e  continuum  and a set theory (cf. H e y tin g  1934). T h is  

m ath em atics em ploys concepts and m akes distinctions not found in the  

classical m ath em atics; and it  is v e r y  a ttra ctive  on its own account. A s  

a su b stitu te for classical m ath em atics it has turned out to  be less powerful,
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and in m an y w ays more com plicated to develop. F or exam ple, in B rouw er's  

theory of the continuum , we cannot affirm  th a t a n y  tw o real num bers 

a and b are either equal or unequal. Our know ledge about the e q u a lity  or 

in eq u ality  of a  and b can be more or less specific. B y  a b, it is m eant 

th at a =  b leads to a contradiction, w hile a #  b is a stronger kind of 

in equality w hich m eans th a t one can give  an exam ple of a  rational num ber 

w hich separates a  and b. O f course a  #  b im plies a ^  b. B u t there are 

pairs of real num bers a  and b for w hich it is not know n th a t either a  =  b 
or a ■ =£ b (or a #  b). I t  is clear th a t such com plications replace the clas

sical theory of the continuum  b y  som ething m uch less perspicuous in 

form.

D espite this, the possibility of an intuitionistic reconstruction of 

classical m athem atics in a different w a y  in vo lvin g reinterpretation (re

ce n tly  undertaken) is not to be ruled out (cf. § 81).

§ 14. Formalism. Brouw er has revealed w hat the genetic or con

structive ten d en cy in volves in its u ltim ate refin em en t; H ilbert does 

the sam e for the axiom atic or existential (§ 8). T h e axiom atic m ethod  

had already been sharpened from the m aterial axiom atics of E u clid  to  

the form al axiom atics of H ilb e rt’s “ G rundlagen der G eom etrie” (1899). 

Form alism  is the result of a further step, to  m eet the crisis caused b y  the  

paradoxes and the challenge to  classical m athem atics b y  Brouw er and  

W eyl. T h is step w as forecasted b y  H ilbert in 1904, and seriously under

taken b y  him  and his collaborators B ernays, Ackerm ann, vo n  N eum ann  

and others since 1920  (cf. B ern ays 1935a, W e yl 1944).

H ilbert conceded th a t the propositions of classical m athem atics w hich  

in volve the com pleted infinite go beyon d  in tu itive evidence. B u t he re

fused to  follow  B rouw er in g ivin g up classical m athem atics on this account.

T o  salvage classical m athem atics in the face of the in tu ition istic criti

cism, he proposed a program  w hich w e can state prelim inarily as fo llo w s: 

Classical m athem atics shall be form ulated as a form al axiom atic theory, 

and this theory shall be proved to  be consistent, i.e. free from  con tra

diction.

Prior to this proposal of H ilbert's, the m ethod used in consistency proofs 

for axiom atic theories, especially in H ilb ert's earlier axiom atic thinking, 

was to  giv e  a 'm odel'. A  m odel for an axiom atic theory is sim ply a system  

of objects, chosen from  some other theory and satisfyin g the axiom s  

(§ 8). T h a t is, to each object or prim itive notion of the axiom atic theory, 

an object or notion of the other theory is correlated, in such a w a y  th a t  

the axiom s becom e (or correspond to) theorem s of the other theory.
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If  this other theory is consistent, then the axiom atic th eory m ust be. 

F o r suppose th a t, in th e axiom atic theory, a con tradiction were deducible  

from  th e axiom s. T h en , in the other theory, by corresponding inferences 

ab o u t th e o b jects con stitu tin g the m odel, a contradiction w ould be de

ducible from  th e corresponding theorem s. 4

In  a fam ous early exam ple, B eltram i (1868) showed th a t the lines in  

the plane n on -E uclidean geom etry of L o b a tc h e v sk y  and B o ly a i (the plane  

hyperbolic geom etry) can be represented b y  the geodesics on a surface of 

con stant n egative curvature in E u clidean  space. T h u s the plane h yp er

bolic geom etry is consistent, if the E u clidean  geom etry is consistent. 

(Another m odel for the sam e w as given  b y  K lein  (1871) in term s of plane  

p ro jective geo m etry w ith  Cayley's m etric (1859); this can be construed  

as a model in the E u clidean  plane. Cf. Young i g n  Lectures II and III.)

T h e  a n a lytic  geo m etry of D escartes (1619), i.e. the use of coordinates  

to  represent geom etrical objects, constitutes a general m eth od for 

establishing the con sistency of geom etric theories on the basis of analysis,

i.e. the th eo ry of the real numbers.

C onsistency proofs b y  th e m ethod of a  m odel are relative. T h e  theory  

for w hich a m odel is set u p  is consistent, if th a t from  w hich the m odel is 

tak en  is consistent.

O n ly  w hen the la tter is unim peachable does the m odel give  us an  

absolute proof of consistency. V eblen  and B u ssey 1906 achieve absolute  

proofs of con sistency for certain rudim entary p rojective geom etries b y  

settin g up m odels using on ly  a finite (sic!) class of objects to represent 

the points (cf. Y o u n g  1 9 1 1  L ectures I V  and V).

F or proving ab solu tely  the consistency of classical num ber theory, 

of analysis, an d of set theory (suitably axiom atized), the m ethod of a  

m odel offers no hope. N o m ath em atical source is apparent for a m odel 

w hich w ould not m erely ta k e us b a ck  to  one of the theories previou sly  

reduced b y  the m ethod of a m odel to  these.

T h e  im possibility of draw ing upon the perceptual or p hysical world  

for a m odel is argued in H ilbert and B ern ays 1934 pp. 15— 17. T h e y  

illustrate it b y  considering Zen o's first paradox (fifth cen tu ry B .C .), 

according to  w hich a runner cannot run a course in a finite tim e. F o r  

before he can do so, he m ust run the first half, then the n ext quarter, 

then the n e x t eight, and so on. B u t  this w ould require him  to  com plete  

an infin ite num ber of acts. T h e  usual solution of the paradox consists  

in  observing th a t the infin ite series of the tim e intervals required to run  

the successive segm ents converges. “ A c tu a lly  there is also a m uch more 

radical solution of the paradox. T h is consists in the consideration th a t
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we are b y  no m eans obliged to believe th a t the m ath em atical space-tim e  

representation of m otion is p h ysica lly  significant for arbitrarily sm all 

space and tim e in te rv a ls; b u t rather h ave every  basis to suppose th a t th a t  

m ath em atical m odel extrapolates the facts of a certain realm  of experience, 

nam ely the m otions w ithin the orders of m agnitude hitherto accessible to  

our observation, in the sense of a sim ple concept construction, sim ilarly  

to the w a y  the m echanics of con tin ua com pletes an extrapolation  in w hich  

a continuous filling of the space w ith  m atter is assum ed . . . .  T h e situation  

is sim ilar in all cases where one believes it possible to exh ib it d irectly  

an [actual] in fin ity  as given  through experience or perception . . . .  

Closer exam ination then shows th a t an in fin ity  is a ctu a lly  not given  

to us at all, b u t is first interpolated or extrap olated  through an in tel

lectual process/'

Therefore, if con sistency is to be proved for num ber theory (including  

its n on -intuitionistic portions), for analysis, etc., it m ust be b y  another  

m ethod. I t  is H ilb ert’s con tribution now to h a ve  con ceived a new  direct 

approach, and to  h ave recognized w h a t it in volves for the axiom atization . 

This direct m ethod is im plicit in the m eaning of con sistency (at least as 

we now  thin k of it), nam ely th a t no logical con tradiction (a proposition  

A  and its negation not A  b o th  being theorems) can arise in the theory  

deduced from  the axiom s. T h u s to prove the con sistency of a th eory  

directly, one should prove a proposition abou t the th eory itself, i.e. 

specifically abou t all possible proofs of theorem s in the theory. T h e  

m ath em atical theory whose con sisten cy it is hoped to prove then b e

comes itself the o b ject of a m ath em atical stu d y, w hich H ilbert calls 

"m e tam ath e m a tics’ ’ or "proof th e o ry ’ ’ . H ow  this is possible, and w hat  

the m ethods of the stu d y  m a y  be, we shall exam ine in the n ext section.

M eanw hile let us consider further the im port of H ilb ert’s proposal. 

H ilbert (1926, 1928) draws a distin ction  betw een 'real’ and 'id eal’ sta te 

m ents in classical m ath em atics, in essence as follows. T h e real statem ents  
are those w hich are being used as h avin g an in tu itive  m e a n in g ; the idea l 
statem ents  are those w hich are not being so used. T h e statem en ts which  

correspond to the treatm en t of the infinite as actu al are ideal. Classical 

m athem atics adjoins the ideal statem en ts to the real, in order to retain  

the sim ple rules of the A ristotelian  logic in reasoning about infinite sets.

T h e addition of 'ideal elem ents’ to  a system  to com plete its structure  

and sim plify the theory of the system  is a com m on and fruitful device in 

m odern m athem atics. F or exam ple, in E u clid ean  plane geom etry tw o  

distinct lines intersect in a unique point, exce p t w hen the lines are parallel. 

T o  rem ove this exception, Poncelet in his p rojective geom etry ( 1822)
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introduced a p o in t a t in f in ity  on each of th e original lines, such th a t par

allel lines h a v e  th e  sam e point a t in fin ity  and non-parallel lines h a ve  

different points a t in fin ity. T h e  to ta lity  of these points a t in fin ity  m ake  

u p a  lin e  a t in f in ity .  A s  a line through a finite point of the p rojective plane  

rotates, its point a t in fin ity  traces out th e line a t in fin ity. B y  this device, 

th e  relationships of incidence betw een points and lines is sim plified. T w o  

distin ct points determ ine a unique line (which is ‘on' b o th  points, i.e. 

through b o th  of w hich  the line passes); an d tw o distin ct lines determ ine  

a  unique poin t (which is on b o th  lines). T h ese tw o  propositions are duals  
of each other. There is a  general principle, called th e p r in c ip le  of d u a lity  
for plane p ro jective geom etry, w hich says th a t to  each theorem  of the  

su b ject th e statem en t ob tain ed  from  it b y  interchanging the words 

*'p o in t"  an d “ lin e” is also a theorem .

A s  other exam ples of th e ad d ition  of elem ents to  a  previou sly con

stitu te d  system  of elem ents to  serve som e theoretical purpose, w e m a y  

ta k e  th e  successive enlargem ents of the num ber system , startin g sa y  

w ith  the n atural num bers, then adjoinin g th e n egative integers, then the  

fractions, then the irrationals, and fin ally  the im agin a ry  num bers. T h e  

ad ju n ction  of the n eg ative  integers sim plifies the th eory of addition b y  

m akin g th e inverse operation (subtraction) alw ays possible; etc.

H ilb ert's  problem  is cru dely analogous to  the problem  w hich existed  

w hen im agin ary num bers first cam e into use. A s  th e y  were then not 

clearly understood, one m igh t h ave proposed to  ju stify  their use to  

doubters b y  p rovin g th a t, if im aginaries are used according to prescribed  

rules to  derive a result expressed in term s of reals only, then th a t result 

m ust be correct. O f course, this kind of ju stification  for im aginaries rel

a tiv e  to reals is not needed now, since their interpretation b y  points in  

the plane (W essel 1799) and b y  pairs of reals (Gauss 1831) h ave becom e  

know n.

T h is a n alo gy  suggests ask in g w hether, if a  proof of consistency in  

H ilb ert's  sense should succeed for a portion of classical m ath em atics  

com prising b o th  real an d ideal statem ents, w e could then  infer th a t th e  

real statem en ts p roved therein b y  an excursion through the ideal are true  

in tu itio n istica lly  ? T h e exten t to  w hich w e could w ill be discussed later  

(end § 4 2 , end § 82 ); it w ill depend on w h at reasonings are covered b y  the  

con sisten cy proof, and w h a t class of statem en ts is being taken  as real. 

T o  this exten t, success in H ilb ert's program  w ould g iv e  to classical m ath e

m atics a role as a m ethod of proof for the intuitionists.

A  sharp con troversy arose betw een Brouw er and H ilbert in the early  

years after H ilb ert's program  took shape. Brouw er 1923 said, “ A n  incorrect
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theory w hich is not stopped b y  a contradiction is none the less incorrect, 

ju st as a crim inal p o licy unchecked b y  a reprim anding court is none the  

less crim inal.”  H ilbert 1928 retorted, “ T o  ta k e the law  of the exclu ded  

m iddle a w a y  from  the m ath em atician  w ould be like d en yin g the astrono

mer the telescope or the boxer the use of his fists.”

A ccordin g to  Brouw er (1928) and H e y tin g  (1931-2, 1934), agreem ent 

betw een intuitionism  and form alism  is possible, provided (as in vo n  

N eum ann 1931-2) the form alist refrains from  attrib u tin g to  th e  non- 

intuitionistic classical m athem atics a m aterial m eaning or con ten t, in  

term s of w hich the con sisten cy proof justifies it. Such a ju stification , 

says Brouw er, “ contains a viciou s circle, because this ju stification  depends  

on the (m aterial (inhaltlichen)) correctness of the proposition th a t from  

the con sistency of a statem ent the correctness of th a t statem en t follows,

i.e. on the (m aterial) correctness of the law  of the excluded m iddle” , 

which is part of the form alistic m ath em atics th a t is to be justified.

T h e delicate point in the form alistic position is to  explain how  the non- 

intuitionistic classical m athem atics is significant, after h a vin g in itia lly  

agreed w ith  the intuitionists th a t its  theorem s la ck  a real m eaning in  

term s of w hich th e y  are true.

Classical m ath em atics con structs theories in quite a different sense 

from intuitionistic m athem atics. H ilb ert 1928 says, “ I t  is b y  no m eans  

reasonable to set u p in general th e requirem ent th a t each separate form ula

should be interpretable tak en  b y  i t s e l f ___”  In  theoretical p hysics “ o n ly

certain com binations and consequences of the p h ysical law s can be  

checked exp erim en tally  —  likew ise in m y  proof th eory o n ly  th e real 

statem ents are im m ediately  capable of a  verification ” .

A  th eo ry in classical m ath em atics can b e regarded as a sim ple and  

elegant system a tizin g schem e, b y  w hich a v a r ie ty  of (presum ably) true  

real statem ents, previou sly appearing as heterogeneous and unrelated, 

and often previou sly unknow n, are com prised as consequences of th e  

ideal theorem s in the theory. (Cf. vo n  N eum ann 1947, E in stein  1944

p. 2 8 8 .)

T h e exam ple of a n a lytic  num ber th eory illustrates th a t theorem s of 

analysis (lacking a m eaning accep table to  the intuitionist) often en tail 

theorem s of num ber theory, w hich are m eaningful in tu ition istically, and  

for w hich either no n o n -an alytic proofs h a ve been discovered or o n ly  

m uch m ore com plicated ones.

F o r a th eo ry to  be va lu ab le in this w a y, the real statem en ts com 

prised m ust be true. F orm erly m athem atician s supposed this to  be  

guaranteed b y  the tru th  of th e  theorem s w hich w e now  recognize as
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id e a l; now  w e hope to guarantee it instead b y  a con sistency proof.

B y  easy stages of transition, the theorizing m a y  clim b to  higher levels, 

from  w hich it is o n ly v e ry  in directly concerned w ith  system atizin g the  

real propositions a t the original level, b u t rather w ith  system atizin g ideal 

propositions a t interm ediate levels. In this connection it is of interest 

w hether successively higher theoretical constructions a ctu a lly  add to the  

b o d y  of real propositions of the original sort w hich are com prised, as 

w ell as w hether th e y  do a ctu a lly  perm it substantial sim plifications of the  

proofs of those previously com prised. (Cf. end § 4 2 .)

It  is deb atab le how  high a theoretical structure is justified  for system 

atizin g a given  sort of real truths, e.g. w hether classical analysis is ju stified  

as a system atizatio n  of num ber-theoretic truths. H istorically  a n a lytic  

num ber theory was a b y-p rod u ct, and the actu al im petus to  the de

velopm ent of classical an alysis cam e from  the sciences, including  

geo m etry in its p h ysical application.

H ilbert and B ern ays 1934 em phasize th a t in the sciences “ we h a ve  

to do . . .  predom inately w ith  theories w hich do not reproduce the actu al  

state of affairs com pletely, b u t represent a s im p lify in g  id ea liza tio n  of 

the state of affairs and h ave their m eaning therein” (pp. 2— 3 ). A n alysis  

serves as a “ form ation of ideas (Ideenbildung)” , in term s of w hich those  

theories can be expressed, or to w hich th e y  can be reduced b y  the m ethod  

of m odels. A  proof of the con sistency of analysis w ould assure us of the  

con sistency of the idealizations effected in those theories (p. 19).

W e y l (1926, 1928, 1931) observes th a t in theoretical p hysics it is not 

the separate statem en ts w hich are confronted w ith  experience, b u t th e  

theoretical system  as a whole. W h a t is afforded here is not a true de

scription of w h a t is given, b u t theoretical, pu rely sym bolic construction  

of the world, (Also he argues th a t our theoretical interest is not e x 

clu sively  or even  prim arily in the 'real statem en ts’ , e.g. th a t this pointer  

coincides w ith  th a t scale division, b u t rather in the ideal suppositions, 

e.g. the supposition of the electron as a universal electrical quantum .) 

I t  is a deep philosophical question w h at the ‘tru th ’ or o b je c tiv ity  is 

w hich pertains to this theoretical w orld con struction going far b eyo n d  

the given . T h is is closely connected w ith  the question, w h at m o tivates  

us to  tak e as basis the particu lar axiom  system  chosen. F or this con

sistency is a necessary b u t not sufficient argum ent. W hen m ath em atics  

is taken  for itself alone, he w ould restrict him self w ith  Brouw er to the  

in tu itiv e  tru th s; he does not find a sufficient m otive to go further. B u t  

w hen m ath em atics is m erged com pletely w ith  physics in the process of 

theoretical world construction, he sides w ith  H ilbert.
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A  verdict on the form alists’ thin kin g w ill depend p a rtly  on the fruits  

of the program  th e y  propose. T h is program  calls for a subject called  

“ m etam ath em atics” , in w hich th e y  aim  in particular to establish the  

consistency of classical m athem atics.

W e note in advance th a t m etam ath em atics w ill be found to provide  

a rigorous m ath em atical technique for in vestigatin g a great v a rie ty  of 

foundation problem s for m athem atics and logic, am ong which the con

sistency problem  is o n ly  one. For exam ple, m etam ath em atical m ethods  

are applied now in studies of system atizatio n s of m ath em atics arising  

from  the logicistic and intuitionistic schools, as w ell as from  H ilb ert’s. 

(Inversely, m etam ath em atics owes m uch for its inception to the logicistic  

and intuitionistic investigations.) Our aim  in the rest of this book is not 

to reach a verdict supporting or rejecting the form alistic view poin t in 

a n y preassigned versio n ; b u t to see w h at the m etam ath em atical m ethod  

consists in, and to learn some of the things th a t h ave been discovered in 

pursuing it.

§  15 . F o r m a liz a t io n  o f a  th e o r y . W e are now  about to  undertake  

a program  w hich m akes a m ath em atical theory itself the ob ject of ex a ct  

m ath em atical stu dy. In  a m ath em atical theory, we stu d y  a system  of 

m ath em atical objects. H ow  can a m ath em atical theory itself be an ob ject  

for m ath em atical stu d y  ?

T h e result of the m ath em atician ’s a c tiv ity  is em bodied in propositions, 

the asserted propositions or theorem s of the given  m ath em atical theory. 

W e cannot hope to stu d y in exact term s w h a t is in the m ath em aticia n ’s 

m ind, b u t we can con tem plate the system  of these propositions.

T h e system  of these propositions m ust be m ade entirely exp licit. N o t  

all of the propositions can be w ritten down, b u t rather the disciple and  

student of the theory should be told all the conditions w hich determ ine  

w h at propositions hold in the theory.

A s the first step, the propositions of the th eory should be arranged  

d ed u ctively, some of them , from  w hich the others are logically  deducible, 

being specified as the axiom s (or postulates).

This step will not be finished u n til all the properties of the undefined or 

technical term s of the theory w hich m atter for the deduction of the  

theorem s h ave been expressed b y  axiom s. T h en  it should be possible to  

perform  the deductions treatin g the technical term s as words in them selves  

w ithout m eaning. F or to sa y  th a t th e y  h a ve m eanings necessary to  the  

deduction of the theorem s, other than  w hat th e y  derive from  the axiom s  

w hich govern them , am ounts to saying th a t not all of their properties
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w hich m atter for the deductions h a ve been expressed b y  axiom s. W h en  

the m eanings of th e technical term s are thus left out of account, w e h a ve  

arrived a t th e stan dpoin t of form al axiom atics (§8).

T h e  technical term s still h a ve gram m atical attribu tes, being nouns, 

ad jectives, verbs, etc. A lso there rem ain ordinary or logical term s, whose  

m eanings are em ployed in the deductions. Indeed the point a t w hich  

form al axio m atization  stops is arbitrary, in so far as no absolute basis  

exists for the distinction betw een th e technical and the ordinary term s.

A t  a n y  rate, w e are still short of our goal of m akin g exp licit all th e  

conditions w hich determ ine w h a t propositions hold in th e theory. F o r  

w e h a ve not specified the logical principles to  be used in the deductions. 

These principles are not the sam e for all theories, as w e are now  well 

aw are (§ 13).

In  order to  m ake these exp licit, a  second step is required, w hich com 

pletes the step p reviou sly carried out for the so-called technical term s in  

respect to the non -gram m atical part of their m eanings. A ll  the m eanings  

of all the words are left out of account, and all the conditions w hich govern  

their use in the th eo ry are stated  exp licitly. T h e logical principles w hich  

form erly entered im p licitly  through the m eanings of the ordinary term s  

w ill now  be g iven  effect in p art perhaps b y  new  axiom s, and in som e  

p art a t least b y  rules perm ittin g the inference of one sentence from  

an o th er or others. Since w e h ave abstracted entirely from  the con ten t  

or m atter, leavin g on ly the form , w e sa y  th a t the original theory has  

been fo rm alized . In  its structure, th e  theory is no longer a  system  of 

m eaningful propositions, b u t one of sentences as sequences of w ords, 

w hich in turn are sequences of letters. W e sa y  b y  reference to  the form  

alone w hich com binations of words are sentences, w hich sentences are 

axiom s, and w hich sentences follow  as im m ediate consequences from  

others.

Is such form alization possible? T o  w hat exten t a g iven  theory can be  

form alized w e shall learn on ly after atte m p tin g it and stu d yin g th e  

results (e.g. §§ 2 9 , 4 2 , 6 0 , 7 2 ).

T h a t a t least a v e ry  considerable m easure of form alization is possible  

for m ath em atical theories is a discovery w hich has been spread over a  

lon g stretch of m an's in tellectual history.

T h e d isco very of the axiom atic-d ed u ctive m ethod in m ath em atics  

is attrib u ted  b y  ancient G reek tradition to  P yth ago ras (sixth cen tu ry  

B .C .), and com es to  us from E u clid  (3 6 5 ?— 2 7 5 ? B .C .), whose “ E lem en ts"  

is said to  h a ve had the greatest circulation of a n y  book except the B ible. 

E u clid  failed to  m ake explicit all of the postulates required in the de-
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duction of his theorem s. O thers h a ve been brough t into the light in  

m odern tim es, e.g. those governing the order of the points on a line b y

Pasch 1882.

T h e d iscovery of the form al treatm ent of logic, i.e. of the p ossibility  

of describing d ed u ctive reasoning w ith  sentences in term s of their form, 

appears w ith  A ristotle (384— 322  B .C.). A g a in  there h a ve been m odern  

refinem ents.

W e use b oth  discoveries w hen w e form alize a m ath em atical theory. 

T o  do so fu lly  rigorously, it is p ractically  necessary to  reconstruct the  

theory in a special sym bolic language, i.e. to  sym bolize  it. In stead  of 

carrying out the steps described above on the th eory as w e find it in som e  

natural word language, such as G reek or E nglish, w e build a new  sym b olic  

language specially for the purpose of expressing the theory. T h e n atu ral 

word languages are too cum bersom e, too irregular in construction and  

too am biguous to  be suitable. (The sym bols in a sym bolic lan gu age w ill  

usually correspond to whole words instead of to  letters; and sequences  

of sym bols w hich correspond to  sentences w ill be called “ form ulas” .)

T h is new  language w ill be of the general character of the sym bolism  

which w e find in m athem atics. In algebra we perform  deductions as form al 

m anipulations w ith  equations, w hich w ould be exceed in gly tedious to  

perform in ordinary language, as some of them  were before th e invention  

b y  V ie ta  (1591) and others of the m odern algebraic notations. T h e  dis

covery of sim ple sym bolic notations w hich lend them selves to m anip

ulation b y  form al rules has been one of the w ays b y  w hich m odern m ath e

m atics had ad van ced  in power. H ow ever the ordinary practice in m ath e

m atics illustrates on ly a partial sym bolization and form alization, since 

part of the statem ents rem ain expressed in words, and part of th e de

ductions are perform ed in term s of the m eanings of the words rather  

than b y  form al rules.

Since L eibniz (1666) conceived his idea of a universal characteristic, 

form al logic also has been receiving a sym bolic treatm ent, w ith  the aid  

of m athem atical techniques, under D e M organ (1847, 1864), B oole (1847, 

1854), Peirce (1867, 1880), Schroder (1877, 1890-1905) and others.

These concurrent developm ents h ave fin ally  led to form alizations of 

portions of m athem atics, in the strict sense, b y  Frege (1893, 1903), 

Peano (1894-1908) and W hitehead and R ussell (1910-13). (The m eth od  

of m aking a theory exp licit w hich we h ave been describing is often called  

the logistic  m ethod.)

T o H ilbert is due now, first, the em phasis th a t strict form alization of 

a theory in volves the to ta l abstraction from  the m eaning, the result
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bein g called a formal system  or form alism  (or som etim es a form al theory  or 

form al m athem atics) ; and second, his m ethod of m akin g the form al 

system  as a w hole the o b ject of a m ath em atical stu d y  called meta
mathematics or proof theory.

M etam athem atics includes the description or definition of form al 

system s as w ell as th e in vestigation  of properties of form al system s. 

In  dealing w ith  a particu lar form al system , w e m a y  call the system  the  

object theory , an d the m etam ath em atics relating to  it its metatheory.
F rom  th e stan dpoin t of th e m etath eory, the ob ject th eory is n ot  

properly a theory a t all as w e form erly understood the term , b u t a system  

of m eaningless o b jects like the positions in a gam e of chess, su b ject to  

m echanical m anipulations like the m oves in chess. T h e  ob ject th eory  

is described and studied as a system  of sym bols and of ob jects b u ilt up  

out of sym bols. T h e  sym bols are regarded sim p ly as various kinds of rec

ognizable objects. T o  fix  our ideas we m a y  thin k of them  con cretely as 

m arks on paper; or m ore accu rately  as abstracted from  our experience  

w ith  sym bols as m arks on paper. (Proof theory m ust be to some ex te n t  

abstract, since it supposes arbitrarily long sequences of sym bols to be  

constructible, although the q u a n tity  of paper and ink in the w orld is 

finite.) T h e  other ob jects of the system  are an alyzed  o n ly  w ith  regard  

to  the m anner of their com position out of the sym bols. B y  definition, 

this is all th a t a form al system  shall be as an ob ject of stu d y  for m eta- 

m athem atics.

T h e m etath eo ry belongs to  in tu itive  and inform al m athem atics (unless 

the m eta th eo ry is itself form alized from  a m etam etath eory, w hich here 

w e leave out of account). T h e  m etath eory w ill be expressed in ordinary  

language, w ith  m ath em atical sym bols, such as m etam ath em atical  

variables, introduced according to  need. T h e assertions of the m eta- 

th eory m ust be understood. T h e  deductions m ust carry con viction. T h e y  

m ust proceed b y  in tu itive  inferences, and not, as the deductions in the  

form al theory, b y  applications of stated  rules. R u les h a ve been stated  to  

form alize the o b ject theory, b u t now  w e m ust understand w ith ou t rules 

how  those rules work. A n  in tu itive  m ath em atics is necessary even to  

define the form al m athem atics.

(W e shall understand this to  m ean th a t the u ltim ate appeal to ju stify  

a m etam ath em atical inference m ust be to  the m eaning and evidence  

rather th an  to  a n y  set of con ven tion al rules. I t  w ill not prevent us in  

practice from  system atizin g our m etam ath em atical results in theorem s 

or rules, w hich can then be applied quasi-form ally to ab b reviate the in

tu itiv e  reasoning. T h is is a fam iliar procedure in inform al m athem atics.
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W e shall som etim es even refer to  principles of (intuitionistic) logic  

stated form ally, w hen the form al derivation of those principles indicates  

the m ethod b y  w hich the reasoning can be carried out inform ally.)

T h e m ethods used in the m eta th eo ry shall be restricted to  m ethods, 

called f in ita ry  b y  the form alists, w hich em p loy o n ly  in tu itiv e ly  con

ceivable objects and perform able processes. (W e translate the G erm an  

“ fin it”  as “ fin ita ry” , since the E n glish  “ fin ite” is used for the G erm an  

“ endlich” .) N o  infinite class m a y  be regarded as a com pleted whole. 

Proofs of existence shall give, at least im p licitly, a m ethod for con

structing the o b ject w hich is being proved to exist. (Cf. § 13.)

T h is restriction is requisite for the purpose for w hich H ilbert introduces  

m etam athem atics. Propositions of a given  m ath em atical theory m a y  fa il  

to h ave a clear m eaning, and inferences in it m a y  not carry in d u b itab le  

evidence. B y  form alizing th e theory, the developm ent of the th eory  

is reduced to  form  and rule. There is no longer am b igu ity  abou t w h a t  

con stitutes a  statem en t of the theory, or w h at con stitutes a proof in the  

theory. T h en  th e question w hether the m ethods w hich h ave been form al

ized in it lead to  contradiction, and other questions abou t the effect of 

those m ethods, are to  be in vestigated  in the m etath eory, b y  m ethods not 

subject to the sam e doubts as the m ethods of the original theory.

T h e fin itary  m ethods are of sorts used in intuitionistic elem entary  

num ber theory. Som e form alists atte m p t to circum scribe them  still 

more narrow ly (H ilbert and B ern ays 1934 p. 4 3 , and B ern ays 1935, 

1938).
W e shall leave the discussion of this u n til later ( § 81 ). F or the purpose  

of defending classical m ath em atics against the intuitionists, there is no 

need to use less th an  the in tuitionists w ould allow. H ow ever it is natural 

to proceed on the basis of strictly  elem entary m ethods so long as th e y  w ill 

suffice. A ll the exam ples of intuitionistic num ber-theoretic reasoning  

given  in § 13 we shall ta k e to  be finitary. W e shall find th a t up to  a late  

stage in our m etam ath em atical in vestigations, intuitionistic m ethods of 

an entirely elem en taty  sort w ill suffice. T h e u ltim ate test w hether a  

m ethod is adm issible in m etam ath em atics m ust of course be w hether it  

is in tu itiv e ly  convincing.

(Some authors use “ m e ta -”  to id en tify  a language or theory in w hich  

another language or theory is m ade the ob ject of a stu d y  not restricted  

to fin itary m ethods. A lso “ sy n ta x  lan gu age” vs. “ ob ject lan gu age” is 

used in this connection. Cf. Carnap 1934; also cf. § 3 7 . In  this book, we  

only use “ m e ta -” w hen the m ethods are finitary.)

T h e form al system s w hich are studied in m etam ath em atics are (usually)
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so chosen th a t th e y  serve as m odels for parts of inform al m ath em atics  

and logic w ith  w hich w e are already m ore or less fam iliar, and from  w hich  

th e y  arose b y  form alization. T h e  m eanings w hich are intended to  be  

atta ch ed  to the sym bols, form ulas, etc. of a given  form al system , in con

sidering the system  as a form alization of an inform al theory, w e call the 
{intended) in terpreta tion  of the system  (or of its sym bols, form ulas, etc.). 

In  other words, the interpretations of the sym bols, form ulas, etc. are the  

objects, propositions, etc. of the inform al theory w hich are correlated  

under the m ethod b y  w hich the system  con stitutes a m odel for the in

form al theory.

In the case of a form ula w hich represents an ideal statem en t of clas

sical m ath em atics (§ 14), th e interpretation cannot con stitu te a w h olly  

in tu itive  (or finitary) m eaning, b u t m ust consist in w h a tever else it is the  

classical m ath em atician  thinks in term s of in the inform al (or not strictly  

form alized) developm ent of classical m athem atics, i.e. in the developm ent 

w hich has taken  place h istorically and takes place currently, w hen the  

procedure is not being consciously form alized in the strict sense of proof 

theory.

T h e interpretation m o tivates the m etam ath em atician  in his choice of 

the particu lar form al system  w hich he introduces b y  his definitions. 

I t  guides him  in choosing th e problem s relating to the system  w hich he  

in vestigates. I t  m a y  even provide him  w ith  essential clues tow ard ach iev

ing the solution of those problem s. O n ly  in the final statem en t and proof 

of his results is he prohibited (as a m etam athem atician ) from  using the  

interpretation.

H ow  restrictive is this prohibition? M etam athem atics m ust stu d y  the  

form al system  as a system  of sym bols, etc. w hich are considered w h olly  

o b jectively. T h is m eans sim ply th a t those sym bols, etc. are them selves  

th e u ltim ate objects, and are not being used to  refer to som ething other  

th an  them selves. T h e m etam ath em atician  looks at them , not through  

and b eyo n d  th em ; thus th e y  are objects w ith ou t interpretation or 

m eaning.

N o w  in stu d yin g those objects, m etam ath em atics m ust bring to  bear  

its ow n m ethods and tools. These m a y  be a n y  th a t are fin itary. F or  

exam ple, m etam ath em atics m a y  em ploy the natural num bers in  a  

fin itary  w a y. In  the case of form ulas ad m ittin g (outside of m etam ath e

m atics) a fin itary  interpretation, it m a y  be possible w ithin m etam ath e

m atics to  define properties of those form al ob jects w hich (from outside  

th e  m etam athem atics) are equ ivalen t to their interpretations. T h u s the  

fin ita ry  interpretations m a y  be brought in through the b a ck  door. B u t
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m etam ath em atics cannot in a n y  w a y  deal w ith  the n on -fin itary inter

pretations of the ideal propositions of classical m athem atics.

In order to  m ake it clear all along w h y  w e are interested in the form al 

system s w hich w e are considering, and how  th e y  con stitu te form alizations  

of portions of logic and m ath em atics th a t we are already fam ilar w ith  

inform ally, w e Shall in this book indicate the possibilities of interpretation, 

and use su ggestive term inology, such as "p ro o f” for form al derivations, 

and " a n d ” for the nam e of the sym bol &. T h is is necessary to our full 

purpose, even thou gh  the interpretation is extraneous to the m eta 

m athem atics itself.

L e t us b riefly recapitulate. In the full picture, there w ill be three sep

arate and distinct "th eo ries” : (a) the inform al th eory of w hich the form al 

system  con stitutes a form alization, (b) the form al system  or object theory, 

and (c) the m etath eory, in w hich the form al system  is described and  

studied.

H ere (b), w hich is form al, is not a theory in the com m on sense, b u t a  

system  of sym bols and of objects b u ilt from  sym bols (described from  (c)), 

w hich how ever form s a kind of con ven tion alized im age or m odel for (a). 

O n the other hand, (a) and (c), w hich are inform al, do not h a ve an  

e x a c tly  determ ined structure, as does (b).

T h en  (c) is a th eory w ith  (b) as its subject m atter, w hich m ust a p p ly  

to (b) w ith o u t looking at (a), or rpore precisely w ith ou t looking a t the  

interpretation of (b) in term s of (a).

Furtherm ore (c) is restricted to the use of fin itary  m ethods, w hile in  

general (a) w ill not be.

Note 1: A t the top of p. 51, the  seeming circularity th a t not B  is used in explaining 
not A is to  be avoided thus. Sameness and distinctness of two natu ral num bers (or 
of two finite sequences of symbols) are basic concepts (cf. p. 51 lines 20-24). For any 
B  of the form m =  n where m and n are natural numbers, not B  shall m ean th a t m 
and n are distinct. The explanation of not A  in lines 5-8 then serves for any A  o ther 
than  of th a t form, by taking the B  in it to be of th a t form. Equivalently, since the 
distinctness of 1 from 0 is given by in tu ition (so not 1 =  0 holds), not A  means th a t 
one possesses a m ethod which, from any proof of A , would procure a proof of 1 =  0 
(cf. lines 8-9).
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Chapter IV
A  F O R M A L  S Y S T E M

§  16 . F o r m a l  s y m b o ls .  W e  shall now  introduce a particu lar form al 

system . T h e  system  described in this chapter w ill be su bject m atter for  

the four follow ing chapters and parts of later chapters. T h e  system  

con stitutes a form alization of a portion of classical elem en tary num ber  

theory including the logic required for it.

In  settin g up the system , w e h ave m ade use of H ilbert and A ckerm an n  

1928, H ilbert and B ern ays 1934, 1939, G en tzen 1934-5, B ern ays 1936, 

and less im m ediate sources.

O ur undertaking has tw o distinct aspects. First, the form al system  itself 

m ust be described and in vestigated , b y  fin itary m ethods an d w ith o u t  

m akin g use of an interpretation of the system . T h is is th e m eta m a th e

m atics. Second, an interpretation of the system  m ust be recognized, under 

w hich the system  does con stitu te a form alization of num ber theory.

O ne approach w ould stress the second aspect. W e could an alyze existin g  

inform al m athem atics, selecting and stereotypin g fundam ental concepts, 

presuppositions and d ed u ctive connections, and thus e v en tu a lly  arrive  

at a form al system .

Here instead, w e shall place the initial em phasis on the first aspect. 

T h e form al system  w ill be introduced at once in its full-fledged com 

p le x ity , and the m etam ath em atical in vestigation s w ill be pursued w ith  

only incidental attention to the interpretation. T h e reader is asked to  

concentrate on learning precisely w h at the form al system  is, and how  it  

is in vestigated . T h e interpretation and the reasons for the choices m ade  

in settin g up this p articu lar system  w ill then gra d u a lly  unfold as w e  

proceed.

T h e first step in settin g up the form al system  is to list the form al 
sym bols. T h e list of form al sym bols is analogous stru ctu rally  to the alp h a

b et of a language, although under the interpretation m an y of the form al 

sym bols correspond to  entire words and phrases rather than  to single  

letters. T h e list of the form al sym bols follows.

L ogical sym b o ls : D (implies), &  (and), V (or), -1 (not), V (for all),
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3 (there exists). Predicate symbols: =  (equals). Function symbols: +  

(plus), • (times), ' (successor). Individual symbols: 0  (zero). Variables: a, 
b, cy . . . .  Parentheses: (, ).

T h e words shown p aren th etically  m a y  be used in reading the sym bols, and  

are intended to suggest the interpretations in a prelim inary w ay, e.g. the  

interpretations of the logical sym bols as 'logical con stan ts’. T h e variables are 

interpreted as ranging over the natural numbers. A n  infinite list or enum era

tion of the variables is supposed to  be at hand (potentially, cf. § 13).

W e reiterate th a t the interpretations are extraneous to  the description  

of th e form al system  as such. I t  m ust be possible to  proceed regarding  

the form al sym bols as mere m arks, and not as sym bols in the sense of 

sym bols for som ething w hich th e y  sym bolize or signify. I t  is supposed  

on ly th a t w e are able to  recognize each form al sym bol as the sam e in  

each of its recurrences, and as distinct from  the other form al sym bols. 

In  the case of th e variables this m ust include our being able to recognize  

a sym b ol w hich is a  variable to be such.

T h e form al sym bols con stitu te the first category of form al objects. 

W e derive from  this a second ca tegory b y  constructing finite sequences 

(of occurrences) of form al sym bols, w hich w e call formal expressions. 
T h e  w ord "occurrence” is used here to refer to the m em bers of the se

quence in their statu s as m em bers, and to em phasize th a t different 

m em bers m a y  be the sam e sym bol (which agrees w ith  our previous use  

of the term  'sequence’, e.g. §§ 1, 2). T h e form al expressions include those  

consisting of a single (occurrence of a) form al sym bol. E x c e p t w hen stated, 

th e e m p ty  sequence (with no member) w ill not be included. F or exam ple, 

0, (#) +  (£), (tf) =  (0) and ((0V 0 0 =  are form al expressions. T h e  last  

consists of seven (occurrences of) sym bols, i.e. it has seven m em bers; 

th e third, fifth  and sixth  (occurrences of) sym bols in it are each an  

(occurrence of) 0; and the (distinct) sym bols w hich occur in it  are (, 0, 

V , = .  T h e form al expressions are analogous stru ctu rally to  the words of 

a  lan gu age; b u t under the interpretation some of them  correspond to  

entire sentences, e.g. ( )̂ =  (0), and others are w ith ou t significance, e.g. 

((0V 0 0 = .  A gain  our term inology belies the fact th a t, for th e form al 

system  as such, the expressions express nothing, b u t are o n ly  certain  

recognizable and distinguishable objects.

W e shall also use, as a third category of form al objects, the finite  

sequences df (occurrences of) form al expressions.

In  discussing the form al objects we shall often, instead of exh ib itin g  

them , represent (i.e. denote) them  b y  letters introduced for the purpose, 

or b y  expressions in volvin g letters already so introduced. F o r exam ple,
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the letter “ s”  m ight be used to  represent the form al expression (a) +  (b), 
and “ A ”  to  represent ( a ) = 0 . F u rth er illustrations w ill appear presently.

L etters and expressions so used are not form al sym bols and expressions, 

b u t inform al or m etam ath em atical sym bols and expressions, w hich stand  

as nam es for form al objects. In  this, as com pared w ith  ordinary inform al 

uses of sym bolism , there is the new  feature th a t the objects nam ed are 

them selves sym bols or ob jects constructed from  sym bols. W e h a ve thus  

a distinction to preserve betw een tw o kinds of sym bolism , the form al 

sym bolism  about w hich w e are speaking, and the in tu itive  or m eta m a th e

m atical sym bolism  in w hich w e are speaking about the other. D ifferences  

in the kinds of ty p e  w hich w ill be used for the tw o purposes (a, b , t, x, 
<3 , S  vs. a, b, t, x, A , B) w ill assist in keeping the m atter straight.

T h e use of sym bols and expressions to  nam e th e ob jects w e are ta lk in g  

abou t should not be considered as n o vel; our e v e ry d a y  m ethod for 

con structing a sentence abou t an ob ject requires this. W h a t is novel, 

rather, is the other procedure, w hich w e use som ew hat in our m eta 

m athem atics, of incorporating the ob ject itself, i.e. a specim en of the  

object, d irectly  into the sentence. A lth o u gh  this violates the usual canons  

of gram m atical propriety, it is unam biguous w hen w e are engaged in  

m etam athem atics. F o r in m etam ath em atics w e m ust treat the form al 

sym bols as m eaningless, and therefore the form al objects cannot serve as 

nam es for other objects, and a sentence con taining a specim en of a form al 

ob ject can o n ly be abou t the form al ob ject itself.

Th ese rem arks a p p ly  to  our m etam athem atics. In  an occasional pas

sage, concerned w ith  the interpretation and so labeled for the reader, w e  

m a y  g iv e  th e form al sym bols an inform al status, treatin g them  then  as 

m eaningful.

In  our m etam ath em atical stu d y  of the form al expressions, w e shall 

m ake use of the operation of ju x ta p o sitio n  (or concatenation), in w hich  

tw o or m ore sequences of form al sym bols are com bined con secu tively  

to  produce a new  sequence. F o r exam ple, the ju xta p o sitio n  of the tw o  

form al expressions ((0V 00= and (a) -{-(b) in th a t order produces the new  

form al expression ((0V 00  = (# ) +  (£); and the ju xta p o sitio n  of the seven  

form al expressions (> (a) +  (b)f ), *, (, (c)', ) in th e g iven  order produces  

the new  form al expression ((tf) +  (iOM(c)').

W h en  som e of the form al expressions to  be ju xta p o sed  are b ein g rep

resented b y  m etam ath em atical letters or expressions, these la tter m a y  

appear in place of th e form al expressions w hich th e y  represent in w ritin g  

the result o f th e ju xtapo sitio n . F o r exam ple, if th e letter “ s”  represents 

som e form al expression, the result of the ju xta p o sitio n  of the seven form al
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expressions (, s , ), *, (, ( c ) \  ) is w ritten  “ (s)-((c)')”  H ere “ (s)-((c)')'' is a  

m etam ath em atical expression representing a form al expression, the form al 

expression represented depending on w h at form al expression th e letter  

" s ”  represents. In  particular, if s is (a) +  (b )} then  (s)*((c)') is 

((d) +  (i>))-((c)').

§  17 . Formation rules. W e  shall now  define certain subcategories  

of the form al expressions, b y  definitions analogous to the rules of s y n ta x  

in gram m ar.

F irst w e define ‘term ', w hich is analogous to  noun in gram m ar. T h e  

term s of this system  all represent n atural num bers, fixed  or variable. 

T h e  definition is form ulated w ith  the aid of m etam ath em atical variables  

“ s”  and “ t ” , and the operation of ju xtaposition , as explained above. I t  

has the form  of an in d u ctive definition, w hich enables us to  proceed from  

know n exam ples of term s to  further ones.

1. 0 is a  term. 2 . A  variab le is a  term. 3— 5 . I f  s and t  are terms, then  

(s )+ (t), (s)*(t) and (s)' are terms. 6. T h e o n ly  terms are those given  

b y  1— 5 .

E xample 1. B y  1 and 2 , 0 , a, h and c  are term s. T h en  b y  5 , (0)' and  

(e)' are term s. A p p ly in g  5  again, ((0)')' is a term ; and a p p lyin g 3 , ((c )f) +  (a) 
is a term .

W e  now  giv e  a definition of ‘form ula', analogous to  (declarative) 

sentence in gram m ar.

1. I f  s and t  are term s, then (s) =  (t) is a formula. 2— 5 . I f  A  and B  

are formulas, then  (A) D  (B), (A) &  (B), (A) V (B) and - i( A )  are for
mulas. 6— 7 . I f  x  is a variab le and A  is a form ula, then  V x(A ) and 3x(A )  

are formulas. 8. T h e  on ly  formulas are those given  b y  1— 7 .

E xample 2 . U sin g 1 and th e exam ples of term s already obtained, 

(a) =  (b) and (((<:)') +  (a)) =  (b) are form ulas. T h en  using 5  and 7 , 

- i  ((a) =  (b)) and 3 c((((c)') +  (tf))=(i>)) are form ulas. F in a lly  b y  an  

application  of 2, th e follow ing is a form ula:

(A) (3 c((((c)') +  (a)) =  (*))) D  h ( ( a )  =  (b))).
T h e  in d u ctive definitions of term  and form ula h a ve the consequence  

th a t each term  or form ula can be b u ilt up from  0 and variables b y  a series 

of steps, each of w hich steps corresponds to a direct clause of one of those  

definitions (§ 6), and m a y  be called an application of th a t clause.

E a c h  step, excep t an application of 1 or 2  of th e definition of term , is
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of the follow ing kind. A t  th e start w e h ave given  an expression or pair  

of expressions previou sly obtained. W e enclose the given  expression or 

each of the given  expressions in parentheses, and introduce an e x 

pression of one of the ten  form s

(B) D , &, V, - i ,  V x , l x ,  = ,  + ,  *, ',

where x  is a variable. L e t us call an expression of one of these ten  form s 

an operator. In  particular, D , & , V, - i  are p ro p o sitio n a l connectives, and  

operators of the form s V x  and l x  are qu an tifiers, V x  being a u n iversa l 
and l x  an existen tia l qu an tifier)  these six are logical operators.

T h e giv en  expression or pair of expressions w e call the scope  of the  

operator in the resulting expression. B y  follow ing through th e entire  

construction of a term  or form ula, establishing in the obvious w a y  a  

correspondence betw een the parts of the given  expression or pair of 

expressions and parts of the resulting expression at each step, w e are led  

to  an assignm ent of a  scope, not m erely to  the operator last introduced in  

the com pleted term  or form ula, b u t to  every  operator in th a t term  or 

form ula.

E xample 3 . In  th e form ula (A) the scope of the first occurrence of 

=  consists of the part ((c)') +  (tf) and the first occurrence of b, and the

scope of the 1 c  is the part (((c)f)-i-(a)) =  (b).
W e now  state the follow ing fact, the rigorous proof of w hich w e shall 

consider in a m om ent. In  a given  term  or form ula, the scopes of the  

operators can be recognized w ith ou t am b igu ity  from  the arrangem ent of 

the parentheses. In  other words, the parentheses m ake it possible, given  

the term  or form ula as a finite sequence of form al sym bols, to  recover  

all essential details of its construction under the in d u ctive definitions of 

term  and form ula.

T h e rigorous proof of this fa ct is afforded b y  L em m a 2 of § 7  E x a m p le  2, 

together w ith  the follow ing lem m a w hich can b e p roved b y  induction  

from  the in d u ctive definitions of term  and form ula.

Lemma 4 . I n  a  g iven  term  or form ula, there exists a p roper p a ir in g  of 
the parentheses (which are  2n  in  num ber, n  being left parentheses and  n  being  
right parentheses) such that the scope of each operator occurs as follow s.

(a) F or operators havin g  one expression  as scope, the scope is  im m ed ia te ly  
enclosed w ith in  p a ired  parentheses, an d  the operator stan ds im m ed ia te ly  
outside th is p a ir  of parentheses, i.e . im m ed ia te ly  to the left of the left paren~  
thesis (in  the case of - i ,  V x , 3 x) or im m ed ia te ly  to the righ t of the right 
paren thesis (in  the case of ').
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(b) F o r operators having  two expressions as scope {nam ely  D , & , V, 

=  , *)> °/ expressions is  im m ed ia te ly  enclosed w ith in  p a ired
parentheses, an d  the operator stands im m ed ia te ly  between the righ t paren th esis  
of the p a ir  enclosing the left expression  and the left paren thesis of the p a ir  
enclosing the righ t expression.

E xample 3  (concluded). T h e d isplayed exam ple (A) of a form ula  

contains 22 parentheses. B y  L em m a 4 , the 22  parentheses ad m it a  

proper pairing, w hich is discovered in the process of con structing the  

form ula under the definitions of term  and form ula, and w hich indicates  

the scopes of the operators. K n ow in g th a t there exists a proper pairing, 

b y  L em m a 2  th a t pairing is unique, and can therefore be discovered b y  

the algorithm  of § 7 , w ith o u t prior know ledge of the construction of the  

form ula under th e definitions of term  and form ula. W e a c tu a lly  d id  so 

at the end of § 7 , w here w e exam ined the sam e 22  parentheses w ith ou t  

looking at the intervening sym bols. U sin g the resulting pairing of the  

22 parentheses as th e y  occur w ithin the com plete form ula, w e can see 

th a t the scope of the first occurrence of =  consists of the expression  

enclosed b y  the parentheses (3 )*° and th e expression enclosed b y  the  

parentheses (J1 )*2. T h is agrees w ith  our previous identification of th a t  

scope. Sim ilarly, the scope of 3c is enclosed b y  the parentheses )*3.

L em m a 3  of § 7 , w hile not necessary to the proof th a t the scopes can  

be discovered from  the arrangem ent of th e parentheses, is useful in  

reasoning ab o u t the scopes in parts and the w hole of a term  or form ula. 

F o r exam ple, if M, N  and A  are form ulas, and A  occurs as a (consecutive) 

part, n ot the w hole, of (M) D  (N), w e can infer th a t this p art (or each  

such part) is either a p art of M or a p art of N .

In  choosing our definitions of term  an d form ula, w e of course provided  

th e parentheses for th e ab o ve described purpose of in d icatin g the scopes 

unam biguously. N o w  e v id e n tly  m ore parentheses w ill u su ally  b e in 

troduced under th e definitions th an  are strictly  necessary for the purpose. 

L e a v in g  th e definitions as th e y  stand, w e can agree to  om it superfluous  

parentheses as an abbreviation  in the w ritin g dow n of term s and form ulas, 

or of m etam ath em atical expressions representing them .

T h e  possibilities in this direction are exten d ed  b y  em ployin g con ven 

tions of a  sort fam iliar from  algebra, where “ a - b + c ”  is understood to  

m ean (a * b )+ c .  W e sa y  here th a t +  ran ks  ahead of •, and rank our 

operators in the order in w hich w e h ave listed them  a t (B) above. T o  restore 

a n y  parentheses w hich are left out in ab b reviatin g a term  or form ula, 

one m a y  proceed step b y  step, each tim e selecting an operator w hich of
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those present com es earliest in th e list, i.e. an operator of highest rank, 

and g iv in g it the greatest scope com patible w ith  the requirem ent th a t  

the whole be a term  or form ula.

W e shall not alw ays om it the m axim um  num ber of parentheses w hich  

our con ven tion w ould allow, b u t aim  at securing m axim um  read ab ility. 

(W ith this aim , w e also som etim es alter parentheses to square brackets  

or cu rly brackets.)

E xample 4. R estoring parentheses to “A 3  B V C &  D ” gives suc

cessively “ A 3 ( B V C & D )” , “ A D ( ( B  V C ) & D ) ” , “ (A )3 ( ( ( B) V( C) )  

&  (D ))” . W e ab breviate the displayed exam ple (A) of a form ula as fo llo w s:

(A') 3c ( c ' + a = b )  3  - i  a = b .

A nother kind of abbreviation  is afforded b y  introducing a new  sym bol, 

w ith  a m ethod for tran slating an expression containing the new  sym bol 

b a ck  into one w ith o u t it. F or exam ple, w e ab b reviate the term s (0 )', 

((0)')', (((0)')')', . . .  as " 1” , " 2 ” , “ 3 ” , . . . ,  re sp e ctive ly ; and w e ab b reviate  

the form ula - i a = b  as “ a ^ b ” , and the form ula 3 c ( c ' + a = b )  as 

“ a < b ” . T h d  displayed form ula (A) can then be w r itte n :

(A") a < b  3  a ^ b .
T h e general rule for the abbreviation  allows us to  w rite “ s ^ t ”  

as abbreviation for - i s = t  w henever s and t are term s. T h e  general rule 

for the abbreviation  “ < ” allow s us to w rite “ s e t ”  as ab b reviation  for 

3 x ( x '+ s = t )  w henever x  is a variable and s and t  are term s not con

tainin g x. In  unabbreviating, w hen the introduction of the ab b reviation  

has suppressed a variable, as in the case of “ < ” , there is an a m b igu ity  

respecting the variable to be supplied. T h u s in u n abb reviatin g “ s e t ” , 

w e m a y  choose as the x  a n y  variable w hich s and t  do not contain. T h is  

am b igu ity  is of m inor consequence, since the statem en ts w e shall w ish to  

m ake about the form ula ab b reviated  w ill hold regardless of w h a t ad

m issible variable is chosen.

W e shall regard all this abbreviation  as m erely in the exposition of th e  

m etam athem atics. T h is is adequate for our purposes, and th ereb y w e  

keep the fundam ental definitions, w hich establish th e form al system , 

theoretically  simpler. M etam athem atical statem ents about term s and  

form ulas of the system  are hence to be understood to  refer to  the un

ab b reviated  expressions in the literal sense of the definitions, w h a tever  

shorthand w e m a y  em p loy in w riting the statem ents.
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§ 18. Free and bound v a r ia b le s .  A n  occurrence of a  variable x  

in a form ula A  is said to  be bound  (or as a bound variable), if the occurrence  

is in a quantifier V x  or 3 x  or in the scope of a  quantifier V x  or 3 x  (with  

the sam e x ) ; otherwise, free  (or as a free variable).
E xample 1. In  3 c ( c ' + a = b )  3  - i a = b ,  b o th  occurrences of a  and  

b o th  occurrences of b  are free, and b o th  occurrences of c  are bound. In  

3c{c f+ a = b )  3  - i  a = b + c ,  th e first tw o occurrences of c  are bound

and th e third is free. In  3c(3c(c'+^=^) 3  - i  a = b + c )  all occurrences 

of c  are bound.

W e also sa y  th a t a n y  occurrence of a variable x  in a term  t  is free, as 

w ill follow  from  th e ab o ve definition if applied reading "term  t ”  instead  

o f "fo rm u la A " .  T h e  distinction betw een a free and a bound occurrence  

of a variab le is alw ays relative to  the term  or form ula in w hich it is (at 

the m om ent) being considered as an occurrence.

E xample 2. T h e third occurrence of c  in l c ( 3 c (c ,+ a = b )  3  - i a = b + c )  
is free w hen considered as an occurrence in the part c  taken  b y  itself or c ' 

b y  itself or c ' + a  b y  itself or c ' + a = b  b y  itself, and bound as an oc

currence in 3c{c ,Jr a — b) b y  itself or 3c ( c ' + a = b )  3  ~ ia = b - \ - c  b y  itself  

or in the whole form ula.

A  variable x  w hich occurs as a free variable (briefly, occurs free) in A  

is called a free variable of A , an d A  is then  said to  contain  x  as a  free  
variab le  (briefly, to  contain  x  fre e ) ; and likew ise for bound variables.

E xample 3. T h e  free variables of 3c ( c '+ a = £ )  3  - i a = £ + c  are a , b  
an d c , and the o n ly bound variable is c.

A  bou n d  occurrence of a  variab le x  in a form ula A  is bound by  th a t  

particu lar one, of th e quantifiers V x  or 3x  (with the sam e x) in th e  

scope of w hich  it  lies, w hich  has th e  least scope (briefly, b y  th e innerm ost 

quantifier in w hose scope it lies), or in case it  is an occurrence in a quan

tifier V x  or 3x , b y  th a t quantifier itself (or th e latter binds  the former).

E xample 4 . In  3c(3c ( c '+ t f = ^ )  3  - i a = b + c )  the first and fou rth  

occurrences of c  are boun d b y  the first quantifier 3c, and the second  

an d  third occurrences of c  b y  the second quantifier 3c.

In  buildin g u p a  form ula under the definitions of term  and form ula, 

a given  bound occurrence of a  variable in the resulting form ula is bound b y  

th a t one of the quantifiers whose introduction first con verted  it from  a  

free to  a bound occurrence (or if it is a variable in a quantifier, b y  th e  

quantifier in w hich it is introduced).
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E xample 5. Com pare E x a m p le  4 w ith  E x a m p le  2 .

A few prelim inary rem arks are offered now  on the interpretation of 

free and bound variables (som etimes called 'real' and 'apparen t' variables). 

T h e rem arks are of course not p art of the m etam athem atics, b u t should  

help to explain the adoption of th e m etam ath em atical discrim inations. 

A n  expression con taining a free variable represents a q u a n tity  or prop

osition depending on the va lu e of the variable. A n  expression con taining  

a bound variable represents the result of an operation perform ed over the  

range of the variable. O ur boun d variables are associated w ith  the logical  

operations of quantification, b u t exam ples occur w ith  other sorts of 

operations fam iliar to  m athem aticians. In  the follow ing n  and y  are free, 

i  and x  are bound:

n ry(A) 2  a it lim  f(x , y ) ,  / f(x , y ) dx.
i — 1 x—>0 ■ '—y

In the follow ing the occurrence of t  as upper lim it of the in tegral is free 

and the occurrences in the integrand are b ound:

(B) f f  (t) i t .

T o  go a little  further w ith  the interpretation, w e m a y  note som e 

characteristic differences w hich it im poses on the w a y  w e m a y  use th e  

tw o kinds of variables in inform al m athem atics. A  bound variab le form s 

part of a circum locution for expressing the result of an operation carried  

out over the range of the variable, and one can hence change the variab le  

to  a n y  other h avin g the sam e range w ith ou t altering the m eaning (subject 

to certain precautions). F o r exam ple,

(C) lim  f ( z ,y ) ,  ( f ( t , y ) d t
j  =  1 z—>0 ■ '-y

would (ordinarily) m ean the sam e as th e respective expressions (A)

above (but lim  f (y , y )  is not (usually) the sam e as lim  f { x ,y ) ) .  I f  in an  
2/—>0 £ - > 0

expression w e su b stitu te for a free va riab le an expression representing

a constant or variable o b ject from  its range, w e (ordinarily) o b ta in  a  

m eaningful result, w hile such a substitution w ould result in nonsense if 

applied to a bound variable. F or exam ple (substituting in (A)),

(D) Z a it lim  f(x , 2), f f (x ,z )  dx
i = l x - + Q  J~ z
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are (ordinarily) significant expressions, b u t not

W h en  the sam e variable occurs b o th  free and bound in an expression, 

th e q u a n tity  represented b y  the expression depends o n ly  on th e va lu e  

of th a t variable in its  free occurrences. T h u s the integral (B) is a  function  

of t , w hose va lu e for t  — 3 is

Substitutio n . In  sta tin g  the m etam ath em atical definitions of the  

n e x t section, w e shall use an operation of substitution, w hich w e define  

as follows. T h e su bstitu tion  of a term  t for  a variable x  in  (or syn on ym ously, 

throughout) a term  or form ula A  shall consist in replacing sim ultaneously  

each free occurrence of x  in A  b y  an occurrence of t. T o  describe this in  

ju xta p o sitio n  notation, let n  be the num ber of free occurrences of x  in  

A  (w ;> 0 ); and w rite A  as “A qxA ^ . . . A ^ x A * ” show ing these oc

currences (A0, A v  . . . ,  A n_v  A n being parts possibly e m p ty  con taining  

no occurrence of x  free relative to  A  as a whole, and all the n  occurrences 

of x  shown being free). T h en  the result of the su bstitu tion  of t for x  in  

A  is A o t A ^ . . , A w_ !tA n.

A  com p act m etam ath em atical n otation w ill be useful in representing  

th e result of a  substitution. I f  substitution  is to  be perform ed for x , w e  

first introduce a com posite notation  such as <#A (x )”  for the substituend, 

show ing its dependence on x  after the m anner of notation  for functions in  

m ath em atics (§ 10). T h e  result of su b stitu tin g t  for x  in A (x) is then  

w ritten  “ A ( t) '\

E xample 6 . L e t  x  be c, and  

A (x) or A(c) b e 3c (c '+ tf= i> ) 3  ~ ia = b - \-c .
T h en  A(0) is 3c(c#4-4==/0 3  - i a — b + 0 ,
and A(tf) is 3c ( c ' ^ a ~ b )  3  mm\ a = b + a .

E xample 7. L e t  x  b e  a , and A (x) be a + c = a .  T h en  A(0) is 0 + c^ = 0 , 

and A (b) is b + c = b .
T h e su bstitu tion  w hich g ives A (t) m ust alw ays be perform ed for the  

original variable x  in th e original form ula A (x), i.e. for the variable  

and in the form ula for w hich the notation “ A (x )” is first introduced.

E xample 7 (concluded). F or the ab ove x  and A (x), A(c) is c + c = c . 

If  we su b stitu te b  for c  in A (c), w e obtain b + b = b .  T h is  is not the sam e

not
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as A  (b), w hich w e obtained ab ove correctly b y  su b stitu tin g b  for a  in A  (a),
i.e. for the original x  in the original A (x). (The sam e d ifficu lty  can occur  

b y  the m isuse of the n otation for a function in inform al m athem atics.)

W e h a ve not required th a t the variable x  a ctu a lly  occur as a free 

variable in A (x). W h en  x  is not a free variable of A (x), the result A (t) 

of th e su bstitu tion  is the original expression A (x) itself.

Sim ilarly, w e define su bstitu tion  perform ed sim ultaneously for a  

num ber of distin ct variab les; and we shall em p loy like notations, such as 

" A ( x x>. . . ,  x n)”  for the substituend, and " A f t j , . . . ,  t n)” for th e result.

H enceforth w e shall often introduce these com posite notations, such  

as “ A ( x ) "  or " A ( x x, . . . ,  x n)”  instead of " A " ,  w hen w e are interested in the  

dependence of A  on a variable x  or variables x v . . .  ,x n, w hether or not 

w e are abou t to  m ake a substitution. F or exam ple, w e u su ally  designate  

a form ula b y  " A ( x ) ”  instead of " A " ,  w hen w e w an t to  use it  in V x A (x )  

(read 'Tor all x, A  of x ” , or b riefly  "a ll x , A  of x ” ) or 3 xA (x) (read "th ere  

exists an x  such th a t A  of x " ,  or b riefly  "e x ists  x, A  of x ” ). W e repeat 

th a t b y  using " A ( x ) ” (or " A ( x x, . . . ,  x n)” ) w e do not im p ly  th a t x  (or 

each of x v . . . ,  x n) necessarily occurs free in th e form ula designated.

T h e prelim inary rem arks on the interpretation shed ligh t on w h y  we  

h a ve elected to  define our m etam ath em atical su bstitu tion  operation as 

a p p ly in g  o n ly  to  th e free occurrences of the variables.

W e now  sa y  th a t a term  t  is free a t the free occurrences of a  variab le x  

in  a  form ula A (x) (or t  is free a t the su bstitu tion  p o sitio n s for  x  in  A (x), or 

b riefly  t  is free fo r x  in  A (x)), if no free occurrence of x  in A (x) is in the  

scope of a  quantifier V y  or 3y  where y  is a variable of t  (i.e. occurs in t).

E xample 8. T h e  term s d , r f + 0 ' and a*d  are free for a  in th e first 

b u t not in the second of the follow ing form ulas:

(I) 3c { c ' + a = b )  &  -w / =  0, 3d ( d ' + a = b )  &
U nder this definition, w hen t  is free for x  in A (x) and o n ly  then, the  

substitution  of t for x  in A (x) w ill not introduce t  into A (x) a t a n y  place  

where a (free) variab le y  of t  becom es a  bound occurrence of y  in the  

result A (t).

E xample 8 (concluded). S u b stitu tin g  d + 0 ' for a  in (I) gives

(II) 3 c { c ' + ( d + 0 ' ) = b )  &  - u / = 0 , l d { d ' + ( d + 0 ')= l>) &  - u / = 0 ,

respectively. In  the first of these, th e d  of th e occurrence of d-\- 0 ' in

troduced b y  the su bstitu tion  rem ains free in the w hole form ula, b u t not 

in th e  second.
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W e sa y  th a t the su bstitu tion  of t  for x  in A (x) is free, w hen t  is free for 

x  in A (x). W ith  o n ly  th e  sm atterin g of interpretation in dicated above, 

it should be clear th a t a su b stitu tion  is inappropriate w hen it  is not free.

T h e  tw o  form ulas in (I) m ean the sam e; b u t the tw o in (II) do not.

F o r an inform al exam ple, consider the second expression of (A) or (C). 

T h is stands for a function of y , call it

(G) f{y)  =  lim  f{x , y)  =  lim  f(z, y ).
2— >0 Z—>0

T h e  va lu e of /(y) for y  =  z  is then  given  properly b y

(H) f(z)  =  lim  /(*, z), not b y  f{z) =  lim  f(z, z).
x — > 0  z— > 0

E xample 9. T o  illustrate the handlin g of th e term inology and  

notations explained in this section, sa y  th a t x  is (i.e. “ x ”  denotes) a  

variable, A (x) is (i.e. " A ( x ) ”  denotes) a form ula, and b  is (i.e. “ b ”  denotes) 

a variable such th a t (i) b  is free for x  in A (x) and (ii) b  does not occur free 

in A (x) (unless b  is x). U n der our substitution  notation, since “ x ”  and  

“ A ( x ) ”  are introduced first, (iii) A(b) is (by definition) the result of 

su b stitu tin g  b  for (the free occurrences of) x  in A (x). B y  (i), the occur

rences of b  in A(b) w hich are introduced b y  this su bstitu tion  are free. B y  

(ii), there are no other free occurrences of b  in A(b). T h u s th e free oc

currences of b  in A(b) are e x a c tly  the occurrences introduced b y  th e  

substitution. H ence (inversely to  (i) —  (iii))* (iv) x  is free for b  in A (b), 

(v) x  does not occur free in A (b) (unless x  is b), and (vi) A (x) is (in fact) 

th e result of su b stitu tin g x  for (the free occurrences of) b  in  A(b). T o  m ake  

this exam ple particular,

x , A (x), b , A(b)

m a y  be respectively,

c, 3c (c ' + a = b) D - \ a = b + c , d f 3c (c ' + a — b) ^  ~ i a = b + d .

§ 19. Transformation rules. In  this section w e shall introduce  

further m etam ath em atical definitions (called deductive ru les  or tran s
form ation  rules) w hich g iv e  the form al system  the structure of a d ed u ctive  

theory. T o  em phasize the an alo gy to  an inform al d ed u ctive theory, w e  

shall start w ith  a list of 'p ostu lates*; how ever, for the m etam athem atics, 

these are not postulates in th e sense of assum ptions, as indeed th e y  cannot  

b e w hen o fficially  th e y  h a ve  no m eaning, b u t on ly form ulas and form s 

(or schem ata) to  w hich w e shall refer w hen w e g iv e  th e definitions.
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B efore giv in g  th e po stu late list, let us illustrate th e typ e s of postulates  

w hich w ill appear in th e list. T h e  sim plest is an "axiom ', of w hich - i a '= 0  
is an exam ple. T h is is a  form ula of the form al system . T h en  w e m a y  h a ve  

an "axiom form ' or "axiom schem a', of w hich ""B 3  A V B" is an exam ple. 

T h is is a m eta m a th em atical expression, w hich gives a particu lar axiom  

each tim e form ulas are specified as represented b y  th e m etam ath em atical 

letters ""A" and ""B". F o r exam ple, w hen A is a ! = 0 and B  is - ia '= 0 , 
w e obtain  the axiom  - ia '= 0  D  a ' = 0  V T h e  axiom  schem a

is thus a m etam ath em atical device for sp ecifyin g an infinite class of 

axiom s h a vin g a com m on form.

W e m ust also h a v e  another kind of postulates, w hich form alize the  

operations of deducing further theorem s from  th e axiom s. T h ese are the  

"rules of inference', of w hich th e  follow ing is an exam p le:

A , A d B

B.

This is a schem a con taining three m eta m a th em atical expressions ""A", 

" A D B "  and ""B", w hich represent form ulas w henever form ulas are 

specified as represented b y  th e m etam ath em atical letters ""A" and ""B". 

T h e  sense of the rule is th a t th e form ula represented b y  the expression  

w ritten  belo w  the line m a y  b e "inferred' from  the pair of form ulas re

presented b y  the tw o expressions w ritten  ab ove th e line. F o r exam ple, 

b y  ta k in g  as A  the form ula n a = 0  and as B  th e form ula a ’ = 0 V 

the rule allow s the inference from  - i ^ '= 0  and  

—1^'==0 D a ' = 0  V —i a ' = 0  to  a ’= 0  V Since - i a ' = 0  and

- i a ' = 0  D a '= Q  V are axiom s (as w e ju st saw), a ' = 0  V -i< z'= 0

is a further "formal theorem '. (Our term inology w ill include th e axiom s  

as theorem s.)

W e  shall now  d isp lay the full postulate list, and then giv e  the def

initions establishing the d ed u ctive structure of the form al system  b y  

referring to  th e list. T h e reader m a y  ve rify  th a t the cu m u lative effect  

of th e  series of definitions w ill be to define a subclass of the class of for

m ulas called "provable form ulas’ or "formal theorem s'.

P ostulates for the formal system

D ramatis per so na e . F o r P ostu lates 1— 8, A , B  and C  are form ulas. 

F or P ostu lates 9— 13, x  is a  variable, A (x) is a  form ula, C  is a  form ula  

w hich does not con tain x  free, an d t  is a term  w hich is free for x  in A (x).
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G roup A . Postu lates for the predicate calculus. 

Group A l .  P ostulates for the propositional calculus.

la. A D ( B D A ) . 2. A , A D B
lb . (A 3  B) 3  ((A D ( B 3 C)) 3  (A 3 C)). B .
3. A 3 ( B 3 A & B ) . 4a. A & B  3  A.

4b. A  & B  3  B .
5a. A 3 A V B . 6 . (A 3 C) 3  ( ( B 3  C)
5b. B D A V B . 3  (A V B 3  C)).
7. (A 3  B) 3  ((A 3  - .B )  3  - .A ) . 8°. - i - iA  3 A.

G roup A 2. (A dditional) P o stu la te s  for th e  pred icate  calcu lus.

9.
C 3  A (x)

10 . V xA (x) 3  A (t).C 3 V x A ( x ) .
11. A (t) 3  B xA (x). 12. A (x) 3  C 

3xA (x) 3  C.
G roup B. (A dditional) P o stu la tes  for num ber th eory .

13. A (0) & V x(A (x) 3 A ( x ' ) )  3  A (x).
14. & if u II 5s

-

15. ■ n a '= 0.
16. a = b  3  ( a = c  3  b = c ) . 17. II u & if

18. d -\-0 =  <2. 19. a + b ' = ( a + b y .
20 . a-0 = 0 . 21, a-b '= a-b-{~ a .

(The reason for w riting ''° ''  on P ostu late 8 w ill be given  in § 23.)

One m a y  ve rify  th a t 14— 21 are form ulas; and th a t 1— 13 (or in the  

case of 2, 9 and 12, the expression (s) above, and the expression below, the  

line) are form ulas, for each choice of the A , B , C, or x, A (x), C, t, subject 

to  the stipulations given  at the head of the postulate list.

T h e class of 'axiom s' is defined thus. A  form ula is an axiom , if it has 

one of the forms la , lb , 3— 8, 10, 11, 13 or if it is one of the form ulas 

14— 21.

T h e  relation of 'im m ediate consequence' is defined thus. A  form ula is 

an im m edia te  consequence of one or tw o other form ulas, if it has the form  

shown below  the line, w hile the other(s) h ave the form(s) shown above  

the line, in 2, 9 or 12.

T h is is the basic m etam ath em atical definition corresponding to  

P ostu lates 2, 9 and 12, b u t we shall restate it w ith  additional term inology



TRANSFORMATION RULES 83§ 1 9

w hich draws attention to the process of ap p lyin g th e  d efin e ion. Postulates  

2, 9 an d 12 we call the rules of inference. For an y (fixed) choice of the A  

and B , or the x, A (x) and C, subject to the stipulations, the formula(s) 

shown above the line is the prem ise  (are the firs t  and second p rem ise , 
respectively), and the form ula shown below  the line is the conclusion, 
for the app lica tion  of the rule (or the (form al) inference  b y  the rule). T h e  

conclusion is an im m edia te consequence of the premise(s) (by the rule).

Carnap 1934  brings the tw o kinds of postulates under the com m on  

term  Transform ation rules’, b y  considering the axiom s as the result of 

transform ation from zero premises.

T h e definition of a ‘ (formally) provable form ula’ or ‘ (formal) theorem ’ 

can now be given  in d u ctiv ely  as follows.

1 . If D  is an axiom , then D  is provable. 2. If E  is provable, and D  is an  

im m ediate consequence of E , then D  is provable. 3. If E  and F  are provable, 
and D  is an im m ediate consequence of E  and F , then D  is provable. 4. A  

form ula is provable  only as required b y  1— 3.

T h e notion can also be reached b y  using the interm ediate concept of 

a '(formal) proof’ , thus. A  (formal) proof is a finite sequence of one or more 

(occurrences^ of) form ulas such th a t each form ula of the sequence is 

either an axiom  or an im m ediate consequence of preceding form ulas of 

the sequence. A  proof is said to be a proof of its last form ula, and this  

form ula is said to be (formally’)  provable  or to be a (formal) theorem.

E x a m p l e  1 . T h e follow ing sequence of 17 form ulas is a proof of the  

form ula a = a .  Form ula 1 is A xio m  16. Form ula 2 is an axiom , b y  an  

application of A xiom  Schem a la  in w hich the A  and the B  of the schem a  

are both  0 = 0 ; and Form ula 3 b y  an application in w hich the A  is 

a = b  3  ( a = c  3  b —c) and the B  is 0 = 0  3 ( 0 = 0  3  0 = 0 ). Form ula 4 is 

an im m ediate consequence of Form ulas 1 and 3, as first and second  

premise respectively, b y  an application of R ule 2 in which the A  

of the rule is a = b  3  (a — b 3  b = c )  and the B  is [0 = 0  3  (0 = 0  3  0= 0)] 3  
[ a = b  3  ( a = c  3 b = c ) ] .  Form ula 5 is an im m ediate consequence of 

Form ula 4, b y  an application of R u le 9 in which the x  is c, the A(x) is 

a = b  3  ( a = c  3  b = c ) ,  and the C is 0 = 0  3 ( 0 = 0  3  0 = 0) (which, note, 

does not contain the x  free). Form ula 9 is an axiom  b y  an ap p lication  

of A xio m  Schem a 10, in w hich the x  is a, the A(x) is V bV c[a  =  b 3  
( ^ = c  3/?=<:)], and the t is a + 0  (which, note, is free for the x  in the 

A(x)). T h e A (t), b y  our substitution notation (§ 18), is the result of sub

stitu tin g  the t for (the free occurrences of) the x in the A (x), i.e. here 

the A(t) is V A V c [ t f + 0 = i 3 ( * + 0 = c 3 £  =  c)].
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1. a=b 3  (a=c 3  b=c) — Axiom 16.
2. 0= 0  3 (0 = 0  3  0 = 0 )— Axiom Schema la.
3. {a=b 3  (a=c 3  b=c)} 3  {[0=0 3  (0=0 3  0=0)] 3  

[<z=/> 3  (d=c 3  i>=c)]} — Axiom Schema la.
4. [0=0 3  (0=0 3  0=0)] 3  [a=b 3  (<z=c 3  £=c)] —  Rule 2, 1,3.
5. [0=0 3  (0=0 3  0=0)] 3  Vc[a=b 3  (<j=c 3  b=c)] — Rule 9, 4.
6 . [0=0 3 (0 = 0  3  0=0)] 3  V^Vc[a=^ 3  (a=c 3  b=c)] — Rule 9, 5.
7. [0=0 3  (0=0 3  0=0)] 3  VaVbVc[a=b 3  (a=c 3  £=c)] —  Rule 9 ,6.
8 . 'i  d i  b'i c[a—b 3  (a=c 3  £=c)] — Rule 2, 2, 7.
9. VflV£Vc[a=£ 3  (<*=C 3  b=c)] 3  V^Vc [a+0=£ 3  (a+0=c 3  £=c)]

— Axiom Schema 10.
10. 'lb'4c[a+0=b'D{a+0=c'Db=c)} — Rule 2, 8, 9.
11. VbVc[a+0=b 3  (a + 0 = c 3  b=c)] 3  Vc[j + 0 = a 3  (<j+0=c3<i=c)]

— Axiom Schema 10.
12. Vc[<J-f-0=tf 3  (<j+0=c 3 a = c )]  —  Rule 2, 10, 11.

13. V c [« + 0 = j3 (tf+ 0 = c 3 d = c )]  3[<7+0=tf3(<j+0=d3<7=d)] — 
Axiom Schema 10.

14. a+0=aZ>{a+0=aZ>a=a) — Rule 2, 12, 13.
15. a+0=a  — Axiom 18.
16. d + 0 = a 3 a = tf  — Rule 2, 15, 14.
17. a=a  — Rule 2, 15, 16.

E xample 2. Let A be any formula. Then the following sequence of 
five formulas is a proof of the formula A 3  A. (In other words, what we 
exhibit below is a 'proof schema’, which becomes a particular proof on 
substituting any particular formula, such as 0=0, for the metamathe- 
matical letter “A” ; and its last expression "A 3  A” is accordingly a 
‘theorem schema’.) Formula 1 is an axiom, by an application of Axiom 
Schema la in which the A and the B of the schema are the A of this 
example. Formula 2 is an axiom, by an application of Axiom Schema lb 
in which the A and the C of the schema are the A of this example, and 
the B of the schema is the A 3  A of this example. Formula 3 is an imme
diate consequence of Formulas 1 and 2, as first and second premise, 
respectively, by an application of Rule 2 in which the A of the rule 
is the A 3  (A 3  A) of this example, and the B of the rule is the 
[A 3  ((A 3  A) 3  A)] 3  [A 3  A] of this example.
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1. A d ( A d A)  —  A xio m  Schem a 1 a.

2. {A  3  (A 3  A )}D  {[A D  ((A 3 A ) D  A)] D [ A 3  A ]} —  A x io m  Sche- 

m a lb.

[ } 3. [A D ( ( A D A )  D A ) ]  D [A D A] —  R u le 2, 1, 2.

4. A  D ((A D A ) D A) —  A xio m  Schem a la.

5. A D A  —  R u le 2, 4, 3.

T h e  term s proof, theorem , etc. as defined for the form al system  (i.e. 

form al proof, form al theorem , etc.) m ust be sharply distinguished from  

these term s in their ordinary inform al senses, w hich w e em ploy in pre

senting the m etam athem atics. A  form al theorem  is a form ula (i.e. a cer

tain kind of finite sequence of m arks), and its form al proof is a certain  

kind of finite sequence of form ulas. A  m etam ath em atical theorem  is a  

m eaningful statem ent about the form al objects, and its proof is an  

in tu itive  dem onstration of the tru th  of th a t statem ent.

W e m entioned three categories of form al objects (§ 16), b u t w e shall 

be free to  introduce others in the stu d y of them , so long as the treatm en t  

is finitary. Besides this, a som ew hat different extension of our su bject  

m atter occurs w hen w e discuss the form of our m etam ath em atical d ef

initions and theorem s in turn. If we chose to be m eticulous in our w a y  

of doing this, it  w ould con stitu te a m etam etam athem atics. H ow ever, the  

sam e practice is com m on in (other branches of) inform al m a th e m a tics; 

and w e shall regard such discussions as incidental explanations, intended  

som etim es to  m ake it easier to grasp q u ick ly  w hat is being done in the  

m etam athem atics, and som etim es to enable us to condense the statem ent  

of m etam ath em atical theorem s w hich could be stated  w ith ou t them .



Chapter V
F O R M A L  D E D U C T I O N

§  20. F o r m a l  d e d u c tio n . Form al proofs of even quite elem entary  

theorem s ten d to be long. A s  a price for h avin g an alyzed  logical de

duction into sim ple steps, more of those steps h ave to be used.

T h e purpose of form alizing a theory is to get an exp licit definition of 

w h a t con stitutes proof in the theory. H a v in g  achieved this, there is no 

need alw ays to appeal d irectly  to the definition. T h e labor required to  

establish the form al p ro v a b ility  of form ulas can be g re a tly  lessened b y  

using m etam ath em atical theorem s concerning the existence of form al 

proofs. If  the dem onstrations of those theorem s do h a ve the fin itary  

character w hich m etam ath em atics is supposed to h ave, the dem onstrations  

w ill indicate, at least im p licitly , m ethods for obtaining the form al proofs. 

T h e use of the m etam ath em atical theorem s then am ounts to ab b revia

tion, often of v e ry  great exten t, in the presentation of the form al proofs.

T h e  sim pler of such m etam ath em atical theorem s w e shall call derived  
ru les , since th e y  express principles w hich can be said to  be derived from  

the p ostu lated  rules b y  show ing th a t the use of them  as addition al 

m ethods of inference does not increase the class of provable form ulas. 

W e shall seek b y  m eans of derived rules to  bring the m ethods for es

tablish in g the facts of form al p ro va b ility  as close as possible to  the in

form al m ethods of th e th eory w hich is being form alized.

In  settin g up the form al system , proof w as g iven  the sim plest possible  

structure, consisting of a  single sequence of form ulas. Som e of our derived  

rules, called 'direct rules,, w ill serve to ab b reviate for us w hole segm ents  

of such a sequence; w e can then, so to speak, use these segm ents as 

prefabricated units in bu ild in g proofs.

B u t also, in m ath em atical practice, proofs are com m on wThich h ave  

a m ore com plicated structure, em ploying 'subsidiary deduction', i.e. 

d eduction under assum ptions for the sake of the argum ent, w hich as

sum ption s are su bsequ en tly discharged. For exam ple, subsidiary de

duction is used in a proof b y  reductio ad absurdum , and less ob tru sively  

when we place the hypothesis of a theorem  on a par w ith  proved propo-

86
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sitions to deduce the conclusion. O ther derived rules, called 'subsidiary  

deduction rules’ , w ill give  us this kind of procedure.

W e now  introduce, b y  a m etam ath em atical definition, the notion  

of 'form al d ed u cib ility  under assum ptions’. G iven  a  list D 1, . . . , D J 

(l ^  0) of (occurrences of) form ulas, a finite sequence of one or m ore 

(occurrences of) form ulas is called a (form al) deduction  from  the as
su m ption  form ulas D v . . . ,  D z, if each form ula of the sequence is either  

one of the form ulas D v . . . ,  D ,, or an axiom , or an im m ediate consequence  

of preceding form ulas of the sequence. A  deduction is said to  b e a de

duction of its last form ula E ; and this form ula is said to be deducible  
from  the assum ption form ulas (in sym bols, D 1, . . . ,  D z \- E ), and is called  

the conclusion  (or endform ula) of the deduction. (The sym b ol "  h”  m a y  

be read " y ie ld s” .)

T h e definitions of deduction and of d ed u cib ility  are generalizations of 

those of proof and of p ro v a b ility  (which th e y  include as the case for  

l =  0) to perm it the use of a n y  form ulas D v . . . ,  D , w e please, called as

sum ption form ulas for the deduction, as pro tem pore on a par w ith  the

axiom s.

E xample 1. L e t A , B  and C be form ulas. T h en  the follow ing se

quence of five form ulas is a deduction of C from  the three assum ption  

form ulas A  D  (B D  C), B  and A . (We exh ib it a  'deduction  schem a'.)

1. B  —  second assum ption form ula.

2. A  —  third assum ption form ula.

(2) 3. A D ( B D C )  —  first assum ption form ula.

4. B  D  C  —  R u le 2, 2, 3.

5 . C  — R u le 2, 1, 4.

E xample 2. L e t the reader co n stru ct: (3) a deduction of A  &  B

from A and B ;  (4) a deduction of C from  A  &  B  D  C, A , B.

B y  an a n a lys is  of a deduction or proof A v , . . ,  A *, w e m ean a  spec

ification, for each j  (j — ! , . . . , & ) ,  either th a t A j is one of the assum ption  

form ulas and w hich one in the list D x, . . . ,  D z, or th a t A s is an axiom  and  

b y  w hich axiom  schem a or particu lar axiom  of the p ostu late list, or th a t  

A j  is an im m ediate consequence of preceding form ulas and b y  w hich rule  

of inference and of w hich preceding form ulas as the respective prem ises 

of th a t rule. In  brief, an analysis of a deduction  consists of the ex p la 

nations em ployed to ju s tify  each occurrence of a  form ula in it (i.e. in our 

exam ples, the explanations given  at the right of the form ulas).

It  m a y  occasion ally happen th a t an occurrence of a form ula in a de

duction (or proof) can be ju stified  in more th an  one w a y , e.g. the form ulas
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A , B  and C m ight be such th a t one of the five form ulas in (2) is an axiom . 

C onsequently, for some of the discussions below, the procedure to  be  

applied to a given  deduction is on ly determ ined uniquely, w hen along 

w ith  the deduction itself there is given  a particular analysis of it.

I t  is to  be em phasized th a t the expression . .  , D l b E ” , w hich

w e use to  state b riefly  th a t E  is deducible from  D v . . . ,  D lt is not a form ula  

of the system , b u t a brief w a y  of w ritin g a m etam ath em atical statem en t  

about the form ulas D v . . ., D lf E , nam ely the statem ent th a t there 

exists a certain kind of a finite sequence of form ulas. W h en  1 =  0 , the  

n otation becom es “ b E ” , m eaning th a t E  is provable. T h e sym bol 

“  b”  goes b a ck  to Frege 18 79; the present use of it to R osser 19 3 5* and  

K leene 1934*.

E xample 3 . T h e follow ing tw o statem ents (!') and (2') h ave been  

ju stified  b y  exh ib itin g ab ove the tw o deductions (1) and (2), re sp e ctive ly ; 

and (3 ') and (4 ') b y  E x a m p le  2 .

N o tice th a t the sym bol “ b” appears in co n text preceded b y  a finite  

sequence of zero or m ore form ulas and follow ed b y  a single form ula (or 

instead of form ulas, m etam ath em atical letters or expressions representing  

form ulas). T h is m akes unam biguous the scope of an occurrence of the  

sym bol “ b” in a m eta m a th em atical sentence. In  particular, the scopes 

of the form al operators are necessarily confined w ith in  form ulas of the  

system , w hile “  b” is a m etam ath em atical verb ly in g  outside a n y  

form ula of the system .

T h e  definition of ‘deducible from D x, . . . ,  D /  can also be stated  w ith ou t  

using the interm ediate concept of a deduction (cf. the first definition of 

‘p ro vab le’ in § 19). W e leave it to  the reader to  state  the five clauses 

required. B riefly, “ D 1, . . D z b E ”  then m eans th a t it is possible to get  

from  (zero or m ore of) the form ulas D v  . . . ,  D  t and (zero or more) axiom s  

b y  the rules of inference to  the form ula E . T h e tw o versions of the def

inition are brough t into agreem ent b y  observing th a t, w hen the form ulas  

considered in the process of gettin g  from D l f . . . ,  D* and axiom s to E  are 

p u t dow n in order of first consideration, w e h ave a deduction of E  from  

D x, . . . ,  Di*

W e shall use G reek capital letters, such as ‘ T ” , “ A ” , “ 0 ” , etc., to stand  

for finite sequences of zero or more (occurrences of) form ulas, w hen we  

w ish to indicate sets of assum ption form ulas w ith ou t nam in g the form ulas

(1') b A D A .

(3 ') A,  B  b A  &  B.
(2') A  D  (B D C), B , A  b C. 

(4') A  &  B  D C, A , B  b C.
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ndividually (or sometimes seV(x)’\  “ A(.\i f . . , :,yhy etv , whcn we wish 
'..Iso to emphasize certain variables which mac -mr hi teem).

From the definition of the deducibility lelmm there follow se\ eraL 
:neral properties of b which can be seen to be - c e  u Edmo* icteiwice to 
vhat particular postulates are in the pcwtuiatv led wr the formal ^yuem.
; F r- E when E is in the list lb (ii) If F w  -hen A, I' f E for any A. 

A. particular, we can regard any piovabh- fominE as dedu< ihie iiom 
nv assumption formulas we please. (iiit :C b b, i he n A j- E where A 
ones from E by permuting the formula.- F w »11• ?tin  ̂ any wliieh are 

midicates of others remaining. (i\) li E • b. do-r A ■ E when* A eumt s 
wen F by omitting any of the formulas E w inch arc pi«»v able or <J<.d?u tide 
• •in tliose remaining. For, given a deduction ot if iu.nu V v.e cm: obtain 

■ is from A by inserting into the giw-n d-Nuo; urn. in -hire of each no 
•' nrence of an assumption formula which we wbb m suppress, a do- 
diction of the same from the remaining as mm A ion tumn-iis, Idiese four 
: coral properties can be analyzed info tire w npE r ciiw of the following 
wmma. However (while the inferences we wade by general properties of

can actually all be made from (i) — (iv) 01 (i; (\ }). the reader is en
couraged to reason flexibly w ith b on the basis of its meauiiig

Lemma 5. (I) E h E. (II) I f  F b E, t h e n  Ch V  | E. bl11) I f  C, C, P f- M.
then C, F b E. (IV) If  A, D, C, F h E, then A, k\ h  F r Mb * (V) l i  A j- C 
a n l  C, F b E, then A, T b E. (After (jentzen 1^34-5.)

Example 4. If A b B and A, B, C h J> and B ,l) ; f., then A, E b h - 
ihe reader may convince himself of this directly bom die meaning of 
- (under both versions of its definition), and aim ctrii y  that it follows 
e-in  (i) -  - (iv) and from (I) --- (V).

The definition which w e  have given for h i> reia b\ t to a paitinnyr 
loim al system as determined by a postulate list. Speiifwady, it is relative 
noth to the part of the postulate list which determines +he axioms, and 
to the rales of inference. Thus far we have been w met rued only with the 
one formal system, but we shall make use of o in Jikt seme in ewnnecuon 
with other formal systems, e.g. subsystems of thet one obtained by con- 
sideling only part of the postulate list to be m force foi determining the 
olass of axioms and the relation of immediate _c?iscquenee We shall 
always understand b to be relative to the formal so stem we are studying 
.• ' : ' • gi\ c i Erne.

Notice that A, F b E for a given system is equivalent to A -r  t  lot 
. stem resulting from the gown one \>y adding thr formulas 1' to the

cat oi axioms.
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§  2 1. T h e  d e d u c tio n  th e o r e m . W e shall consider the follow ing  

theorem  first for th e propositional calculus, i.e. w ith  on ly  the postulates  

of G roup A 1 in force.

Theorem 1. F o r the p ro p o sitio n a l calculus, if  T , A  h B , then  T  b A  D  B . 

(The deduction theorem .)

Proof. T h e  hypothesis of the theorem  says th a t there is a  finite  

sequence of form ulas such th a t: each form ula of the sequence is either  

(a) one of the form ulas F, (b) the form ula A , (c) an axiom , or (d) an im 

m ediate consequence b y  R u le  2 of tw o preceding form ulas (since R u le  2 

is the on ly rule of inference h ere); and the last form ula of the sequence  

is the form ula B . T h is sequence we shall call the 'given  d ed u ction 1 of B  

from  T, A .

T h e  conclusion of th e theorem  says th a t there is a finite sequence of 

form ulas such t h a t : each form ula of the sequence is either (a) one of th e  

form ulas T , (c) an axiom , or (d) an im m ediate consequence b y  R u le  2 of 

tw o  preceding form ulas; and the last form ula of the sequence is the  

form ula A  D  B . T h is sequence w e shall call the 'resulting deduction* of 

A D B  from  r.
T h e  theorem  w ill be p roved b y  a course-of-values induction on the  

len gth  k  of the given  deduction (§ 7), ta k in g  the B  of the theorem  to  be  

variable, b u t the T, A  fixed  for the induction.

T h e  induction proposition P (k )  or P ( F , A , k) is: F o r every form ula  B , 

i f  there is  g iven  a deduction  of B  from  T, A  of length k, then there can be found  
a  deduction  o / A D B  from  F.

B asis (to prove the proposition for k  =  1, i.e. to  prove P ( F , A , 1)). 

Suppose giv en  a form ula B  and a deduction of B  from  F , A  of len gth  1. 

W e  distinguish three cases, according to  w hich of the possibilities (a)— (c) 

applies to  the last (and since k  =  1, only) form ula B  of the g iven  deduc

tion. T h e  p ossibility (d) is excluded here, since B  is the o n ly  form ula.

F o r each case, w e show  how  to  con struct the resulting deduction, 

lea vin g it to th e  reader to  ve rify  th a t the sequence of form ulas w hich  

w e subm it as such does h a ve the required features.

Case (a): B  is one of th e form ulas F. T h en  th e follow ing sequence of

form ulas is the resulting deduction.

1. B  —  one of the form ulas T.

2. B D ( A D B )  —  A xio m  Schem a la.

3. A D B  —  R u le 2, 1, 2.
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Case (b): B is A. The resulting deduction is the sequence of formulas
(1) which was given in § 19 Example 2 as a proof of A DA. Since B is A, 
the formula A D A  is A D B.

Case (c) : B is an axiom. The resulting deduction is the same as in
Case (a), except that now the first step is justified on the ground that 
B is an axiom.

Induction step . Assume (as hypothesis of the induction) that, for 
eviry l ^  k, P(F, A, l) ; i.e. that for every l <  k and every B, if there is 
given a deduction of B from T, A of length l, then there can be found a 
deduction of A D B from F. Now (to prove P(r, A, k +  1)) suppose 
given a'formula B and a deduction of B from T, A of length k +  1. We 
distinguish four cases, according to which of the possibilities (a) — (d) 
applies to the last formula B of the given deduction. The treatment of 
Cases (a) — (c) is the same as under the basis.

Case (d): B is an immediate consequence by Rule 2 of two preceding
formulas. By the statement of Rule 2, we may call these two formulas 
P and P D B. (We use the letter P now, instead of A as in the statement 
of the rulet since A is reserved here to designate the last assumption 
formula for the given deduction.) If we discard the part of the given 
deduction below the formula P, the part remaining will be a deduction 
of P from T, A of length l <> k. By the hypothesis of the induction 
(with P as its B), we can hence find a deduction of A D P from T. Likewise, 
applying the hypothesis of the induction to the part of the given de
duction down to P D B  inclusive, we obtain a deduction of A D (PD B ) 
from r. We use these two deductions (say they are of lengths p and qt 
respectively) in constructing the resulting deduction, as follows.

deduction of A 3  P from V, given by the 
hypothesis of the induction.p- A D P
deduction of A D (PD B ) from P, given by 
the hypothesis of the induction.

P+q- A D (P D B )
p + q + \ .  (Ad P )3 ( (A 3 (P 3 B ))3 (A 3 B ))  — Axiom Schema lb. 
P + q+ 2 . (A D (P D B)) D (A D B) — Rule 2, p, P + q + 1. 
p + q + 3 . A ID B — Rule 2, P+q$ p + q + 2 .

This completes the proof of the theorem by mathematical induction. 
The theorem includes the case that T is empty: For the propositional 
c a l c u l u s , if A h B, then |- ADB.
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E x a m p l e . W e were able to state, as (2') above, th a t A d ( B d C),  B ,  

A  h C. B y  Theorem  1, we can thence infer th a t A  D  (B D C ) , B  h A  D C .

T o  exam ine this exam ple more closely, let us take the deduction (2), 

w hich w e exh ibited  in ju stification  of (2'), as the given  deduction of C  

from  A  D  (B D C ) ,  B , A . B y  referring to the proof of Theorem  1, w e  

should be able to find the resulting deduction of A D C  from  A  D ( B d C ) ,B .  

Since the given  deduction is of length >  1, and the last form ula com es  

from  preceding form ulas b y  an application  of R u le 2, the case w hich  

applies is Case (d) under the induction step. There w e find some details, 

and instructions to find the rest b y  ap p lyin g Theorem  1 to the deductions  

1 and 1 —  4 occurring as parts of (2). Continuing in this m anner, w e  

even tu ally  obtain the follow ing as the resulting deduction.

1. B  —  second assum ption formula.

2. B  D (A D B) —  A x io m  Schem a la.

3. A  D B  —  R u le 2, 1, 2.

4. A  D (A D A) — - A x io m  Schem a la.

5. {A D (A D  A)} D  {[A  D ((A D A) D A)] D [A D A ]} —  A x io m  Sche

m a lb .

6. [A  D  ((A D A )  D A ) ]  D [A D  A] —  R u le 2, 4, 5.

7. A  D  ((A D A )  D A )  —  A x io m  Schem a la.

8. A D A  — Rule 2, 7, 6.
(5) 9. A  D (B D C) —  first assum ption form ula.

10. {A  D (B D  C)} D {A  D (A D (B D C))} —  A x io m  Schem a la.

11. A D ( A D ( B D C ) )  —  R u le  2, 9, 10.
12. {A D A } D {[A  D  (A D (B D  C))] D  [A D (B D C)]} —  A xio m  Sche

m a lb.

13. [A  D (A D  (B D C))] D [A D (B D C)] —  R u le 2, 8, 12.

14. A D ( B D C )  —  R u le 2, 11, 13.

15. (A D  B) D  ((A D  (B  D C)) D (A D C)) —  A x io m  Schem a lb .
16. (A D  (B D  O )  D  (A D  C) —  R ule 2, 3, 15.

17. A  D C  —  R u le 2, 14, 16.

T h e deduction (5) is not the o n ly  deduction of A  D C f r o m A  D  (B D C), B . 

I t  happens th a t there is a shorter one, w hich w e obtain  from  (5) b y  om it

tin g  Form ulas 4— 8 and 10— 14, and citin g 9 (instead of 14) as first 

prem ise for the inference b y  R u le 2 at Step  17.

B u t  (5) is the particu lar one w hich results b y  the m ethod used in  

provin g Theorem  1 w hen (2) is taken  as given  deduction. W e h ave  

carried through the exercise of finding (5) to em phasize the fin itary  

character of the reasoning used in proof of Theorem  1, and in particu lar
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to  show w h at is in vo lved  in the use of m ath em atical induction. H en ce

forth we shall be satisfied to kn ow  th a t the resulting deductions exist and  

could be found.

T h e proof of Theorem  1 w ill serve as a m odel for m eta m a th em atical  

proofs of certain types. In  the future w e shall often g iv e  such proofs 

in a more ab b reviated  w a y, w hen the reader could cast the argum ent into  

exp licit applications of induction. A  few  proofs w ill be set up fu lly  e x 

p lic itly  as models.

T h e ab o ve proof of Theorem  1 can be given  in a m ore ab b reviated  

w a y  as follows. T o  each form ula of the given  deduction of B  from  T, A ,  

let A D  be prefixed. (In the exam ple, from Form ulas 1, 2, 3, 4, 5 of (2), 

we thus obtain Form ulas 3, 8, 11, 14, 17 of (5).) T h e  resulting sequence  

of form ulas (with A D B  as end-form ula) is not (in general) a deduction  

from  r ,  b u t can be m ade one b y  inserting additional form ulas in the  

manner indicated in the treatm en t of the cases. (This sim ple plan of proof 

w ill be m odified sligh tly, w hen w e com e to exten d  the theorem  to  the  

predicate calculus in § 22.)

From  A d ( B d C),  B  b A  D C  w e infer b y  a second application  of  

Theorem  1 th a t A D ( B D C )  h B D ( A D C ) .  A  con ven ient arrangem ent 

of these inferences is the following.

1. A D ( B D C ) ,  B , A  b C —  (2).

(S') 2. A  D  (B D C ) ,  B  b A  D C  —  Theorem  1, 1.

3. A D ( B D C )  b B D ( A D C )  -  Theorem  1, 2.

In  this presentation, w e h ave a sequence of expressions analogous to, b u t  

on a different level from , the sequence of form ulas w hich con stitu tes a  

form al proof or deduction. T h e expressions in this sequence are m eta

m athem atical statem ents abou t the form al system , w hile in a form al proof 

or deduction th e y  are form ulas of the system .

A nother exam ple of a deduction and of a series of m etam ath em atical 

statem ents follows.

1. A  &  B  —  second assum ption form ula.

2. A  &  B  D A  —  A xio m  Schem a 4a.

3. A  —  R u le 2, 1, 2.

(6) 4. A  D (B D C) —  first assum ption form ula.

5 . B  D  C —  R u le 2, 3, 4.

6. A & B D B  —  A xio m  Schem a 4b.

7. B  —  R u le 2, 1, 6.

8. C  —  R ule 2, 7, 5.
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1 . A D ( B D C ) ,  A & B  b C —  (6).

' 2. A D ( B D C )  h A & B d C  —  Theorem  1 , 1 .

A s  further exam ples, the reader m a y estab lish :

(7') A  &  B  D C  b A  3  (B D C )  —  cf. (4') § 20.

1. A D B ,  B  D C  h A  D C .

^  2. A D B  b (B D C )  D  (A D C )  —  Theorem  1, 1.

§  22. T h e  d e d u c tio n  t h e o r e m  (c o n c lu d e d ). Theorem  1 is a derived  

rule of the su b sid ia ry  deduction  ty p e  (cf. § 20). F or an application of th e  

rule, the given  deduction of B  from T, A  is the su b sid ia ry  d edu ction ; and  

the deduction of A  D  B  from  V obtained from the given  deduction b y  

the m ethod indicated in the proof of the theorem  we h ave called the  

resu lting  deduction. W h en  we are statin g the existence of deductions  

w ith ou t a ctu a lly  exh ib itin g them , we m a y adopt an elliptical phraseology, 

speaking for exam ple of ‘The deduction T, A  (- B ” , when we m ean the  

deduction w hich the statem en t ‘T ,  A  f- B ” asserts to  exist.

In Theorem  1 , the last assum ption form ula A  of the subsidiary de

duction r, A  (- B  is not used in m akin g up the list of assum ption form ulas  

for the resulting deduction F  A D B ;  accordingly w e sa y  this (occurrence 

of A  as) assum ption form ula of the subsidiary deduction is discharged. 
(There m ight also be occurrences of A  in the list T, which would not be  

discharged.)

In general, a su b sid ia ry  deduction rule  is a m etam ath em atical theorem  

w hich has one or more hypotheses of the form A,- (- E* called the sub
s id ia ry  deductions , and a conclusion of the form A (- E  called the resu lting  
deduction. From  each of the subsidiary deductions, one or more as

sum ption form ulas m a y  be discharged.
E x a m p l e  1. T h e rule “ //  T , A  h C and  F, B  f- C, then  T , A  V B  h C” , 

w hich w ill be established in the n ext section, has tw o subsidiary de

ductions, F, A  j- C and T, B  |- C, from the first of w hich the last as

sum ption form ula A  is discharged, and from the second the B.

A  m etam ath em atical theorem  of the sim ple form A h E  is a derived  

rule of the direct typ e. I t  says th a t it is possible to proceed from the  

form ulas A  and the axiom s d irectly to E  b y  applications of the rules 

of inference.

There is the follow ing im portant difference betw een these tw o kinds  

of derived rules. A  direct rule necessarily remains true when the form al 

system  is enlarged b y  adding new axiom s and rules of inference, since 

the rule states sim ply th a t certain deductions can be constructed, and
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the new  postulates o n ly change th e situation b y  providing additional 

m eans of con structing those sam e deductions. B u t a subsidiary deduction  

rule does not necessarily rem ain true w hen new  postulates are added, 

since the enlargem ent of the system  tends to  create new  instances of the  

subsidiary deductions, and it becom es a question w hether resulting de

ductions exist to correspond to these new  subsidiary deductions. M ost 

of the subsidiary deduction rules w hich w e shall state  (in particular, all 

those of the present chapter) h ave an am biguous set of assum ption  

form ulas T  before the sym bol “ b”  throughout, so th a t the addition of 

new axiom s can cause no trouble. B u t the addition of new  rules of in

ference w ill create new  cases to be considered in the proof of the rule.

W e shall n ext treat Theorem  1 under the condition th a t all the  

postulates of G roup A  are in force, either e x a c tly  these, or also the ones of 

Group B  (which are on ly an axiom  schem a and axiom s). A  certain  

restriction w ill be required in order to handle the new cases in the proof.

It  seems easier to give  this treatm ent now, w hile the proof of Theorem  

1 for the propositional calculus is fresh ; b u t some readers m a y  prefer to  

postpone the rem ainder of this chapter, excep tin g the parts of § 23  

referring to the propositional calculus, u n til after C hapter V I.

W e begin b y  statin g some definitions w hich are useful in form ulatin g  

the restriction. G iven  a deduction A v . . . ,  A fc from  assum ption form ulas  

D Xl. . . ,  D i and a particular an alysis of th e deduction (§ 20), w e define  

when (an occurrence of) a form ula A t in the deduction 'depends' on a given  

one D 5 of the (occurrences of) assum ption form ulas D x, . . . ,D * , as follows.

1 . If  A i in the given  analysis is D i# then A t- depends  on D ,. 2. If  A {± 
depends  on D 3, and A t in the given  an alysis is an im m ediate consequence  

of A ix (or of A ix and some A tjs, in either order), then A* depends  on D ,.

3. A t- depends  on D § on ly as required b y  1 and 2 .

I t  is easily  seen th a t A { depends on D jf if and on ly if there exists no 

subsequence of the deduction (not necessarily consecutive) w hich under  

the given  analysis con stitutes a deduction of A* from  the rem aining  

assum ption form ulas D x, . . . ,  D ^ ,  D m , . . D {.

Example 2 . In the deduction (6), Form ulas 4, 5 and 8 depend on 

the first assum ption form ula A  D  (B D C ) , and the other form ulas do not. 

Form ulas 1 , 6 , 7 (with the given  analysis) con stitute a deduction of 7  

from the other assum ption form ula A  &  B.

W e now sa y  th a t a variable y  is varied  in  a given  deduction (with a  

given analysis) for  a g iven  assum ption form ula D ,, if (A) y  occurs free in 

D „  and (B) the deduction contains an application of R u le 9 or R u le  12
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w ith  respect to  y  (as the x for th e application of th e rule) to  a form ula  

depending on D , (as the prem ise for the application of the rule). Otherw ise, 

w e sa y  th a t y  is held constant in  the deduction for  the assum ption for

m ula D 3.

E xample 3. L e t x  be a variable, A (x) a form ula, and b a variable, 

such th a t (i) b  is free for x  in A (x) and (ii) b  does not occur free in A (x)  

(unless b  is x ) ; and let C be a form ula not containing b  free. T h en  the  

follow ing is a  deduction of C  D V x A ( x )  from  C D  A(b). In  ve rifyin g th a t  

the stipulations for P ostu lates 9 and 10 are m et, we use the facts (iv) —  (vi) 

w hich were w orked out in E x a m p le  9 § 18.

1 . V bA (b) D A ( x )  —  A x io m  Schem a 10 (noting (iv) and (vi)).

2. V bA (b) D  V x A (x ) —  R u le  9, 1 (noting th at, b y  (v), x  does not 

occur free in V bA (b)).

3. C D A ( b )  —  assum ption form ula.

4. C D V b A ( b )  —  R u le 9, 3.

6 . C 3  (VbA(b) D  V xA (x)) —  from  2  as in Case (a) for Theorem  1 § 21.

9. C D V x A ( x )  —  from  4, 6 as in Case (d) for Theorem  1 .

I f  A (x) contains x  free, then in this deduction b is varied, since (using 

(i) and (iii)) the assum ption form ula C D  A(b) contains b free, and R u le  

9 is applied at Step  4 w ith  respect to b  to the prem ise 3, w hich depends  

on the assum ption form ula. B u t  x  is not varied, since the prem ise 1 for 

the application of R u le 9 w ith  respect to x  at Step  2 does not depend on 

the assum ption form ula.

In  a given  deduction (with a given  analysis), a given  variable y  is 

alw ays held con stant for each assum ption form ula in w hich it does not 

occur free, w hile it m a y  b e varied for some of the assum ption form ulas  

in w hich it occurs free and held con stant for others.

T h e  ab o ve term inology suggests itself, since R ules 9 and 12 (the 

“ V -ru le” and the “ 3-rule” ) are the on ly tw o postulates of G roup A  in  

w hich a free variable participates as such. A xio m  Schem a 10, for exam ple, 

can be applied using a free variable as the t, b u t in th a t case the variable is 

used in a w a y  th a t a term  not a variable (such as 0) can equ ally  w ell be  

used. (The em ploym ent of free variables in statin g the postulates of 

G roup B  is inessential.)

T h e restriction on Theorem  1 for the predicate calculus is th a t in the  

subsidiary deduction the free variables should be held con stant for the  

assum ption form ula to  be discharged. (This w ill be explained in term s  

of the interpretation in § 32.)
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Theorem 1 (concluded). F or the pred ica te calculus (or the fu ll num ber- 

theoretic form al system ), i f  T, A  f- B  w ith  the free variables held constant 
for the la st assu m ption  form ula  A , then T  b A  D B .

Proof is obtained from  th a t given  in § 21 b y  su p p lyin g th e treatm en t of 

the tw o additional cases w hich can now  arise under th e induction  

step.

Case (e): B  is an im m ediate consequence of a preceding form ula  

b y  an application  of R u le 9. B y  the statem en t of R u le  9, th a t preceding  

form ula is of th e  form  C D  A (x), where x  is a variable, A (x) a form ula, 

and C  a form ula not con taining x  free. T h en  B  is C D  V x A (x ). W e dis

tinguish tw o  subcases, according as in the given  deduction (for a  g iven  

analysis) th a t preceding form ula C D A ( x )  depends on the last as

sum ption form ula A  or not.

Subcase ( e l ) : C D  A (x) depends on A . T h en  A  does not con tain x  free, 

since otherwise the hypothesis th a t the free variables are held con stan t  

for A  in the given  deduction w ou ld  be contradicted. Since now  neither  

A  nor C contains x  free, the form ula A  &  C does not con tain x  free. T h is  

fact is used below  in ju stifyin g  the new application of R u le 9 at S tep  

p j r q j r \ t A p p ly in g  the hypothesis of the induction to  the segm ent of 

the given  deduction ending w ith  the form ula C D A ( x ) ,  we ob tain  a 

deduction of A  D (C D A(x)) from  T. T h is deduction is incorporated in  

constructing the resulting deduction, as follows.

deduction of A  D (C D A(x)) from  T, 

given  b y  the hypothesis of the in

duction.

p . A D ( C D A ( x ) )  deduction of A  &  C  D  A (x) from

A  3  (C D  A (x)), given  b y  (6 '): 2 (end

p + q .  A  &  C D  A (x) of § 2 1 ).

p + q + l .  A & C D VxA(x) —  R u le 9, p + q .
deduction of A  D (C D V xA (x)) from  

A & C D V x A ( x ) ,  given  b y  (7').

 ̂ p + q + r + l .  A D ( C D  VxA(x))
Subcase (e2): C d A ( x ) (and hence C D V x A ( x ) )  does not depend  

on A . T h en  some subsequence of the given  deduction con stitutes a de

duction of C D  V x A (x ) from  the rem aining assum ption form ulas I \  

W e use this in con structing the resulting deduction, as follows.
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deduction of C  3  V x A (x ) from  T , given  b y  the  

hypothesis of independence.

p .  C D  V x A (x )

p - \ - 1. ( C D  V x A (x )) D (A D (C D V xA (x))) —  A xio m  Schem a la. 

p + 2 .  A  D (C D V x A ( x ) )  —  R u le 2, p , p + 1.

Ca s e  (f): B  is an im m ediate consequence of a preceding form ula

b y  an application of R u le  12. T h e  treatm ent of this case is sim ilar, using  

(S') :3 tw ice in the first subcase.

T h e deduction theorem  w as first proved as a derived rule b y  H erbrand  

1930. (Cf. also H erbrand 1928 , T arski 1930 , Church 1932 , H ilb ert- 

B ern ays 1934  p. 155, Jask o w sk i 1934 .)

§  23. Introduction and elimination of logical symbols. T h e

follow ing theorem  contains a collection of derived rules, w ith  row and  

colum n designations atta ch ed  to provide convenient descriptive nam es 

for the rules. F or exam ple, " V x A (x )  f- A (t)"  is the rule of "gen erality  

elim in ation " or briefly "V -elim in atio n ".

T h e  variab le " x "  w ritten  as superscript on the sym bol " b ”  in tw o  

of the rules is to  m ark the application of R u le 9 or 12 w ith  respect to x  

in con structing the resulting deduction.

T h e o r e m  2. F o r the fo llow ing ru les , A , B  an d  C, or x , A (x), C an d  t, 

are subject to the sam e stip u la tio n s  as for the corresponding postu lates  (§ 19), 

and  T  or T(x) is  a n y  lis t  of form ulas.
F or the p roposition a l calcu lus, the rules hold from  "Im p lica tio n " to 

" N e g a tio n " , inclusive.
F or the pred ica te calculus {or the fu ll num ber-theoretic system ), a ll the 

rules hold , provided  that in  each su b sid ia ry  deduction the free variables are 
held constant for the a ssu m ption  form ula to be discharged.

(Introduction)

(Im plication) I f  T , A  b B ,

then  T  h A D B .

(Conjunction) A , B  b A  &  B .

(Elim ination)

(D isjunction) A  b A  V B .

B  b A  V B .

A , A D B  b B .

(Modus ponens.)

A  &  B  b A .

A & B  b B .

I f  T , A  b C an d  T, B  b C, 

then  T, A  V B  b C.

(Proof b y  cases.)
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(Negation) I f  T , A  b B  an d T , A  b " iB , - 1 - 1A  b A .

r  h - i A .  (D ischarge of

(R eductio ad absurdum .) double n egatio n .)0

(Generality) A (x) bx V x A (x ). V x A (x ) b A (t).

(E xistence) A (t) b 3xA (x). I f  T(x), A (x) b C,

then  T(x), 3xA (x) bx C.

Proofs. T h e rule of D -in tro d u ctio n  is Theorem  1 . There rem ain  

ten direct and three other subsidiary deduction rules. T h e direct rules 

m ay be established b y  exh ib itin g th e required deductions. T h e proofs of 

the subsidiary deduction rules are con ven ien tly  presented as sequences of 

m etam ath em atical statem ents (certain of w hich statem ents are to  be  

substantiated b y  exh ib itin g a deduction as in the proof of a  direct rule, 

and others of w hich follow  from  preceding of the statem ents b y  Theorem  

1 or b y  general properties of b)- In  b oth  cases_ appeal is m ade a t some 

point to  a corresponding one of the postulates. These proofs are given  

below  for several of the rules of each typ e, the others being left to  the  

reader. H ow ever here and in sim ilar situations, the reader is urged first 

to atte m p t him self even those w hich we give.

D irect rules, d  -elimination.
1 . A  —  first assum ption formula.

2. A D B  —  second assum ption form ula.

3. B —  R u le 2, 1, 2.

This rule is sim ply R u le 2 of the postulate list (the " D -r u le ” , or 

"m odus ponens” of traditional logic) restated as a derived rule.

& -introduction. W e already h ave this as (3') § 20.

-l-elim in atio n , or discharge of double negation.

1 . - i - i  A  —  assum ption formula.

2 . - i - i  A  D A  —  A xio m  Schem a 8 .

3. A  —  R u le 2, 1, 2.

V-introduction. L e t  C  be some axiom  not con taining x  free.

1. A (x) —  assumption formula.
2. A (x) D  (C D  A(x)) —  A x io m  Schem a la.

3. C D A ( x )  —  R ule 2, 1 , 2.

4. C D V x A ( x )  —  R u le 9, 3.

5. C —  an axiom .

6 . V x A (x ) —  R u le 2, 5, 4.
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Subsidiary deduction rules. V-elim ination.

1. T, A [- C — hypothesis.
2. r  h A  D C  —  Theorem  1, 1.

3. T, B h C — hypothesis.
4. T  h B d C  —  Theorem  1 , 3.

5. ADC, B d C  h A V B d C  —  using A xio m  Schem a 6 and R u le 2.

6. A V B ,  A V B D C >  C —  D -elim ination (or using R u le 2).

7. T, AVB b C — 2, 4, 5, 6.
3-elim ination.

1 . T(x), A (x) b C  —  hypothesis.

2 . T(x) b A ( x ) D C  —  Theorem  1 , 1 .

3. A (x) D C  bx 3xA (x) D C  —  using R u le 12.

4. 3xA (x), 3xA (x) D C  b C —  D -elim ination.

5. T (x), 3xA (x) bx C —  2 , 3, 4.

D iscussion. These rules g iv e  a classification ol logical operations as 

introduction s and elim inations of the logical sym bols, ad ap ted  from  

G en tzen  1934-5 .

T h e rule called “ V-elim ination” does serve to elim inate a disjunction  

sym bol, w hen it is used as follows.

1 . b A V B  —  suppose given.

2. A  b C —  suppose given, w ith  the free variables held constant for A .

3. B  b C —  suppose given, w ith  the free variables held con stant for B .

4. A  V B  b C  —  V -elim ination (w ith V em p ty), 2, 3.

5. b C — 1,4.
T h is process corresponds to the fam iliar inform al m ethod of proof b y  

cases: E ith e r A  or B . Case 1 : A . T h en  C. Case 2: B . T h en  C. H ence C.

Sim ilarly, 3-elim ination, used as follows, elim inates an existence  

sym bol.

1 . b 3xA (x) —  suppose given.

2 . A (x) b C —  suppose given, where C does not contain x  as a free 

variable, and w ith  the free variables held constant for A (x).

3. - 3xA (x) b C  —  3-elim ination, 2 .

4. b C — 1, 3.
T h is corresponds to  the fam iliar argum ent: There exists an x  such  

th a t A (x ); consider such an x. Then C, w hich does not depend on x. 

H ence C.
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Sim ilarly, -» -introduction corresponds to  the m ethod of reductio ad  

absurdum .

U sin g the T  provided for in the theorem , an y of these procedures can  

be carried out in the presence of a n y  list of additional assum ption form ulas.

T h e follow ing shows th a t A , -» A  b B  (in w o rd s: from  a contradiction  

A  and - i A ,  a n y  form ula B  is deducible). T h is we shall cite as the rule 

of weak -e lim in ation .
1 . A , - i A ,  - i B  b A .

2. A , i A ,  - i B  b - i A .

3. A , - i A  b t i B  —  -i-in tro d u ctio n , 1 , 2 .

4. - i - i B  b B  —  -i-elim in ation .

(9') 5. A , - i  A  b B  —  3, 4, as w as to be proved.

Step  3 am ounts to  blam in g the form ula - i  B  for the contradiction  

A  and - i A  of 1 and 2 . Continuing, w e h a ve:

6 . - i A  b A d B  —  D -in troduction , 5.

7. b “i A D ( A D B )  —  D -in troduction , 6 .

O ur form al system  w as intended as a form alization of num ber theory, 

including m ethods o n ly accepted under the classical view poin t (cf. § 13). 

H ow ever, if A x io m  Schem a 8 (-i - i A  D  A) is replaced b y  the follow ing  

(cf. (9'): 7), all the postulates express principles also accepted b y  the  

intuitionists (cf. end § 30):

81. - i A D ( A D B ) .

In term s of the derived rules of Theorem  2, this m eans replacing  

-i-elim in atio n  b y  w eak - i  -elim ination. W hen w e wish to consider this  

system  also, w e call the original system  w ith  P ostu late 8 the classical 
system , and the system  w ith  P ostu late 81 instead the (corresponding) 
in tu itio n is tic  system . O ur results are m arked w ith  the sym bol in every  

case w hen the dem onstration w e give  is not va lid  for b oth  system s, b u t  

on ly for the classical (and no dem onstration w hich the reader is expected  

to  discover for him self is availab le for the intuitionistic system ).

U se of V -introduction follow ed b y  V -elim ination gives us the follow ing  

rule.

Substitution for an individual variable. I f  x  is  a variab le , A (x) 

is  a  form u la , an d  t  is  a term  which is  free for  x  in  A ( x ) : A(x) bx A (t).

W e shall abbreviate the presentation of applications of our derived  

rules, using ta c itly  general properties of h
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E xample 1. Consider the follow ing argum ent.

1 . A , B  [- C  —  suppose this given.

2. A  &  B  h A  —  &-elim ination.

3. A  &  B  h B  —  & -elim ination.

4. A & B  b C —  1, 2, 3.

W e  condense this as follows.

1 . A , B  h C —  suppose this given.

2 . A & B  h C —  & -elim ., 1 .

G iven  ‘ T  h P , P  b Q ” (which m eans: T  b P  and P  b Q), we  

condense to  ‘T  b P  b Q ” ; and sim ilarly w ith  longer chains of deductions, 

each of w hich after th e first has as its only assum ption form ula the  

conclusion of the preceding. ( B u t ‘T  h P , h Q ” m ean s: T  h P  and b Q-)

E xample 2.
1 . A D B ,  A  b B  —  D -elim ination.

2. B  b B  V C —  V-introduction.

3. A D B ,  A  b B  V C  —  1 , 2.

W e condense this to :

1 . A D B ,  A  b B  b B V C  —  D -elim ., V-introd.

* §  24. D e p e n d e n c e  a n d  v a r ia t io n . F o r the predicate calculus, in  

order to  use a deduction obtained (i.e. proved to  exist) b y  one of the  

derived rules of Theorem  2 as a subsidiary deduction for a new  application  

of one of the rules, w e shall need (so far as our inform ation goes) to  know  

not o n ly  th a t the deduction exists, b u t also th a t the free variables are 

held con stant for th e  assum ption form ula to  be discharged.

In  order to  h a ve such inform ation on hand w hen it  is needed, w e shall 

m ake it a practice in ap p lyin g the rules to keep track of all cases w hen  

a variable m a y  be varied in the resulting deduction. I t  is convenient to  

do this b y  w riting a n y  variables w hich m a y  be varied as superscripts 

on the sym bol “ b ” « T h is n otation is not fu lly  explicit, as it does not 

show  for w hich of the assum ption form ulas a given  superscript variable  

m a y  be varied. W e m a y  then sim p ly associate the superscript w ith  the  

assum ption form ulas in w hich the variable occurs free. (W hen there is 

occasion to be more explicit, the facts m a y  be stated verbally, e.g. as in  

L em m a 8a'b elo w .)

W e recall th at, under the definition of variation (§ 22), a variab le y  

can be varied on ly for an assum ption form ula D ; in which it occurs free.

It  is easily seen th at, given  an y deduction D 1#. . D,  b E , assum ption
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form ula D 3, and variable y  th a t occurs free in D i# one can find another  

deduction of E  from D v . . . ,  in w hich y  is varied  for D 5. (H i n t : intro- 

duce into the deduction some superfluous steps.) Therefore our interest 

w ill alw ays be in w hether there is some deduction D 1#. . . ,  D t b E  in  

w hich y  is not varied for D ,;  and our statem en ts to  the effect th a t a 

variable y  is varied on ly for such and such assum ption form ulas w ill  

m ean th a t there is some deduction (with the given  assum ption form ulas 

and conclusion) in w hich this is the case.

Sim ilarly, g iv en  a n y deduction D v . . Dj  b E , it is alw ays possible  

to find another deduction of E  from  D v . . .  D l in w hich the conclusion  

E  depends on D ;.

T h e procedure for keeping track  of variation  is entirely straightforw ard  

(likewise for dependence). T h u s far our on ly derived rules w hich call for 

introducing a superscript are V -in troduction , 1 -elim ination and sub

stitution. (E ven  then the superscript is not alw ays necessary, e.g. w hen  

the A (x) for an V -in trod u ction  or substitution  does not con tain x  free. 

Also cf. L em m a 7b  below.) M oreover, once superscripts h a ve been in

troduced, we m ust carry them  forw ard in the obvious w a y  from  g iven  de

ductions to resulting deduction (unless some reason to th e con trary can  

be given), b o th  in ap p lyin g the subsidiary deduction rules of this section, 

and in com bining deductions b y  general properties of b ( § 20).

T h e  situations w hich arise in practice are sim ple enough so th a t w e  

h ave little  trouble in seeing w h a t is happening. V ariables w hich are being  

varied h ave u su ally  ju st p reviou sly been introduced in th a t role for som e  

im m ediate purpose, so th a t th e y  are not lik ely  to  be overlooked. H o w 

ever, to  m ake the theory of our derived rules com plete, the facts are stated  

in m ore d etail in the follow ing lem m as.

Lemma 6 . I n  Theorem  1 , A  D B  depends on a given  one of the form ulas  
T  in  the resu lting  deduction  T  h A d B,  only if  B  depends on the sam e one 
in  the given  deduction  T , A  b B . S im ila r ly , in  the other su b sid ia ry  deduction  
rules of Theorem  2 , the conclusion depends on a g iven  one of the F ’s in  the 
resu lting deduction , only i f  the conclusion depends on the sam e one in  the 
given  deduction {or in  one at least of the two given  deductions).

F or otherwise th a t assum ption form ula could be om itted  from  th e  

F s  in ap p lyin g  the rule, and afterw ards introduced b y  (II) (and (IV)) of 

L em m a 5.

In V-elim ination, if the C does not depend b o th  on th e A  in T, A  b C  

and on the B  in T , B  b C, the V-elim ination can be avoid ed  altogether. 

Sim ilarly in 3-elim ination, if the C  does not depend on the A (x).
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Lemma 7a. I n  Theorem  1 , a variable is  varied  for a g iven  one of the 
r s  in  the resu ltin g  deduction T \- A  D  B , only i f  i t  is  varied  for the sam e one 
in  the g iven  deduction  F , A  f- B . S im ila r ly  in  the other su b sid ia ry  deduction  
ru les of Theorem  2 , except that for the variable  x  of ^ -elim in ation  the s itu a tio n  
is  as sta ted  in  L em m a  7b.

Lemma 7b. I n  3-e lim in a tio n , the x  is  varied  in  the resu ltin g  deduction  
r(x), 3 xA (x) \-x C  only for those of the T (x ),s which contain  the x  free an d  
on which the C  depends in  the g iven  deduction  T(x), A (x) |- C. (In  3 -e lim i
n a tio n , no variable is  varied  for the 3 x A ( x ) ; and likew ise  in  ^ -e lim in a tio n  
for the A  V B.)

These tw o lem m as m a y  be verified  b y  exam ining the proofs of Theorem s  

1 and 2 . F o r 3-elim ination, if the x  is varied in the given  deduction for a n y  

one of the r (x ) 's  on w hich the C does not depend, th a t one of the T (x ),s 

m a y  be om itted  for th e 3-elim ination.

T h e  discussions of dependence and variation  under steps perform ed  

b y  general properties of b (using the list of such properties provided in  

L em m a 5) are left to  the reader, excep tin g th a t of variation  for the A ’s 

of (V). B efore treatin g this (in L em m a 9), w e prove the follow ing basic  

lem m as.

Lemma 8a. I f
(I) D x, D 2, . . . ,  Dj  |- E ,

w here, for j  =  1 on ly  the d is tin c t variab les  y ?1, . . . ,  y .p , are varied  for  
D ?. (but y n>. . . ,  y .p , need not be d is tin c t from  the variables y kl , . . . ,  y kPk for  
] 7  ̂ k), then
(II) h V y u . . .  V y lp D , D  ( Vy 21. . .  V y 2p2D 2 D  . . .  ( Vy a . . .  V y ,p D p  E ) . . . ) ;

an d  conversely.
F o r (II) follow s from  (I) b y  V -elim inations and D -in troduction s. 

C onversely, (I) follows from  (II) b y  V -introduction s an d D -elim inations.

Lemma 8b. G iven a deduction  of E  from  D 1?. . . ,  D*,  another deduction  
of E  from  D lt  . . . ,  D t can be found in  w hich , for j  =  1 , . . . ,  I, R u le  9 is  
a p p lie d , to prem ises dependent on D js on ly w ith  respect to variables w hich are 
varied  for  D 5- in  the g iven  deduction , an d R u le  12 is  a p p lied  to no p rem ise  
dependent" on an  assu m ption  form ula.

W e ta k e  the given  deduction as (I) for L em m a 8a, pass to  (II), and  

thence con versely b a ck  to another deduction (I). In  this the applications  

of R ules 9 and 12 w hich com e from the proof (II) are to  premises dependent
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on no assum ption form ulas. Those w hich com e from  the V -introduction s  

used to obtain (I) from  (II) are e x a c tly  as described in the present lem m a.

L e m m a  9. I n  (V) of L em m a  5, a variable  y  is  varied  for a given  one of the 
is!s in  the resu lting  deduction  A, F  h E , only  (a) i f  y  is  varied  for the sam e  
one of the A ’s in  the f irs t given deduction  A b C, or (b) i f  y  is  varied  for  C  

in  the second g iven  deduction  C, F  b E , and  C depends on that one of the 
A ’s in  the f irs t given  deduction  A  h C, and that one of the A 's  contains  y  free.

L em m a 9 w ould be im m ediate, except for the follow ing con tin gency. 

In the second given  deduction C, F  b E  there m ight be an application of 

R u le 9 or 12 w ith  respect to y  to a prem ise dependent on C, and y e t  y  

be held con stant for C  because C does not contain y  free. If this deduction  

were com bined w ith  a deduction A  f- C in w hich C depends on one of the  

A 's containing y  free, then y  w ould be varied for th a t one of the A ’s in the  

resulting deduction A, F  h E . B u t we can use L em m a 8b to replace th e  

given  deduction C, T  b E  b y  another, after w hich the con tin gen cy de

scribed cannot arise for a n y  variable y.

H ereafter, for new  derived rules the facts respecting dependence and  

variatio n  w ill be as one w ould expect, w ith  a n y  exceptions noted, and all 

cases w hen variation  m a y  be introduced indicated b y  superscripts on “  b” . 

In  general, in a subsidiary deduction rule h avin g assum ption form ulas  

for given  and resulting deductions in obviou s correspondence: T h e  con

clusion depends on (A given  variable is varied for) a given  one of the as

sum ption form ulas of the resulting deduction, on ly  if it does on (is for) the  

corresponding assum ption form ula of the given  deduction or of either  

given  deduction. E x am p les are Theorem s 3 and 4 § 25 (for dependence), 

15 and 16 § 3 4 , the form al induction rule §3 8 , 41 (b) and (c) § 7 3 ,  42

(III)— (V) and 43 ( V ila ) — (V U Ib ) § 7 4 ,  59 and 60 (b2)— (d) § 8 1 .

Strong V-introduction and 3-elimination. O ccasion ally  it  is useful 

to  em ploy V -in tro d u ctio n  and 3-elim ination in a slig h tly  strengthened  

version, w hich perm its a change in the variable.

Lemma 10. L et x  be a variab le , A (x) a form u la , an d  b  a variab le , such  
that (i) b is  free for  x  in  A (x) an d  (ii) b  does not occur free in  A (x) {unless 
b  is  x). Furtherm ore, for the ^ -elim in ation  rule, let C be a form ula  not con
ta in in g  b  free, an d  let the free variables be held constant for  A(b) in  the sub
s id ia ry  deduction. T hen:

A(b) bb V x A (x ). I f  T(b), A(b) b C, then  T(b), 3xA (x) hb C.

(Strong V -introduction .) (Strong 3-elim ination.)

Proofs. In E x a m p le  3 § 22 we derived the rule C 3  A(b) bb C 3  V x A (x ).
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U sin g this instead of th e postu lated rule 9 in our form er proof for V -  

introduction (§ 23), w e obtain  the strong version.

Derived rules and respective postulates. W e call P ostu lates  

la , lb  and 2  the postu la tes for  3 ,  Postu lates 3, 4a and 4b the Sc-postulates, 

P ostu lates 7  and 8 (or for the intuitionistic system  7 and 81) the - i -  

postu la tes , etc. P ostu lates for 3 are used in establishing all the derived  

rules of Theorem  2 .

Lemma 1 1 . F or each selection of one or m ore of the logical sym bols  
3, &, V, - 1, V an d  3: The ru les of Theorem  2  for  3 an d those sym bols  
{including  for  V  an d  3 the strong version s , and for  - i  in  the in tu itio n is tic  
system  the w eak  - i -e lim in a tio n  rule in  place of the other) hold good in  the 
form al system  which has as postu la tes on ly the "D-postulates an d  the p o stu 
lates for the sym bols in  qu estion , provided  that in  case the sym bols include  
V  but not &  the V -postu lates include an  add ition a l ax iom  schema as fo llow s, 

where  x , A (x) an d  C  are subject to the sam e stip u la tio n s  as for R u le  9:

9a. V x (C  3 A (x)) 3 ( C D V x A ( x ) ) .

Proof. T h is m a y  be verified b y  a perusal of the ab ove proofs of the  

rules, w ith  an exception  in the case the sym bols include V  b u t not & , 

since the treatm en t of Case (e) Subcase (el) of Theorem  1 (§ 22) entails  

use of the & -postulates. W ith  the additional V-schem a, how ever, th a t  

can be replaced b y  the follow ing.

p .  A  3 (C 3 A(x)) —  as before.

p + l .  A  3  V x ( C 3  A (x)) —  R u le 9, p .
p + 2 . V x (C  3 A (x)) 3 (C 3 V xA (x)) —  A xio m  Schem a 9a.

deduction from  p  + 1  and p + 2  
given  b y  (8 '):1  (end § 2 1 ).

p + q + 2 .  A  3 (C 3 V xA (x)).

D eductions in tree form. W e h a ve been ta k in g  a deduction to  

b e a linear sequence of (occurrences of) form ulas. Som etim es it  is useful 

instead to  consider the (occurrences of) form ulas in a p artial ordering  

w hich represents the logical structure directly. In  this ordering, the  

prem ises for each inference are w ritten  im m ediately  over the conclusion, 

as in the statem en t of the rules of inference; and no (occurrence of a) 

form ula serves as prem ise for m ore th an  one inference. A  deduction (or 

proof) in the form er arrangem ent w e sa y  is in sequence fo rm ; in this, in  

tree form .
T h e m ethod of con vertin g a deduction of E  from  T  g iven  in sequence  

form , w ith  a g iven  analysis, into one in tree form  (called “ resolution into
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proof threads” b y  H ilbert and B ern ays 1934  p. 2 2 1), and inversely, w ill 

be clear from  an exam ple.

E xample 1 . Consider the deduction (6) of § 2 1 .  B y  the an alysis, 

the b o tto m  form ula 8 is an im m ediate consequence of 7 and 5. L e t us 

w rite 7 and 5 im m ediately  ab ove 8 . T h en  7 is an im m ediate consequence  

of 1 and 6 ; so w e w rite 1 and 6 ju st over 7 ;  etc. L ookin g ju st at the  

num bers 1— 8 , w e obtain the follow ing figure.

(a) 1 2

1 6 3 4

7 5

8
W ritin g in the form ulas them selves (with new num bers 1 ' —  9' and the  

analysis), we h ave the deduction in tree form.

(b) second

assum ption A xio m

second form ula Schem a 4a first

assum ption A xio m  4'. A & B  5'. A & B  D A  assum ption

form ula , Schem a 4b -------------------------------------------- 2  form ula

1 '. A & B  2'. A & B D B  6 '. A  7' .  A d ( B d C)

----------- ------------------------------------------------ 2 ----------------------------------------------------------------------------------2
3'. B 8 '. B d C

9'. C

Inversely, from  this deduction in tree form  of C  from  A d ( B d C) 

and A & B ,  b y  arranging the (occurrences of) form ulas as a linear se

quence sa y  in the order of the num bers 1'— 9', w e ob ta in  one in sequence  

form (not the original one).

B riefly  described, a branch  of a deduction in tree form  consists of the  

(occurrences of) form ulas in linear sequence, passing dow nw ard w ith in  

the tree structure, beginning w ith  a form ula occurring as an axiom  or 

assum ption form ula, and term in atin g in the conclusion (or endform ula) 

of the deduction. T h e height of a deduction in tree form  is the len gth  of a  

longest branch (or in other words, the num ber of levels). A n  (occurrence of) 

a form ula is said to be above another (or the latter to be below  the former), 

if the form er is ab o ve the latter in the sam e branch.

E xample 1 (concluded). T h e deduction (b) has 5 branches, n a m e ly : 

r ,  3', 9 '; 2 ', 3 ', 9 '; 4', 6 ', 8 ', 9 '; 5 ', 6 ', 8 ', 9 '; 7 ', 8 ', 9'. T h e h eight is 4. 

T h e (occurrence of a) form ula 4' is above 8 ' b u t not ab ove 3'.



Chapter  VI
THE PROPOSITIONAL CALCULUS

§  25. P r o p o s it io n  le tt e r  f o r m u la s . In  this chapter we single out  

for intensive stu d y  th a t part of the form al system  w hich is obtained b y  

using on ly the postulates of G roup Al. T h e m eanings of ‘provable*, 

‘deducible* and ‘ K  are to  be understood accordingly.

U nder the definition of ‘formula* w hich w as given  for the full system  

in § 17 our form ulas are all bu ilt up in term s of the num ber-theoretic  

sym bolism . B u t so long as w e are using on ly the postulates of G roup A l ,  

m a n y details of this sym bolism  are irrelevant.

It  is undesirable th a t we should restrict the gen erality of our treatm en t  

of the propositional calculus because w e intend ap p lyin g it in the num ber- 

theoretic system . O n the other hand, w e m ust prepare the ground for 

th a t application.

W e now  give, for use in the propositional calculus, an altern ative  

definition of ‘formula*, w hich elim inates the irrelevant details of th e  

num ber-theoretic definition.

W e start b y  introducing form al sym bols of a new kind,

c3, B, C, . . . ,

called p ro p o sitio n  letters, of w hich we suppose a (potentially) infin ite  

list to  be available. T h e  new  definition of ‘formula* follows.

1 . A  proposition letter is a form ula. 2— 5. If  A  and B  are fo rm u las , 

then (A) D  (B), (A) &  (B), (A) V (B) and -i( A )  are fo rm u las . 6 . T h e  o n ly  

form ulas  are those given  b y  1 —  5.

Com paring this w ith  the definition in § 17, Clause 1 of th a t definition  

is replaced b y  the new  Clause 1 , and Clauses 6 —  7 are suppressed. W h en  

w e w ish to  distinguish betw een the tw o notions of form ula, w e shall 

call th a t of § 17 num ber-theoretic form u la , and the present one pro p o sitio n  
letter form ula.

E xample L < 3V (i <3 & S )  is a proposition letter formula (pa
rentheses being omitted in continuation of practices established in § 17).

W e henceforth agree, for this chapter, th a t w hen w e sa y  “ formula** 

w ith o u t specifyin g a particular sense, the word m a y  b e read either in

108
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the sense of proposition letter form ula, or in the sense of predicate letter  

form ula to  b e defined in the n ext chapter, or in th e num ber-theoretic  

sense. (It m ight be read in still other suitable senses. B u t for definiteness  

we restrict it here to  these three, leavin g the question w hether another  

sense is suitable to be considered w hen one has another sense in m ind.)

R esults stated  in this ch apter using sim ply “ form ula” w ill thus ap p ly,  

a t no extra  expense, to  a n y  one of three form al system s, h a vin g in com 

m on G roup A 1 as p ostu late list, b u t differing in the sense of form ula. 

These three system s w e m a y  distinguish resp ectively as the pu re  p ro p o 
sitio n a l calcu lus, the predica te letter p ro p o sitio n a l calculus  and the  

number-theoretic p roposition a l calculus.
Som e of our results, however, w ill be stated  using “ proposition letter  

form ula” . These w ill also a p p ly  generally. T h e on ly difference in the case  

of these is th a t it is easier to explain them  in term s of proposition letters, 

leavin g it to  the reader to  translate them  to  other senses of form ula, w hen  

he needs to, b y  m eans of tw o general rules for translation w hich w e shall 

n ext p rovide (Theorems 3 and 4).

L e t P 1? . . . ,  P w be a list of distinct proposition letters. (Here “ P x” , . . . ,  

“ P w” are m et% m athem atical letters, used as nam es for proposition let

ters w hen w e do not w ish to  lim it our discussion b y  using particu lar  

proposition letters.)

A  proposition letter form ula A  is said to be a proposition letter form ula  

in  P 1# . . . ,  P w, if no proposition letters other th an  P lf . . . ,  P m occur in A .

E xample 2. H  V (-i<£? &  B) is a proposition letter form ula in  

a % S , C.
S u bstitu tion  for a proposition letter (or sim ultaneously for several 

distinct proposition letters) is defined as for a variable in § 18, excep t  

th a t it applies to  all occurrences w ith o u t exception  (there being here no 

'bound occurrences'). Also, later in the section, w e use an operation called  

replacem ent in  all occurrences of a form ula (or sim ultaneously of several 

distinct form ulas), defined sim ilarly (the x  in the definition of § 18 

becom ing a form ula); this operation is unam biguous because the oc

currences w ill be non-overlapping.

Theorem 3. Substitution for proposition letters. L ei T be 
proposition  letter fo rm u las, an d  E  a p ro p o sitio n  letter form ula, in  the d is tin c t  
proposition  letters  P x, . . . ,  P m. L et A v  . . . ,  A w be form ulas. L et T *  a n d  E *  

result from  V and  E ,  respectively, by su bstitu tin g  sim u ltan eou sly  A x, . . . ,  A m 
for P 1# . . . ,  P w, respectively. I f  P b E , then  T *  b E * .  (For the case th a t T  

is e m p ty: I f  b E , then  b E *.)
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P r o o f . F o r the postulates of G roup A l ,  n othing is required of the  

A , B , C w hich appear in those postulates except th a t th e y  be form ulas  

fixed  throughout a given  application of a postulate. N ow  consider the  

g iven  deduction of E  from  T  in the pure propositional calculus. T h e for

m ulas T  and the form ula E  are proposition letter form ulas in the distinct  

proposition letters P x, . . . ,  P m, and besides these some more P m+1, 

. . P m+r m a y  occur in other form ulas of the deduction. L e t A m+1, . .  

A m+r be a n y  form ulas. F or each of the proposition letters P x, . . P m+r, 

let the respective form ulas A lf . . . ,  A m+r be su bstitu ted  throughout every  

form ula of the given  deduction. F or each application of a postulate in the  

given  deduction, the A , B , C  of the application w ill be transform ed b y  

th e substitution  into expressions A * ,  B * , C * (every occurrence of A  

becom ing an occurrence of A * ,  etc.). These expressions A * ,  B * ,  C *  w ill be  

form ulas, since to each application of one of Clauses 2 —  5 of the defini

tion of proposition letter form ula used in buildin g up A , B , C  from  the  

proposition letters P v  . . . ,  P w+r there w ill correspond an application of 

the sam e-num bered clause of the definition of form ula used in buildin g  

u p A * , B * ,  C * from  the form ulas A v  . . . ,  A m+r. H ence we shall h ave again  

an application of the sam e postulate. T h u s the sequence of form ulas 

into w hich the given  deduction is transform ed is again a deduction w ith  

the sam e analysis. I t  is a deduction of E *  from  T *.

E xample 3. T o  illustrate the proof of the rule, consider the follow ing  

deduction of c ?  D  B  from  B.

1 . B —  assum ption form ula.

(a) 2. B D  (c2f D  B) —  A xio m  Schem a la.

3 . -  R u le 2 , 1 , 2 .

O n  su b stitu tin g B, -ic2f &  C  (or l c ( a = c ' ) ,  - i a — 0) for <3f, B, we obtain  

th e follow ing deduction (b) (or (c)) w ith  the sam e analysis as (a).

1. -i<C? &  C  —  assum ption formula.

(b) 2. -ic2f & C D ( B  & C) —  A xio m  Schem a la.

3. B D i c Z & C  —  R u le 2, 1 , 2 .

1 . - i a = 0  —  assum ption form ula.

(c) 2. ~ i a = 0  D  (3 c (a = c ')  D  —\ a = 0 )  —  A xio m  Schem a la.

3. 3c(<z=c') D  -i< z= 0  —  R u le 2 , 1 , 2 .

T o  illustrate the application of the rule w ith  the sam e tw o exam ples, 

w e know  (by reference to  (a)) th a t

(a') B  h ^ D B .
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T h e rule allow s us to infer, b y  the substitutions described,

(b') -te 2 & C  b ®

(c') b 3c(<z=c') 3  —\a = Q .
In one case ((a') to  (b')), we are using the rule w ithin the pure proposi

tional calculus, for which it is a  derived rule of the subsidiary deduction  

typ e. In  the other case, b y  su b stitu tin g form ulas in another sense, we  

h ave used the rule to infer (c') in the num ber-theoretic propositional 

calculus from  (a') in the pure calculus.

E v id e n tly  (a'), (b'), (c'), etc. can all be included in the sta te m e n t: 

If A  and B  are form ulas, then

(10') B  b A D B .

T h e sense of the rule appears as sim ply th at, h avin g established a de

d u cib ility  relationship in term s of particular proposition letters cC?, 

S, C, . . . ,  we can assert the sam e relationship in the form  of a schem a w ith  

m etam ath em atical letters " A " ,  “ B ” , “ C ” , . . .  representing an y form ulas.

Com bining this rem ark w ith  our earlier observation th a t a rule of the  

direct fornj T  b E  alw ays rem ains va lid  in the presence of addition al 

postulates (§ 22), we see th a t all results of the form  T  b E  obtained in 

this chapter (whether or not stated  in term s of proposition letters) w ill 

hold good for later chapters where w e ta k e  into account m ore of the  

structure of the form ulas and a larger part of the postulate list of the  

original form al system .

R emark 1 . W ith in  th e pure propositional calculus, su bstitu tion  can  

be perform ed for a single variable P 5 at a  tim e, b y  using the rule w ith  

P j , . . . ,  Py_i, Py_j_j, • • •, P m the A^, • • • $ A A y _ | _ j , . . . ,  A m.
A  form ula w ill be said to  b e p rim e  (for the p ro p o sitio n a l calcu lus), if 

it does not h a ve a n y  one of the form s A D B ,  A & B ,  A V B ,  - i A  where  

A  and B  are form ulas.

E xample 4. a = 0, 3 c (a = c ')  and \fc (a —c' V a = b )  are prim e, b u t  

~ ia = 0  and - i a = 0  &  3 c (a = c ')  are not. A  proposition letter form ula  

is prime, o n ly w hen it consists sim p ly of a proposition letter.

From  the fact th a t the scopes of the operators 3 ,  & , V, - i  in a form ula  

can be recognized w ith ou t a m b igu ity  (§ 17), it  follow s th a t a n y  given  for

m ula is constructed in a u n iquely determ ined m anner out of prim e 

form ulas b y  applications of Clauses 2 —  5 of the definition of form ula. 

W e call the distinct prim e form ulas out of w hich a form ula or several for
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m ulas are thus constructed the d istin c t p rim e  com ponents (for the p ro p o 
s itio n a l calculus) of th a t form ula or set of formulas.

E xample 5. T h e distinct prim e com ponents of a = 0  V (—\ a = 0  
&  3c (a = c ') )  3  V c ( a = c '  V a — b) are a = 0 ,  3 c ( a = c ' ) f yi c ( a = c '  V a = b ) .

Theorem 4. Converse of substitution for proposition letters. 
U nder the sam e stip u la tio n s  as in  Theorem  3, and provided  in  add ition  that 
A lf . . ., A m are d istin c t p r im e  fo rm u la s: I f  T *  |- E * ,  then  T  b E .

P roof. Consider a given  deduction of E *  from F*. T h e distinct prim e 

com ponents of the form ulas T *  and E *  are the form ulas A v  . .  ., A m. 
O ther form ulas of the deduction m a y  contribute additional distinct  

prim e com ponents A m+1> . . . ,  A m+r. L e t P m+1, . . . .  P m+r be proposition  

letters. T hroughout the form ulas of the given  deduction, let A v  . . . ,  

A m+r be replaced sim ultaneously in every occurrence b y  P x, P w+r, 

respectively. Consider a n y  postulate application of the given  deduction  

of E *  from  T *. It  is readily shown (using Lem m a 3 as illustrated in § 17) 

th a t the replacem ents w ill tak e place w ithin the A , B , C  of the application, 

producing proposition letter form ulas A ',  B ', C ', every occurrence of A  

becom ing an occurrence of A ', etc. Th u s the sequence of proposition letter  

form ulas into w hich the given  deduction of E *  from  r *  is transform ed b y  

the replacem ents is a deduction of E  from  F w ith  the sam e analysis. A s  

the m ethod of this proof shows, the converse rule can also be form ulated  

thu s:

T heorem 4 (second version). L et F* be form ulas and  E *  a form ula  
havin g  as their d is tin c t p r im e  com ponents A lt . . . ,  A m. L et Fv  . . . ,  P m 

be p ro p o sitio n  letters, not necessarily  d istin ct. L et  T,  E  resu lt from  F*, E * ,  

respective ly , by rep lac in g , sim u ltan eou sly  in  a ll occurrences, A v  . . . ,  A w by  
P x, . . ., P m, respectively. Then F* b E *  only i f  T  b E .

E x c e p t w hen “ formula* * is read in another sense than  proposition  

letter form ula, Theorem  4 is included in Theorem  3 .

E xample 6 . T o  illustrate the proof, let —\ a = 0  D  ( 3 c ( a = c r) 3  

- 10= 0) occur in the given  deduction of E *  from  F* as an axiom  b y  

Schem a la  (as at E x a m p le  3 (c) Step  2). R ep lacin g the distinct prim e  

com ponents a = 0 ,  3c ( a = c ' )  b y  the proposition letters Ui, B, resp ectively  

(or b o th  b y  d ) ,  gives -»c3f 3  (B D -i< 3 ) (or -i< 3  3  (U1 3  - i  <£?)), w hich is 

an axiom  b y  Schem a la  in the pure propositional calculus. B u t replacing  

a — 0, 3 c (0 = c ')  3  - u z = 0  (the latter not being prime) b y  c2f, B, or re

placin g the three prim e parts a = 0, 3c ( a = c ' ) ,  a = 0  (the first and third  

not being distinct) b y  TT, B, C, w ould not give an axiom  b y  Schem a la.
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E xample 7. T o  illustrate th e application c f  the converse rule, ta k e  

the fact (which w e w ill establish in  § 28 E x a m p le  3) th a t <C3 V (-i &  $)

is unprovable in the pure propositional calculus. I t  follows, b y  the  

converse rule, su b stitu tin g a = 0 ,  3c ( a = c ' )  for <3, ®, resp ectively, th a t  

£ = 0  V (-1 0 = 0  &  3 c (a = c ') )  is unprovable in the num ber-theoretic  

propositional calculus, i.e. this form ula of our original system  cannot be  

proved on th e basis of the postulates of G roup A 1 o n ly  (although in fact  

it  is provable using the com plete list, §39). B u t from  the u n p ro va b ility  

of ( 5 f V ( n ĉ 7 &  S) in the pure calculus, it does not follow  th a t  

a — 0 V ( ~ ia = 0  & - i a = 0 )  is unprovable in the num ber-theoretic propo

sitional calculus. W h y ?

§  26. E q u iv a le n c e , r e p la c e m e n t. L e t A  and B  be form ulas. W e use 

“ A ~ B "  as abbreviation  for ( A d B ) & ( B d A).  T h e sym bol 

m a y  be read “ eq u iva len t” . I t  functions as a form al operator, w hich  

placed betw een tw o form ulas of the system  gives another form ula of the  

system . In om ittin g parentheses, it is then ranked ahead of the other  

form al operators (§ 17).

W e sa y  th a t A  is equivalen t to  B  in the propositional calculus or other  

form al system , if in th a t form al system  b A  ~  B . H ere the w ord “ e q u iv

alen t" functions as a m etam ath em atical verb, w hich placed betw een  

tw o form ulas of the system  gives a statem en t about those form ulas.

T heorem 5. I f  A , B  an d  C  are fo rm u la s :

* 1 .  h A D A .  *2. A d B,  B  D C  b A  D C .

*3. A D ( B D C )  b B  D  (A D C ) .

*4. A D ( B D C )  h A & B D C .  *5. A  &  B  D C  F - A d ( B d C).

(Principle of id en tity, chain inference, interchange of premises, 

im portation, exportation.)

* 6 . A  D B  h ( B d C ) d ( A d C).  *7.  A  D B  h ( C d A ) d ( C d B).

* 8a. A  D B  b A & C d B & C .  * 8b. A D B  ( - C & A d C & B .

*9a. A D B  h A V C D B V C .  *9b. A D B  h C V A D C V B .

(Introduction of a conclusion, premise, con ju n ctive m em ber, or 

d isju n ctive m em ber, into an im plication.)

*10a. - i A  h A D B .  *10 b . A  h ^ A D B .  * 1 1 . B  h A d B.  

(D em onstration of an im plication b y  refuting the premise, or b y  proving

the conclusion.)

*12 . A D B  b “ i B D  - iA . *13.  A  D - i B  b B  D  n A .

*14 °. n A D B  b “ i B D A .  *15°.  - i  A  D  n B  b B D A .

(Contraposition, and contraposition w ith  double negations suppressed.)
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*16 . A  D B ,  B  =5A  h A ~ B .

*1 7 a . A  ~  B  h A D B .  * 1 7 b . A  ~ B  h B 3 A .

*18 a. A  ~  B , A  |- B . *18 b . A  ~  B , B  b A .

(From  the definition of in term s of 3 and &.)

*19 . |- A  ~  A . * 20. A  ~  B  h B  ~ A .  * 2 1 . A  ~  B , B  ~  C |- A  ~  C. 

(R eflexive, sym m etric and tran sitive properties of equivalence.)

*22. A3(B3C), -i-iA, —i —iB b —i —iC.
*23. —i - i ( A D B )  b t i A D t i B.

*24. _i - i  (A 13 B ), - 1 —i (B 13 C) b - i  - i  (A D  C).

*25. b —<—i ( A & B ) ~ - i —t A & i —i B ;  in particular, 

b - i  “ i (A ~  B) ~  - i  - i  (A 3  B) &  —i —i (B 13 A).

(A dditional results of interest for the in tuitionistic system .)

P roofs. E ig h t of these h ave already been established, as follow s: 

*1 at § 2 0  ( 1 '); *2  at § 2 1  (8 ') : 1 ; *3  at (5' ):3;  *4 at  (6 ' ) : 2 ;  5 *  at (7'); 

*6  at (8 '): 2; * 10a at § 23 (9'): 6 ; and * 11 at § 25 ( 1 O'). T h e  reader m a y  

establish the others, using the derived rules of Theorem  2 for the  

propositional calculus (§23). F or exam ple:

*9a. 1 . A3B, A  b B  b BVC —  3 -e lim ., V-introd.
2. A 3 B , C  b B  V C —  V-introd.

3. A 3 B ,  A  V C b B V C  —  V -elim „ 1 , 2.

4. A3B b AVC3BVC — 3-introd., 3.

*12. 1. A  D B ,  - i B ,  A  b B  — 3-elim.
2. A  D  B , i B ,  A  b “ 'B .

3. A 3 B ,  —iB  b ">A —  - i-introd., 1, 2.

4. A  3  B  b “ > B 3 - i A  —  3 -in tro d ., 3.

*14.  Sim ilarly to  * 12 , b u t now an application of -i-e lim . is added at

Step  3.

* 22 . 1 . A 3 ( B 3 C ) ,  B  b A  3  C —  3 -e lim „  *3  (or § 2 1  (5'): 2).

2. A  3  (B 3  C), B  b “ i “ i A  3 - i  - i C  —  * 1 2  tw ice, 1.

3. A  3 (B 3 C), -i- i  A  b B  3-i—iC  —  3-elim., 3-introd., 2.

- 4. A  3  (B 3  C), - t - i A  h - i n B  3 - i - i C  —  *13 , * 12 , 3.

*23. T a k in g  A  3 B , A , B  as the A , B , C, respectively, in *22 :

1 . (A 3  B ) 3  (A 3  B), - i  - i  (A 3  B ), - i  - i A  b n n B . B u t :

2. b (A 3 B) 3 (A 3 B) —  *1.  H ence:

3. —i - i ( A  3  B), —i —iA  b ' B  —  1 , 2 .
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*24. Taking A D B, B D C, A D C for A, B, C, respectively, in *22:
1. ( A D B ) D ( ( B D C ) D ( A D C ) ) ,  - i - i (Ad B), n n ( B D C )  b 

“i (A D C). B ut:
2. h ( ADB) D ((B D C ) D ( A D  C)) — D-introd., *6.

*25. Taking A, B, A & B for A, B, C, respectively, in *22, and using 
Axiom Schema 3 (§ 19), —\ - iA, n B  b " ‘(A & B). Applying *12 
twice to Axiom Schema 4a, b —i i  (A & B) D n n A ;  etc.

Replacement. Let A be a formal expression. Consider another 
formal expression C. It may happen that A occurs as a (consecutive) 
part of C; indeed, this may happen in more than one way. Suppose that 
it does happen, and that, if it happens in more than one way, a particular 
occurrence of A in C has been specified. We now denote C, with a par
ticular occurrence of A in C specified, by “CA”. In juxtaposition notation, 
CA is EAF, where E and F are the parts (possibly empty) which precede 
and follow the specified part A. Now let B be a formal expression. The 
result of replacing  the specified part A of C by B is the expression EBF. 
This we denote by “CB”.

Contrast this definition of replacement with the definition of sub
stitution given in § 18. Replacement takes place for a specified occurrence 
of an expression consisting of one or more symbols. Substitution takes 
place for all occurrences of a single symbol, unless there is a distinction 
between ‘free’ and ‘bound' occurrences, in which case it takes place for all 
free occurrences. (In § 25 we used replacement in all occurrences. That 
is equivalent to replacement, as now defined, applied successively to 
each of the original non-overlapping occurrences of an expression in an 
expression.)

E xample 1. If A is <3 D B, CA is (<b? D  B) & -i((eT "DB) V icC7) 
and B is -ic2f V B} then CB is ( « TDS) &n  ((-i V B) V -ic3).

The foregoing definition of replacement is stated for formal expressions 
in general. For the case that A, CA and B are proposition letter formulas 
(as in Example 1), we have the following situation (as can be demonstrated 
rigorously by applying the analysis of the scopes of operators (§ 17) to 
the definition of proposition letter formula (§ 25)): The formula C.v can 
be built up from the specified part A by applications of Clauses 2—5 of 
the definition of proposition letter formula, and Cr> can be constructed 
from B by parallel steps. The number of steps in this construction of C v 
from A, after A is given and exclusive of the steps required to build up 
the parts not containing the specified occurrence of A, we call the depth



116 THE PROPOSITIONAL CALCULUS CH. VI

of th a t occurrence of A  in C A. In  other words, the depth  of th e part A  in  

C A is the num ber of operators w ith in  the scopes of w hich it lies.

Example 1 (continued). T h e parallel constructions of C A from  A  

and of C B from  B  are as follows, and the dep th  is 3.

d f D S  n c 3 V S
( a  3 ®) V -I<3 (-|J? V B )  V -i<3

-i((c3 3 B) V -i«3) -i((-i«£¥ VS)V -i«3)
(<3 3 8) & -i((<3 3 S)  V -i<3) (<3 3 8) V 8) V -i<C?)

Theorem 6 . //  A , B , C A a n d  C B are proposition  letter form ulas related
as in  the foregoing d efin itio n  of replacem ent, then  A  ~  B  b C A ~  C B. 

(R eplacem ent theorem .)

Proof, b y  in duction  on the depth of A  in C A, ta k in g  th e A  and B  fixed  

for the induction. T h e induction proposition is th a t w h at is stated  in the  

theorem  is true, w ith  the fixed  A  and B , for e very  C A in w hich the specified  

occurrence of A  is at depth d. Basis : A  is at d ep th  0 in C A'. T h en  C A is A ,  

C B is B , and the conclusion of the theorem  is sim p ly A  ~  B  |- A  ~  B, 
w hich holds as a general p rop erty of h  Induction step: A  is at dep th  

d -\-1 in C A. A s hypothesis of the induction, A ^ B  h M A ~  M B for 

a n y  proposition letter form ula M A in w hich the specified occurrence 

of A  lies a t depth d. N o w  m ust h a ve one of the seven forms M A 3 N , 

N  3 M a , M a  &  N , N  &  M a , M a  V N , N  V M a , - i M a , where M A and N  are 

proposition letter form ulas, and A  is at depth d  in M A. B y  the hypothesis  

of the induction, A  ~  B  b M A ~  M B. Furtherm ore, b y  the appropriate  

one of the follow ing lem m as (takin g M A as the A , M B as the B , and N  as 

the C of the lem m a), M A ~ M B b C A ~ C B. Therefore A  ~  B  b C A ~  C B.

Lemmas for replacement. I f  A , B  and  C are fo rm u la s :

*26. A  ~  B  b A D C ^ B D C ,  *27. A  ~  B  b C D A ^ C D B .

*28a. A  ~  B  b A & C ^ B & C .  *28b. A  ~  B  b C & A ^ C & B .

*29a. A  ~  B  b A V C ^ B V C .  *29b. A  ~  B  b C V A ^ C V B .

*30. A ~ B  b ^ A ^ - i B .

Proofs.
*26. * 1 . A ^ B  b B  3  A  —  &>elim. (*17b).

2.  A  ~  B  b (A 3  C) 3  (B D  C) —  *6,  1.
3 . A  ~  B  b (B 3  C) 3  (A 3  C) —  sim ilarly, using * 1 7 a  and * 6 .

4. A ~ B b A 3 C ~ B 3 C  —  &-introd. (*16), 2, 3.

*27. Sim ilarly, using * 1 7 a  and *7 , then * 17b and *7.
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E xample 1 (concluded). L e t ~  be w ritten betw een each of the  

four pairs of form ulas in the parallel constructions of C A and C B. T h e  

second of the resulting four form ulas is deducible from  the first b y  *29a, 

the third from  the second b y  *30, and the fourth from  the third b y  *28b. 

Com bining these deductions con secutively, we h ave the deduction of 

C A ~  C B from  A ^ - B  w hich is given  b y  the m ethod of proof of Theorem  6 .

Theorem  6 has been stated  in term s of proposition letter form ulas. 

B u t b y  the substitution rule (Theorem  3 §25), w e can ap p ly  it for other  

senses of form ula, provided th a t the A , B , C A of the application can be  

obtained from proposition letter form ulas b y  su b stitu tin g form ulas 

sim ultaneously for the proposition letters. H ence, or d irectly  b y  the  

m ethod of the ab ove proof of Theorem  6 :

Theorem 6 (second version). I f  A  an d  B  are fo rm u las , C A is  a 
form ula constructed from  a specified  occurrence of A  u sin g  only the operators  
D , &, V, - i ,  and  C B results from  C A by rep lacing  th is occurrence of A  by  B , 

then  A ^ B  b C A ~  C B.

E xample 2. L e t x  be a variable, and A , B  and C(x) be form ulas. 

B y  the theorem , A  ~  B  b A  V V x (A  D  C(x)) ~  B  V V x (A  D  C(x)). (This 

can be considered as com ing from  <C? ~  B f - < 3 f V C ^ 2 V C  b y  sub

stitu tin g  A , B , V x (A  D  C(x)) for ê f, B, C, respectively.) B u t our present 

m eans are inadequate for d ed u cin g A  V V x (A  d  C(x)) ~  A  V V x (B  D  C(x)) 

from  A  ~  B. In  this the occurrence of A  to be replaced is w ith in  the  

part V x (A  D  C(x)), and so the C A cannot be b u ilt u p from  the occurrence  

of A  b y  using o n ly the operators D , &, V, - i .

Corollary. U nder the conditions of the theorem (in  either version), 
A  ~  B , C A b C B. (R eplacem ent p roperty of equivalence.)

From  the theorem  b y  *18 a. (Conversely, the theorem  is obtained from  

the corollary and * 1 9  b y  tak in g C a  ~  C a  as the C a  of the corollary. T h e  

theorem  includes the lem m as, as the cases w hen the dep th  is 1 .)

Our results h a ve been developed to give  replacem ent of a single oc

currence of A  at a tim e. B y  iterated applications, w e can then  replace  

a n y  set of occurrences.

Chains of equivalences. W e can now  present dem onstrations of 

equivalence betw een proposition letter form ulas in the follow ing ab 

b reviated  w ay. L e t us w rite

b C 0 ~  Cx ~  ~  C w ~  C n,
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where for each i  [i =  1, . . . ,  n) e ith e r:

(a) C* is the sam e form ula as Q _ x; or 

(bj) b Q _ i ~  C< or (b2) b C< ~  C , . , ;  or

(c) C i com es from  b y  replacing one or more occurrences of A t 

b y  B f where (1) h B j or (2) b B j ~  A t.
T h en  we can regard " C 0 ~  C x ~  ^  C n_x ~  C n” as an abbreviation

for ( . . .  ((C0 ~  C x) &  ( Q  ~  C 2)) &  . . .  &  (Cn_2 ~  C n-1)) &  (C n^  ^  C M) ; 

and we can understand th a t b C s ~  C k for all pairs j, k (j, k — 0, . . . , # ) .  

For we h ave for each i  either b ~  C  j or b C f ~  Q . ^ b y  *19 in C a s e (a ),

im m ed iately  in Case (b), and b y  applications of Theorem  6 in Case (c). 

Then w e h ave b C, ~  C k for all other pairs j ,  k  b y  * 19, *20 and *2 1. T h e  

m ethod applies likew ise w hen we h ave a n y list T  of assum ption form ulas  

w ritten  before the sym bol " b ”  throughout. W e m a y insert exp la n ato ry  

rem arks in brackets betw een links of the chain. (For an exam ple see the  

proof of *5 7  in § 27.)

T h e chain m ethod w ill a p p ly  also when we h ave instead of ~  some- 

other relational sym bol for w hich we h ave established the corresponding  

reflexive, sym m etric, tran sitive and replacem ent properties. Furtherm ore  

in the absence of some of these properties (except tran sitivity) it can be  

m odified to  ap p ly, as follows. W hen sym m etry is absent, om it (b2) and

(c) (2), and require th a t j  <  k. W hen reflexiveness is also absent, om it 

also (a), and require th a t j  <  k. W hen replaceability is absent, om it (c). 

(E xam ples from  C hapter V I I I :  w ith  all properties present, = ;  lack in g  

sym m etry and replaceability, < ;  lackin g also reflexiveness, < .)

§  27. Equivalences, duality. T heorem 7. I f  A , B  an d  C  are
form ulas:
*3 1. b ( A & B ) & C ~ A & ( B & C ) . *32. h (A V B) V C  ~  A  V (B V C).

*33. b A  &  B  ~  B  &  A . *34. b A V B ~ B V A .

*35. h A  &  (B V C) ~ *36. b A  V (B & C) ~
(A &  B) V (A & C). (A V B) & (A V C).

*37. r  A  & A  —' A. *38. b A  V A  ~  A .
*39. b A  & (A V B ) ~ A . *40. b A  V (A & B) ~  A .

(Associative, commutative, distributive, idempotent and 
elimination laws.)

*41. A  r A  D B  ~  B. *42. B  b A o B ~ B .

•& 4b
.

CO ~i A  r  .A D B  ~  ~> A. *44. - tB  b A  D B  ~  —iA .

*45. B  l A  & B  ~  A. *46. B  b A V B ~ B .
*47. - i  B r A  & B ~  B. *48. - i B  b A  V B  ~  A .

^Special cams of implication, conjunction and disjunction.)
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*49°. b -1 - i  A  ~  A .

♦ 50. b - i ( A &  - iA ) . * 5 1 °. b A V - i A .

(L aw  of double negation, denial of contradiction, law  of 

the excluded m iddle.)

*52°. b A & ( B V - i B ) ~  A. *53. b A V ( B & i B ) ~  A.

*54. b A & B & - i B ~ B & - i B . ♦ 55°. b A V B V - i B ~ B V - i B.

(For sim plifying a disjunction of conjunctions, or a con junction

of disjunctions.)

*56°. b A V B ^ n ( i A  &  n B ) . *5 7°. b A  &  B  ~  n ( - i A  V - iB ) .

♦ 58°. b A D B ^ - i ( A & n B ) . *59 °. b A D B ^ v n A V B .

*60°. b A  &  B  ~  -» (A  D - i B ) . *6 1°. b A  V B ^ i A d B.

(E ach  tw o of D , & , V in term s of the other and - i .)

*62°. b i ( A  &  B) ~  —i A  V - i B . ♦ 63. b - i ( A V B )  ~  -i  A  &  - i  B.

(Transfer of - i  across &  and V (De M organ's laws, 18 4 7).)

♦ 49a. b A  3 - i - iA. *49b. b “ i - i  A  ~  -» A .

*49c. b A  V - 1A  3  (-1 - 1A  3  A ) ; he:nee b A  V - 1A  3  (-1 - i  A  ~  A).

*50a. b ~ i(A  ~  - i A ) . *5  la. b - i - i ( A V - i A ) .

*56a. b A V B D - i ( - iA & - i B). *5 1b . b -1 —1(—1 - i A  3  A ).

*56b. b - i A V B  3 - i ( A & - i B). *57a. b A & B  3 - i ( - 1 A V - i B ) .

*58a. b (A  3  B) 3 - . ( A & - i B ) . *5 7b . b A  & - 1B  3  - i ( - iA  V B ).

*58b-dL b A  D  —1B  ^  - i  (A  &  B) ~  n n A  D  n B  ^  n  n ( n A V  —iB ).

*58e, f.. n n B D B  b n n A D B  ~  A D  B ~ n ( A & n B ) .

*58g. b ( -1 - 1A  D B )  3  - i (A  &  - i B ) . *59a. b - i A V B  3  (A 3  B).

*60a. b A  &  B  3  -1 (A  3  - iB ) . *59b. b (A  3  B) 3 - 1 —i ( - i A V B ) .

*60b. b A  & - 1B  3  - i ( A  3  B). *59c. b ( - iA  3  B) 3  - i - i (A  V B ) .

*60c. b n - i A & B D n ( A D n B ) .  *61a. b A V B  3  ( - iA  3  B).

*60d-f. b n  n A &  i B  ^ n ( A  D B )  ~  n ( n A V B )  ~ n n ( A & " i B ) .

*60g-i., b 1  n ( A  D B) ^  n ( A  &  n B )  o*' A  D 1  n B  ^  n  n A  D n  “ iB .

*62a. b 1 A V - 1B  3 - i ( A & B ) . *6 1b . b i ( A V B ) ------ - (—1A  3  B).

(A dditional results of interest for the in tu ition istic system .)

P roofs for the classical system , excep tin g *32, * 34 , *36, *38, *40, 

*53, *55. A  little  w ork m a y  be saved  if one chooses b y  postpon in g proof 

of these seven until d u a lity  (Corollary Theorem  8) is available.
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*35. 1. A , B  |- A  &  B  b (A &  B) V (A &  C) —  & -in tro d „ V-introd.

2. A , C |- A  &  C |- (A &  B) V (A &  C) —  & -in trod., V-introd.

3. A , B V C  b (A & B) V (A &  C) —  V -elim „ 1, 2.

4. A  &  (B V C) b (A &  B) V (A &  C) —  & -elim „ 3.

5. b A  &  (B V C) Z> (A &  B) V (A &  C) —  3 -in tro d ., 4.

6. A  &  B  b A  —  &-elim .

7. A & B  b B b B V C  —  &-elim ., V-introd.

8. A & B  b A  & (B V C) —  & -in tro d „ 6, 7.

9. A  & C b A  & (B V C) —  sim ilarly.

10. (A & B) V (A & C) b A  & (B V C) —  V -elim „ 8, 9.

11. b (A & B) V (A & C) 3  A  & (B V C) —  D -in trod., 10.

12. b A  &  (B V C) ~  (A & B) V (A & C) —  & -in trod. (*16), 5, 11.

*49. 1. b i i A  D  A  —  -i-e lim ., D -in trod. (or A x io m  Schem a 8).

2. A , “ 1A  b A .

3. A , -< A  b “I A .

4. A  b ~ iA  —  -i-in tro d ., 2, 3; etc.

*51. 1. - i ( A V - i A ) ,  A  b A V - i A  —  V-introd.

2. - i ( A V - i A ) ,  A  b - « ( A V - i A ) .

3. - i ( A V - i A )  b “ i A  —  -i-in tro d ., 1, 2.

4. - i ( A V " i A )  b —i—i A  —  sim ilarly.

5. b “ i “ i (A V - i  A) —  -i-in tro d ., 3, 4.

6. b A  V - i  A  —  —i-elim ., 5.

R emark 1. T h u s in the form al system  w ith ou t A xio m  Schem a 8, 

- h B d B h A  V -*i A  where B  is A V  A . C onversely, in the intuitionistic  

system , A V - i A  b n n A  D A ,  thus:

1. A  h n A D A  — - * 1 1 .

2. - i A  b “ n A  D A  - *10 b.

3 ^  y  b n  n A  D A  —  V-elim ., 1, 2.

T h u s either of i  “i A  D A  or A  V n A  can be chosen as the one non- 

intuitionistic postu late of the classical system .

*52. B y  *45 and *51.

*54. Sim ilarly, b y  *4 7 and *50. Parentheses h ave been om itted  in the  

result, since b y  *31 it is im m aterial w hich w a y  the association is taken.

*56. 1. A , n A  &  —iR b A .

2. A , n A  &  - i B  b n A  —  &-elim .

3 . A  b n  (“ i A  &  ~iB) —  -i-in tro d ., 1, 2.

4. B  b n ( - i A &  - i B )  —  sim ilarly.
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5. b A  V B  D - i ( - i A & - i B )  —  V-elim ., 3, 4, 3 -in tro d .

6 . (A V B ), A  b A  V B  —  V-introd.

7. - i ( A  V B ) ,  A  b ~ i(A  V B).

8 . - i ( A V B )  b ~*A —  -i-in tro d ., 6 , 7.

9. i ( A V B )  b ~ iB  —  sim ilarly.

10. b i ( A V B )  3  -1 A & - 1 B  —  & -introd. 8, 9, 3 -in tro d .

11. b “ i (“i  A  &  - iB )  D  A V B  —  contraposition (*14), 10.

*5 7. Presented as a chain of equivalences: b - i ( - i A  V - i B )  ^

- i - i ( - i  - i A  &  - i  - iB )  [*56] ~  - i  n A & n  - i B  [*49] ~  A  &  B  [*4 9 ].

*59-63. Set these up b y  the chain m ethod.

Proofs for the intuitionistic system. *49c. B y  R em ark 1; b y  *49a, 
* 1 6  and *17 a , b - i  “ i A  D  A  ~  (-i - i A  ~  A). *5 1a . B y  the proof of *51  

om ittin g Step  6 . * 5 lb. A p p ly  * 12  tw ice to  *49c, and use * 5 la. *58d. 

U se *63. *60f. U se *25.

T o  interchange  tw o expressions A  and B  throughout a third  expression  

C is to replace in C, sim ultaneously, all occurrences of A  b y  B  and all 

occurrences of B  b y  A  (exam ples w ill follow).

Theorem 8°. L et D  be a p ro p o sitio n  letter form ula constructed from  the 
d istin c t p ro p o sitio n  letters  P x, . . . ,  P w an d their negations  ~ iP x, . . . ,  ~ »Pm 

using  only the operators  & , V. T hen a form ula  D t  equivalent to the negation  
- i D  o/ D is  obtained by the interchange throughout D  of & w ith  V an d  of 
each letter w ith  its  negation.

I n  other w ords , i f  D  be such a p ro p o sitio n  letter form u la , an d  D t  be the 
result of the described interchange perform ed on  D : b ^  D t.

E xample 1°. Taking -n<3f & (-iB V B) as the D, - iD  is equivalent 
t o e 3  V ( S & - i 8 ).

Proof am ounts essentially to  this: the - i of - iD  can be transferred  

progressively to  the interior b y  applications of *62 and *63, and a n y  re

su ltin g double negations then discharged b y  applications of *49, in doing  

which D  is transform ed into D t  (details to  follow).

E xample 1 (concluded).
b - i (  ( - i B V  B)) ~

n n c 3  V n  ( n S  V B) ~

n  V (—i “ iB & —\B) ~

<C?V ( B & - 1 8 ).

T o  g iv e  the proof more exp licitly, w e tak e as the induction num ber
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(for a course-of-values induction) the num ber of occurrences of &  and  

V in D ; call it the grade of D .

B a s is  : D  is of grade 0. T h en  for some proposition letter P, D  is P  or D  is 

n P .  C a se  1: D  is P . T h en  b - i D  ~ - i P  [case hypothesis] ~  P t  [def

inition of t] ~  D t [case hypothesis]. Case 2: D  is - iP. Sim ilarly, using  

*49. Induction step: D  is of grade g + 1 . T h en  for some proposition letter  

form ulas A  and B  of the ty p e  under consideration w ith  grades <  g, either  

D  is A  &  B  or D  is A  V B . Ca s e  1 : D  is A  &  B . T h en  1-  -n D  ~  “ i (A &  B) 

[case hypothesis] ~ - i A V - i B  [*62] ~  A t  V B t  [hypothesis of th e in

duction] ~  (A & B ) t  [definition of t] ^  D t [casehypothesis]. Case 2: D  is 

A  V B . Sim ilarly.

E xample 2°. B y  the su bstitu tion  rule (Theorem  3 § 25), su b stitu tin g  

B, - ie 3  V C  for e2, B  in the result of E x a m p le  1,

b n(nS&(n[nc3VqV[nc2VC]))-SV([n^Vq&n[K3Vq). 
In  fact, for a n y  form ulas A  and B ,

b n (n A & (n B V  B)) - A V ( B & iB ) .
A s this exam ple illustrates, the theorem  can also be stated  using a n y  

form ulas A v  . , . , A m in place of the proposition letters P x, . . . , P W, 

provided the A lt . . . ,  A w retain their id e n tity  throughout the construction  

of D , and are held in tact in the interchange operation. (Second version of

Theorem  8 .)

Corollary0. A n  equivalence between two letter form u las  E  an d  F  of 
the typ e  described in  the theorem is  preserved under the interchange throughout 
E  and  F  of & w ith  V.

I n  other w ords , i f  E  an d  F  be two such p ro p o sitio n  letter fo rm u las , and  E '  

a n d  F '  be the resu lts of the described interchange perform ed on  E  a n d  F ,  

re sp ec tiv e ly : I f  b E  ~  F , then  b E '  ~  F '. (Principle of duality.)

E xample 3°. B y  *52, h &  (B V -iB )  ~  £1. H ence (takin g  

c 3 & ( B V - i B )  as th e E  and as the F) b ^  V (B &  -iB )  ~  <3.

Proof. B y  h ypothesis, b E  ~  F . L e t us su b stitu te for each propo

sition letter P  w ith in  E  and F  the negation - i  P  of th a t letter, in d icatin g  

this su bstitu tion  operation b y  B y  the su b stitu tion  rule (Theorem  3 

§ 25), then b E *  ~  F * .  N e x t  let us replace w ithin E *  and F *  each d o u b ly  

n egated  letter —i —i P  b y  the sim ple letter P , in d icatin g this operation b y  

. B y  th e law  of double negation (*49) and the replacem ent prop erty of 

equivalence (Corollary Theorem  6), b E * t  ~  F * t .  T h e effect of these tw o  

operations is to  interchange the proposition letters w ith  their negations
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in the given  equivalence. N o w  b y  Theorem  6 (or *30), b - i E * t  ~  - i F * t .  

E v a lu a tin g  the negations b y  Theorem  8 , b E * t t  ^  F * t t .  These last 

tw o  steps effect the interchange of &  w ith  V, and interchange the  

proposition letters w ith  their negations a second tim e to restore them  

to  their original condition. W h a t we now h ave is therefore b E '  ~  F \

E xample 3 (concluded).
b E  ~  F. b < 3 & (  2 V  - i  2 ) ~ c3.

b E *  ~ F * . b - i c 3 & ( - i 2 V  - i i 2 )  ~ -1 <3.

1- E * t  ~ F * t . b ( —12  V 2) ~ —1 a .
b - i E * t ~ - i F * t . b -i ( - i < v ? & ( - i 2 V  2)) ~ m e X
b E * t t  ~  F * t t ,  i.e. b E ' ~ F ' . b c 3 V (  2 &  - . 2 ) ~ a .

E x a m p l e  4°. S u b stitu tin g an y form ulas A , B  for <C2, $  in the result 

of E x a m p le  3 (by Theorem  3 § 25), b A  V (B &  - i  B) ~  A . T h is is *53.

Sim ilarly *32, *34, *36, *38, *40, *55 follow  from  *31,  * 33 , *35, *37, 

*39, *54, respectively, b y  d u a lity  (Corollary Theorem  8), w hen A , B , C  

are sim ple proposition le tte rs; and thence b y  the substitution  rule (Theo

rem 3), w hen A , B , C are an y formulas.

E x a m p l I  5°. B y  d u a lity  (Corollary Theorem  8):

(a) If b V B  ~  <3, then b ^  ® ~

B u t we cannot infer the fo llo w in g:

(b) ‘ T o r  a n y  form ulas A  and B , if b A  V B  ~  A , then b A  &  B  ~  A."
(Indeed, ta k in g  <3, B & - i S  for the A , B  in (b), “  b A  V B  ~  A ” becom es  

“  b V (2 &  - .2 )  ~  e T \  w hich is true b y  *5 3 ; w hile “  b A  &  B  ~  A ”  

becom es “ b w hich is false as w ill be show n in

E x a m p le  4 § 28.) E x p la in . (H ow does the present situation differ from  

E x a m p le s 2 and 4?) —  T o  state a second version of the corollary, w e m ust 

require th a t the A v . . . ,  A m be distinct prim e form ulas (cf. Theorem s 3 

and 4). —  Since (b) is false, b y  Theorem  3 so is:

(C) “ e 2 V £ ~ e 3  b
T h u s d u a lity  holds on ly as a subsidiary deduction rule, not as a direct rule.

T h e recognition of d u a lity  in logic goes b a ck  to Schroder 18 7 7 .

In  ap p lyin g d u a lity  to a form ula th a t has been ab b reviated  b y  om ittin g  

parentheses under the con ven tion of § 17, w hich ranks &  ahead of V, care  

m ust be taken  to show the scopes of the operators w ith ou t change in the  

result. (Hence we u su ally prefer in this connection not to a p p ly  the con

ven tion  betw een &  and V.)

A s an exercise, the reader m a y  ve rify  the follow ing addendum  to the  

corollary, b y  reexam ining the proof.
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Corollary (second p art)0. A lso : I f  (- E  D F , then  h F '  D E '. (D ual

converse relationship.)

E xample 6°. T h e  axiom  < 3 & ® D c 3  has as dual-converse the axiom  

«£? D  < 3 V S .  T h e  p rovable form ula d & S D J J V S  is its ow n dual

converse.

§  28. V a lu a tio n , c o n s is t e n c y . Since settin g up the form al system , 

or in this chapter a subsystem , our m etam ath em atical in vestigation s  

h a v e  been d evo ted  ch iefly  to establishing the p ro v a b ility  of certain for

m ulas, and the d ed u cib ility  of certain form ulas from  other form ulas, i.e. 

to  d evelopin g logic and m ath em atics w ithin the form al system . T h is is  

a necessary part of our program , and contributes to  show ing th a t th e  

form al system  does con stitu te a form alization of a certain part of m ath e

m atics.

B u t also in m etam ath em atics questions are asked w hich relate to  a  

form al system  as a whole. O ne of these is the question of the 'consistency' 

of the system , w hich is fundam ental in H ilb ert's program  (§ 14).

T h e  propositional calculus (and generally, an y form al system  h a vin g  

th e  sym bol - i  for negation) is said to  be [sim ply) consistent, if for no  

form ula A  are b o th  A  and - i  A  provable in the s y s te m ; and to  be [sim p ly)  
in con sisten t in the con trary case th a t for some form ula A , b o th  h A  and  

b - iA .
T h is is a strictly  m etam ath em atical definition. I t  refers on ly to th e  

form al sym bol - i , and to  the definitions of form ula and provable form ula. 

I t  thus becom es an exact m ath em atical problem , w hich w e can consider 

in m etam athem atics, to  prove the con sistency of a given  form al system .

T h e  definition and problem  of consistency ta k e  on significance from  

outside the m etam ath em atics, under the interpretation of the form al 

system  as a form alization of an inform al theory, w ith  th e sym b ol - i  

expressing negation. T h e propositions expressed b y  tw o num ber-theoretic  

form ulas A  and - i A ,  if A  does not contain free variables (or the propo

sitions expressed for each particular set of values of the variables, if A  does 

con tain free variables), taken  together con stitute a contradiction. L ik e 

wise, in the case of proposition letter form ulas, on interpreting the propo

sition letters b y  a n y  particular propositions. A  m etam ath em atical proof 

of the con sistency of the form al system  w ould hence afford secu rity  

against a con tradiction's arising in the inform al theory.

F or the propositional calculus (and generally, for a n y  form al system  

w hich has & -elim ination and w eak -elim ination as postulated or derived  

rules), the ab o ve definition is equivalent to the follow ing. T h e system  is
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(s im p ly ) consisten t, if there is some im provable form ula; (s im p ly ) in - 

con sisten t, if ev ery form ula is provable. F o r if b o th  b A  and b ” iA ,  

then b y  use of w eak -elim ination (§ 23), b B  for every  form ula B . In  the  

case of consistency, A & - i A  is an exam ple of an unprovable form ula, 

since otherwise b y  & -elim ination b oth  b A  and b ""»A.

T h e definition of consistency (in the first form) and the definition of 

p rovab le form ula (say m  the first form, § 19) suggest a plan of a tta c k  on 

the problem  of proving consistency (not the on ly possible plan). Suppose  

w e can find a m etam ath em atical property of form ulas such th a t (a) the  

axiom s h ave the property, (b) if the premises for an application of a rule 

of inference h ave the property, so does the conclusion, and (c) tw o form u

las of the forms A  and - i A  cannot b oth  h ave the property. Th en  using  

(a) and (b) every provable form ula w ould h ave the property, and b y  (c) the  

system  w ould be consistent. In this section we shall g ive a m etam ath e

m atical proof of consistency for the propositional calculus follow ing this  

plan.

The property of form ulas which w ill be used is suggested b y  the logical 

interpretation of the propositional calculus. W e conceive of each propo

sition letter as a variable whose values are propositions, and w e conceive  

of these propositions as being each either true or false. T h e operators of 

the calculus 3 ,  &, V, -t  form  from  these propositions other propositions  

whose truth  or fa lsity  w ill depend on ly on the tru th  or fa lsity  of the com 

ponent propositions, according to  tables to be given  presently. (Hence the  

operators of the calculus are som etim es called T ru th -valu e functions of 

propositions’ .) T h en  it w ill appear th a t the provable proposition letter  

form ulas all h ave the property th a t th e y  are id en tica lly  true, in the sense 

th at th e y  represent true propositions for all possible perm utations  

of true and false propositions as values of the proposition letters contained  

in them .

T o  use this idea for the purpose of a m etam ath em atical con sistency  

proof for the calculus, it  is necessary to  avoid  the reference to 'propo

sitions’ , 'tr u th ’ and 'fa ls ity ’ , w hich h ave connotations th a t are extraneous  

to the m etam athem atics. T h is w e can do, since nothing essential in the  

argum ent outlined ab ove depends on the values of the proposition letters  

being propositions, or on the nature of truth  and falsity, excep t th a t true  

and false propositions are distinct from each other.

T h e purely m athem atical character of w hat w e shall do m a y  be em 

phasized b y  an an alogy to the elem entary school arithm etic of positive  

integers. W hile the num bers 1 , 2 , 3, . . .  in that, arithm etic were intended  

to h a v e  a m eaning for counting and m easurem ent, so far as the addition
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and m u ltiplication  tables were concerned th e y  could be a n y  enum eration  

of distin ct objects. From  this standpoint, the arithm etic deals w ith  

operations, i.e. functions, +  and *, over a dom ain of objects {1, 2, 3, . . . } ,  

and depends o n ly on the p ossibility of recognizing and distinguishing  

betw een those objects, and not on their intrinsic nature.

W e shall now  set up an arithm etic in like sense for a dom ain of o n ly  

tw o  objects, w ith  four functions D, &, V, - i .  T h is describes su ccin ctly  

w h a t w e shall do. Since for m etam athem atics, D , & , V, - i  are m eaningless  

g iven  objects, a m ore precise statem ent of w h a t w e shall do is the  

follow ing. W e introduce a m etam ath em atical com putation  process (called  

a va lu a tion  procedure), b y  w hich a function in the arithm etic (or a tab le  

for such a function, called a tru th  table) is correlated to each of the sym bols  

3 ,  & , V, - i ,  and thence to  each proposition letter form ula. T h en  we  

stu d y  m etam ath em atical properties of proposition letter form ulas defined  

in term s of the correlated functions (or tables).

Since on ly the distinctness of the tw o objects {truth values) is required for 

the a b stra ct arithm etic, it is im m aterial w h at th e y  are called. W e m ight  

design ate them  as " 0 ” and ' T \  or ” and ” , or “ t ” and " I ” , or 

“ t ”  and “ f” , etc. W e choose the last pair of sym bols, w hich suggest re

sp ectiv ely  the notions 'true' and 'false' of the logical interpretation.

W e begin b y  considering the proposition letters as variables ranging  

over the dom ain {t, f}.

W e then consider the operators of the calculus as functions over this  

dom ain, defined b y  the follow ing tables, analogous to the addition and  

m ultiplication tables in the arithm etic of positive integers. From  the table, 

to a n y  given  valu e (s) of the independent variable (s), the corresponding  

va lu e of the function can be read.

<v? D S ^ v s n <£?
s t f s t f s t f
t t f a  t t f a  t t t a  t f
f t t f f f f t f f t

(The tables for - i  and V are the sam e as were given  in § 10 E x a m p le  4 

for ' and *, w hen the tw o objects are w ritten " 0 ” and " 1 ” .)

T h en  each proposition letter form ula A  in a given  list P x, . . . ,  P w of 

distinct proposition letters represents a function of those letters regarded  

as independent variables over the dom ain {t, f}. T o  each w -tu p le  of values  

of the letters, the corresponding valu e of the function can be com puted  

b y  a series of applications of th e  fundam ental tables.
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E xample 1. T h e letter form ula cT ~ B ,  i.e. 3  8 ) &  (8  D  <3) 

(§ 26), represents th e function w hich has the follow ing table.

e 2 ~ 2
2 t f

a  t t f
f f t

T h e com putation  of the va lu e entered in the upper right square is as 

follows.

(<3f 3  2) & (2 3  <C?)
( t  3  f ) &( f  3  t )

f &  t

f

T h e square arrangem ent of the tables is special to tw o variables (where 

it helps to  suggest properties of the functions). F or m  variables P 1# . . P m 

generally, w e can arrange the 2 m possible m -tuples of argum ents ve rtica lly  

one below  another in some fixed  order, and w rite th e corresponding func

tion values in  a value colum n  opposite these.

E xample 2.
a 2 c -1 [<3 V 2 3  (2 & C) V -i<CT]

t t t f
t t f t
t f t t
t f f t
f t t f
f t f f
f f t f
f f f f

A  proposition letter form ula E  in the distinct proposition letters  

P3, . . . ,  P m is said to be id en tica lly  true, if the valu e colum n of its table  

contains o n ly t's; iden tica lly  false, if on ly f s .  T w o  proposition letter  

form ulas E  and F  in F lt . . . ,  P m are said to  be iden tica lly  equal, if their  

tables h ave the sam e valu e colum n. (In other words, an id en tica lly  true  

E  represents the con stant function t, an id en tically  false E  the con stant  

function f, and id en tica lly  equal E  and F  the sam e function.)

These definitions so stated  a p p ly  to E  (to E  and F) considered as 

proposition letter formula(s) in a specified list P lf . . . , P W of d istin ct
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proposition letters, not all of w hich (according to  § 25) need occur in the  

form ula(s). W e m a y  suppose first th a t P x, . . P m is the m inim al eligible  

list, i.e. the list com prising e x a c tly  those distinct proposition letters  

w hich occur in E  (in E  or in F). T h en  if we add to the list other letters, 

each row  in the table(s) for th e formula(s) w ill sim p ly be split into a  

num ber of rows (2 k of them  if k  letters are added) show ing the possible  

assignm ents of values to  these additional letters, w ith ou t altering the  

co m p u tation  process or va lu e entry. H ence if w e h a ve identical tru th  or 

iden tical fa lsity  (identical equality) w ith  respect to  the m inim al list, w e  

shall h a v e  it also w ith  respect to  a n y  other list, an d conversely. Therefore  

th e reference to the list m a y  be om itted.

Theorem 9. A  necessary condition  that a p ro p o sitio n  letter form u la  E  

be provable (or deducible from  id en tica lly  true form u las  T) in  the p ro p o sitio n a l 
calculus is  that i t  be id en tica lly  tru e ; i.e . i f  j- E , then  E  is  id en tica lly  tru e .

Proof is b y  course-of-values induction on the len gth  of the given  proof 

of E , using the tw o  follow ing lem m as.

Lemma 12a. A  p ro p o sitio n  letter form ula which is  an  ax iom  is  id en 
tica lly  true.

P roof. For each of the ten axiom  schem ata of the propositional 

calculus (Postulates la , lb , 3 —  8 § 19, or in tu ition istically  81 § 23 instead  

of 8), we can easily  v e rify  the follow ing fact b y  com p u tation : T h e tab le  

w hich is obtained b y  assigning the valu es t and f in all possible w ays  

d irectly  to  the parts A , B , C  w hich appear in the schem a contains on ly  

t's  in the va lu e colum n. T h is am ounts to ve rifyin g the lem m a treatin g  

the A , B , C  of the schem ata as sim ple proposition letters $ , C.

T h e tru th  of the lem m a follows from this. F or consider a n y  axiom  

w hich is a proposition letter form ula. T h is com es from one of the schem ata  

b y  ta k in g as the A , B , C certain proposition letter form ulas in sa y  

P v  . . .  P w as jo in t list of distinct proposition letters. N ow  no m atter  

w h a t m -tuple of t ’s and f ’s is assigned as values to P 1# . . .  P m, the triple  

of values for A , B , C to  w hich it leads m ust in turn (as already verified) 

lead to  the va lu e t for the w hole axiom .

Lemma 12b. I f  the prem ises for an  a p p lica tio n  of the rule of inference 
are iden tica lly  true p ro p o sitio n  letter form u las , so is  the conclusion .

P roof. ' B y  inspection of the follow ing table, we see th a t the on ly  

pair of values of A , B  w hich gives the va lu e t to b oth  premises A  and A  D  B  

for the rule of inference of the calculus (P ostu late 2) is the pair t, t ; and  

this pair does g iv e  the va lu e t to  the conclusion B .
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A B A A  D  B B
t t t t t

t f t f f
f t f i t

f f f t f

H ence, if A  and B  are proposition letter form ulas in P 2, . . P m, a n y  

m -tuple of values of P x, . . . ,  P m w hich gives both  prem ises the valu e t 

m ust give this valu e also to the conclusion. B y  hypothesis, the prem ises 

have the valu e t for all w -tu p les of values of P 2, . . . ,  P m. Therefore the  

conclusion has also.

E xample 3. T h e form ula - i  [<3 V B  D  (S &  C ) V -i<£3f] is not p rov

able in the propositional calculus, because there are f ’s in the valu e colum n  

of its table (E xam p le 2). Likew ise, <3 V (n c 3  &  S) is not provable, b e 

cause it  takes the valu e f w hen B  ta k e  the values f, f.

Corollary 1. A  necessary condition  that two p ro p o sitio n  letter form u las  
E  and  F  be equivalent is  that E  an d  F  be id en tica lly  eq u a l; i.e . i f  b E  ~  F ,  

then  E  and  F  are iden tica lly  equal.
P roof. If E  and F  are equivalen t, then by definition of equivalence, 

E ~  F  is provable. H ence b y  the theorem , E  ~  F  is id en tica lly  true. R e 

ferring to  the tab le for ~  (E xam p le 1), w e see th a t E  ^  F  can  on ly  

receive the valu e t w hen E  and F  receive either b o th  the va lu e t or b o th  

the valu e f, i.e. w hen th e y  receive the sam e value. Since E  ~  F  is iden

tica lly  true, i.e. does alw ays receive the valu e t, E  and F  do alw ays receive  

the sam e value, i.e. th e y  are id en tica lly  equal.

E xample 4. &  B &  —iB and are not equ ivalen t, because th e y

take different valu es (nam ely, f and t, respectively) w hen e.g. <3, B  are 

given the values t, t

Corollary 2. The p ro p o sitio n a l calculus is  {sim p ly) co n sis ten t; i.e . 
for no form ula  A , both b A  and  b “ »A.

P roof. U sin g the second version of the definition of sim ple con

sistency (above), this is already proved b y  E x a m p le  3.

T o giv e  the proof d irectly  from  the original definition, suppose one of 

A  and - i A  is provable. T h en  b y  the theorem  it is id en tica lly  tru e; then  

using the tab le  for - i , the other is id en tica lly  false, hence not id en tica lly  

true, and hence b y  the theorem  unprovable.
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T h is establishes the con sistency for the propositional calculus in term s  

of proposition letter form ulas. I f  A *  and - i A *  be provable form ulas in  

th e calculus for another notion of form ula, then b y  the converse of th e  

su bstitu tion  rule (Theorem  4 § 25), there w ould be provable proposition  

letter form ulas A  and - i A .  T h u s the consistency exten ds to  th e other  

senses of form ula.

T h is con sistency proof, of course, does not hold good for th e addition o f  

another group of postulates, even should th a t group b y  itself be con

sistent.

T h e con sistency proof for the propositional calculus w as first given  b y  

P o st 19 2 1 . (Cf. also L u kasiew icz 19 2 5 , H ilbert-A ckerm an n  1928 .)

T h e arith m etic of a dom ain of tw o objects, used in this section to  give  

th e con sisten cy proof, m a y  be th ou gh t of as an  interpretation of the  

calculus in the follow ing sense. T h e  va lu atio n  tables provide arithm etical 

significances for the operators of the calculus. T h e  proposition letters are 

considered as independent variables ranging over the dom ain {t, f} of th e  

arithm etic. E a ch  proposition letter form ula is interpreted as expressing  

th e proposition th a t its va lu e is t for all choices of the values of its in

dependent variables. B y  Theorem  9, on ly form ulas w hich are true under  

this interpretation are provable. F o r the proposition expressed b y  a  

form ula under this interpretation is equ ivalen t to the form ula’s h avin g  

th e  m etam ath em atical p rop erty of identical truth, as defined ab o ve  

in  term s of a  co m p u tation  procedure using t and f.

O n  the other hand, in the {usual) logical in terp re ta tio n , the proposition  

letters are considered as independent variables ranging over som e dom ain  

of propositions. A  proposition letter form ula then expresses the general 

proposition th a t all th e particular propositions, expressed b y  it for dif

ferent choices of propositions from  th a t dom ain as values of its independ

ent variables, are true. T h e  logical interpretation is related to  the  

arith m etical interpretation b y  p u ttin g  the particu lar propositions (from  

th e  dom ain considered) in to m an y-on e correspondence w ith  the tw o  

ob jects t, f, those propositions w hich correspond to t being true and those  

w hich correspond to  f being false. T h e proposition expressed b y  a form ula  

under this interpretation is not equ ivalen t to  a m eta m a th em atically  

definable p ro p erty of the form ula, exce p t for specially restricted dom ains  

of the propositions allow ed as values of the proposition letters.

§  29. C o m p le te n e s s ,  n o r m a l fo r m . A n other problem  w h ich  w e  

m a y  be able to treat in m etam ath em atics is th a t of the ‘com pleteness’ of a
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g iven  form al system . F or exam ple, we h ave listed eleven postulates for 

the propositional calculus (§ 19). C an w e give  a reason w h y  we stop w ith  

ju st these ? M igh t w e w ith  ad va n ta ge atte m p t to discover others w hich  

could be added to  the list to give  more provable form ulas ? T o  be able to  

answer these questions, we m ust first provide some criterion as to w hat  

we w an t to  be able to  prove in the system . D ifferent notions of com plete

ness w ill result according to  the criterion chosen.

W e m a y  giv e  the criterion a p ositive form, and say  th a t the system  is 

com plete, if its postulate list already provides all we need for some pur

pose. F or exam ple, suppose th a t some property has been defined for for

m ulas of the s y s te m ; or altern atively, th a t an interpretation has been  

given  to the form ulas of the system , in w hich case the property is th a t the  

form ulas express true propositions under the interpretation. R e la tiv e  to  

such a property or interpretation, definitions of b oth  con sistency and  

com pleteness can be g iven  as follows.

T h e system  is consistent w ith  respect to the property (or interpretation), 

if o n ly form ulas w hich h ave the property (or express true propositions 

under the interpretation) are provable. T h e system  is com plete  w ith  respect 

to  the property (or interpretation), if all form ulas w hich h ave the property  

(or express true propositions under the interpretation) are provable.

U n like the notion of sim ple consistency given  in the preceding section, 

these notions of con sistency and com pleteness relative to  a p roperty or 

interpretation m a y  not alw ays belong to  m etam athem atics. W hether or 

not th e y  do w e shall h ave to consider from  case to case, according to  

w hether the p roperty (or interpretation) is one w hich can be form ulated  

w ithin m etam athem atics.

For the propositional calculus we h ave the prop erty of identical tru th  

(or if we prefer, the interpretation of the calculus as an arithm etic of a 

dom ain of tw o objects), w hich  can be form ulated in m etam athem atics. 

Theorem  9 is thus a m etam ath em atical con sistency theorem  for a certain  

property of letter form ulas (or interpretation of the calculus).

T o  recapitulate the idea of com pleteness relative to an interpretation: 

A  system  is com plete under a given  interpretation, if the d ed u ctive  

postulates (or transform ation rules) enable us to prove in the system  all 

the true propositions w hich its form ation rules enable us to express in the  

system .

W e are led to  other form ulations of com pleteness, if we give  the criterion  

for w h at form ulas should be provable a n egative form, and sa y  th a t the  

system  is com plete, if the postulates provide all th a t we can afford to  

have lest some undesirable effect ensue. A n  effect w hich com es to m ind is
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sim ple inconsistency. T h e  com pleteness notions obtained in this w a y  w ill  

a lw ays be m etam ath em atical, if the effect to  be avoided is m etam ath e-  

m a tica lly  describable (as in particular sim ple inconsistency is). E x a c t  

form ulations w ill be given  for particular form al system s as w e com e to  

them .

N o tice th a t a con sistency theorem  w ill alw ays be a theorem  to  th e  

effect th a t at m ost such and such form ulas are p ro v a b le ; and a com 

pleteness theorem  one to  the effect th a t a t least such and such form ulas  

are provable.

From  this general introduction to  the problem  of com pleteness, w e  

turn now  to consider it for th e propositional calculus. W e shall show  first  

(Theorem  10) th a t the calculus is com plete w ith  respect to the p rop erty  

of identical truth.

Theorem 10° and Corollary 1°. The conditions of Theorem  9 an d  
C orollary  1 are su ffic ien t  (as w ell as n ecessary); i.e . i f  E  is  iden tica lly  tru e , 

then  b E , an d  i f  E  an d  F  are iden tica lly  equal, then  b E  ~  F.

T h e  proof w ill be based on tw o lem m as. L e t P x, . . . ,  P m be distinct  

proposition letters. G iven  an w -tu p le  of t's  and f's as values of P 1# . . . ,  P m, 

b y  the corresponding letter m -tu p le  we shall m ean th e sequence Q lr . . . ,  Q m 

of letters and negated letters where, for each j  (j — 1, . . . ,  m ), Q , is P ,  

or - i P ,  according as the g iven  valu e of P ? is t or f.

E xample 1. L e t 3 ,  S , C  tak e the values t, f, t, respectively. T h e  

corresponding letter m -tuple is 3 ,  - i B , . C .

Lemma 13. L et  E be a p ro p o sitio n  le tter form ula  in  the d is tin c t p ro p o 
s itio n  letters  P x, . . . ,  P w ; let an  m -tu p le  of t's and  f s  be given  as values of 
P x, . . P m; an d  let Q lf . . . ,  Q m be the corresponding letter m -tuple. T hen  
Qi ,  . . . ,  Q m b E  or Q lt . . . ,  Q m b “iE, according as for the g iven  m -tu p le  
of values  E  takes the value  t or the value  f.

E xample 2. Corresponding to th e tab le in E x a m p le  2 § 28 for  

n [ c 3 V S D  (B &  C) V - i  3 ] ,  we now  h ave eight d ed u ctio n s:

37, 2 , C \- —i —i [ 3 vs D (S & Q V —i 3 ] .
a , 2, C b —i [ 3 vs D (S& C) V —13].
<3, -iS, c b —i [ 3 vs D (S& Q V —13].
<3, -iS, —i C b -i [ 3 vs D (S& Q V —i 3 ] .

“1 3, 2, c b —i 1 [ 3 vs D (B & Q V - i  3 ] .
—1(3, 2, “ i c b —i —i [ 3 vs D (B& Q V —i 3].
—1<3, -i 2, c b —i —i [ 3 vs D (B & 0 V —i3j.
—13, -> 2 , “ i c b —i—i [ 3 vs D (8& Q V - » 3 J .
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P roof of Lemma 13, b y  course-of-values induction on the num ber of 

(occurrences of) logical sym bols in E ;  call this num ber the degree.
B a s is : E  is of degree 0. T h en  E  is for some j.  In  the given  m -tuple of 

values, the valu e of P , is t or is f . Case 1: the valu e of P 3 is t. T h en  Q, is P 5, 

i,e. Qj is E ; and so b y  general properties of h  Qi, • • •, Qm b E , as w as to  

be shown since in this case E  takes the va lu e t. Case 2: the valu e of P, is f. 

Then sim ilarly Q ; is - i E ,  and so Q x, . . . ,  Q m b “ *E, as w as to be shown.

Induction s t e p : E  is of degree d + 1. T h en  for some proposition  

letter, form ulas A  and B  in P x, . . . ,  P w of degrees <  d, E  is A  D  B  or 

A &  B  or A  V B  or - i  A . Case 1: E  is A  D  B . F ou r subcases arise, according  

as for the given  m -tuple of values of P x, . . P m, the form ulas A , B  tak e  

the respective values t, t or t, f or f, t or f, f. Subcase 2 : A , B  tak e the values  

t, f . T h en  (by the upper right en try in the tab le for D ) E  takes the valu e f, 
so we are to show th a t Q lt . . . ,  Q m b - i E .  B u t b y  the hypothesis of the  

induction, Q v  . . . ,  Q w b A  and Q x, . . . ,  Q w b -» B . Also, using *41 or *44,

was to be shown. T h e treatm ent of the other cases and subcases is 

similar, using * 4 1 —-*48, *49a.

Lemma 14. L et  E  be a 'proposition letter form ula in  the d is tin c t p ro p o 
s itio n  letters  P x, . . . ,  P m. I f  for each of the 2 m m -tu p les of t's a n d  f's, 

Q lf . . . ,  Q m |- E  where Q v  . . . ,  Q m is  the corresponding letter m -tu p le , 

then P ^ - i P i ,  . . . , P w V - i P m b E .

P roof of Lemma 14. B y  2 m- 1 +  2 m~2 +  . . .  +  1 applications of 

V-elim ination. F or exam ple w hen m  =  2, b y  h yp o th e sis:

as w as to  be shown.

P roof of T heorem 10. S a y  E  is a proposition letter form ula in 

P j, . . . ,  P m. B y  hypothesis E  is id en tically  true, i.e. takes the valu e t

A , - i B  b - i ( A  D  B ); i.e. A , - i B  b “ «E. H ence Q lt . . . ,  Q m b “ *E , as

(a)
E i, P 2 b E .  

P j, “i P 2 b E . 

-1 P i, P 2 b E .  

- 1P 1, n P 2 b E .

B y  tw o  applications of V-elim ination:

(b)
P i, P 2 V - i P 2 b E .  

- i P j ,  P 2 V - i P 2 b E.

B y  one additional application,

(c) P i V - i P ! ,  P 2 V - i P 2 b E,
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for each m -tuple of t's and f ’s as values of P lf . . . ,  P m. T h en  b y  L em m a  

13, th e hypothesis of L em m a 14 is satisfied; so b y  L em m a 14, 

P x V - i P v  . . P TO V - i P m b E . T h en ce using *5 1, b E .

Remark 1 . A ll b u t the final step of this proof is good for the in- 

tu ition istic system  also. H ence in th a t, for a n y letter form ula E  in 

P i, . . . ,  P m‘

(a) P j  V n iP j, . . P m V n P m b E , if E  is id en tically  true.

(b) P ^ - i P *  . . . , P m V - i P w b E V - i E .

T h e  theorem  expresses the com pleteness of the d ed u ctive rules of the  

propositional calculus for the purpose of establishing letter form ulas 

w hich are id en tica lly  true under the arithm etic in terpretation ; and  

C orollary 1 says th a t th e d ed u ctive theory gives a com plete account of 

th e  e q u a lity  of functions definable in the arithm etic.

Corollary 2°. The ad d itio n  to the postu late l is t  for the p ro p o sitio n a l 
calculus of an  unprovable letter form ula for use as an  ax iom  schem a w ould  
destroy the s im p le  consistency .

Proof. B y  Theorem  10, this letter form ula m ust receive th e va lu e f 

for som e set of valu es of the proposition letters w hich it contains. Select 

such a  set of values, and use the new  axiom  schem a b y  su b stitu tin g

V for the letters w hich h a ve the valu e t, and «£¥ &  - i  <C2 for those  

w hich h a ve the valu e f. T h e  resulting new  axiom  w ould b e  id en tically  

false. H ence b y  Corollary 1 it  w ould be equivalen t to  <£? &  i  w hich is 

also id en tica lly  false. So (using *18a) <£? w ould also be provable,

an d the system  w ould thus be inconsistent (§ 28).

Corollary 2 says th a t the propositional calculus is incapable of being  

enlarged b y  postulates of the sam e character as those already listed w ith ou t  

d estroyin g the sim ple consistency. T h is is a com pleteness property of the  

second ty p e  described in the in trodu ctory remarks.

G iv e n  an m -tuple of t's and f s  as values of P lt . . . ,  P m, and lettin g  

Q i, . . Q m be the corresponding letter m -tuple, w e call Q x &  . . .  &  Q m 

(Qi V . . .V  Q^, §27) the corresponding elem entary conjunction {d isjunction).
E xample 1 (concluded). T h e corresponding elem entary con junction  

(disjunction) is &  C  ( - i c 3 V S V - i  C).

Theorem 11°. A  p roposition  letter form ula  E  in  the d istin c t p ropo
s itio n  letters  P x, . . . ,  P m is  equivalen t to a form ula  F  (called a p r in c ip a l  
d is ju n c tive  norm al form  of  E ) having  one of two fo rm s , as follows. I f  E  takes 
the value  t for som e m -tu p les of Vs and  f\s as values of P j, . .  ., P w, then  F
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is  the d is ju n c tion  (in  som e order) of the corresponding elem entary con
ju n ction s. I f  E  is  id en tica lly  false, then  F  is  P x &  (D u a lly , E  has a  
p r in c ip a l conjunctive norm al form  G , in  which the roles of V an d  & a n d  of 
t and  f are in terchanged)  h E  ~  G).

E xample 2 (continued)0, —i [<£? V S  D  (B & C) V - t  <3] has as a p.d.n.f. 

(<3 &  S  &  - i C )  V (<£? &  - i 2  &  C) V (<3 &  - i S  &  - iC ) ,  and as a p.c.n.f.

c ^ V - t S V C &  e 3 V S V - . C &  d V S V C

Proof. B y  Theorem  10 C orollary 1 , since (as is easily seen from  the 
specified form  of a p.d.n.f., and the va lu atio n  tables for - i ,  &, V) E  

and F  are id en tically  equal.

T h e propositional calculus, besides being d e d u ctive ly  com plete in tw o  

senses (Theorem  10 and C orollary 2), is also n o tatio n a lly  com plete in 

the sense th a t each of the 2%m possible tru th -valu e functions of m  variables  

P j, . . . ,  P m can be represented b y  a letter form ula in those letters. For, 

given  the tab le for the fu n ction , w e can bu ild  a p .d.n.f. (uniquely de

term ined to  w ithin the order of its d isju n ctive members) to represent it.

These three com pleteness results appeared first in P ost 1 9 2 1 ; the  

present m ethod of proof of Theorem  10 is due to K alm a r 1934-5 . (The  

w riter also used it, as an application of V -elim ination in another co n text,  

in a first draft of 1934 .)

H ilbert and A ckerm an n  1928  g a v e  a version of P o st's  proof, w hich  

consists in establishing the norm al form  theorem  first, b y  reduction  

techniques going b a ck  in p art to  the nineteenth ce n tu ry  workers on  

sym bolic logic. B riefly, a letter form ula E  can be reduced to a p.d.n.f. 

(or p.c.n.f.), using the chain m ethod § 26, as follow s. F irst, *58 or *59  is 

used to  rem ove the occurrences of D . Second, th e  occurrences of -1 are 

transferred to  the interior b y  repeated applications of Theorem  8 . Third, 

the resulting expression is “ m ultiplied o u t"  using the d istrib u tive law  

*35 (with *33) as in ordinary algebra w ith  V, &  in the role of + ,  * (or 

vice versa, using *36 w ith  *34, for p.c.n.f.). F ou rth , sim plifications are 

perform ed, based (besides on *31 — *34) on the id em p o ten tlaw s *3 7, *38 and  

on *5 2 — *55, so th a t th e resulting d isju n ctive m em bers (for p.c.n.f., 

con ju n ctive members) or “ term s" con tain each a t m ost one occurrence  

of each letter, exce p t if the p.d.n.f. P x (the p.c.n.f. P x V - 1P x) is

reached. F ifth , in the non -exception al case, m issing letters are intro

duced into the term s using *5 2  and *35 (*53 and *36). S ix th , using  

*31 — *34, *37, *38, the letters and negated  letters are brough t to the norm al 

order w ith in  term s, so th a t the term s becom e elem entary con junctions  

(elem entary disjunctions), and duplications of term s are suppressed.
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E xample 2 (concluded)0. A lth o u gh  our proof of Theorem  11 es

tablishes th a t V S D ( S & C ) V i c 3 ]  is equivalent to

{ a  & b & -»c) v ( a  & -is & c) v (<sr & -i» & -iC),
th e reader m a y  find it of interest to  reduce the one to  the other b y  the  

procedure ju st described. T h e  fourth operation leads to  

(©3f & - i B )  V (< £ 7 & -iC ) V ( B & - 1C &  «3). —  F rom  this b y  *40 w e g e t as 

a  *'d isju n ctive norm al form ”  (not "prin cip a l” ) (<£7 & - i S )  V (<C3 & n C ) ,  and  

then ce using *35 the still shorter equivalent (not a d.n.f.) <£?& ( - iS  V - i C ) .

§  30. Decision procedure, interpretation. W e kn ow  exam ples  

in m ath em atics of general questions, such th a t a n y  particular instance  

of the question can be answered b y  a preassigned uniform  m ethod. 

More precisely, in such an exam ple, there is an infinite class of par

ticular questions, and a procedure in relation to th a t class, b o th  being  

described in advance, such th a t if w e thereafter select a n y  particular  

question of the class, the procedure w ill surely a p p ly  and lead us to  a  

definite answer, either " y e s ”  or " n o ” , to  the particular question selected.

E xample 1. L e t f(x) and g(x) b e polynom ials w ith  g iven  integral 

coefficients. Is f(x)  a  factor of g(x)?  W e  can divide g(x) b y  f(x). T h is di

vision is perform able step b y  step b y  a preassigned m ethod. I t  w ill 

term inate in a finite num ber of steps (how m an y w ill depend on how  w e  

coun t the steps, b u t this could be m ade precise so th a t th e num ber w ill 

depend on the degrees of the polynomials and the size of the coefficients). 
We shall then have the remainder before us. This remainder we can rec
ognize to be either 0 or different from  0 . I f  it  is 0, the answer to  th e  

question is " y e s ” . If  it is different from  0, the answer is " n o ” .

E xample 2 . D oes the equation ax  +  by — c , where a y b, c are 

given  integers, h a ve a solution in integers for x  and y ?  There is a w ell- 

know n m ethod for answering the question, using E u clid 's  algorithm .

A  m ethod of this sort, w hich suffices to answer, either b y  " y e s ”  or b y  

" n o ” , any particular instance of a general question, w e call a  decision  
;procedure  or decision  m ethod  or algorithm  for the question. T h e  problem  of 

finding such a m ethod w e shall call the decision  problem  for th e question. 

T h e problem  appears in m odern logic w ith  Schroder 1895 , Low enheim  19 15  
and H ilbert l g i 8 . T h e present account is on ly introductory, and w e shall 

a tte m p t a m ore precise definition of w hat con stitutes a decision m ethod  

later (§§ 60, 61).  F o r the present, it w ill be enough th a t we should be  

able to  recognize particular exam ples of decision procedures.
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Sim ilarly, w e m a y  h ave a calculation procedure  or algorithm  (and hence  

a calculation problem ) in relation to  a general question w hich requires for 

an answer, not " y e s ”  or " n o ” , b u t the exh ib itin g of some object.

N ow , in connection w ith  a given  form al system , such as the one w e  

h a v e  been stu d yin g, there are some general questions, such as "Is a given  

form al expression a form u la?' and 'Is a given  finite sequence of form al 

expressions a proof?', for w hich a decision m ethod is provided d irectly  

b y  the definitions establishing the system . In  fact, this m ust be the case if 

th e form alization b y  m eans of the system  is to  accom plish w h at w as  

intended. O f a different nature is the question 'Is a given  form ula p rov

ab le ? ' T o  see this difference, let us com pare th e definitions of the three  

notions: 'form ula', 'proof', 'provable form ula'. F or each of the three  

definitions, in ap p lyin g it to a particular g iven  ob ject, we h a ve to  rec

ognize th a t the given  ob ject belongs to  the class defined (if it does 

belong) through the consideration of a  sequence of objects, n am ely  re

sp e ctiv e ly  : the form ulas obtained on th e w a y  in th e construction of the  

g iv e n  form ula, the segm ents of th e given  proof, the form ulas in a proof 

of th e given  provable form ula. In  th e cases of form ula and proof, th is  

sequence of objects is contained w ith in  the given  ob ject, from  w hich it  

can be regained for our consideration. B u t in the case o f provable form ula, 

this sequence of ob jects is not contained w ith in  the given  object. H ence, 

for the last question, if a  decision m ethod exists, it m ust consist in som e

th in g else th an  a direct or nearly direct ap plication  of the definition, and  

the decision problem  for this question is not trivial. I t  is often called  

the decision  problem  for th e form al system . T h is problem  is solved for the  

pure propositional calculus b y  Theorem s 9 and 10 (§§ 28, 29):

Theorem 12°. A  decision  procedure (or algorithm ) for determ in in g  
whether or not a  p roposition  letter form ula  E  is  provable in  the p ro p o sitio n a l  
calculus is  afforded by the process of calcu lating the table for the fu n ction  of 
t an d  f represented by  E . A ccordin g  as on ly  t's  occur in  the value colum n or 
not, E  is  provable or not.

Furtherm ore, the decision procedure extends to the other senses of  

form ula, as w e m a y  first pass to a corresponding letter form ula b y  si

m ultaneously replacing the distinct prim e com ponents b y  respective  

d istin ct proposition letters (Theorem s 3 and 4 § 25). A  decision procedure  

for equivalence is included in th a t for p ro vab ility, b y  the definition of 

equivalence (§26), or can be based sim ilarly on the Corollaries 1. T h e  

decision problem  for d ed u cib ility  is reduced to th a t for p ro v a b ility  b y  

noting, from  the derived rules for D  and &  (Theorem  2 § 23) th a t, in
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th e  propositional calculus, D x, . . D t 1-  E  if and o n ly  if 

b D j &  . .  .&  D* 3  E . (A  second set of decision procedures is afforded  

b y  the process of reduction to  p.d.n.f., end § 29.)

I n t e r p r e t a t i o n . O ur m etam ath em atical result th a t the propositional 

calculus adm its an arithm etical interpretation, w ith  tw o objects t, f in the  

arithm etic, illum inates the usual logical interpretation (cf. end of § 28). 

W e see th a t our propositional calculus is a suitable logical instrum ent (1) 

w hen the particular propositions are such th a t each is d efin itely  either  

true or false, or (2) w hen w e w ish to m ake it an assum ption of a theory  

w hich w e are developing th a t each is either true or false. F or an in- 

tuition ist, S itu atio n  (1) is represented in the m athem atics of a finite  

dom ain of objects, and also in reasoning w ith  propositions about the  

ob jects of an infinite dom ain w hen those propositions are of a ty p e  for 

w hich there are decision procedures (cf. R em ark 1 § 29). T h e  use of the  

propositional calculus in classical m athem atics can be tak en  as an  

exam p le of Situ ation  (2).

T h e tru th  tables now  m ake it definite e x a c tly  how  the operators  

of the calculus are to be interpreted as tru th -valu e functions of propo

sitions. F o r exam ple, w e see th a t V is the in clu sive  ‘or*: A  V B  is 

true, if either A  is true or B  is true or both. (The exclusive  ‘or* is expres

sible th u s: ( A V B ) & n ( A  &  B).)

T h e  im plication A  3  B  m eans the sam e as i A V B  (*59 § 27), and is 

called m ateria l im p lica tio n . T h e holding of A  3  B  does not require a  

necessary connection of ideas betw een A  and B . F o r exam ple, the m oon  

is m ade of green cheese m aterially  im plies 2 +  2 =  5 (because the prem 

ise is false). F e rm a t’s “ last theorem ” m aterially  im plies 2 +  2 =  4 

(because th e conclusion is true). T h is is considered paradoxical b y  som e  

w riters (Lewis 1 9 1 2 , 1 9 1 7 ). W ith o u t atte m p tin g to enter fu lly  into a  

controversial question, w e offer the follow ing brief remarks. T h e role of 

m aterial im plication is best understood, w hen it is considered in a w ider  

co n text, such as th a t provided b y  the full num ber-theoretic system . 

V x(A (x) 3  B(x)) expresses a relationship betw een A (x) and B (x) as 

variab le propositions (or 'propositional functions of x ’), called form al 
im p lica tio n .  T h e p rop erty of m aterial im plication of holding w henever the  

first m em ber is false, w hen the m aterial im plication is used in com bination  

w ith  gen erality  to bu ild  a form al im plication, allows a theorem  

V x (A (x ) 3  B(x)) to hold vacuously  for certain values of x. T h is is a device, 

of a piece w ith  the adm ission of 0 into the num ber system  and of the  

vacu ou s set into the theory of sets, w hich conduces to  sim pler and m ore
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com prehensive form ulations of theorem s. T h e sam e is true of th e p roperty  

of m aterial im plication of holding w henever the second m em ber is true. 

From  the standpoint of la y  E nglish, 3  is prob ab ly b etter rendered as 

“ if . . . ,  then . . .  ”  or “ on ly if” . N otw ithstan din g, “ im plication ” is a h an d y  

nam e for 3 .  In using it, w e follow  the practice com m on in m athem atics  

of em ploying the sam e designation for analogous notions arising in related  

technical theories. (An exam ple is the m an y different kinds of “ ad d itio n ”  

and “ m u ltip licatio n ” in m athem atics.) T h e operator 3  does h ave the  

character of an im plication in our form al system , in consequence of the  

tw o  properties of it expressed b y  the deduction theorem  and R u le 2 

(i.e. the tw o 3 -rules of Theorem  2). So it does represent logical conse

quence, not in some a priori sense, b u t in the sense defined for the form al 

system  b y  the dedu ctive postulates of the system .

O t h e r  f o r m s  o f  t h e  c a l c u l u s . In  view  of *56 — * 6 1, the notation al 

com pleteness of the propositional calculus (end of § 29) could h a ve been  

obtained b y  takin g -i and on ly one of the three other operators 3 ,  & , V  

as prim itive operators for the calculus (formal sym bols), and defining the  

other tw o of 3 , &, V from those as sym bols of abbreviation (as ~  w as  

defined in § 26). T h e still further reduction can be m ade to  a single  

prim itive operator | (called 'altern ative denial', or th e  'Sheffer stroke', 

1 9 1 3 *), w ith  the ta b le :

<3 1 2
s t f

a  t f t
f t t

Th en ce one defines -1 as | <3f, and < 3 V B  as (“ i<3?) I (~1®)*

T h e propositional calculus m a y  be set up tak in g the substitution  rule, 

w hich w e derived as a subsidiary deduction rule in Theorem  3 § 25, 

instead as a  direct po stu lated  rule:

E

E * .

In  this case, the proposition letters are called pro p o sitio n  variab les , and  

particular axiom s using the form al variables J?, C  can be used in place  

of the axiom  schem ata using the m etam ath em atical variables “ A ” , 

“ B ” , “ C ” . T h e direct substitution  rule is u su ally  construed to  a p p ly  to  

a single variable at a tim e (cf. R em ark 1 § 25).
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E x a m p l e  3. W e then h ave D  (B D  Z%) as A x io m  la. T o  con struct

then ce a proof of A  D  (B D  A ), for a n y  g iv e n  form ulas A  and B , w e  

proceed thus. I f  A  does not con tain B, first su b stitu te A  for <3, then B  

fo r B. If A  contains B, let P  be a proposition letter distinct from  an d  

not occurring in A , and su b stitu te successively P  for B, A  for <3, B  for P .

T h is is the more usual m ethod of settin g up the propositional ca lcu lu s; 

th e  m ethod we h a ve  chosen using axiom  schem ata is due to  von  N eum ann  

19 2 7 . In  either case, the rules of inference m ust h ave th e character of  

schem ata, i.e. th e y  m ust em p loy m etam ath em atical variables, since  

in fin itely  m a n y applications h ave to be provided for. F or the calculus  

w ith  th e direct substitution  rule, w hile the p ro vab ility  notion is the sam e  

(as the reader m a y  dem onstrate), the d ed u cib ility  relation is m ore e x 

tensive. T h e deduction theorem , and other subsidiary deduction rules 

depending on it, m ust then carry a restriction on the use of proposition  

variables in the subsidiary deductions, stated  w ith  reference to  ap 

plications of the new substitution  rule e x a c tly  like the one we h ave stated  

w ith  reference to R ules 9 and 12 for individual variables in the predicate  

calculus.

W ith  either of these variations in the w a y  of settin g up the propo

sitional calculus as a form al system  (and there exist others), we still h ave  

essen tially the sam e calculus. A llow in g for differences in the selection of 

th e  operators, the class of provable form ulas and the interpretation as  

an arithm etic of tw o objects rem ain the same. A ll these system s, and the  

com m on th eo ry if w e ab stract from  the particular form ulation, m a y  b e  

called classica l or tw o-valued pro p o sitio n a l calculus.
O t h e r  p r o p o s it io n a l  c a l c u l i . There are other system s of proposi

tion al calculus, w hich are propositional calculi in th a t th e y  an alyze  

propositions o n ly  w ith  respect to  how  th e y  are form ed from  other propo

sitions taken  as wholes, and w hich h a ve therefore a definition of form ula  

of the sam e character (to w ith in  the particular choice of operators), b u t  

w hich differ essentially from  the system  studied here.

O ne class of exam ples is obtained b y  generalizing from  the tw o-valu ed  

propositional calculus to the n-valued proposition a l calculi for a n y  

p ositive integer n  >  2 . These for n >  2 were discussed b y  L u kasiew icz  

1920  (n  =  3) and P ost 1921  (any n). T h e y  are calculi w hich can be treated  

on th e basis of truth  tables in an arithm etic of n  objects, as th e  

classical system  is treated on the basis of two. (Cf. e.g. Lukasiew icz and  

T arsk i 1930 , Rosser and T u rq u ette  19 4 5 , 1949 , 19 5 2 .)

A n oth er exam ple is the in tu itio n is tic  p roposition a l calculus  (H eytin g



§30 DECISION PROCEDURE, INTERPRETATION 141
19 3 0 ), which is intended as a formalization of intuitionistic mathematical 
reasoning with propositions. As noted in § 23, we obtain a postulate list 
for it (for the intuitionistic predicate calculus) from our postulate group 
A1 (group A) simply by replacing Axiom Schema 8 by Axiom Schema 8 r. 
This is not Heyting's original postulate list, but one suggested by Gentzen's 
1 9 3 4 -5 . (Heyting's postulates for the predicate calculus are in 1 9 3 0 a.) 
Whether our numbered results and italicized theorems marked with the 
symbol ' 'OM as not being established intuitionistically, so far as our dis
cussion has gone, actually do not hold for the intuitionistic system is a 
question which in each case requires further consideration. We shall return 
to this later in the book (§§ 80, 82). The result of this section, that a 
decision procedure exists for the propositional calculus, is one such result 
which does hold for the intuitionistic system (Theorem 56 (d) § 80). 
It is known that in the intuitionistic propositional calculus none of the 
four operators can be expressed in terms of the remaining ones (Wajsberg 
1 9 3 8 , McKinsey 1 9 3 9 ); and that the calculus cannot be treated on the 
basis of truth tables for any finite n  (Godel 1 9 3 2 ), but can be for 
n =  N0 (Jaskowski 1 9 3 6 *).

Still further apart from the standpoint of the classical calculus studied 
here are thfe p r o p o s i t i o n a l  c a l c u l i  o f  s t r i c t  i m p l i c a t i o n  (Lewis 1 9 1 2 ), and 
the m o d a l  p r o p o s i t i o n a l  c a l c u l i  which deal with 'possibility', 'necessity', 
etc. (Cf. Lewis and Langford 1 9 3 2 , Feys 1 9 3 7 -8 , McKinsey and Tarski
1 9 4 8 , Feys 1 9 6 5 *.)



Chapter VII
T H E  P R E D I C A T E  C A L C U L U S

§31. Predicate letter formulas. In  this chapter, w e stu d y  the  

part of the form al system  obtain ed b y  using e x a c tly  the postulates of 

G roup A .

T h e propositional calculus, studied in the preceding chapter, is a  

form alization of logical relationships w hich depend on ly on th e an alysis  

of the w a y  certain propositions are com posed out of sim pler propositions, 

using operations of com position in w hich the sim pler propositions enter as 

un an alyzed  wholes.

In  the predicate calculus, the analysis goes a step  further, and we are  

allow ed to consider also w h a t m a y  be called th e 'su b ject-p red icate' 

structure of the sim pler propositions, and to  use operations of com 

position w hich depend on th a t structure.

T h is analysis still does not ta k e  into account all features of the structure  

of num ber-theoretic propositions. T h is we can em phasize, ju st as in the  

preceding chapter, b y  introducing an altern ative notion of form ula, 

w hich elim inates th e irrelevan t details of the num ber-theoretic def

inition of form ula, and leaves the w a y  open to other applications as well.

W e  start b y  introducing form al expressions of a  new  species, con

stitu tin g  a  generalization of the proposition letters introduced in § 25, 

as follows,

c2, £t(a, b)f . . . ,  2, B(a), B(a,b), . . . ,  C,C(a), C (a,b),----
These expressions w e call pred ica te  letters (w ith  attached  or nam e form  
variab les). E a ch  of th e sym bols form erly used as a proposition letter form s 

a different predicate letter w ith  each different num ber n  ^  0 of atta ch ed  

variables, and for n  =  0 a  predicate letter is a proposition letter. T h e n  
atta ch ed  variables m a y  be a n y  n  distinct variables. D ifferent choices of 

the n  atta ch ed  variables w ith  a given  predicate letter are said to give  

different nam e form s  of the sam e predicate letter, e.g. <ZZ(a, b ), e1 (b , a) 
and (c, d )  are three nam e form s of the predicate letter form ed b y  using

w ith  tw o atta ch ed  variables, b u t £l(a) and £2(a, b,c) are other pred-

142
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icate letters, and c% (a t a) is not a predicate letter. I t  ordinarily suffices  

throughout a discussion to  consider each of the distinct predicate letters  

em ployed in the discussion as represented b y  ju st one nam e form, i.e. 

as taken  w ith  a fixed  sequence of n  atta ch ed  variables throughout the  

discussion; and u su ally w e tak e these n  atta ch ed  variables to  be the first 

n  variables in order from  a given  infinite list a x, a2, a 3, . . .  of variables  

(usually here the list a, b , c, . . . ) .

F o r the definition of predica te letter form u la , given  in d u ctiv e ly  as fol

lows, the o n ly term s shall be the variables. H ow ever w e elect to  sa y  

“ term ” a t some places and “ va riab le” at others, so th a t it w ill be clear 

how  the discussion generalizes, if w e later w ish to allow  a w ider class of 

term s th an  sim ply the variables.

1. If  P (a x, . . . ,  a n) is a predicate letter w ith  atta ch ed  variables, and  

t x, . . . ,  t n are term s, then P ( tx, . . . ,  t n) is a form ula. 2 —  5. If  A  and B  

are form ulas, then (A) D  (B), (A) &  (B), (A) V (B) and - i  (A) are form ulas. 
6 —  7. If x  is a variable, and A (x) is a form u la , then V x(A (x)) and 3x(A (x))  

are form ulas. 8 . T h e o n ly form ulas  are those given  b y  1 —  7.

E xample 1. B y  1, i% ( b , a)> B , <%(a , b ) and <3 (a , a) are predicate  

letter form ulas. Here it suffices to start from  the tw o nam e form s <3f(a , b ) 

and B . B y  successive applications of 3 and 2 (om itting parentheses under 

the usual conventions § 17), c% (b , a) & B  and ^ ( b t a) &  B  O  ^ { a , b ) are 

predicate letter form ulas. F in a lly  b y  6 , V b (<£l (b , a) & B  D <C?(<2, b)) is a  

predicate letter form ula.

F o r this chapter, w hen we sa y  “ term ” and “ form ula” w ith ou t specifying  

the senses, the words m a y  be understood either in th e respective senses 

of free variable and predicate letter form ula, or else in their respective  

num ber-theoretic senses (§ 17). T h e tw o form al system s, h avin g in com 

m on G roup A  (§ 19) as postulate list, b u t differing thus in their form ation  

rules, w e distinguish as the pu re predicate calculus  and the num ber- 
theoretic predicate calculus.

Before going ahead w ith  the m etam athem atics, let us see how  the  

form alism  is interpreted as a calculus of predicates.

In  word languages, a proposition is expressed b y  a sentence. T h en  

a ‘predicate' is expressed b y  an incom plete sentence or sentence skeleton

con taining an open place. F or exam ple, “ __  is a m an ”  expresses a

predicate. W hen w e fill the open place w ith  the nam e of a subject such as 

“ Socrates” , a sentence such as “ Socrates is a m an ” is obtained. T h e  

situation is co n ven ien tly  described b y  using the m odern m ath em atical 

notion of a ‘function' (§ 10). T h e predicate is then a function of one v a ri
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able. T h is variable ranges over some dom ain, including as m em bers  

Socrates, Chiron, etc. T o  each m em ber of this dom ain, the function cor

relates a p rop osition ; i.e. w hen the independent variable takes a m em ber of 

th e dom ain as value, the predicate takes a proposition as corresponding  

value. T h u s th e predicate is a proposition a l fu n ction  of one variab le . 

Predicates are often called 'properties', e.g. in Chapters II, I I I .  In  this

term in ology " __  is a m an " expresses the p roperty P  of being a m an,

and "Socrates is a m a n " expresses the proposition th a t Socrates has the  

p ro p erty P .  A n o ther term  used in this connection is 'class'; "Socrates  

is a  m a n " expresses th a t Socrates belongs to  the class C  of men. ('P red 

ica te' in its strict gram m atical m eaning of th a t w hich a sentence says  

ab o u t its su bject is narrower than  'propositional function of one va ri

able' or 'p ro p erty ', since for a predicate the om itted  noun in the sentence  

skeleton m ust be th e su bject of the sentence.)

A s  a  second illustration, consider the sentence skeleton __lo v e s ___ ".

In  gram m atical term inology, this consists of a tran sitive verb and tw o  

open places, one to  be filled b y  the nam e of a subject such as " J a n e ",  

and the other of an ob ject such as "J o h n ". W h ether the resulting sentence  

expresses a true or a false proposition we are not saying. T h e sentence  

skeleton in this illustration expresses a b in ary  re la tion , i.e. a relation  

am ong tw o m em bers, or in other words a pro p o sitio n a l function  of two  
variables.

In other exam ples, there m a y be several correlated open spaces to  be

filled w ith  the sam e nam e. F or exam ple, " __ x is the father o f ___2, or

__ i is the m other o f __ 2"  expresses a b in ary relation, also expressed b y

" __ i is a  parent o f ___2".

T h e  reader m a y  easily m ake up exam ples of sentence skeletons con

tain in g a n y  greater num ber n  of open places or of sets of correlated open  

places. Such a sentence skeleton expresses an n -a ry  re la tion , or propo
s itio n a l fu n ction  of n  variab les .

From  th e standpoint of functions, the distinction betw een a 'predicate' 

in the traditional sense of th e  first illustration and a 'relation' is of m inor 

sign ificance; and likew ise the distinction betw een 'su b ject' and 'o b je ct' 

in the first tw o  exam ples. I t  w ill be more con ven ient henceforth to  sa y  

sim p ly “ p red icate" and " o b je c t"  in all cases. B y  a predica te (of n  variables) 
w e shall accordingly m ean a propositional function of n  variables, where n  
m a y  be 0 g iv in g  a proposition, or 1 g iv in g  a predicate in the traditional 

sense or a property, or >  1 g iv in g  an n -ary relation. W e call the values  

of th e independent variables (when n >  0) objects, and the independent 

variables object variables.
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T h e predicate calculus will treat of the logic of predicates in this general 

sense of 'p red icate’ , i.e. as propositional function. Som e w riters hence sa y  

"fu n ctio n al calcu lu s” instead of "pred icate calculus” .

W e shall consider here o n ly the case of predicate calculus w hich has 

one dom ain of objects for all its object variables, in w hich case the objects  

m a y  be called also in d iv id u a ls , and the o b ject variables in d iv id u a l  
variables. This case suffices for the intended application to our num ber- 

theoretic system , for w hich the dom ain is th e set of the natural num bers.

T h e treatm ent of the predicate calculus w ill not depend on a n y sup

position about the object dom ain, exce p t th a t it be n on -em p ty, i.e. 

contain at least one elem ent. F or the pure form  of the calculus, no pro

vision is m ade for referring to  particular objects of the dom ain, i.e. there  

are in dividual variables b u t no in d ividu al constants.

N o w  let us see how  we com e to choose the sym bolism  w hich w e use 

to represent predicates. T h e blanks em p loyed  ab ove to show the open  

places in a sentence skeleton w e replace b y  the device cu stom ary in

m ath em atics of letters called "va ria b le s” . T h u s instead of " __ •, is

father of __ 2> or - __1 m other o f __ % \  we more co n ven ien tly  w rite

(1) " a  is father of b , or a  is m other of V \  Som e m ath em atical exam ples  

are (2) “ a  is e v en ” , (3) "a  equals 6” , and (4) " a  is less than b” .
Furtherm ore, since a predicate is a kind of a function, n am ely one 

whose valu es are propositions, w e em ploy function al n o tatio n  (§ 10) in 

nam ing predicates, except in cases w hen some other n otation is in com 

m on usage. T h u s w e m ight designate the predicate of (1) as “ P (a ,  &)” 

(for "a  is a parent of 6” ) and of (2) as “E (a )” , using the functional n otation  

w ith  the predicate sym bol ( " P ” or " £ ” ) w ritten  ahead of the independent 

variables. (W e h ave already done so in § 7 in using " P ( n ) ” to express th a t  

n  has the prop erty P .) For (3) and (4), w e use the custom ary relational 

notations " a — b” and " # < & ” , w ith  the predicate sym bol (" =  ” or 

" < ” ) w ritten  betw een the independent variables.

F o r the pure predicate calculus, the predicate letters such as b), 
etc. are to  be interpreted as standing for unspecified predicates, i.e. 

<^(at b) for a predicate of tw o variables, $  for a predicate of zero variables  

(i.e. a proposition), etc. T h en  a n y predicate letter form ula can be in ter

preted as stan d in g fdf a predicate w hich is determ ined b y  the predicates  

represented b y  the distinct predicate letters from  w hich it is constructed, 

e.g. V/>(e2f(£, a) &  B  D  b)) represents a predicate of one variable  

(corresponding to the free a) determ ined b y  the predicate of tw o variables  

represented b y  c2f(<z, b) and the proposition represented b y  #.

N o te  th a t w hen we are using <^(a, b) as the nam e form for the predicate
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letter <3 w ith  tw o atta ch ed  variables, then for the interpretation, after  

choosing in d ep en den tly  w h a t predicate <£t(a, b) shall stand for, the  

m eanings of b), <Fl(a, a ), «3f(b, a), etc. depend upon th a t, b y  the  

standard con ven tion  for functional n otation (§ 10).

Sim ilarly, a n y  form ula in the num ber-theoretic system  can be inter

preted as expressing a predicate, under the usual num ber-theoretic  

m eanings of th e sym bols. F or exam ple, 3 c(# = 0 "-c) expresses E (a)  
or a is  even, a ~ b  expresses a = 6, and l c ( c ' + a = b )  (abbreviated a < b  
in § 17) expresses a < b .

L e t x v  . . . ,  x n be distinct variables, and A ( x x, . . . ,  x n) a form ula (under 

either notion of form ula). W hen w e are interpreting A ( x x, . . . , x n) b y  

a predicate, or perform ing form al operations w ith  it w hich are in keeping  

w ith  an interpretation b y  a predicate (even though the interpretation is 

not in v o lv ed  in th e form al operations), we call A ( x lf . . . , x n) a nam e  
form  in x lt . , . ,  x n as th e  nam e form  variables, and sa y  th a t x v  . .  , , x n 

h ave th e nam e form  in terp re ta tio n  or the predica te in terpre ta tion . T h e  

nam e form  A ( x 1# . .  . , x n) is the form ula of the system ; “ A ( x x, . .  . , x n)”  

is our m etam ath em atical nam e for th a t form ula (under our su bstitu tion  

n o tation  § 18); and w e m a y  on occasion introduce ttA (x 1, . . x n)” as a  

nam e for the predicate A (x v  . . . ,  x n) w hich the form ula A ( x x, . . . ,  x n) 

expresses under the interpretation.

It  is natural to  interpret a form ula w ith  free variables b y  a predicate, 

e'.g., w hen w e are concerned w ith  the form ation rules of the system , and  

the form ula in question is being considered as a con stituen t of other for

m ulas. A  discussion of the interpretations of a form ula b y  a proposition  

w ill be given  at the end of § 32.

§  32. Derived rules, free variables. In using the derived rules  

of Theorem  2 (§ 23) for the predicate calculus, we m ust observe carefully  

th e restrictions on th e handlin g of va ria b le s: (1) T h e  t  for an V -elim ination  

or 3-introduction m ust be free for the x  in the A (x) (cf. § 18). (2) T h e x  for 

an 3-elim ination m ust not occur free in the C. (3) In  a subsidiary de

duction th e free variables m ust be held con stant for the assum ption  

form ula to be discharged (cf. § 22). A t  first parenthetical rem arks w ill 

call atten tio n  to the precautions taken. L a te r it w ill be left increasingly  

to the reader to observe them .

Theorem 13. F or  *64— *68, let x v  . . . ,  x n be d is tin c t variables, 
A( xj ,  . . . ,  x n) be a form ula, and  t x, . . . ,  t n be term s (not n ecessarily  d istin ct) 
which are free for x v  . . . , x n, respectively, in  A (x lf . . . , x w). F or  *6 7,
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also let C b e a  form u la  not con ta in ing  an y of x v  . .  . , x n free, an d  r ( x 1, . . . ,  x n) 

be a f in i te  sequence of zero or m ore form ulas, an d  su ppose that the free 
variables are held constant for the last a ssu m ption  form ula  A ( x x, . . . ,  x n) 

in  the su b sid ia ry  deduction . T h e n :

*64. A(xif . . x w) bXl"*Xw V x x . . .  V x wA ( x 1, . . . ,  x n).

*65. Vxt .... VxnA(x1, . . . ,  xn) b A (tji . . . ,  t n).

* 66. A(xlf . . . , x tt) bXl**‘Xw A (tj, . . . ,  t n).

*68. A{tv . . . , t n) b 3x! . . .  3xnA(x1, . . . ,  xw).
*67. I f  T (x 1, . . . ,  x w), A ( x p . . . ,  xn) b C, then  
T(xv . . . ,  x n), 3 x x . . .  3xnA(xj_, . . . ,  x„) bXl" ,x* C. 

(w-fold V -introduction, V-ehm ination, substitution, 1 -introduction

and 3-elim ination.)

I f  x  is  a variable, and  A (x) and  B (x) are fo rm u la s :

*69. A(x) 3  B(x) bx V x A (x ) D  V xB (x).

*70. A (x) D  B(x) bx 3xA (x) D  Ix B (x ).

P roofs. *64. B y  n  successive applications of the sim ple V -in 

troduction rule, (§ 23).

F or *65 and *66  (and later * 68), we m ake tw o cases. Case 1 : t v  . . . ,  t w 

do not con tain x x, . . . ,  x n. Case 2: otherwise.

*65 Case 1 . B y  n -su ccessive  sim ple V-elim inations,

V x x . . .  V x nA (x 1, . . . ,  x n) b V x 2 . . .  V x nA (t!, x 2, . . . ,  x n) b 
V x 3 . . .  V x wA ( tlf t 2, x 3, . . . ,  x n) b . .  - b V x nA (tj, . . . ,  t n_v  x n) b 

A ( tx, . . . , t n).

T h e case hypothesis and the h ypothesis of the theorem  th a t t v  . . . ,  t n 

are free for x v  . . . ,  x w, resp ectively, in A ( x x, . . . ,  x w), together insure 

th a t t x is free for x x in V x 2 . . .  V x nA ( x 1, x 2, . . . , x w), t 2 for x 2 in 

V x 3 . . .  V x nA (tj, x 2, x 3, . . . , x n), etc. (Case 2 w ill follow *66  Case 1 .)

*66  Case 1 . B y  com bining *64 and *65 Case 1 (or b y  n successive  

applications of the sim ple substitution rule § 23).

*65 Case 2 . L e t w v  . . . ,  w n be variables distinct from each other  

and from  xv . . . ,  x n, and not occurring in A ( x x, . . . ,  x n) or t v  . . . ,  t n. 

Then, b y  Cases 1 of *65 and * 66,

V x x . . .  V x „ A ( x 1, . . x„) 1-  A (w 1, . . w„)  A ( t lt . . t„).

*68  Case 2 . A ( t „  . . t„) \- 3w x . . .  3w „A (w 1, . . w„).  A lso  

A (w 1( . . w„)  |- 3 x j . . .  3 x nA ( x 1( . . x„),  w hence b y  *67,

3w x . . .  3 w „A (w 1, . . w„)  I- . . .  3 x nA ( x 1, . . x„).
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*69. 1. A (x) D B (x), A (x) h B(x) bx V x B (x ) —  D -elim ., V -introd.

2. A (x) D B (x), V x A (x ) hx V x B (x ) —  V -elim ., 1 [the term  x  is

free for x  in A (x) b y  use of the definition § 18].

3. A (x) D B (x) bx V x A (x ) D V x B (x ) —  D-introd., 2 [the variable
x  is held constant in the subsidiary deduction 2 for the as

sumption formula V x A (x ) which is being discharged, since x  

does not occur free in V x A (x )].

*70. 1. A (x) D B (x), A (x) b B(x) h 3xB (x) —  D-elim., 3-introd. [cf. 

*69 Step  2].

2. A (x) D B (x), 3 xA (x) bx 3xB (x) —  3-elim ., 1 [3xB (x) does not 

con tain x  free, and x  is held constant in the subsidiary deduction 1 ].

3. A (x) D B (x) bx 3xA (x) D 3xB (x) —  D-introd., 2 [x does not 
occur free in 3 x A (x )].

T h e 3-elim ination rule required at Step  2  for *70  is a subsidiary deduction  

rule, w hile the V -elim ination rule used at Step  2 for *69 was established in  

th e stronger direct form  (although under an abbreviation  introduced in  

§ 23 E x a m p le  1 the step is presented in the sam e form at). H ence the  

greater care required in ju stifyin g  Step 2 for *70.

E xample 1. V -introduction can be applied to the form ula <31 (a, a) 
in o n ly one w ay, while 3-introduction (simple or 2-fold) can be applied in  

several w ays, as follows.

<3(a,a) K  V a £ l(a ,a )  —  V -introd., lettin g x  be a ; A (x) be <^(a,a).
C l(a fa) b 3 a 3 l{a ,a ) —  3-introd., lettin g  x  be j ; A ( x )  be < 3l(a ,a);t be a.
<3l(a,a) b 3b 3 l { a ,b ) —  3-introd., lettin g  x  be b \  A (x) be 3 t ( a }b ) ; t be a.
<3l(a,a) b 3b< 3 l(b ,a )—  3-introd., lettin g  x  be b;  A (x) be <3I(b,a); t be a.
3L{ata) b 3a3b<31(a,b) —  2 -fold  3-introd., le ttin g  x v  x 2 be a, b ; A (x lf x 2) 

be <3l(atb) ; t v  t 2 be a , a .

cH (a,a) b 3 a lb < 3 (b ,a )  —  2-fold 3-introd., lettin g  x 1# x 2 be a, b \  A ( x 1# x 2) 

be <3l(b,a) ; t 1# t 2 be a, a.
I n t e r p r e t a t i o n  o f  f o r m u l a s  w i t h  f r e e  v a r i a b l e s . T h e restriction  

for our su bsid iary deduction rules of Theorem  2 , th a t the free variables  

should be held constant for each assum ption form ula to be discharged, 

can be illum inated b y  som e rem arks on the interpretation, w hich of 

course are not part of the m etam athem atics.

In E x a m p le  2 follow ing, w e h ave in Step  1 a deduction from the as

sum ption form ula b ^ O  w ith  b held constant, so th a t D -in trod u ction  is 

applicable at once. In  E x a m p le  3, D -in trodu ction  is not applicable at  

once because b is varied, although it can be applied after an V-elim ination.
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In E xa m p le  4, we see how  a false result (for the num ber-theoretic inter

pretation) is obtainable, if we vio late the restriction on subsidiary de

duction.

E xample 2 . 1 . b ^ O  b a + b ^ a  —  can be established, holding b
con stant, in the num ber-theoretic system  (§39; “ s ^ t ” abbreviates

- i s = t ,  § 17).

2. b b ^ O  a + b ^ a  —  D-introd., 1.
3. b V b ( b ^ 0  D a + b ^ a )  —  V -introd., 2.

E xample 3. 1 . b=£0 b̂  0 ^ 0  —  substitution (§23), b being varied.

2. V b (b j£ 0) b 0 ^ 0  —  V-elim ., 1 .

3. b V b { b = £ 0) D 0̂ 0 — D-introd., 2.
Example 4. 1. b=£0 b̂ 0̂ 0 —  same as E xa m p le  3 Step  1.

2? b b=£0 D 0^0— D-introd., misapplied to 1.
3? b V b { b ^ 0 D 0 ^ 0 ) —  V -introd,, 2.

4? b 0 V 0  D 0 ^ 0  —  V-elim ., 3.

5. b O'y^O —  b y  substitution in A xio m  15.

6? b 0 ^ 0  —  R ule 2, 5, 4.

T h e only violation of the form al rules in E xa m p le  4 is at Step  2 . I t  is 

suggested th a t the reader undertake him self to explain the fa lla cy  in  

term s of the interpretation, before reading the further discussion below. 

E sp ecially  he should note the difference betw een the form ulas at Step 3 

of E xam p les 3 and 4 . T h e reader m a y  also su p p ly the form al details  

for the follow ing tw o exam ples, and com pare the results.

Example 5. G iven  A (x) b B  and A (x) b ~ iB  w ith  x  held constant, 

then b ~»A(x) and b V x - iA ( x ) .

E xample 6 . G iven  A (x) bx B  and A (x) bx ~ iB  w ith  x  not neces

sarily held constant, then b “ iV x A (x ).

T h e rules of V-elim ination and 3-elim ination m a y  be discussed in like  

manner.

In inform al m athem atics, w e know  tw o different w ays of using free 

variables in statin g propositions, as illustrated in algebra b y  an iden tica l 
equation (x +  y ) 2 =  x 2 +  2x y  +  y 2 and a conditional equation x 2 +  2 =  3x.

T h e first of these interpretations is the one w hich applies to the free 

variables in the axiom s and form al theorem s of our system , and we  

call it the generality  in terpreta tion . F or exam ple, A x io m  14, w hich is 

a ' = b '  D a = b ,  m eans th at, for every pair a and b of natural num bers,
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if a ' =  b'y then a  =  6 ; and the form al theorem  a = a , proved in E x a m p le  

1 § 19, expresses th a t e very  natural num ber equals itself.

B u t w hen a form ula A (x) w ith  a free variable x  is taken as an assum p

tion form ula for a form al deduction, w e h a ve a choice. W e m a y intend the  

assum ption in the sense “ Suppose th at, for all A (x ) ’’, so th a t x  has the  

gen erality  interpretation. O r we m a y  intend the assum ption in the sense 

“ L e t x  be a num ber such th a t A {x )” , in w hich case we say x  has the con
d itio n a l in terpre ta tion .

In  the second case, the use in the deduction of operations which depend, 

considered in term s of the m eaning, on the p ossibility  of allow ing x  to  

range over the object dom ain w ill be out of keeping w ith  the interpreta

tion. F or the gen erality interpretation, there is no such lim itation. Step  1 

E x a m p le  2 is a deduction constructed in keeping w ith the conditional 

interpretatio n; and Step  1 E xam p les 3 and 4 only w ith  the gen erality  

interpretation. T h a t the assum ption form ula b ^ O  is false under the  

latter interpretation is beside the p oin t here, and the concluding form ula  

of E x a m p le  3 is quite correct (although not ve ry  interesting).

T h e student of elem entary m athem atics is acquain ted w ith  the dis

tinction betw een sym bols classified as constants and sym bols classified as 

variables. Close inspection shows th a t the distinction in the use of the  

sym bols is a lw ays relative to a con text. A  given  sym bol is introduced as 

nam e for an o b ject, and throughout a certain co n text every occurrence  

of the sym bol is as nam e for the sam e object. From  outside the con text, 

it is in dicated th a t the o b ject m a y  be a n y one (some one, etc.) of the  

m em bers of som e set. F u n d a m en ta lly  then, the sym bol is constant, i.e. 

its m eaning cannot be changed, w ithin the con text, w hile from  outside  

the co n te x t it  is variable.

(The term inology a ctu a lly  em ployed in a given  theory is generally th a t  

suitable to the co n text con stitu ted  b y  the theory as a whole. Som etim es  

sym bols w hich are con stan t throughout an im portant su bcon text, b u t  

variab le for the theory as a whole, are called “ param eters” or “ arbitrary  

con stan ts” .)

F o r the gen erality interpretation of a variable x  in a form ula A (x), the  

co n text w ith in  w hich all (free) occurrences of x  m ust represent the sam e 

ob ject is e x a c tly  the w hole form ula A (x). T h e form ula A (x) then m eans 

the sam e as V x A (x ), and in an alogy to the scope of the quantifier V x, we  

also call A (x) the scope  of the gen erality expressed b y  the free variable x.

F o r the conditional interpretation, the co n text w ithin w hich all (free) 

occurrences of x  halve the sam e m eaning is not ju st A (x) b u t the whole  

deduction from A (x) (or the part of it dependent on A(x)).
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In Example 4 Step 1, under the generality interpretation the scope 
of the generality expressed by b is exactly the assumption formula b ̂ 0 . 
Were the formula of Step 2 provable, the generality interpretation would 
then apply to it as a whole, and the scope would become b=£Q 3  0#0, 
not just the part b ^  0.

The universal quantifier Vx functions in our logical symbolism as 
a device to restrict the scope of generality to a part of a formula. The 
formulas of Steps 2 and 3 Example 4 (or of the two conclusions of Example 
5) are synonymous under the generality interpretation of the free variable 
in the first. No formula without a quantifier can be written which is 
synonymous with the formula of Step 3 Example 3 (or of the conclusion 
of Example 6).

Let A be a formula containing free exactly the distinct variables 
xv . . . ,  xn in order of first occurrence. According as n >  0 or n =  0, 
we call A open or closed. The closed formula Vxx . . .  VxnA (sometimes 
abbreviated “VA”) we call the closure of A. By *64 and *65, A and VA are 
interdeducible (i.e. each can be deduced from the other), with xv . . . ,  xn 
varied in the deduction of VA from A. Under the generality interpretation 
A and VA are synonymous. § *

§ 33. Replacement. Let CA be a formula in which there is a specified 
occurrence of a formula A, and let CB be the result of replacing this 
occurrence by B (§ 26). There will then exist parallel constructions of CA 
from A and of CB from B by Clauses 2 — 7 of the definition of formula 
(§ 17 or § 31). The number of steps in this construction of CA (or of oper
ators in the scopes of which the part A lies) we call the depth of the part 
A in CA.

E xample 1. Let A be 3l(b,a)f CA be Vb(£l(b, a) & S  3  £Z(a, b)) 
(the specified occurrence here being the only occurrence), and B be 
3d^l(d, a, c). Then CB is Vb(3d<iX(d, a,c) &B 3  <3(a, b)). The parallel 
constructions of CA from A and of CB from B are as follows, and the 
depth is 3.

Theorem 14. I f  A, B, CA and CB are formulas related as in the foregoing 
discussion of replacement, then

«Vl(b, a) ld<^l(d, a, c)

Qi(b, a) 8c 3 3 d a { d , a , c ) 8 c  3
csl(b, a) & 3  3  b) 3 d ^ {d , a , c ) 8 c 3 D  <3T(a , b)

Vbiplib, a) 8c 3 d  d ( a ,  b)) 'ib$d£Z{d, a, c) 8c 3 D  <3((a, £))

A ~  B bXl**’x* CA ~  CB
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where x v  . . . ,  x n are the free variab les of A  or B  which belong to a qu an tifier
of C A having the specified  occurrence of A  w ith in  its  scope. (R eplacem ent 

theorem .)

In  other words, x lf . . . ,  x n are the free variables of A  ~  B  w hich  

are quantified  in the construction of C A from  the specified p art A . Proof 

of the theorem  is b y  induction on the depth as before (Theorem  6 § 26), 

using now  tw o additio n al lem m as.

Additional lemmas for replacement. I f  x  is  a variab le , and  A(x)  

an d  B (x) are fo rm u la s :

*71.  A ( x ) ~ B ( x )  bx V x A (x ) ~  V x B (x ).

*72. A ( x ) ~ B ( x )  bx 3 x A (x ) ~  3 xB (x).

Proofs. From  *69 and *70, respectively.

Example 1 (concluded). L e t ~  be w ritten betw een the form ulas 

of each pair in the parallel colum ns. T h e resulting form ulas are deducible, 

each from  the preceding, using successively *28a, *26 and *71 (varying b).

Corollary 1. U nder the conditions of the theorem :
I f  f- A ^ B ,  then  h C A ^  C B.

E xample 2°. B y  *49 (and *20), b A (x) ^ n - i A ( x ) .  H ence  

b - n V x A ( x )  ~  -i - iVx - i- iA(x).
E xample 3. N o w  (cf. E x a m p le  2 § 26), if A  and B  do not contain  

x  free: A  ~  B  b A  V V x (A  D C(x)) ~  A  V V x (B  D C(x)). If  A  and B  

m a y  contain x  free: A  ~  B  bx A  V V x (A  D  C(x)) ~  A  V V x (B  D  C(x)). 

If  b A  ~  B , then  b A  V V x (A  D C(x)) —  A  V V x ( B  D C(x)).

Corollary 2 . U nder the conditions of the theorem :

A ~ B ,  C A bXl"'Xw C B, w ith  x lf . . . , x w varied  only for the f ir s t a s
su m p tio n  form ula. I f  b A ^ B ,  then  C A b C B. (R eplacem ent property of 

equivalence.)

A  replacem ent m a y  be preceded b y  a su b stitu tion  for in d ividu al 

variables (*66).

E xample 4. b + 0= a  ~  a = b  \-b b ' + 0= a  ~  a = b ' \-b 
l b (b f-\-0 = a) ~  3b (a — b '). B u t in § 38 w e w ill h a ve b b -\-0= a  ^  a = b . 

H ence then b 3 ^ ( ^ '+ 0 = ^ )  ~  3b {a = b ').

T h e  interpretation illum inates the treatm en t of the variables in re

placem ent. In  inform al m athem atics, know ing th a t sin x  is the sam e  

function as cos (n /2  —  x), i.e. h avin g sin x  =  cos (tc/2 —  x) as an identical
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equation (with x  ta k in g the gen erality  interpretation § 32), w e are ju stified  

in replacing “ sin x ” b y  “ cos (n /2  — x)'* in ‘ To s*n x  d x ’\  and in replacing  

“ sin 2 x ” b y  “ cos (n /2  — 2 x )” . B u t assum ing the conditional equation  

s i n x =  1 — x  g ives us no right to  replace “ sin  x ”  b y  “ 1 — x ”  in  

“To sin x d x ” , or to  replace “ sin 2x”  b y  “ 1 —  2 x ' \
Change of bound variables. Two form ulas A  and B  w ill b e said  

to b e congruent, if A  and B  h a ve the sam e num ber k of sym bols, and  

for each i  (i =  1 , . . . ,  k) : (I) If  the i-th  sym bol of A  is not a  variable, 

then  the i-th  sym bol of B  is the sam e sym bol. (II) If  th e i -th  sym b o l of  

A  is a free occurrence of a  variable, then the i-th  sym bol of B  is a  free  

occurrence of th e sam e variable. ( I ll)  If  the i-th  sym b ol of A  is an oc

currence of a variable bound b y  th e /-th  quantifier of A , then  th e i - t h  

sym b o l of B  is an occurrence of a  variable (not necessarily of th e  sam e  

variable) bound b y  th e /-th  quantifier of B .

In  brief, tw o  form ulas are congruent, if  th e y  differ o n ly  in their boun d  

variables, and corresponding bound variables are bound b y  corre

sponding quantifiers.

E xample T h e  two following form ulas are con gruen t:

V a ^ i a ,  c) V 1  aS (a)  3  3bC {a , b )) t Vb[C2(b, c) V 3cS(c)  3  3aC [b , a)).  
T h is can b e m ade apparent b y  introducing indices to  show w hich oc

currences of variables are bound b y  the sam e quantifier:

' ia l { a { a 1,c) V 3 a 2S(tf2) 3  3 b zC (av b s)), V b ^ a ^ c )  V 3 c 2B(c2) D  l a zC (bv a 3)). 
If  w e erase out the bound variables them selves, leavin g blanks num bered  

w ith  th e indices, identical expressions w ill b e obtained.

Lemma 15a. If x  is a variable, A (x) is a formula, and b  is a variable 
such that (i) b  is free for x in A (x), and (ii) b  does not occur free in A (x)  

[unless b  is x), then:

*73 . b V x A (x ) ~  V bA (b). *74. b 3 xA (x) ~  3bA (b).

P roofs. *73 . B y  E x a m p le  3 § 22 (Steps 1— 2), b V bA (b) D  V x A (x ),  

and sim ilarly b V x A (x ) D  V bA (b ). —  N o te  b y  E x a m p le  9 § 18 th a t

(i) and (ii) are necessary and sufficient in order th a t V bA (b) b e congruent 

to  V x A (x ) (or 3bA (b) to  3xA (x)).

Lemma 15b. Congruent formulas are equivalent; i.e. if A  is congruent to 
B , then b A ^ B .

Proof. L e t A  con tain in order e x a c tly  r quantifiers w ith  resp ective  

variables nv  . . . ,  u r (not necessarily distinct). L e t  w x, . . . ,  w r b e distin ct  

variables occurring neither in A  nor in B . L e t  C  com e from  A  b y  ch an gin g
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each u* (/ =  1 , i . . ,  r) to  w* in e x a c tly  the occurrences w hich the /-th  

quantifier binds. B y  r  successive replacem ents, using *73  or *74  and  

C orollary 1 Theorem  14, f- A ~  C. Sim ilarly, b B  ~  C. H ence (*20, *21), 
b A  ~  B .

E x a m p l e  5 (co n c lu d ed ), b ^ a {H {a ,  c) V la B( a)  D  3bC (a, b)) ~  
V d {^ l{d ,c )  V Z < a {a )-D * b C {d 9b)) [*73] —  V d (£ l{d t c) V 3 ^ ) D 3 b C {d ,b ))  
[*74] ~  V d {Z (d , c) V 3e3(e)  D  3fC(</, /')) [*74]. Sim ilarly  

b V b (£ l(b , c) V 3cB (c)D  3*C (£, *)) —  V ^ ( ^ ,  c) V 3 e % )  D 3/t(</, f) ) .

Remark 1. (a) Sim ilarly  to Theorem  14, by using *6— *9b, *12, *69,
*70  (instead of *26— *30, * 7 1 ,  *72) as the lem m as: L et the p a r t  A  stan d  in  C A 

w ith in  the scopes of on ly certa in  of the sym bols  D , & , V, - i ,  V , 3. 

A d B  bXl*'*Xn C a d C b  or B  D  A  bXl'"x* C A D  C B m  system  h avin g  
as postu la tes on ly the D -postu la tes an d  the postu lates for the sym bols in  
question , p rov ided  that in  case the sym bols include  V  but not & the ^ -postu la tes  
inclu de A x io m  Schem a  9a of L em m a  11 § 24. (Cf. H erbrand 1930  § 3.2, 

M acL an e 1934  pp. 28 ff., C urry 1939  pp. 290— 291.)

(b) b V x A (x ) D  V bA (b) an d  b V bA (b) D  V x A (x ) {s im ila r ly  w ith  3) 

u sin g  on ly P ostu la tes 9 an d  10 (11 an d  12). (c) T h erefo re: I f  A  is  congruent 
to  B , then  b A d B  an d  b B  D  A  {and hence A  an d  B  are interdeducible) 
u sin g  only the D -postu la tes an d  the postu lates for {at m ost) the logical 
sym bols which  A  contains, p rov ided  as in  (a).

Permanent abbreviations. O ur use of perm anent abbreviations, 

such as “ a < b ”  (discussed at the end of § 17) will differ from  th a t of 

tem p orary abbreviations, such as “ A (x )” , “ A ( x 1, . . . ,  x n)” , etc. (§ 18), 

in tw o respects. F irst, th e y  shall not contain free variables not show n in  

th e  abbreviatio n  (‘anonym ous free variab les’). Second, instead of avoid in g  

th e su b stitu tion  of term s not free at the su bstitu tion  positions, w e perm it 

th e bound variables suppressed b y  the abbreviation  (‘anonym ous bound  

variab les’) to  be chosen at w ill to  m ake w hatever term s w e wish to  sub

stitu te  free at the su b stitu tion  positions. A ll legitim ate un abbreviation s  

of a g iven  abbreviation  are congruent, and hence b y  L em m a 15b eq u iva

lent. T h u s it is im m aterial in considering questions of d ed u cib ility  and  

p ro v a b ility  w hich legitim ate u n abbreviation  is used.

F or the question w hether a postulate applies, the m anner of un 

a b b reviatin g m a y  m ake a difference, e.g. s e t  D  (B D  s e t )  is an axiom  

b y  Schem a la  o n ly if b o th  occurrences of “ s e t ” are un abb reviated  alike. 

H ereafter in our statem en ts th a t a postulate applies w e shall be ta c it ly  

supposing th a t like appearing abbreviations are u n abb reviated  alike.
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*§ 34. Substitution. T h e use of a form al su bstitu tion  rule for 

predicate letters can be largely avoided b y  statin g results in the schem atic  

form, w ith  m etam ath em atical letters instead of particu lar predicate  

letters. W e then su b stitu te inform ally in ap p lyin g the results w ith  a  

change in the signification of the m etam ath em atical letters, b u t this  

su bstitu tio n  does not con stitu te application of a form al substitution rule. 

W e  h a ve been doing this con tin u ally, from  the v e ry  beginn ing of our stu d y  

of the form al system . One new  exam ple is given  to show w h a t is m eant.

E xample 1°. A s  *83 (§ 35) we will establish that, if x  is a n y  variable  

and A (x) a n y form ula, b 3xA (x) ~  - i V x - t A ( x ) .  N o w  let x  be a n y  

variab le and A(x) a n y form ula. B y  takin g the negation - iA ( x )  of this  

A(x) as the A (x) of *83, w e h ave b 3x-iA(x) ~ -iVx-i-iA(x). T h is  

and E x a m p le  2 § 33 explain the second and third steps of the follow ing  

c h a in : b V x A (x ) ~  —i- iVxA(x) [*49] ~  n n V x - i - i A ( x )  [*49]

------- i3 x - iA ( x )  [*83].

T h e on ly essential use w e shall m ake of the form al su bstitu tion  rule 

for the predicate calculus (Theorem  15) is in establishing d u a lity  (Corol

la ry  Theorem  18 § 35), where we su b stitu te negations of the predicate  

letters for the letters. T h a t su bstitu tion  can b e ju stified  b y  reasoning  

a lrea d y used in proving the su b stitu tion  rule for the propositional calculus  

(Theorem  3 § 25), w ith  no new  com plications. A  further application  of 

form al substitution  occurs in passing from a num ber of results, first proved  

b y  d u a lity  in term s of particular predicate letters, to  the general results of 

th e  sam e form  w ith  m etam ath em atical letters. T h a t application  could  

b e avoided b y  using the su bstitu tion  rule on ly heuristically, to  discover  

proofs th a t w e can afterw ards va lid ate  w ith ou t use of it. T h e  reader m a y  

therefore, if he wishes, om it the detailed treatm en t of su b stitu tion  given  

in the rem ainder of this section.

A  generalized notion of 'occurrence' is appropriate to  th e nam e form  

interpretation. In  inform al m athem atics, "sin  x "  as an expression for a  

function occurs in "3  sin x  +  cos x " , in " /0* sin x  d x ” and in "cos x  sin 2 x ” , 
alth ou gh  as an expression for a num ber it occurs on ly in the first.

T o  sim p lify  the n otation in this section, w e shall an alyze each sub

stitu tio n  ta k in g the atta ch ed  variables for each of the d istin ct predicate  

letters to  be the first n  variables from  an infinite list a x, a2> a3, . . .  of 

variables (cf. § 31). H ow ever this list m a y  h ave to be chosen d ifferen tly  

for different substitutions (see below).

B y  an occurrence of a predicate letter P (a x, . . . ,  a n) w ith  a tta ch ed  

variables in a predicate letter form ula E  w e shall m ean a (consecutive)
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part of E  of the form P ( t3, . . . ,  t w) where t v . . . ,  t n are terms. A  predicate  

letter form ula E  is said to be a predicate letter form ula in the distin ct  

predicate letters

( 1) P ^ a ,, . . a^),  . . P m(a1( . . a „ J  K ,  . . . ,  nm >  0 ; m  >  1). 

if no predicate letters other than  (1) occur in E .

E xample 2. T h e predicate letter 31(a, b) occurs tw ice in yib (3 1 (b , a) 
& B  D (a, b)), first as the part c31(b, a) and second as the part <31 (a, b ). 

T h e form ula yib (3 1 (b , a) & B D  3 t(a , b)) is a predicate letter form ula in  

31(a, b), B, C(a, b, c).
T h e substitution of form ulas (in either sense § 31)

(2) A1(a1, . . an Aw(a1, . • •> anw),
considered as nam e forms in  the respective variables shown, for the pre

dicate letters (1) in E  (w ith result E *) shall consist in replacing, sim ul

tan eou sly for each j  (j =  1 , . . . ,  m ), each occurrence P i(t1, . . . ,  t».) of  

P ^ a j, . . . ,  a^) in E  b y  A , ^ ,  . . . ,  t n/).

T h e nam e form variables (i.e. the a's) do not appear as such in E  and  

E * .  In  asking w hether a given  form ula E *  does com e from  another given  

form ula E  b y  substitution for certain predicate letters, it suffices to  ask  

the question tak in g as the nam e form variables ones not occurring in  

E  and E * ,  though we are not restricting ourselves to such a choice of th e  

nam e form  variables when others will do also.

T h e substitution  is said to be free, if for each j  (j =  1 , . . . , m ) ,  
A i(a1, . . . ,  aUj)  is Tree’ for P^(a1, . . . ,  an;) in E , in the follow ing sense: 

A (a x, . . . ,  a n) is free for P (a x, . . . ,  a n) in E , if, for each occurrence  

P ( tx, . . . ,  t n) of P (a1, . . . ,  a n) in E,  ( Al )  t 1# . . . ,  t n are free for a x, . . . ,  a n, 

respectively, in A (a v  . . . ,  a n), and (A 2) P (tx, . . t w) does not stand in  

E  w ithin the scope of a quantifier V y  or 3 y  where y  is a free variable of 

A (a x, . . . ,  a n) other than  one of the nam e form variables a 1# . . a n.

E xample 3. L e t m =  1 ; n =  nx =  2 ; a 2, a2 be c, d \ P (a x, a2) b e  

31 (c, d ) ; A (a x, a 2) be yi b <B{a, b, c, d ) V 31 ( d , c ) ; and E  be 3c31(c, a ). 

T h en  E *  is 3c{V bB (a, b, c, a) V 31(a, c)). T h e substitution is free.

It  is con ven ient to refer to  the free occurrences of a 3, . . a n in  

A (a x, . . . ,  a n) as explicit occurrences; and to other occurrences of variables  

in A (a 1, . . . ,  a n) as anonymous occurrences. Variables occurring ex

p lic itly  [anonym ously] free (bound) in A (a x, . . . ,  a n) are explicit [ anony

mous]  free ( bound)  variables of A (a 3, . . . , a n). T h e term inology exten ds  

gen erally to  situations in w hich form ulas or parts of form ulas are being  

represented b y  m etam ath em atical letters.
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E x a m p l e  4. In considering <C?(a, b) & ^aS(a} h, c) as a name form 

in a, b} and in using “A(a, b),y (or “A(a1} a2)” where , <<a2M stand for 
a, b) to stand for it, the first occurrence of a and both occurrences of b 
are explicit, the second and third occurrences of a and the occurrence of 
c are anonymous. So a and b are explicit free variables, c is an anonymous 
free variable, and a is an anonymous bound variable. In using ("iak{af b)ff 
to stand for "ia(c^(af b) & 3aB(a, b, c)), the first two occurrences of a are 
explicit, the other two anonymous; so a is both an explicit bound variable 
and an anonymous bound variable. The Va is an explicit quantifier, and 
the 3a an anonymous quantifier.

In our further examples of substitution, the variables ap a2, a3, . . .  
will be ciy by c, . . . .  (This choice can always be made, except when as 
in Example 3 it would interfere with the anonymous variables for the 
substitution.)

Failure of (Al) or (A2) is always due to the presence of anonymous 
variables.

E x a m p l e  5. The formula 3ce ?̂(c, a, b) is not free for c1(a) in c2f(c) D B, 
because (Al) is violated (after substitution, with result 3cc2f(c, c, b) D B, 
the c of c) would become bound by the anonymous quantifier 3c of 
3ce2f(c, a, b))y nor in Wb(^3(a) 3  S(i>)), because (A2) is violated (after 
substitution, with result V/>(3cc2f(c, a, b) D B(b)), the anonymous free b of 
3ce2f(c, a, b) would become bound by the Vb of yib (^(a )  D B(^)))-

The conditions (Al) and (A2) can be regarded as conditions that each 
part A(tx, . . . ,  t n) ofE*resulting by the substitution of A(ax, . . . ,  aw) for 
P(a1} .. ., an) should constitute an occurrence of A(ax, . . . ,  an) as a name 
form in at, . . . ,  an.

E x a m p l e  6 . The a’s in this example shall be a, bt c. But we supply 
indices to assist in referring to different occurrences of the variables.
Let E be

(i) V ^ ( c ^ 2, az) & B D <Jt(aAybn)).
Let A(a,b)y B, C(a,b}c) (to be substituted for <H(a, b)t B, C(a,b,c),
respectively) be

(ii) 3c6C(c7, a, b, b), n B ^ ) ,  ^ (a , b)
(the indexed occurrences of variables being anonymous). Then E* (the 
result of the substitution performed on E) is

(iii) Viq(3c6C(c7, b2) a3> a3) & -iB (a8) D 3ctiC(c7, a4, b5, b5)).
The substitution is free.
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T h e  m eaning of the n ext lem m a w ill be m ade clear b y  th e exam ple  

follow ing it.

Lemma 16a. I f  the su bstitu tion  of (2) for  (1) in  E  is  free , then in  the 
resu lt E *  each free occurrence of a  variable orig inates as a free occurrence of 
the variab le  either i n  E  or an on ym ou sly  in  som e  A ^ a ^  . . an.), an d  each 
bound occurrence of a variable an d  the qu an tifier b in d in g  i t  orig inate together 
i n  the sam e re la tion sh ip  either in  E  or an on ym ou sly  in  som e  A ^ a ^  . . . ,  an;.).

E x a m p l e  6  (concluded). T h e  tw o free a z s in (iii) originate as the  

free a z in (i). T h e  free a 8 originates as the anonym ous free a 8 in (ii). T h e  

tw o  b b’$ bound b y  originate together as the hb bound b y  yi b 1 in (i). 

T h e  c 7 bound b y  3c 6 (either such pair) originate as the anonym ous c1 
bound b y  3ce in (ii).

Outline of proof. Consider a g iven  occurrence of a variable in E*. 
T h is is either (Case 1) not in a n y  of the parts A ^ ,  . . t nj)  (e.g. b j ,  or 

(Case 2) in one of the parts A ^ t^  . . t»;) b u t not in a n y  t t- (e.g. c 6, c 7, a 8), 
or (Case 3) in one of th e occurrences of t t w hich is introduced into  

A ^ tj,  . . . ,  t nj)  b y  su bstitu tion  for a free occurrence of a t in A ^ a ^  . . . ,  an.) 

(e.g. b 2) a z, a 4, b b). T h e lem m a follows, using in Case 2 the condition (A 2) 

for freedom , and in Case 3 the condition (A l).

Lemma- 16b. L et
(2) ^ i(ai> • • •» • • • > X.m(a1, . . . ,  anm)
be form ulas respectively  congruent to the form ulas  (2), an d  let P  be a form ula  
congruent to F . I f  the su bstitu tion  of (2) for  (1) in  F  w ith  result F * ,  an d  the 
su bstitu tion  of (2 ) for  (1) i n  P  w ith  result p t, are both free , then  F 1- is  con
gruent to F * .

B y  L em m a 16a, n otin g th a t, if the ^>-th sym b ol of F *  originates as 

the y -th  of F  (of A i (a1> . . . ,  an/)), the ^ -th  sym bol of f t  originates as the  

? -th  of P  (of A ^ a ^  . . a«,•)).

Lemma 17. G iven a proof of F,  an d a lis t  of variables z lt . . . ,  z ff, we 
can f in d  a form ula  P  congruent to F  and con ta in in g  none of the variables  
Zj, . . z q bound, an d  a proof of P  con ta in ing  no a p p lica tio n s  of R u le  9 
or 12 w ith  respect to a n y  of z lf . . z a.

Proof. L e t the d istin ct free variables of F  be b v  . . . ,  b s, and call 

F  also “ F^bj, . . . ,  b ,)” . L e t u v  . . . ,  u r be all the distinct variables  

occurring free or bound in a n y  form ula of the given  proof of F  (including  

b v  . . . ,  b*). L e t u v  . . . ,  u r be new variables, distinct from each other  

and from  n v  . . . ,  u r, z v  . . . ,  z q. F or the definition of w hat con stitutes
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a proof in th e predicate calculus (P ostu late G roup A  § 19), all variables  

are on a par in itially. H ence if, throughout the g iven  proof of F , we change  

u 1# . . u r sim ultan eously in all occurrences free and bound to  n lf . . . ,  u r, 

respectively, th e resulting figure m ust also be a proof. S a y  it is a proof of 

P(bx, . . . ,  b s); so (a) b b 8). N o w  b y  w-fold su b stitu tion  (*66),

(b) F (b x, . . . ,  b s) b^i ••• *9 P (b lf . . . ,  b 8). R eferring to the proof of * 66 , 

since b v  . . . ,  b g are distinct from  b x, . . . ,  b„ the deduction (b) requires 

the use of R u le 9 o n ly with respect to  b1# . . . ,  bg (and R u le 12 not a t all). 

Let P be P (b v  . . . ,  b 8). Com bining (a) and (b), w e obtain  a proof of P in  

w hich R u les 9 and 12 are used o n ly  w ith  respect to  the new  variables  

u lf . . . ,  u r (including b lf . . . ,  b g), therefore not w ith  respect to  a n y  of 

Zj, ..., zff.
Theorem 15. Substitution for predicate letters. L e tD l } . .  . ,D ,,  E  

be predicate letter form ulas in  the d istin c t predicate letters  (1). L et  D * , . . .  ,D *, 

E *  resu lt by the su bstitu tion  of (2) (as nam e form s in  the variables shown) for
(1) throughout D v  . , . , D f, E,  respectively. Then, p rovided  that
(A) the su bstitu tion  is  free, and
(B) for j  =  1, . . . ,  m, the anonym ous free variables of A *(a1# . . . ,  an/) 

are held constant in  the given  deduction  for each a ssu m ption  form ula  which  
contains the corresponding pred ica te letter  P i (a1, . . . ,  aUj)  :

I f  D 1( . . . ,  D ,  f- E ,  then  D f ,  . . . ,  D *  |- E * .

(Proviso (B) is of course satisfied, if all the anonym ous free variables  

of (2) are held constant in the given  deduction. In  the case 1 =  0 , P roviso

(B) disappears, and w e h ave s im p ly : I f  b E , then  b E * ,  p rovided  (A) 

the su bstitu tion  is  free.)
P roof. W e ta k e th e  given  deduction D x, . . . ,  D ? b E  as (I) for 

L em m a 8a (§ 24), and pass to a proof (II). T h e long form ula in (II) w e  

now w rite as " F ” . T h e su bstitu tion  of (2) for (1) in F  is free, as we see b y  

using Proviso (A), and also Proviso (B) to insure th a t the condition (A2) 

is m et respecting the y ’s of (II). I f  w e can show now  th a t b F * ,  then b y  

using L em m a 8a in the converse direction, it w ill follow  th a t D * , . . . , D |  

b E * ,  as is to be proved.

A ccord in gly, consider a given  proof of F . In  form ulas of this proof 

there m a y  occur some other predicate letters th an  (1). L e t (V )  be the list

(1) increased to  include these; and let (2 ') be (2) increased correspondingly, 

using as the additional nam e form s form ulas w hich contain no anonym ous  

variables.

Suppose we were to su b stitu te (2 ') for (1 ') throughout the given  proof 

of F . T h en  w e could reason, e x a c tly  as in the proof of the su b stitu tion
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rule for proposition letters (Theorem  3 § 25), th a t the resulting figure is a 

proof of F * ,  except for tw o contingencies.

First, the C for an application  of R u le 9 or 12 m a y  be transform ed b y  

th e  su bstitu tion  into a form ula C *  w hich contains th e x  of the application  

free, so th a t the rule no longer applies. T h is can happen on ly if the x  of 

th e application  is one of the anonym ous free variables z v  . . . ,  zq of (2). 

U sin g L em m a 17, w e can replace the given  proof of F  b y  a proof of a 

form ula F congruent to F  and con taining none of z v  . . . ,  z q bound, so 

th a t in  the new proof there are no applications of R ules 9 and 12 w ith  

respect to z v  . . . ,  z 5.

Second, the t for an application of A x io m  Schem a 10 or 11 m a y  after  

th e substitution  no longer be free for the x  in the A (x), due to the in

troduction of anonym ous quantifiers in the form ulas (2) w ith  variables  

occurring in the t. L e t us choose form ulas (2 ') congruent to (2 ') and  

con taining bound no variables occurring either free or bound in a n y  for

m ula of the proof of F.

N ow  if w e su bstitu te (2') for (V) in the proof of F, neither con tin gen cy  

can arise; and so, denoting the substitution of (2 ') b y  “ t ” , the resulting  

sequence of form ulas w ill be a proof of F L  T h u s b Ft.

B y  the choice of the bound variables in (2')> condition ( Al )  for freedom  

is satisfied in the su bstitu tion  of (2) for (1) in F. Because F  does not 

con tain bound a n y of the anonym ous free variables z v  . . . , z q of (2), 

hence of (2), condition (A2) is satisfied also. T h u s the substitution  of (2 ) 

for (1) in P  is free. So is th a t of (2) for (1) in F  (as rem arked above). H ence  

b y  L em m a 16b, F t  is congruent to  F * ;  and b y  L em m a 15b, b F t  ~  F * .  

T h is w ith  b P* (and *18a) gives b F * ,  as rem ained to be shown.

E x a m p l e  7°. W e shall prove (E xam ple 2 § 35) th a t

(a) b <3 V VflS(tf) ~  V#(<3f V B(a)). Thence b y  L em m a 15b,

(b) b V V xS (x) ~  V x (J 7  V S(x)), where x  is a n y  variable. T h ence  

b y  Theorem  15, (c) b A  V V x B ( x )  ^ V x ( A  V B (x )) , where B (x) is a n y  

form ula, and A  a n y form ula not containing x  free (as otherw ise (A 2) for 

P roviso (A) w ould be violated). T h is is *92 w ith  the sam e stipulation s as 

appear in Theorem  17. From  (b) we easily infer (d) cC2 V V xS(x) b ^  V S(x) 

and (e) <3 V S(x) bx ^ I V V x S ( x ) .  Su bstitu tion  fo r of a form ula A  

con taining x  free is perm issible in (d), b u t Proviso (B) prevents it in (e).

T h e situations w hich the provisos of the substitution  rule, or the  

stipulation s on our m etam ath em atical letters, prevent alw ays in vo lve a  

variab le occurring b o th  an on ym ou sly and exp licitly. A  b lan ket rule th a t  

could be used, in place of the more detailed conditions sta ted  from  case
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to  case, is sim p ly th a t the anonym ous variables be d istin ct from  the  

exp licit variables. T h is is of course a little  m ore restrictive th an  is nec

essary, e.g. anonym ous bound x 's  in the A  of *92 are clearly innocuous.

Remark 1 . I f  P, E  are predicate letter form u las in  the pred ica te letters 
(1), an d  T  (- E , then there is  a deduction  of E  from  T in  (each form ula  of) 
which no pred ica te letters other than  (1) occur. F o r in the given  deduction  

we can su b stitu te  (2 ') for (T ), where (2) is the sam e as ( 1), and the ad 

ditional nam e form s in (2 ') con tain on ly (1), e.g. each of them  can be  

V x x . . .  V x „ iP 1(x1, . . . , x Wj).

Converse of substitution. A  form ula A ( a x, . . . ,  a w) w ill be called a  

p rim e  nam e form  (in the distinct variables a1# . . . ,  a n), provided (i) it has  

none of the form s A  D B , A  &  B , A  V B , n A ,  V x A (x ) or 3 x A (x ), w here  

A  and B  are form ulas, x  is a variable, and A (x) is a form ula, an d (ii) it  

contains e x a c tly  the variables av  . . . ,  a n. T w o  prim e nam e form s  

A ^ a j, . . . ,  a^) and A ^ a ^  . . . ,  a nJ w ill be said to  be d is tin c t  (as prim e  

nam e forms), if A ^ ,  . . . ,  t„.) and A ^ u ^  . . . ,  u n̂ ) are not the sam e  

form ula for a n y  term s t lt . . . ,  t n<, u v  . . . ,  u nj. F o r exam ple, a + a = b  and  

0 = a - b  are distinct, bu t a + a = b  and a = b - c  are not distinct.

Theorem" 16. Converse of substitution for predicate letters. 
U nder the sam e s tip u la tio n s  as in  Theorem  15, w ithou t P ro v iso s  (A) an d  (B), 

but provided  in stead  that (2) be d is tin c t p r im e  nam e fo rm s : I f  D * , . . . ,  D *  

b E * ,  then D v  . . . ,  D* h E .

This can be proved using the sam e ideas as Theorem  4 (§ 25), and lik e

wise ad m its a second version.

Name form replacement. U sin g the notion of nam e form  oc

currence indicated ab ove (following E x a m p le  5), the replacem ent th eo ry  

(Theorem  14 w ith  * 66 , cf. § 33 follow ing Corollary 2) can be form ulated

thus: A (x lt . . . ,  x n) ~  B ( Xl, . . . ,  x n) bXl*"XM C a ^ .....tn) ~  C b ^ ,

provided the parts A ( t lf . . . ,  t w) and B ( t1, . . . ,  t n) con stitu te occurrences 

of A ( x x, . . . , x n) and B (x v  . . . ,  x n), respectively, as nam e form s in  

x x, . . . ,  x n.

Remark 2. R esu lts sim ilar to  Theorem s 15 and 16 and R em a rk  1 

hold for in d ividu al variables. W e shall state  on ly the follow ing, (a) I f  
z v  . . . ,  z q are d is tin c t variab les not occurring bound in  T>(zv  . . . ,  z q) an d  
E (zj, . . . ,  z q), an d  D (z lt . . . ,  z q) b E (z lf . . . ,  z q) w ith  z v  . . . ,  z q held  
constant, then there is  a deduction  of E ( z x, . . . , z a) from  D (zx, . . . , z a) 

in  which z v  . . . ,  z q do not occur bound. P roof, stated  for q =  1 and w ith  

ju st one variable y  varied. B y  L em m a 8a, V -introd. (on z), and change
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to a new variable z, Vz[VyD(z) D E(z)] is provable. This formula does not 
contain z at all. For the definition of what constitutes a proof in the predicate 
calculus of a given formula, all variables not in the formula are on a par. 
Therefore there is a proof of Vz[VyD(z) D E(z)] not containing z. From this 
formula and D(z) we can deduce E(z) by V-elim. (on z), V-introd. (on y) 
and D-elim. (b) Let zlt .. ., zq be distinct variables not occurring bound in 
D(zx, . . . ,  z Q) and E(zx, . . ., z Q) ; and let t x, .. ., t Q be distinct prime terms 
(i.e. individual symbols or variables) none of which occurs in D(z1, . . . ,  z Q) 
or E(zx, . . ., z Q) unless it is one of zv . . ., zQ. Then D(zx, . . . ,  zQ) 
b E(zx, . . ., zQ) with zv . . ., zq held constant, if and only if D(tx, . . t Q) 
b E (tx, . . . ,  t Q) with (ithe variables among) t lf . . ., t q held constant. For by 
(a), zx, ..  ., z5, t lf . . t q can be eliminated as bound variables from the 
given deduction, after which every inference will remain valid on sub
stituting throughout t v . . ., t Q for zx, . . ., zQ, or vice versa.

§ 35. E q u iv a le n c e s ,  d u a lity ,  p r e n e x  fo r m . T h e o r e m  17. If x and y
are distinct variables, A, B, A(x), B(x) and A(x, y) are formulas, A and B 
do not contain x free, and for *79 and *80 if x is free for y in A(x, y), then:
*75. b VxA ~  A. *76. h 3xA ~  A.
*77. b VxVyA(x,y) ~  VyVxA(x,y). *78. b 3x3yA(x, y) ~  3y3xA(x, y)
*79. b VxVyA(x, y) D VxA(x, x). *80. b 3xA(x, x) 3  3x3yA(x, y).

*81. b VxA(x) 3  3xA(x).
*82. f- 3xVyA(x, y) 3  Vy3xA(x, y).

(Alterations of quantifiers.)
*83°. b 3xA(x) ~  - i V x - i A ( x ) . *84°. b VxA(x) ~  -i3x-iA(x).

(Each of 3 and V in terms of the other and - i .)
*85°. b “iVxA(x) ~  3x-iA(x). *86. b ~i3xA(x) ~  Vx-iA(x).
*87. b VxA(x) & VxB(x) ~  

Vx(A(x) & B(x)).
*88. b 3xA(x) V 3xB(x) ~  

3x(A(x) V B(x)).
*89. b A & VxB(x) ^  

Vx(A & B(x)).
*90. b A V 3xB(x) ~  

3x(A V B(x)).
*91. b A & 3xB(x) ~  

3x(A & B(x)).
*92°. b A V VxB(x) ~  

Vx(A V B(x)).
*93. b 3x(A(x) & B(x)) D 

3xA(x) & 3xB(x).
*94. b VxA(x) VVxB(x) 3  

Vx(A(x) V B(x)).
(Transfer of - i, & and V across quantifiers).
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*83a. b 3xA (x) D  - i V x - i A ( x ) .  *84a. b V x A (x ) D  -n i3 x-iA (x).

*85a. b 3x n A ( x )  D -iV x A ( x ) . *92a. b A V V x B ( x )  D V x ( A V B ( x ) ) .

(A dditional results of interest for the intuitionistic system .)

*95. b V x (A  D  B(x)) ~  A  D V x B (x ).

*96. b V x(A (x) D B) ~  3 xA (x) D B.

*97°. b 3 x (A  D B(x)) ~  A  D 3xB (x).

*98°. b 3x(A (x) D B) ~  V x A (x ) D B.

*99°. b 3x(A(x) D B(x)) ^ V x A ( x )  D 3xB (x).

*97a. b 3x(A D B(x)) D  (A D  3xB (x)).

*98a. b 3x(A (x) D B) D (V xA (x) D B).

*99a. b 3x(A (x) D B(x)) D (V xA (x) D 3xB (x)).

(Transfer of quantifiers across D , w ith com parison of classical and

intuitionistic results.)

Proofs, for the classical system , of *7 5 — *94, exceptin g *76, *78, 

*80, * 88, *90, *92, *94. W ork is saved b y  postponing these seven u n til we  

h ave d u a lity  (or for *80 and *94, the dual-converse relationship). Then, 

classically, *95— *99 will follow b y  using *59 (§27) w ith  * 88, *90, *92 and  

*85, * 86.

*7 5  I f  we redesignate as “ A (x )” , then since A  does not contain  

x  free, A (t) is also A(x) (§ 18). T h e result follows, using V-elim . and  

D -in trod. (or A xio m  Schem a 10), and V -introd. and D -in trod. [x is 

not varied in the V-introd., since A (x) does not contain it free], and *16 .  

*79. 1. V x V y A (x , y) b A (x , x) bx V x A (x , x) —  double V-elim .

(*65) [x, x  is a pair of term s free for x, y  in A (x, y)], V-introd.

2. b V x V y A (x , y) D  V x A (x , x) —  D -in trod., 1 [x is not varied  

in 1 , since V x V y A (x , y) does not contain x  free].

*82. 1. A (x, y) b 3 x A (x , y) by V y 3 x A (x , y ) —  3-introd., V-introd.

2. V y A (x , y) b V y 3 x A (x , y) —  V-elim ., 1.

3. 3 x V y A (x , y) b V y 3 x A (x , y) —  3-elim ., 2 [V y3 x A (x , y) does not 

contain x  free, and no variable is varied in 2 , since y  (cf. 1) 

does not occur free in V v A (x , y)].

4. b 3 x V y A (x , y ) D V y 3 x A (x , y) —  D-introd., 3 [no variable  

is varied in 3 (cf. L em m a 7b § 24)].

N o te  how  the atte m p t to give a corresponding dem onstration of the con

verse of *82 (i.e. of *82 w ith  the direction of D reversed) is defeated b y  

the restriction on the use of subsidiary deduction in the predicate ca lcu lu s:

1. A (x , y) by V y A (x , y) b 3 x V y A (x , y) —  V-introd., 3-introd.
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2? 3xA(x, y) [- 3xVyA(x, y) — 3-elim., 1. But this is illegitimate, 
since the rule of 3-elimination (in contrast to the V-elimination rule used 
at Step 2 for *82) is a subsidiary deduction rule, and is inapplicable here 
because in the subsidiary deduction 1 the variable y is varied for the 
assumption formula A(x, y) to be discharged (except if A(x, y) does not 
contain y free).

There is no way around this difficulty, and the converse of *82 should 
not be provable for arbitrary A(x, y). In terms of the interpretation, the 
formula 3xVyA(x, y) says that there is one x such that for every y, 
A(x, y ); and Vy3xA(x, y) says merely that for every y there is some x, 
not necessarily the same x for different y's, such that A(x, y). The dis
tinction is familiar to mathematicians from the example of uniform con
vergence vs. ordinary convergence of a sequence of functions a n(x) to a 
limit function a(x) on an interval or other range X  of x. Using the present 
logical symbolism, and variables p, n and N  ranging over natural numbers, 
and x  over X ,  the properties of uniform convergence and ordinary con
vergence are expressed respectively by

(i) Vp3N\fxVn(n > N  D | a n(x) — a(x) | <  1/2P),
(ii) V pV xlN \fn(n  >  iV D | a n(x) — a(x) | <  \ / 2 p).

Then *82 says that uniform convergence implies ordinary convergence; 
but the converse is not generally true. (Similarly for uniform and ordinary 
continuity.)

A metamathematical demonstration that Vbla<^l(a, b) D l a yib ^ X (a i b) 
is unprovable in the predicate calculus will be given in Example 2 § 36.
*83. 1. A(x), Vx-i A(x) h “iA(x)— V-elim.

2. A(x), Vx-iA(x) (- A(x).
3. A(x) |- -i Vx-iA(x) — -i-introd., 1,2 [no variable of Vx-iA(x) 

is varied in 1 or 2].
4. 3xA(x) b n  VxnA(x) — 3-elim., 3 [nVxnA(x) does not con

tain x free, and no variable is varied in 3].
5. b 3xA(x) D nV x -i A(x) — D-introd., 4 [no variable is varied 

in 4].
6. i3xA(x), A(x) b 3xA(x) — 3-introd.
7. -i3xA(x), A(x) b “i3xA(x).
8. -i3xA(x) b "~iA(x) bx Vx-iA(x) — “i-in trod., 6, 7 [no var

iables are varied in 6, 7], V-introd.
9. b -i3xA(x) D Vx-iA(x) — D-introd., 8 [x does not occur free 

in the assumption formula -i3xA(x) of 8 wThich is being dis
charged] .
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10. b - i  V x m A ( x )  D  3xA (x) —  contraposition (*14), 9.

11. b 3xA (x) ~  - i V x - i A ( x )  —  & -introd. (*16), 5, 10.

*84. See E x a m p le  1 § 34.

*87. 1 . A (x), B (x) b A(x) &  B(x) bx Vx(A(x) & B(x)) —  & -in trod., 

V-introd.

2. V x A (x ), V x B (x ) b V x(A (x) &  B(x)) —  V-elim . tw ice, 1.

3. V x A (x ) &  V x B (x ) b Vx(A(x) &  B(x)) —  &-elim ., 2.

4. b V x A (x ) &  V x B (x ) D V x(A (x) &  B(x)) —  D-introd., 3 [no v a r

iable is varied in 3, since x (cf. 1) does not occur free in 
V xA (x) &  V x B (x )].

5. A (x) &  B(x) b A(x) bx V x A (x ) —  & -elim ., V -introd.

6 . A (x) &  B (x) b B(x) bx V x B (x ) —  &-elim ., V-introd.

7. A (x) &  B (x) bx V x A (x ) &  V xB (x) —  & -introd., 5, 6 .

8 . V x(A (x) &  B(x)) b V x A (x ) &  V x B (x ) —  V -elim ., 7.

9. b V x(A (x) & B(x)) D V x A (x ) & V x B (x ) — D-introd., 8 [no var
iable is varied in 8, since x  (cf. 7) does not occur free in 
V x(A (x) &  B(x))].

10. b V x A (x ) &  V x B (x ) ~  Vx(A(x> &  B(x)) —  & -in trod., 4, 9.

*89, * 9 f, *93. If w e read “ A ”  for " A ( x ) ”  and “ V x A ( x ) ”  in the pre

ceding, om ittin g one V-elim ination at S tep  2 and the V -introduction a t  

Step  5, it reads as a dem onstration of *89. T h en  su b stitu tin g  3 for V  

throughout, we get a dem onstration of *9 1. T h e reader m a y  w rite this out, 

and v e rify  th a t the conditions for the 3-elim inations are satisfied. B u t  

su b stitu tio n  of 3 for V  in the proof of *87 does not work. W h y  ? W e thus  

obtain on ly *93 b u t not the converse.

A s  a further exercise, the reader m a y  a tte m p t to  g iv e  a corresponding  

proof of *92, and see how  this is defeated b y  the restriction on subsidiary  

deductions. T h e  result *92, w hich w e shall infer from  *91 after w e h a ve  

d u ality, is interesting as an exam ple of a form ula w hich does not con tain  

- i  b u t w hich we do not succeed in provin g w ith ou t P ostu late 8 .

In  view  of * 49b § 2 7, there can be at m ost 18 ( =  3*2*3) in tu ition istically  

n on -equivalent form ulas form ed from A (x) b y  q u a n tifyin g x and possibly  

ap p lyin g  negation. (W e use either 0,1  or 2 -V s  first, then either V x  or 3x, 

then again either 0, 1 or 2 -V s.)

Corollary. E ach of the four tables  I — I V  com prises form ulas equ iv
alent to one another in  the classica l pred ica te calcu lus. F or each table , in  
the in tu itio n is tic  s y s te m : E ach two form ulas not separated  by a lin e  are equiv
alent. E ach  form ula im p lie s  a n y  form ula below it, i.e . the im p lica tio n  from
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the one to the other is  provable . The double negation of the im p lica tio n  
from  each form ula to a n y  form u la  not separated  from  it  by a double line is  
provable {and hence, using *49a and *25, of the equivalence). (H eytin g 1946 .)

I II

a. V x A (x ) a. 3xA (x)

b. - i - i  V x A (x ) b. 3 x  - i - i  A  (x)

Cl- V x  n n A ( x ) Cl- - i - i3 x A ( x )

c2. - i - i  V x  n n A ( x ) c2. - i - i  3 x  —i—i A(x)

c3. - i  3 x  - i  A (x) c3. - i  V x  -iA ( x )

I I I I V

a. 3x - i  A(x) ai- V x  -iA ( x )

bi- - l —i 3x —i A(x) a 2. - i —i V x  —i A(x)

b 2. —i V x  —i—i A (x) a3. - i  3 x  - i - iA ( x )

c. - i  V x A (x ) a4. —i3xA (x)

P roofs for T a b le II, in the in tuitionistic system , b H a  3 l l b  [*49a, *70]. 

b l i b  3  I I c 3 [*8 5a]. b I I c 3 ^  l i e !  [*86]. b H c 3 ^  —1 V x  n n n A ( x )  

[*49b] —  I I c 2 [*86]. b - i - i ( I I c 2 3 l l b )  [*51b ]. Likew ise, b - v n ( H e p  

H a). H en ce b “ i—1 ( l ib  3  H a), b y  *24 w ith  b H b  3  I I c x and *49a.

T heorem 18°. L et  D  be a pred ica te letter form ula constructed from  the 
d is tin c t pred ica te  letters P 1(a1, . . an ), . . . ,  P rw(a1, . . aUm) an d their 
negations  - i P 1(a1, . . . ,  ani), . . . ,  - i P m(a1, . . . ,  a»m) u sin g  on ly the opera
tors Sc, V, V x  and  3 x  (for an y  variable  x). Then a form ula  D t  equivalent to 
the negation  n D o / D  is  obtained by the interchange throughout D  of Sc w ith  
V, of V  w ith  3, an d  of each letter w ith  its  negation.

I n  other words, i f  D  be such a predicate letter form ula, and  D t  be the 
result of the described interchange perform ed on  D :  b “i D  ^  Dt.

E xample 1°. b -1 l a  {\/b-y<3l{b)  & ( - i S V 3 c  C(a, c, b))) ~

{3b <3(ift) V ( B 8 c V c ~ iC { a ,c ,b ) ) ) .
Proof is b y  th e sam e m ethod as Theorem  8 (§ 27), using *85 and *86 

to handle the tw o new  cases w hich now  arise under the induction step. 

T h e theorem  as before adm its a second version.

Corollary0. A n  equivalence between two letter form ulas  E  and  F  of the 
typ e  described in  the theorem is  preserved under the interchange throughout 
E  and  F  of Sc w ith  V an d  of V  w ith  3.
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In other words, if E  and F  be two such predicate letter formulas, and E '  

and F ' be the results of the described interchange performed on E  and F , 

respectively: I f  h E ~ F ,  then b E ' ~  F '. (Principle of duality.) Also, if 
b E  D  F , then b F ' D  E '.  (D ual-converse relationship.)

T h e corollary follows from  the theorem  as before.

E x a m p l e  2°. B y  *9 1, b c3 &  3aB(a) ~  la (G I  & B(a)). T h ence b y  
d u ality, b V VaB(a) ~  V a(G l V B(a)). Thence *92, as in E x a m p le  7  § 34.

Sim ilarly, w e obtain  *76, *78, * 88, *90 as duals of *75 , *7 7 , *87, *89  

and *80, *94 as dual-converses of *79 , *93, respectively. (N ote th a t  

each of *81 and *82 is self-dual-converse.)

T h e o r e m  19°. Given any formida C, there can be found a formula D  

(called a prenex form of C) with the following two properties. The formula 
C is equivalent to D , i.e. b C ~  D . In  D , all the quantifiers (if any) stand 
at the front, i.e. all the other logical symbols 3 , &, V, -i (if any) stand 
within the scope of every quantifier (such a form ula w e say  is prenex).

P roof. To reduce a form ula C to prenex form, we can, step b y  step, 

m ove all the quantifiers outside the scopes of the logical sym bols 3 ,  & , 

V ,-i  b y  applications of *85, * 86 , *89— *92, *95— *98, noting the follow ing. 

In case the form ula for application of *89— *92, *95— *98 fails to  m eet the  

condition th a t the A  or the B  not con tain the x  free, a change of bound  

variables can be m ade b y  *7 3  or *74. In  case the A  for *89— *92 stands on 

the w rong side of the &  or V, *33  or *34 can be used. (This procedure for 

reduction to prenex form  does not require *87, *88 or *99; b u t a t a n y  

point where one of them  can be applied, the use of it w ill save steps and  

lead to a shorter prenex form.)

T o  prove th a t the procedure term inates, w e can use as induction num ber  

the num ber of instances of a quantifier stan din g inside the scope of an  

3 ,  & , V or - i ,  i.e. the to ta l num ber of pairs, one m em ber of w hich is an  

D , & , V or n ,  and the other m em ber is a quantifier stan din g inside 

the scope of th a t m em ber. If this num ber is not 0, there m ust be some 

instan ce where there is no logical sym bol of interm ediate scope. A  step  

is then carried out w hich rem oves this instance, leavin g the others un

changed, so th a t the induction num ber is reduced b y  one. (If *87, *88 or 

*99 is used, the induction num ber is redu ced  b y  tw o or more.)

E x a m p l e  3 ° . T h e num bered form ulas w hich follow  are successively  

equ ivalen t, each to  the n ext, b y  replacem ents based on the equivalences  

cited at the right. T h e  last form ula is a prenex form  of the first, or indeed  

of a n y  form ula in the list.
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1. [-1 3a &(a) V VaB(a)] &  [C  D Va© (a)].

2. \Va - i  ^ ( a )  V VaB{a)] &  V a [C  D T>(a)] —  * 86, *95.

3 . V a [V * - n ^ { a ) V  S (a)}  &  V a [C D  ©(<*)] —  *92.

4. V 4 V H ^ ) V % ) ] & V a [ C D © ( j ) ]  —  *73.

5. V a V * [-n 3 (A )  V B(tf)] &  V ^ [C  D ©(a)] —  *34, *92.

6 . Va{Vb[-i£l(b)VB(a)]&[C3T>(a)]} —  *87.

7. V ^ { h ^ ) V S W ] & [ C D ® ^ ] }  —  *33, *89.

§  36. V a lu a tio n , c o n s is te n c y . T h e predicate calculus is intended  

to  be a form alization of principles of predicate logic w hich hold good  

in d ep en den tly  of the num ber of elem ents in the ob ject dom ain, provided  

there is a t least one elem ent (§31).  H ence the provable form ulas should  

all be true, if w e sp ecify  the num ber to be k , where k  is a n y  integer ^  1 . 

W e  m a y  com bine this idea w ith  the one used in § 28, where w e abstracted  

from  true and false propositions to obtain tw o arithm etic objects t and f. 

T h is suggests a fin itary  va lu atio n  procedure, w hich w ill enable us to  

establish m eta m a th em atically  the con sistency of the predicate calculus.

In  th e valu atio n  procedure, a predicate letter form ula is considered  

as representing a function of the free in d ividu al variables and of the  

predicate letters (including proposition letters) w hich it contains, or pos

sib ly  of these and other free variables and predicate letters as well. T h en  

w hen w e define the notion w hich w ill correspond to th a t of identical 

tru th  for the propositional calculus, we shall require th a t the form ulas 

p ro vab le in the calculus should be true w h atever predicate each predicate  

le tte r  represents, and also, in view  of the gen erality  interpretation of the  

free in d ividu al variables (§ 32), w hatever object from  the object dom ain  

each free in d ividu al variable represents.

A fte r  choosing a fixed  positive integer k for the num ber of distinct 

o b jects in the o b ject dom ain, it does not m atter for the valu ation  proce

dure w h a t the objects them selves are. I t  is convenient to  tak e them  to  be  

(or to  call them ) the num bers 1, . . . ,  k. These num bers are to be the values  

w h ich  th e in d ividu al variables take.

A s  before (§ 28), the proposition letters (i.e. letters for predicates of 0 

variables) tak e the values t, f.

N o w  consider the predicate letters. F or a n y  g iven  integer n  >  0 , a 

predicate letter w ith  n  a tta ch ed  variables differs under the logical inter

p retation  df the system  from  a proposition letter in th a t it represents not  

a proposition b u t rather a propositional function of n  variables, i.e. a  

fu n ction  w hich takes a proposition as valu e for each set of values of the  

a tta ch ed  variables (§31). T h e values w hich we give a predicate letter w ith  n
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a tta ch e d  variables in our va lu ation  procedure, w hen the propositions  

are replaced b y  t and f, w ill accordingly be not t, f, b u t rather functions  

of n  variables each over the dom ain { 1 , . . . , & }  takin g valu es in the dom ain  

{t, f}. There are e x a c tly  2 kn d ifferen t such functions. W e call them  the  

logical fu n ction s  of n  variables over the dom ain of k  objects. T h e tru th  

valu es t, f, w hich we use for the case n — 0, can be considered as bein g  

the 2  ( =  2 fc0) logical functions of 0 variables.

A s before, we interpret 3 ,  &, V, -i as fixed functions over the dom ain  

of tw o objects {t, f} tak in g values in the sam e dom ain, defined b y  the  

tab les given  p reviou sly (§ 28). W e now  interpret V and 3 as fixed  functions  

over the lo gical functions of one variable tak in g values from  the dom ain  

{t, f}, where the variable x  in V x  or 3 x  indicates of w h a t in dividu al 

variable the operand shall be considered as logical function. These tw o  

fixed  logical functions are defined as follows. F or a given  logical function  

A (x), the va lu e of V x A (x ) is t, if A (x) has th e valu e t for every  va lu e of x  

in the dom ain { 1 , . .  otherwise the va lu e is f. T h e valu e of 3xA (x)  

is t, if A (x) has the va lu e t for some valu e of x  in the dom ain { 1 , . . . ,  k } ; 

and otherw ise the va lu e is f.

G iv en  a predicate letter form ula, w e are now  in a position to com pute  

a tab le expressing the values of the function, of the distinct free in 

d ivid u al variables and predicate letters occurring in it (or of these and  

other variables and letters), w hich the form ula represents. F or the ta b 

ulation, it w ill be convenient first to  list in some fixed  order the logical 

functions w hich w ill be required as values of the predicate letters, and to  

introduce sym bols to  stand for them .

E x a m p l e  1 . F or k  =  2, let us construct the tab le for the predicate  

letter form ula Va{B 3  C3(a)) V (-i £ l(b ) & B) ,  for e x a c tly  the free va ri

ables and predicate letters contained in it. This form ula then represents 

a function of three variables, n am ely b, B and <^(a), where a is the a tta ch ed  

variable of the nam e form  used for as a predicate letter w ith  one 

variable (cf. § 31). Before con structing the tab le for the form ula, w e shall 

introduce notations for the logical functions of one variable, w hich w e  

shall be em ployin g as values of the variable (a). Since k  =  2, there  

are 4 ( =  2%1) of them , 1 ±(a)f t2(a), \z{a), 14(a), defined b y  the follow ing  

tab le  of their values.
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L ogical functions of one variable in  a domain of two objects

V alu e of the inde

pendent variable

Corresponding valu e of the resp ective  

function

a liM U 4 U(a)
i t t f f
2 t f t f

T h e  tab le  for th e given  form ula is now  as shown (the com p u tation  of a  

sam ple e n try  w ill follow).

V alu e of th e  respective  

independent variable

Corresponding va lu e of 

the function

b s c1(a) V a(B  3  3 { a ) ) V (-i< 3 (£ ) & B )

1 t h i * ) t

1 t h(a) f
1 t W ) t

1 t U { * ) t

1 f k(a) t

1 f t

1 f m t

1 f I4 (a) t

2 t h  (a) t

2 t k ( * ) t

2 t I3 (a) f
2 t U(a) t

2 f li(a ) t

2 f m t

2 f m t

2 f U a ) t

W e  now  g iv e  th e co m p u tation  for th e second va lu e (line 2 of th e table). 

F o r this purpose, w hen w e com e to  the V -operation, w e shall need the  

tab le  for S  3  ^ f( j)  w ith  B h a vin g  th e va lu e t  and <£7(a) th e va lu e l2(<z). 

W e g iv e  this table first (its com p u tation  to  follow).
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V alu e of the inde

pendent variable

Corresponding value  

of the function

a t 3 1 2(a)
i t

2 f

T h e  com putation s of the tw o values in this subsidiary table, using the  

tab le for 12(<j) given  at the outset and the table for 3  from  § 28, are these:

t ^  I,(a) t 3  12(a)
t =3 1.(1) t 3 l g ( 2 )

t 3  t t 3  f

t f

W e now  return to the original question of com puting the en try for the  

second line of the table for Va(B  3  <d(a)) V (-1 £%(b) &  B),  i.e. the va lu e  

of this form ula w hen b  has the valu e 1, B  the va lu e t and (a) the va lu e  

l2(<z). W e start out thus.

Va(B  3  a ( a ) )  V (-ic2{b )  & B)
V a ( t D 12(a)) V ( - i I a(l) &  t)

Since the valu e colum n of the tab le for t 3  I2(#) does not h a ve all i ’s, 

we can replace V<z(t 3  I2(j)) b y  f under the interpretation g iven  for V, 

and also we can replace I2(l) b y  its valu e t from  the tab le  for l2(a), thus.

f V ( -it  &  t) 

f v  (f &  t) 

f v  f 

f

T h e reader m a y  v e rify  th a t he understands the procedure b y  calcu latin g  

other entries in our tab le for Va(B  3  V (~ic^(b)  & B ) .  O f course

there are u su ally  short cuts th a t can be used in ascertaining th e ta b le  

for a form ula, so th a t it is not necessary to  go through the w hole calcu lation  

procedure separately for every en try  of the tab le  (e.g. here w e can rec

ognize at once th a t all eight entries for w hich B  is f are t). B u t  this ca l

culation illustrates the underlying definition of the function represented  

b y  a predicate letter form ula for a given  p ositive integer k .

If, for a g iven  k,  the valu e colum n of the tab le  for a predicate letter  

form ula, as a function of certain free variables and predicate letters  

including all contained in it, contains on ly t ’s, w e sa y  th a t th e  form ula
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is k -id en tica l, or va lid  in  a dom ain  of k objects. I f  it contains some t's, 

th e  form ula is said to  be sa tisfiab le  in  a dom ain  of k objects.
A s before (§ 28), if it is ^-identical (or satisfiable in a dom ain of k  

objects) for the m inim al list of free variables and predicate letters, th en  

it  is for a n y  other l is t ; and conversely. H ence again the reference to  th e  

list can be om itted.

If the va lu e colum ns of the tables for tw o predicate letter form ulas  

considered as functions of ju st those free variables and predicate letters  

contained in either (or of a n y  others as well) are the same, the tw o  

form ulas are said to be k-equal.
Theorem 20. F or each fixed  integer k (k ;> 1): A  necessary condition  

that a  pred ica te letter form ula  E  be provable {or deducible from  k-iden tica l 
form u las  T) in  the pred ica te calculus is  that E  be k-iden tica l.

Proof. T h e theorem  follows from  tw o lem m as, corresponding to  
those for Theorem  9, b u t now  referring to the postulate list of the pred

icate calculus, predicate letter form ulas and ^ -identity. T h e  reasoning  

already given  for the postulates of G roup A 1 carries over in its essentials  

to  the present situation, and for the four postulates of G roup A 2 w e show  

th e treatm en t of two.

Axiom Schema 10. A n  axiom  b y  this schem a is V x A (x ) D  A (t),  

where the term  t for the pure predicate calculus is sim p ly a variable, 

and th is variab le t  is free for x  in A (x).

T h e variable t m a y  be th e sam e or distinct from  x, and x  m a y  or m a y  

not occur free in A (x).

W e m ust show  th a t V x A (x ) D  A (t) takes the valu e t, for e very  as

signm ent of logical functions as valu es of the predicate letters, and o f  

th e ob jects 1 , as valu es of the free variables, contained in

V x A (x ) D A (t).

Consider a particular such assignm ent. If  the assigned values are given  

to  the predicate letters and free variables of A (x), excep t (if x  occurs free  

in A (x)) to  th e variab le x, then A (x) represents a logical function of th e  

variable x  (whether or n ot x  occurs free in A (x)).

Since t is free for x  in A (x), in the sequence of sym bols A (t) the free  

occurrences of t  occu p y the positions w hich are occupied in A (x) b y  free  

occurrences, of either t  or x. Therefore the valu e of the logical function  

represented b y  A (x), w hen x  takes as valu e the assigned valu e of t, is th e  

va lu e of A (t) for the particular assignm ent under consideration.

N o w  there are tw o cases.
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Ca se  1 : the logical function represented b y  A (x) has on ly t's as values. 

T h en  the valu e of A (th  w hich is one of these values, is t. H ence, b y  the  

va lu atio n  table for D  (§ 28), V x A (x ) D  A (t) has the valu e t.

Ca se  2: the logical function represented b y  A (x) has some f ’s in its  

valu e colum n. Th en , b y  the definition of the va lu atio n  process for V , 

the form ula V x A (x ) has the valu e f; and again V x A (x ) D  A (t) has the  

valu e t.

R u l e  12. T h e premise is A (x) D  C, and the conclusion is 3 xA (x) D  C, 

where C  does not contain x  free.

W e h ave as hypothesis th a t A (x) D  C takes the valu e t for every  

assignm ent of logical functions as values of the predicate letters, and of 

the objects 1 , . . . ,  k  as values of the free variables, contained in A (x) D  C. 

W e m ust show the like for 3xA (x) D  C.

Consider a particular assignm ent for 3xA (x) D  C, for ju st the predicate  

letters and free variables w hich it contains. Since 3xA (x) D  C does not 

contain x  free, this does not include an assignm ent for x.

N o w  if the assigned values are given  to the predicate letters and free 

variables of\A(x), except (if x  occurs free in A (x)) to  x, then A (x) repre

sents a logical function of the variable x.

Ca se  1 : the logical function represented b y  A(x) has some t's in its  

valu e colum n. Choose a valu e of x  corresponding to one of these t's; and  

consider the given  assignm ent for 3xA (x) D  C, together w ith  this valu e  

of x, as an assignm ent for A (x) D  C. Th en  A (x) has the valu e t; b y  

hypothesis, A (x) D  C has the valu e t; and hence b y  the valu ation  table  

for D , C has the valu e t. Since C does not contain x  free, this valu e of 

C is on the basis of the given  assignm ent for 3xA (x) D  C, w ith ou t regard to  

the valu e of x. H ence, b y  the valu ation  table for D , 3xA (x) D  C takes  

the valu e t for the given  assignm ent.

Ca se  2 : the logical function represented b y  A (x) has on ly f ’s as values. 

Then 3xA (x) has the valu e f ; and hence 3xA (x) D  C has the va lu e t.

E x a m p l e  1 (concluded). V ^(S D  (a)) V (-i<3(/>) & B )  is not k- 
identical, since its valu e colum n contains f  s, and hence it is unprovable  

in the predicate calculus.

E x a m p l e  2 . For k  =  2, when d^(a, b) takes as valu e the logical 

function 1 (a, b) such th a t 1(1, 1) =  1(2 , 2) =  t, 1(1 , 2) =  1(2 , 1) =  f, the  

form ula yi b l a Z i { a ) b) D  3aVb<^l(a, b) takes the valu e f, so it is unprovable.
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Corollary 1. F or each integer k >  1, a necessary condition  that two  
pred ica te  letter form ulas  E  an d  F  be equivalent is  that they be k-equal, i.e . 
i f  \- E  ~  F , then  E  and  F  are k-equal.

E xample 3. F o r k — 2, w ith  I^ a ),  f2(<z), l3(tf), h ia ) as in E x a m p le  1 , 
we h ave the follow ing tables for the top  form ulas of I —  I V  C orollary  

Theorem  17 w ritten  w ith  a particular variable and predicate letter. 

H ence no tw o of the four are equivalent.

a2(d) Va£t{a) 3 a ^ ( a ) 3 a - \ £ l { a )

h i * ) t t f f
k ( a ) f t t f
U(a) f t t f
k ( a ) f f t t

Corollary 2. The pred ica te calculus is  {sim ply) consisten t, i.e. for no 
form ula  A , both (- A  an d  1-  —iA .

Proof. If A  is a predicate letter form ula, then, for each k, A  and - i  A  

cannot b o th  be ^-identical. (Here it w ould suffice to h ave proved the  

theorem  for a n y  one fixed k. In  the original proof b y  H ilbert and A ck er-  

m ann 1928 , k  =  1.) F or the other sense of form ula, the con sistency follows  

b y  the converse of the su bstitu tion  rule (Theorem  16 §34).

* §  37. Set-theoretic predicate logic, ^-transforms. T h e logical 

functions used in the valu ation  procedure for a given  finite k are finite  

objects, in the sense th a t each is represented b y  a table h avin g a finite  

num ber of entries.

T h e notion of a logical function of n  variables can be stated  sim ilarly  

for the case th a t the ob ject dom ain has an infinite num ber of elem ents, 

b u t w ith  the difference th a t the functions cannot be described b y  

finite tables. W e can then define the notions of v a lid ity , and of sa t
is f ia b il i ty , in a given  n on -em p ty object dom ain. C learly only the cardinal 

num ber of the object dom ain m atters for this purpose, and not w hat the  

elem ents are them selves.

T h en  b y  reasoning as in the proof of Theorem  20, we can show th a t  

ev e ry  provable predicate letter form ula is va lid  in every n on -em p ty  

o b je c t  dom ain. In  dem onstrating this for the case of an infinite dom ain, 

the reasoning em ployed is no longer finitary. A  non -finitary step appears, 

for exam ple, in the treatm ent of A xio m  Schem a 10, where we distinguish  

tw o  cases according as all of the values of a certain function are Cs or 

som e are f s ,  there being now  in fin itely m an y values under consideration.
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T h is con stitutes an application of the law  of the excluded m iddle for an  

infinite set (§ 13). In  fact the notion itself of v a lid ity , for the case of 

an infinite dom ain and a form ula containing a predicate letter w ith  n  >  0 
atta ch ed  variables, is not fin itary. F or it requires th a t the valu e of a  

function be t for all logical functions of n  variables as values of th a t  

predicate le tte r ; and the class of those logical functions is non-enum erable, 

and so on ly con ceivable (as w e u su ally  think) in term s of the com pleted  

infinite.

T h e  result th a t e v ery  p rovab le letter form ula of the predicate calculus  

is va lid  in e v ery  n o n -em p ty ob ject dom ain therefore does not belong to  

m etam ath em atics (cf. § 15). I t  belongs rather to  w h at m a y  be called  

set-theoretic pred ica te logic  (H ilbert-B ern ays 1934  p. 125), w hich has in 

com m on w ith  m etam ath em atics th a t it m akes the logical form alism  an  

ob ject of stu d y, b u t differs from  it in not being restricted in the stu d y  to  

fin itary  m ethods. W hile our m ain business is m etam athem atics, the extra-  

m etam ath em atical conceptions and results of set-theoretic predicate logic  

m a y  h ave heuristic value, i.e. th e y  m a y  suggest to  us w h a t we m a y  hope  

to discover in the m etam athem atics.

O ur success in provin g the con sistency of the predicate calculus  

(Theorem  20 Corollary 2) stem s from  the fact th a t w e were able to  fit  

to the form ulas of the calculus a fin itary  interpretation, n am ely the  

interpretation b y  v a lid ity  in a fixed finite dom ain (i.e. ^ -identity). 

B u t th a t does not correspond to  the usual interpretation of the calculus, 

to  w hich corresponds rather v a lid ity  in an arbitrary n on -em p ty  

dom ain.

O n  the basis of the set-theoretic result th a t every  provable form ula  

is v a lid  in ev ery  n o n -em p ty dom ain, w e shall now  see h euristically th a t  

the to ta lity  of the necessary conditions g iven  b y  Theorem  20, i.e. the  

p rop erty of b ein g ^-identical for every finite k , is insufficient for p rova

b ility .

T h is w ill be a consequence of the fact th a t a form al axiom  system  

(cf. § 8) abou t a set D  of elem ents w hich requires D  to  be infinite can  

be expressed b y  a predicate letter form ula. T o  co n ve y  the idea, w e shall 

first giv e  the axiom s as three form ulas in our logical sym bolism , b u t using the  

predicate sym bol <  to suggest th a t th e y  are axiom s for an order re la tio n :

-~ ia < a , a < b  & h < c  Z) a < c ,  3 b ( a < b ) .
These are order properties w hich are satisfied (in the old in tu itive sense, 

§ 8) w hen the dom ain of elem ents is the set of the natural num bers, 

and <  is the usual order relation for them . It  is easily seen th a t th e y
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cannot be satisfied in a n y  finite n on -em p ty dom ain of elem ents. (The  

details are left to the reader.)

N o w  let us express the axiom  system  as one predicate letter form ula, 

using <£?(*, b) in place of a < b t and also using on ly bound va ria b le s: 

V * - i  <£?(*, a) &  V a V b V c [£ l(a 9 b) & & ( b 9 c) 3  & { a 9 c)] &  \ f d 3 b £ i{a 9 b).
T h is form ula, call it “ F ” , is not satisfiable (in the new set-theoretic  

sense) in a dom ain of k  objects, for an y finite k  >  0 , bu t is satisfiable in 

the enum erable dom ain of the natural num bers. Its  negation i F  is then  

va lid  in a dom ain of k objects for every finite k, i.e. is ^-identical for 

every finite k, b u t is not va lid  in the enum erable dom ain. T h u s i F  

m eets the to ta lity  of necessary conditions of Theorem  20, b u t b y  the  

set-theoretic result th a t every provable form ula is va lid  in every non

e m p ty  dom ain, it cannot be provable in the predicate calculus. This e x 

am ple - i F  and others are given  in H ilbert-B ern ays 1934  pp. 123— 124.

In term s of the set-theoretic interpretation, the com pleteness of the  

predicate calculus should m ean th a t every predicate letter form ula  

w hich is va lid  in every n on -em p ty dom ain should be provable. This  

interpretation is not finitary, unlike the corresponding interpretation  

for the propositional calculus (§§28, 29), and so the corresponding com 

pleteness problem  does not belong to m etam athem atics. These rem arks 

suggest th a t the situation is not as sim ple as for the propositional calculus, 

w hen we com e to the question of com pleteness and to the decision problem . 

W e shall return to these problem s in a later chapter on the predicate  

calculus, where several results w ill be presented, p artly  m etam ath em atical 

and p a rtly  of the set-theoretic va rie ty  (Chapter X IV ).

For later reference, we sum m arize our present conclusions in a theorem  

and corollary, w hich we m ark w ith  the letter “ c ”  to  show th a t th e y  do 

not belong to our sequence of m etam ath em atical theorem s, b u t are on ly  

established here b y  use of non -fin itary classical m ethods. A lth o u gh  we 

are using “ set-theoretic” for the present kind of predicate logic, some of 

the results are on ly on the level of classical n u m b er-th eo ry; e.g. while  

Theorem  21 in its full gen erality involves sets of arbitrarily high cardinal 

num ber, the corollary can be inferred also from a specialization of 

Theorem  21 relating to the enum erable dom ain of the natural num bers and  

the enum erable class of the logical functions w hich are expressible b y  the  

use of the logical sym bolism  applied to <  (where a <  b is t or f , according  

as a  is a lesser natural num ber than b or not).

Theorem 2 1 °. I n  each n on -em pty  object d o m a in : E very  predicate letter 
form ula  which is  provable (or deducible from  va lid  form ulas) in  the predicate  
calculus is  valid .
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C o r o l l a r y 0 . I n  order that a predicate letter form ula  be provable in  the 
predica te calcu lus, i t  is  not (in  general) su ffic ien t that the form ula  be k- 
iden tica l for every p o sitive  integer k.

A n a l o g y  b e t w e e n  V, 3 a n d  & , V. W hen interpreted in a finite dom ain  

of k  objects 1 , the form ula V x A (x ) is synonym ous w ith

A( l )  &  . . .  &  A(ft), and 3 xA (x) w ith  A( l )  V . . .  V A(k), where 1 , . . . ,  k  
are nam es in the form al system  for the objects. T h is suggests a slig h tly  

different approach to the results of the preceding section, from  w hich  

w e w ill obtain  an interm ediate m etam ath em atical result of some interest 

in itself. (For the case k =  2, cf. H ilb ert-A ckerm an n  1928  pp. 66— 68.)'

W e shall tak e 1 , 2,  . . . ,  k to be the form al expressions O', 0", . . . ,  0' *“ ' 

(the last h avin g k  accents) w hich we call num erals from  1 to k. (H ow ever  

it w ould serve our purpose equ ally  w ell to  use k  in dividual sym bols.)

W e define predica te letter form u la  w ith  k in d iv id u a ls , or b riefly  k- 
predicate letter fo rm u la , b y  allow ing the term s for Clause 1 of the definition  

of predicate letter form ula in § 31 to include now  the num erals from  1 to  k  
as w ell as the variables; and the predicate calculus w ith  this notion  

of form ula w e call the predica te calculus w ith  k in d iv id u a ls , or briefly  the  

k-predicate calculus.
T h en  we define k-proposition  letter form ula  either as a ^-predicate letter  

form ula containing no variables free or bound (and therefore no qu a n ti

fiers) ; or eq u ivalen tly  b y  allow ing the form ulas for Clause 1 of the def

inition of proposition letter form ula (§ 25) to include not on ly the propo

sition letters b u t now also the expressions resulting from  the predicate  

letters b y  su b stitu tin g num erals from  1 to k for each of their atta ch ed  

variables, e.g. for k  =  2 , <3(1), 3 ( 2 ) ,  S ( l) , <3(1, 1), <3(1, 2), <3(2, 1).

A  con venient abbreviation  is to w rite the latter as “ 3 / ' ,  “ 3 2” , “ Bx” , 
“ *^11*> “ *^12” * “ <321” , respectively, so th a t in effect we m erely augm ent  

the form er list of proposition letters b y  the sam e alphabetical letters w ith  

finite num bers of positive integral subscripts <; k. Our form er th eory for 

the pure propositional calculus ob viou sly w ill a p p ly  unchanged, if now  

each tw o letters differing either alp h ab etica lly  or in their subscripts are 

treated  as distinct proposition letters.

G iven  an y closed ^-predicate letter form ula, we define its k-transform  
to be the ^-proposition letter form ula w hich results from  it b y  replacing, 

successively, each part of the form  V x A (x ) where A (x) is a ^-predicate  

letter form ula b y  A( l )  &  . . .  &  A  (ft), and likew ise each part 3xA (x) b y  

A( l )  V . . .  V A(fe), u n til all of the quantifiers are elim inated. I t  is easily  

seen th a t the order of the replacem ents does not affect the result.
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E x a m p l e  1 . T h e 2-transform  of Vbla<£t(a, b) 3 3aVb£l(a, b) is 

(<3(1, 1) V<3(2, 1)) &  (<3(1, 2) V<3(2, 2)) 3 ( 3 ( 1 ,  1) & < 3(1, 2)) V (<3(2, 1) 

&  <3(2 , 2)), or briefly

( 3 n  V <3al) &  (<3ia V 3 22) 3  (<3n  &  <312) V (<321 &  <322).

G iven  a ^-predicate letter form ula A ( x v  . . . , x n) w ith  e x a c tly  the  

d istin ct free variables x v  . .., x n , the set of its k - t r a n s f o r m s  shall be the

transform s of the k n closed ^-predicate letter form ulas obtained from  

A ( x v  . . x n ) b y  su b stitu tin g for x l f . . . , x n each of the k n different 

w-tuples of num erals from  1 to k .
E xam ple  2. T h e 2-transform s of Va3(d, c )  3 <3(£, c )  are 

& ĉ 2j -D , eT̂2 & 322 312, <3u & c32j, <3j2  ̂ĉ 22 D ĉ 22.
T h e o r e m  22. F o r A >  1 : I f  a f o r m u l a  E  is p r o v a b l e  { d e d u c i b l e  

f r o m  f o r m i d a s  T )  i n  the p t i r e  o r  k - p r e d i c a t e  c a l c u l u s ,  t h e n  a l l  o f  t h e  k -  

t r a n s f o r m s  o f E p r o v a b l e  { d e d u c i b l e  f r o m  t h e  k - t r a n s f o r m s  o f  t h e  f o r m u l a s  

T) in  ^  p r o p o s i t i o n a l  c a l c u l u s . (H ilbert-B ern ays 1934 , pp. 119  ff.)

Proof is left to the reader.

W e easily see th a t a predicate letter form ula is ^-identical, if and only  

if all of its ^-transform s are id en tica lly  true (§ 28). Thus, using Theorem  

9, Theorem  20 becom es a corollary of Theorem  22.

E xample 1 (concluded). T h e form ula  

( 3 U V <321) &  (<312 V 3 22) 3  (<3n  &  <312) V (<321 &  <322) is not provable  

in the propositional calculus, since it takes the valu e f w hen <3n , <312, 

3 21, 3 22 tak e the respective values t, f, f, t. H ence yib3aIH{a, b) 3  
3aiib€l{a, b) is unprovable in the predicate calculus. Com paring these  

values for 3 n , 3 12, 3 21, 3 22 w ith  the table for I(j, b) in E x a m p le  2 
§ 36, w e see th a t this is b asically  the sam e refutation as there.

E x a m p l e  3. Is -vn3<z<3(tf) 3 3 a  n n < 3 (a )  (which is of the form  

l i e !  3 l i b  of C orollary Theorem  17) provable in the in tuitionistic pred

ica te  calculus? B y  Theorem  22 (with k  =  2), it is on ly if -t - i ( 3 1 V 3 2) 

3 m c 3 1 V - i n  3 2 is p rovable in the in tu ition istic propositional 

calculus (a result to be used in § 80).

I t  is often useful h euristically in stu d yin g the predicate calculus to  

th in k  of V x A (x ) as a con junction extended over all the m em bers of the  

o b je ct dom ain, and of 3xA (x) sim ilarly as a disjunction, even though  

o n ly  in the case of a finite dom ain w ith  a given  num ber k  of m em bers 

are w e able to construct synonym ous form al expressions on this basis.
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From this analogy between V and & and between 3 and V, and the notion 
of & as analogous to • and V to +  (end § 29), some authors write VxA(x) 
as "IIxA(x)” and 3xA(x) as “ E xA (x )” . (Compare also the definitions of the 
product and sum of a set of sets, § 5.)

In retrospect, we can see how the postulates 3 — 6 for & and V suggest 
those for V and 3. The actual postulates of Group A2 are what the analogy 
calls for, allowing for certain differences in detail. The analogy is clear 
in the corresponding derived rules of Theorem 2 . Of the numbered 
results, e.g., *75, *76, *83, *84, *91, *92 are analogous to *37, *38, *56, 
*57, *35, *36, respectively.

P redicate  calculus with  a  postulated  substitution  r u l e . A s in 
the case of the propositional calculus (§30), the predicate calculus is 
usually formulated with a postulated instead of a derived substitution 
rule, namely, in the notation of Theorem 15 § 34 and under Proviso (A):

E
E*.

The predicate letters are then called predicate variables; the rule is usually 
construed to apply to a single variable at a time; and as before these 
variables must be held constant in subsidiary deductions for assumptions 
formulas to be discharged. (The first accurate statement of the substi
tution rule seems to be that of Hilbert-Bernays 1 9 3 9  pp. 377—378, or 
1 9 3 4  p. 98 understanding the restriction on “Einsetzung” to apply also 
to <‘Umbenennung,\)

w-valu ed  predicate  calcu li. Cf. Rosser and T u rq u ette  1948-5 1 , 

1952.

Se v e r a l-sorted predicate  calcu li. As was implied in § 31, the 
predicate calculus may be studied with several object domains, some of 
the variables being specified as ranging over one of these domains, 
others over another, etc. If these several object domains are regarded as 
simply several different primary categories of objects, the only new feature 
involved is that no operation should be performed which substitutes a 
term or variable of one sort, i.e. referring to one of the domains, for one 
of another. For example, *79 would hold only when x and y are variables 
of the same sort. Each of the attached variables for a name form should 
be of a specified sort. (Cf. Herbrand 1 9 3 0 , Schmidt 1 9 3 8 , Wang 19 5 2  and 
Example 13 § 74.)

H igher predicate  calcu li. However, one may also obtain predicate 
calculi with several types of variables by starting with predicate calculus
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first w ith  a single prim ary dom ain of objects called in d iv id u a ls ; then  

w ith  an additional dom ain of objects consisting of the predicates over th e  

first dom ain of objects, thus ad m ittin g quantifiers V P  and 3 P  where  

P (a x, . . . ,  a n) is a predicate variab le of the first syste m ; and so on. W h en  

a hierarchy of predicate calcu li bu ilt on this plan is being considered, the  

first is called the restricted pred ica te calculus  or predicate calculus of f ir s t  
order, and the others predica te calcu li of second order, th ird  order, etc., 

or gen erally higher pred ica te calculi. M an y difficult questions arise in  

considering hierarchies of system s of this sort, w hich are in vestigated  b y  

the logicistic school (§ 12). A  brief introduction is provided b y  C hapter  

I V  of the 2nd (1938) or 3rd (1949) edition of H ilbert-A ckerm an n  1928 . 

Predicate calculi of second order are treated in Church 1956 Chapter V, 
and Church planned to treat predicate calculi of higher order in Chapter 
VI of his projected vol. II.



Chapter VIII
F O R M A L  N U M B E R  T H E O R Y

§  38. In d u c tio n , e q u a lit y ,  r e p la c e m e n t. In  this chapter we return  

to  the stu d y  of the full form al system  of C hapter IV .

W e shall now  state our results m ain ly w ith  particular form al variables, 

as the postulates of G roup B  (after 13) were stated, so th a t the provable  

form ulas w ill read as particular theorem s of num ber th eo ry form alized  

in the sym bolism  of the system . R esults of the form  b A  stated  w ith  

particular free variables can be applied w ith  term s su b stitu ted  for those  

variables, in view  of the substitution  rule for in d ivid u al variables (§ 23 

and *66  § 32).

From  P o stu late 13 (using D -in trod., V -introd., & -introd. and D -elim .), 

w e h a ve the follow ing form al rule of m ath em atical induction. Form al in

ductions b y  this rule are of course altogether separate from  inform al 

m ath em atical inductions used in proving m etam ath em atical theorem s.

Induction rule. L et  x  be a variab le , A (x) be a fo rm u la , an d  T be a  
lis t of form ulas not conta in ing  x  free . I f  T  b A (0), an d  V, A (x) b A (x ')  

w ith  the free variables held constant for  A (x), then V  b A (x).

B egin n in g w ith  th e proofs of the n e x t theorem , w e shall freq u en tly  

adopt a more inform al presentation of dem onstrations of form al p ro va

b ility  or d educibility. T h e  use ab ove of the chain m ethod in handlin g  

equivalences (§ 26) w as a step in this direction. W e now  go further, om it

tin g the sym b ol “  b”  in m an y situations. T h u s w e shall say  “ assume A ” , 

m eaning th a t w e w ish to tak e A  as an assum ption form ula in con structing  

a deduction. O f course, properly w e are not assum ing an ythin g, b u t  

in d icatin g th a t the form ulas to follow  are to  be form ally  deducible from  A  

(and a n y  other assum ption form ulas w hich we h ave introduced), u n til 

the discharge of the assum ption form ula A  is indicated or im plied b y  

the co n text. A t  each stage in such inform al presentation, the form ulas 

given  are to be understood as deducible from all the assum ption form ulas 

not y e t  discharged.

E xample 1 . T h e follow ing is a dem onstration in this presentation

181
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that b 3xA(x) 3  Vx -i A(x) (cf. the first half of the proof of *83 § 35).
In preparation for 3-introd., assume 3 xA(x). Preparatory to 3-elim. 

from this, assume A(x). We shall deduce n  VxnA(x) by reductio ad 
absurdum (i.e. —i-introd.). Assume for this purpose Vx-iA(x). Then by 
V-elim. -iA(x), contradicting A(x). [Then -i Vx -iA(x) by the -i-introd., 
which discharges the assumption Vx - i A(x). Since -iVx-iA(x) does not 
contain x free, the 3-elim. can be completed now, discharging A(x). 
Finally we have 3xA(x) 3  -iVxnA(x) by the 3-introd., discharging 
3xA(x).] The bracketed steps will often be tacit.

To analyze this, we list the formulas, showing by an arrow how long 
each assumption remains in force.

1. 3xA(x) — assumed, 
j 2. A(x) — assumed,

j 3. Vx-nA(x) — assumed,
j  4. -iA(x) — V-elim., 3.

v 5. n  Vx-iA(x) — -i-introd., 2, 4.
v. 6. “i V xiA (x) — 3-elim., 5.

7. 3xA(x) 3 -1 Vx “i  A(x) — 3-introd., 6.
Each formula is deducible from the assumption formulas whose arrows 
appear opposite it, e.g. Line 5 means that nV xnA (x) is deducible 
from 3xA(x) (Line 1) and A(x) (Line 2). Stating these facts in the 
b -notation, our demonstration appears in the former style.

1. 3xA(x) b 3xA(x).
2. A(x), 3xA(x) b A(x).
3. Vx-iA(x), A(x), 3xA(x) b Vx-iA(x).
4. Vx -iA(x), A(x), 3xA(x) b ~«A(x) — V-elim., 3.
5. A(x), 3xA(x) b “iVxnA(x) — -i-introd., 2, 4.
6. 3xA(x) b “i Vx 1  A(x) — 3-elim., 5.
7. b 3xA(x) 3  —iVx“iA(x) — 3-introd., 6.

Note that the columns of assumption formulas take the place of the 
arrows. For Step 5, we can supply Vx -i A(x) as an additional assumption 
formula in 2 by general properties of h At Step 6, 3-elim. gives 3xA(x), 
3xA(x) b “i Vx -i A(x), and the extra 3xA(x) is omitted by general prop
erties of h  Actually it is immaterial whether 3xA(x) is considered as 
an assumption formula for 2—5 or not.

Applications of the rule of V-elimination will now often be described 
in the language of “cases” (cf. § 23). Applications of the formal induction 
rule will often be presented in the following manner, using the same ter
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m inology as in inform al inductions (§ 7): Basis. . . .  A(0). In d u ction  step. 

Assum e A (x) (the hypothesis of the induction). T h en  . . .  A (x '). [A t this  

point the induction step is com pleted, and A (x) ceases to be an assum ption  

form ula.] H ence A (x). [Other form ulas T  m a y  h a ve been in use as as

sum ption form ulas throughout. T h is proof th a t b A (x), or th a t T  b A (x), 

w e sa y  is “ b y  (formal) induction on x ” ; A (x) is the “ in du ction  form ula” .]

T h is inform al presentation is con venient in situations where the form al 

developm ent closely parallels in tu itive  reasonings. I t  saves space, an d  

brings our procedures for dem onstrating the facts about form al p ro v a b ility  

and d ed u cib ility  still closer in appearance to  th e m ethods of inform al 

m ath em atics (cf. § 20).

T h e reader should then understand at all tim es how  th e procedures 

can be m ade rigorous as applications of our derived rules stated  in term s  

of the sym b ol “  b” . T h e b -n otation has been used to  g iv e  concise and  

accurate statem en ts of our derived rules, show ing clearly their structure. 

W e continue to use it w hen w e h a ve  new  rules to  state, and in other  

passages where it helps to  em phasize the form  of the d ed u cib ility  relation

ships or the fact th a t w e are ta lk in g ab ou t th e form ulas of the system  

(and not in them ).

W e shall hereafter com m on ly ab b reviate  a-b  to  “a b ” .
Theorem 23. (Properties of equality.)

*100. b a = a .  *10 1. b a = b  D  b = a .
*10 2. b a = b  &  b —c  D  a = c .

(R eflexive, sym m etric and tran sitive properties.)

*10 3  (A xiom  17). b a = b ' D a ' = b ' .
*104. b d —b  D  a - \ - c = b - \ - c .  *10 5. b & = b  D  c - \ - a = c + b .

*106. b a = b  D  a c = b c .  *10 7. b a = b  D  c a = c b .

(Special replacem ent'properties of the fu n ction  sym bols ', +>  *•)

*10 8 (A xiom  16). b a = b  D  ( a = c  D  b —c).
*109. b a = b  D  { c = a  D  c = b ) .

(Special replacem ent properties of the predicate sym b ol = . )

Proofs. *100. W e exh ib ited  a proof of this form ula d irectly  from  the 
postulates as E x a m p le  1 § 19. T a k in g  a d va n ta ge of th e derived rules 

established m eanw hile, w e can now  sum m arize it thus. From  A x io m  16 

b y  su bstitu tion  (*66  §32), a + 0 = a  3  {a J\ - 0 = a  mD a = a ) .  T h ence b y  A x io m  

18 (using D -elim . tw ice), a = a .
* 10 1 . U sin g the inform al presentation, assum e a = b .  B y  A x io m  16,
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a —c  D  b — c. S u b stitu tin g  a  for c, a = a  D  b = a .  Thence b y  *100, b —a.
*104. Proof w ill be b y  the form al induction rule. In  b o th  the basis  

and the induction step, the m ethod of a chain of equalities w ill be used  

(cf. end of § 26). O ur use of this m ethod depends on h a vin g  already  

established * 100— * 102. Since we do not y e t  h ave the the general replace

m ent p roperty (Theorem  24 (a)), a n y  step w hich entails replacing a term  

b y  another term  given  as equal to it  w ill h ave to be ju stified  b y  a special 

replacem ent result fittin g  the situation. Here we shall use A xio m  17 

(*103) for the purpose. S u b stitu tion  in an axiom  or previously established  

form ula will not be e x p licitly  m entioned. Assum e a = b .  W e deduce  

a Jr c = b - \ - c  b y  induction on c, thus. B a sis . a + 0 =  a  [A xiom  18] =  b  
[assum ption] =  0 [A xiom  18]. I nduction step . A ssum e, as h y 

pothesis of th e induction, a + c = b + c .  T h en  a + c f =  (tf+ c )' [A xiom  19] 

=  ( b + c ) '  [hypothesis of th e induction, A xio m  17] —  b + c 9 [A xiom  19].

*10 5. L e t a —b D c - \ - a = c + b  be ab b reviated  “ A ( a , b y \ W e shall prove  

V b A (a , b) b y  induction on a. W e do the induction step, leavin g the  

basis to  be done sim ilarly b y  the reader. I n d . step . A ssum e yi b A ( a t b ). 

B y  V -elim ., A  (a, b). W e now  deduce A  (af, b) b y  induction on b. B a sis . 
A ssum e a!— 0. B u t b y  A xio m  15, - i  <z'=0. H ence b y  w eak -l-e lim .  

(§23), c + a ' = c - \ - 0. I n d . step . (W e do not need to  use the hypothesis  

of the induction on b.) Assum e a '= b ' .  T h en  b y  A x . 14, a = b ; and using  

A {a ,b ) ,  c + a —c + b .  N o w  c + a '  =  ( c + a ) '  [A x. 19] =  ( c + b ) '  [using 

c - \ - a = c - \ - b  w ith  A x . 17] =  c-\-b '  [A x. 19]. (W h y did we tak e yi b A ( a i b) 
instead of A  (a, b) as the induction form ula for the induction on a?  Cf. 

the statem en t of the induction rule. F or the induction on b  w ith in  the  

induction step of the in du ction  on a, V bA (a , b) is the T.)

A n other w a y  to  handle *10 5 is to prove * 1 1 8  and * 1 1 9  first, after  

w hich *10 5 can be inferred from  *104.

*10 6 and *10 7. Sim ilarly to *10 4  and *105. T o  ju s tify  replacing ac  
b y  be  in ac-\-a  after assum ing a c = b c ,  we m ust use *10 4 ; etc.

Replacement. Theorem 24. (a) I f  u r is  a term  conta in ing  a specified
occurrence of a term  r, an d  u s is  the resu lt of rep lacing  th is occurrence by a  
term , s, then

r==s h u r= u s.

(b) I f  Cr is  a form ula  con ta in in g  a specified  occurrence of a term  r  (not 
as the variable of a q u an tifier), an d  C s is  the resu lt of replacing  th is occur
rence by a  term  s, then

r = s  hXl''*,Xw C r ~  C 8
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where x lf . . . ,  x n are the variables of r or s which belong to a q u a n tifier  of 
C r h avin g  the specified  occurrence of r w ith in  its  scope. (R eplacem ent 

theorem .)

E x a m p le  to  follow. Proof is b y  the sam e m ethod as before (§§ 26, 33), 

using seven additional lem m as.

Additional lemmas for replacement. I f  r and  s are te rm s:
*110.  r = s  b r '= s '.

♦ 111. r = s  b r + t = s + t .  *1 12 .  r = s  b t + r = t + s .

*113 .  r = s  b r t = s t .  *1 14 .  r = s  b t r = t s .

* 11 5 .  r = s  b r = t ^ s = t .  *1 16 .  r = s  b t = r ~ t = s .

Proofs. T h e first five of these lem m as follow  from  *10 3 — *10 7,  

respectively, b y  substitution  (*66) and D -elim . T h e last tw o  follow  

from  *108 and *109 w ith  *66, *101,  D -elim . and *16.

E xample 2. L e t r be b, s be a } C r be 3d ( d ' + b = c ) .  T h e  parallel 

constructions of C r from  r and of C s from  s are as follows, an d th e dep th

is 3.

b a
d ' + b  d ' + a

3 d {d '+ b z = c )  3 d ( d ' + a = c )
L e t =  be w ritten  betw een the expressions in each of the top  tw o  lines, 

and ~  in each of the b o tto m  tw o. T h e resulting form ulas are deducible, 

each from  the preceding, using successively *1 12 ,  * 1 1 5 ,  *7 2  (varyin g d ). 
U sing the abbreviation  (§ 17), the result can be w ritten  b = a  b 

b < c  ~ a < c .  (W h y is d  not varied in the re su lt?)

Corollary 1. U nder the conditions of the theorem : I f  b r = s , then  
b u r= u 8 an d  b C r ~  C s.

Corollary 2. U nder the conditions of the theorem: r = s ,  C r bXl‘“x* C s 

w ith  x v  . . . ,  x n varied  only for the f ir s t a ssu m ption  form ula. I f  b r = s ,  

then  C r b C s. (R eplacem ent prop erty of equality.)

E xample 2 (concluded). U sin g also * 1 0 1 :  a = b f b < c  \ a < c .

A s before, a  replacem ent m a y  be preceded b y  a su bstitu tion  for in

d ivid u al variables (cf. § 33 E x a m p le  4, and § 34 ju st ab ove R em a rk 2).

§  39. A d d it io n , m u lt ip lic a tio n ,  o r d e r . P ostu late  G roup B  (§19)  

m a y be described as follows. Postulates 14, 15 and 13 express form ally



the last three of Peano's axiom s (§ 6). (The first tw o enter in the present 

system , w hich has o n ly  natural num ber variables, through Clauses 1 and 5 

in the definition of term , § 17.) A xiom s 16 and 17 g ive  properties of 

e q u a lity  (including as 17 the univalence of the successor function ', 

w hich w as im plicit in Peano's form ulation). A xio m s 18 and 19 are w h at  

m a y  be called "recursion equations' defining the function + ,  and A xiom s  

20 and 21 are the lik e for the function *.

F o r our abbreviation s “a ^ b "  and ""1", “ 2” , ""3", . . . ,  see § 17.
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T h e o r e m  25. (A rithm etic laws.)

* 1 1 7 . b (a + b ) + c = a + ( b + c ). *1 2 1 . b (ab)c= a(bc).
* 1 18 . b a ’+ b = ( a + b y . *12 2 . b a ’b = a b + b .
* 119 . b a + b = b + a . *12 3. b a b = b a .

*120 . b a (b Jr c )= a b - { -a c .
(A ssociative, co m m u ta tiv e  and d istribu tive law s for +  and *, w ith  lem m as  

used in p ro vin g the com m u tative laws.)

*12 4 (A xiom  18). b a -\-0 = a . *12 5  (A xiom  20). b a -0 = 0 .
*12 6 . b a -b 1 . *12 7 . b a - \= a .

(D irect law s for 0 and 1.)

*12 8 . V  a + b = 0  Z> a = 0 & b = 0 . *12 9. b a b — 0  3  a = 0  V b = 0 .
*130 . b a + b =  1 3  a = l  V b =  1. * 1 3 1 . b a b = \  3  a =  1 & b = \ .

(Inverse law s for 0 and 1.)

*13 2 . b a + c — b + c  3  a = b . *13 3 . b C t^O D  (iac— bc 3  a = b ) .
(Inverse law s for +  and *.)

Proofs. In  these proofs, since w e now  h a ve Theorem  24 (a), w e do  

n o t need to  in voke th e special cases of it *10 3 — *10 7, as w e did in th e  

proofs for Theorem  23.
* 1 1 7  an d * 1 1 8 . B y  in d u ction  on c  and b , respectively.

* 119. B y  induction on a , using induction on b  in the basis.

*12 2 . B y  induction on b. I n d . s t e p . A ssum e a ' b = a b + b . T h en  

a 'b ' =  a ' b + a '  [A x. 21] =  ( a b + b ) + a f [hyp. ind.] =  ( ( a b + b ) + a ) f [A x. 

19] =  (ab+(b+a)Y [*117 ]  =  (ab+(a+b))' [*119 ] =  ( ( a b + a ) + b ) f [* 1 1 7 ]  

=  ( d b '+ b y  [A x . 21] =  a b '+ b '  [A x. 19].

*128 . I f  h A(0) an d  b A  (x ’) t then  b A (x). F o r from  b A (x ') b y  general 

properties of b, A (x) b A (x '), and so induction on x  applies. T h is rule 

w e call in du ction  cases (on  x). F o r *12 8 , call the form ula to  be proved  

" A  (a, b )” . T o  prove A  (a, b) b y  induction cases on a , it  w ill suffice to  p rove
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A (0, b) and A(a', b). T o  prove these tw o, b y  induction cases on b, it w ill 

suffice to  prove the four form ulas A(0, 0), A (0 , b'), A(a', 0), A  (a', b'), i.e. 

the form ulas

0 + 0 = 0  D  0 = 0  &  0 = 0 , 0 + ^ = 0  D  0 = 0  &  b '= 0,

a'+ 0= 0  D af= 0 & 0 = 0 , a '+ b '= 0 D a ' = 0 &  b '= 0.

T h e proofs of these four are easy, as in each case w e can either refute  

the prem ise of the im plication (using A xio m  15) or prove the conclusion  

(cf. * 10a and *11  §26).

* 130. T h is is established sim ilarly, b u t w ith  an iteration of the argum ent 

b y  cases, so th a t to prove A (x '), we prove A(O') and A (x " ). A ltogeth er, to  

prove A  (a, b)t it thus suffices to  prove the nine form ulas

A (0, 0), A (0, 1), A M " ) ,  A ( l,  0), A ( l ,  1),

A ( U " ) ,  A ( a " , 0), A ( ^ " , l) ,  A{ani b").
T h e  treatm ent of each of the nine is routine (using A xio m s 14 and 15). 

*13 2 . Induction on c, usin g A x io m  14.

*13 3 . L e t " A (a, b y  ab b reviate ac=bc D  a—b. A ssum e c + 0 . W e  

deduce VaA(a, b) b y  induction on bf as follows. (Cf. *95.) Basis. A ssum e  

ac=0c. I3y *12 5  (and *12 3 ), a c = 0 .  B u t c + 0 .  H ence b y  *12 9  and  

propositional calculus, a—0. Ind . step. A ssum e VaA(a,b). B y V-elim ., 

A (a,b). W e shall deduce A(a, b') b y  induction on a. Basis. Assum e  

0c=b'c. B y  * 1 2 5  (and *12 3 , *10 1), b'c= 0; and b y  *12 9 , b '= 0V  c=0. 
B u t b* + 0  b y  A x . 15, and c + 0  b y  h ypothesis; hence - i ( i ' = 0  V c = 0 ) .  

From  this contradiction, b y  w eak -i-e lim . (§23), 0=b'. Ind . step. 
A ssum e a'c=b'c. B y  * 122 , ac+c—bc+c. B y  132*, ac=bc. T h en ce b y  

A(a,b), a ~ b \ and b y  *10 3, a'=b'.
A n other w a y  to  handle *13 3  is to  w ait u n til *13 9  is established, 

after w hich it can be proved sim ilarly to  *14 6b.

W e now  use the abbreviation  “a < b ”  for 3 c ( c '+ t f= £ )  under the  

con ven tion s discussed in §§ 17, 33; and w e read “a > b ” as abbreviation  

for b c a ; “a < ,b ” for a < b V a = b ;  “a > b ”  for b < ,a ; “a < b < c tf for 

a < b &  b c c  (cf. end of § 26); etc.

Theorem 26. (Order properties.)

*13 4 a. b a<b<c*Da<c. *13 4 b . b a< ,b< cO a< c.
*13 4 c. b a<b<cZ>a<c. *13 4 d . b ^ k c D ^ c .

(Transitive laws.)

*13 5 a . b a<a'. *13 5 b . b 0 <a’. *13 6 . b 0 ^ .

* 1 3 7  ( =  * 1 3 7 0). b a=0V3b(a=b'). * 1 3 7 j. b a = 0 V a =  1 V U{a=b").
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* 137,. b a = 0 V a =  I V  a = 2 V 3b {a = b ' " ) .

*138 a. b a < b ~ a < b '. *138 b . b a > b ~ a ^ b '.

(Order properties for 0 and '.)

♦ 139. b a < b  V a = b  V a > b .

*140. b ~i a < a . * 1 4 1 . b a < b  3  - i a > b .

(C onnexity, irreflexiveness, asym m etry.)

*14 2 a . b a + b > a . *14 3a. b  b ^ O  'D a b > . a ,

*14 2 b . \- b ^ O  a + b > a .  *14 3b . b a ^ O  & b >  1 3  a b > a .
*14 3 c. b b 3  a 'b > a ; hence b £ ^ 0  3  lc (c ^ > ^ ).

* 144a. b ~  *145a. b c # 0  3  ~  a c c b c ) .
*144b. b & <b  ~  e. * 145b. b 3  (a < b  ~  ac< b c).

(Inequalities under addition and m ultiplication.)

*14 6 a. b b =£0 3  3 ^ 3 r (a = h q + r  &  r < b ).

*14 6 b. b a = bq1-\-r l  &  r x< b  & a = bq2+ r2 & r 2< b  3  q \ — q% &  rx= r 2. 

(E xisten ce and uniqueness of quotient and remainder.)

P roofs. *13 4 a. Assum e a < b < c , i.e. a < b  & b < c , i.e.

3d (d '-\ -a = b ) &  3e (e ' + b = c ). Preparatory to 3- and &-elim ., assum e  

d ' + a = b  and e ' + b = c . T h en  e ' + ( d f-{-a ) = c , w hich can be reassociated  

as (e ' + d ) f+ a = c . B y  3-introd., l f (f ' + a = c ), i.e. a < c .

*13 4 b . F rom  *13 4 a , w ith  th e help of proof b y  cases (§ 23). (Cf. 

E x a m p le  2 § 38.)

*13 6 . B y  induction cases on a , using *13 5 b .

* 1 3 7 , *1 3 7 *. B y  repeated use of induction cases; or thu s: T h e  

form ula of *1 3 6  is equivalen t to  th a t of *1 3 7 , using A x . 18 and properties  

of == (cf. E x a m p le  4 § 33); and *1 3 7 !, * 1 3 7 2, . . .  follow  successively.

*13 8 a . U sin g 3- and V-elim . and introd. w ith  *13 7 ,  

b a < b ' ~  Q' - \ -a = b ' V 3c (c " + a = b '). U sin g * 1 1 9  and A x s. 19, 17, 14 

and 18, b 0 ’ -\-a = b ' ~  a = b . U sin g * 1 1 9  and A x s. 19, 17 and 14 w ith  

* 7 2  (or 3-elim . and introd.), b 3c (c " + a = b ') ~ a < b .

*13 9 . B y  induction on b , using *13 6  in the basis, and * 1 3 8 a ,b  in th e  

induction step.

*140. Assum e a < a , i.e. 3b (b f+ a = a ). F or 3-elim ., assum e b ' + a = a . 

T h en  b y  * 1 3 2  w ith  *12 4  an d * 1 1 9 , b' =  0, con tradictin g A x . 15. 

Remark. B ecause the con trad ictory form ulas b ' = 0 and b '^ 0  
con tain b free, w e can n ot ca rry out the 3-elim . im m ediately. B u t b y



§40 T H E  F U R T H E R  D E V E L O P M E N T 189
w eak  -i-e lim . (§ 23), w e can first deduce a pair of con trad ictory form ulas  

n ot con taining b  free, e.g. 0 = 0  an d 0=£0.
B y  *14 0 , 1- a — b 3  - i  a < b .
*14 3 b . A ssum e a ^ 0 & / > >  1. B y  <*=£0 w ith  * 1 3 7 , l c ( a = c ') ; a n d b y  ^ > 1  

w ith  *140 , * 141  a n d *  135a, b ^ 0 & b ^ \ ,  an d then ce w ith  * 137x, 3 d ( b = d " ) .  
Assum e (preparatory to  3-elim inations) a —c' and b = d " .

* 144a. From  * 104, *  132, * 117  and *72 .

*14 5a . Assum e c ^ 0 .  Part 1: to  deduce a < b  3  a c < b c .  (Left to  the  

reader.) Part 2: to deduce a c < b c  3  a < b .  Assum e a c < b c .  T o  deduce  

a < b ,  it  w ill suffice b y  cases (V-elim.) from  *13 9  to  deduce a < b  under each  

of three case hypotheses. Case 1: a < b .  Case 2: a = b .  T h en  a c = b c .  
T h is w ith  *14 0  gives - i  a c < b c ,  con tradictin g our assum ption a c < b c .  
B y  w eak -i-e lim ., a < b .  Case 3: a > b ,  i.e. b < a .  T h en  b y  the result of 

P a rt 1, b c < a c ,  i.e. a c > b c .  Th en ce b y  * 1 4 1 ,  - i  a c < b c .
*14 6 a. U se induction on a  (after assum ing b ^ t0). (Proof can also  

be based on * 143c and * 149.)

*14 6 b . Assum e a = b q x+ r 1 & rx< b  & a = b q 2+ r 2 & r2<b. T o  deduce  

qx—q2, it  w ill suffice b y  *13 9 , using cases and w eak —i-elim ., to  deduce  

a contradiction from  qx< q 2 and again from  qx> q 2- A ssum e qx< q 2. F or  

3-elim . from  this, assum e e '+ q x= q 2. N o w  bqx-\-rx =  a =  bq2+ r 2 =  

b(e'+q1) + r 2 =  bq .+ ibe '+ r^ . So r i  =  b e '+ r2 [*132] ^  be’ [*142a] 

;> b  [* 143a]. T h is con tradicts r ^ b ,  b y  *14 0  and * 1 4 1 .  T h e  other  

case is similar. H a v in g  deduced qi= q% , w e ^ a ve a  =  ^ ^ i+ r i =  

w hence r x= r 2 b y  *13 2 .

* §  40. The further development o f number theory. O ur form al 

system  of num ber theory differs from  the inform al th eory in th a t the  

logic is m ade explicit. W e h ave brought our acquain tan ce w ith  th e logic  

to  a stage where the further developm ent of num ber th eory in th e form al 

system  will proceed m uch along lines already fam iliar to  us from  th e  

inform al theory. W e shall not continue syste m a tically  w ith  this d evelop 

m ent, b u t w ill o n ly note several aspects of it, before turnin g to  general 

m etam ath em atical questions abou t the system ,

F o r this section, let x  be a variable, A (x) be a fo rm u la , and y  an d  z be 
variables d is tin c t from  x  an d  each other which are free for  x  in  A (x) an d  do  
not occur free in  A (x).

T h e least num ber p r in c ip le  (or well-orderedness  of the natural num bers) 

says th a t, if there exists a natural num ber x  such th a t A (x ),  then there  

exists a least such x , call it y. T h e property of y  can be expressed in th e
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form al sym bolism  b y  A (y) &  V z ( z < y  3  -iA (z )), or in an equivalen t  

form  using:

*14 7 . b z < y  3  -iA (z )  ~  A(z) 3  y  < z .

(B y  *13 , *139 .) W e establish first:

*14 8 °. b 3 y [y  < x  &  A (y) &  V z ( z < y  3 -iA (z))] V Vy[y<x 3  -iA ( y ) ] .  

(Law  of the excluded m iddle, and least num ber principle, 

for an initial segm ent of the natural numbers.)

*14 8 a. A ( x ) V - iA ( x )  bx 3 y [ y < x  &  A (y) &  V z ( z < y  3 - i A ( z ) ) ]  V  

V y [ y < x  o  - iA ( y ) ] .

*14 8 b . |- - i “ i { 3 y [ y < x  &  A (y) &  V z ( z < y  D -iA ( z ) ) ]  V 

V y [ y < x  D  i A ( y ) ] } .

(Intuitionistic versions of the same.)

P roofs. *148. B y induction on x, thus. L e t the form ula of *14 8  be  

ab b reviated  “ P ( x ) V Q ( x ) ” . B a sis . From  *136 , *140, *14 1 and *10 a, 

b Q(0), w hence b P(0) V Q(0). I n d . step . Assum e P(x) V Q(x). W e deduce  

P (x') V Q (x') thence b y  cases (V-elim.). F or Case 1, P(x) b P (x') b P (x')  

V Q (x'), using *13 5 a , *134 a. F o r Case 2, we use subcases from  A (x) V  

- iA ( x )  (*51). F o r Subcase 2a, Q (x), A (x) b P (x') b P (x') V Q (x'), using  

*13 5 a . F or Subcase 2b, Q (x), - iA ( x )  b Q (x') b P ( x ') V Q ( x ') ,  using * 138a.

*148a. Since *51 is not available in the in tuitionistic system , w e now  

use V x(A (x) V - i A ( x ) )  as an assum ption form ula T  for the induction.

*14 8 b. From  A xio m  Schem a 6, b y  3 -e lim . and contraposition tw ice  

(*13, *12 ), A  3  - i - i C ,  B  3  ~i —»C b A V B 3 - n C  b  n n ( A V B )  

3  - i  C. Thence b y  the 3 -r u le s : / /  T, A  b i i C  and  T, B  b "i C  

(w ith  the free variables held constant for A  and  B , respectively), then F, 
—i (A  V B) b “ i “i  C. T h u s we ju stify  a m odification of proof b y  cases, 

in w hich the case form ula A  V B  and the conclusion C are d ou b ly negated. 

H ence, if w e replace th e induction form ula in the proof of *14 8  b y  

- i  -i(P (x )  V Q(x)), and the other case form ula b y  - i - i ( A ( x )  V -iA ( x ) )  

(which is provable in tu ition istically  b y  * 5 la), the induction again w orks  

(using *49a), and g ives us *148 b.

N o w  we can infer the least num ber principle.

*14 9 °. b 3 xA (x) 3  3 y[A (y) &  V z ( z < y  3  -iA (z ))].

(Least num ber principle.)

*14 9 a. A ( x ) V - iA ( x )  p  3 xA (x) 3  3y[A (y) &  V z ( z < y  3  -iA (z ))].

*14 9 b . b " i “ i{3 x A (x ) 3  3y[A (y) &  V z ( z <  y  3  iA ( z ) ) ] } .

(Intuition istic versions of the least num ber principle.)
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P roofs. *14 9  (or *149a). Assum e 3 x A (x ); and for 3-elim ., A (x). 

S u b stitu te  x ' for x  in *14 8  (or in the conclusion of *148a) to ob tain  

P ( x ') V Q ( x ') .  Case 1 : P (x '). Thence 3 y[A (y) &  V z ( z < y  3  -iA (z ))].  

Case 2: Q (x'). Thence w ith  *13 5 a , - iA ( x ) ,  con tradictin g A (x). B y  w eak  

-i-e lim ., 3y[A (y) &  V z ( z < y  D  -iA (z ))].

*14 9 b . U sin g instead *14 8 b  and the m odification of proof b y  cases, 

3xA (x) D  - i - i3 y [ A ( y )  &  V z ( z < y  D  -iA (z ))] . N o w  use *6 0 h ,g .

O ther consequences of * 148a a r e :

*150 . A ( x ) V - iA ( x )  |-x 3 y [ y < x  & A (y)] V - i 3 y [ y < x  &  A (y)].

* 1 5 1 .  A ( x ) V - i A ( x )  hx V y [ y < x  Z) A (y)] V - i V y [ y < x  D  A (y)].

(Of interest for the in tuition istic system .)

P roofs. *15 0 . From  *14 8 a, A ( x ) V - iA ( x )  hx 3y [ y < x  &  A (y)] V 

V y [ y < x  D -iA ( y ) ] . B u t b V y [ y < x  D - iA ( y ) ]  ~  V y - i [ y < x  &  A (y)|  

[*58b] ~  —i3 y [ y  < x  &  A (y)] [*86].

* 1 5 1 .  Sim ilarly, ap p lyin g *14 8 a  to i A ( x ) ,  and replacing n n A ( x )  

b y  A (x) (since b y  *49c, A (x) V - i  A (x) b -v -iA ( x )  ~  A (x)).

A s an exam ple of a num ber-theoretic theorem  requiring some further  

concepts, w e shall treat E u clid 's  theorem  th a t there exist in fin itely  m a n y  

prim e num bers. T h is m a y  be expressed b y  sayin g th a t to  a n y  num ber a, 
there is a prim e greater th an  a. In  fact, there m ust be a prim e betw een  

a + 1  and a ! -f 1 , inclusive, b y  the follow ing reasoning. E v e r y  p ositive  

integer n <  a  divides a!. H ence none of them  excep t 1 d ivides a \ + 1 . 

B u t a! + 1 >  1 ; so it is, or has as factor, a prim e. T h is prim e is betw een  

a  + 1  and a ! + 1 , inclusive.

T h e  tw o cases m a y  be com bined b y  noting th a t the least divisor of 

a ! + 1  greater th an  1 is a  prim e greater than  a . A lso the reasoning holds  

good using in place of a ! a n y  com m on m ultiple of 1 , . . . ,  a.
P rep aratory to the form al treatm en t of E u clid 's  theorem , w e now  

introduce “ a \b "  (read “a  divides b ” or “a  is a factor (divisor) of b ") 

as abbreviation  for 3c ( a c = b ) .  W e can show:

*152. b a\ab . *153. V a\a . *154. b a\b  & b\c  3  a\c.
*155. b a > \  D -*(a \b  & a \b ') .  *156. b b ^ O  D (a\b  3  0 < a < b ) .

(Properties of |.)

(Hints: F or *15 5 , use *1 3 7 !, *14 5 a  (with * 135a), *13 2 , A x . 15. F or *15 6 ,  

use *143a.) N e x t w e introduce “ Pr(tf)" (“a  is prim e") as ab b reviation  for 

a >  1 &  - i3 c ( l  < c < a  &  c\a). T h en  E u clid 's  theorem  is expressed in the  

form al system  b y  the form ula lb (P r (b )  &  b > a ) .
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A  d ifficu lty  for form alizing the foregoing proof is th a t the system  

has no term  to  express the function a i  W e avoid  this b y  estab lish in g:

♦ 157. b 3 d [ d > 0 & V b { 0 < b < a  3  b \d )} .
(E xisten ce of com m on m ultiples of 1 , . . . ,  a.)

(Proof b y  induction on a. C all the form ula “ 3dA (a , d ) ” . For the basis, 

h A(0, 1). For the ind. step (preparatory to 3-elim .), A( a ,d )  b 
A (a ', da').)  N o w  assum e in preparation for 3-elim .,

(1) d > 0  & V b ( 0 < b < a  3  b \d ) .
T h e variable d  governed b y  this form ula then has the role of a !; m ore 

precisely, it m a y  represent under the interpretation a n y  com m on m u ltip le  

of 1, . . . ,  a.
B y  ( 1), *14 4 a  and *15 3 , d ' >  1 & d '\d '.  H ence 3 e ( e > l & c \d ') .  B y  the  

least num ber principle (*149),

l b [ b > \ & b \ d ' & V c ( c < b  3  - i ( c > l  & c\d '))] .  Assum e, for 3-elim .,

(2) b >  1 &  b \d '  &  V c ( c < b  3 - i ( c > l  & c \d ')) .
Assum e \ < c < b  & c\b. From  c < b  b y  (2), - i ( c > l  &  c \d ' ) ; b u t from  

l < c ,  c\b , b \d ' (from (2)) and *154 , c > l  &  c\d'. B y  - i -  and V -introd., 

V c - \ ( \ < c < b  &  c \b ) ; w hence b y  * 86 , - i 3 c ( l< e < i>  &  c\b). U sin g also 

b >  1 from  (2), Vv(b).
B y  (2), b > \  & b \d '.  H ence b y  *15 5 , ~ ib\d . H ence b y  (1), b > a .

B y  & - and 3-introd., 3b(P r(b)  &  b > a ) .  Since this form ula does not 

con tain b  or d  free, b y  3-elim . the assum ptions (2) and (1) are discharged. 

T h is com pletes the proof of E u c lid ’s theorem  in the classical system .

T o  prove it in the in tu ition istic system , using *14 9 a  instead of *14 9, 

it rem ains to establish ( e > l  &  e\d') V - i ( e > l  &  e\d'). F or this purpose, 

w e first esta b lish :

*158 . b &—b V “ ia = b .  *15 9 . b a < b  V - i a < b .
*160. b a\b 3c ( c < b  &  a c = b ) .

(For use in the in tuition istic treatm ent of E u c lid ’s theorem .) 

(Prove *15 8  and *15 9  b y  * 1 3 9 — * 1 4 1 ;  *160  sim ilarly to *156.) T h en  we 

prove successively e > \  V - i e > l  (by *159), e\d ' V - ie \d '  (by *160, *138a, 

*150, *158), and ( e > l  & e\d') V - i ( e > l  &  e \d r) (thence b y  R em ark

1 (b) § 29 and Theorem  3 § 25). T h u s, in tu ition istically  as w ell as classi

cally-:

* 1 6 1 . b 3b'(Pr(b) & b > a ) .  (E u clid ’s theorem .)

T h e process of recognizing th a t the proofs in an inform al theory can  

be form alized in a giv en  form al system  is one of continual an alysis and  

stereo typ in g of argum en ts w hich recur in the inform al theory, to  keep
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pace as the th eo ry develops w ith  the increasing condensation of the in

form al reasoning. W e a tte m p t to  recognize successively these typ e s of 

inform al argum ents as being form alizable, and we m a y  record the results 

we thus obtain as derived rules for the form al system . T h is is v e ry  sim ilar 

to the sem i-form al process of developing an inform al theory itself from  

e x p licitly  stated  p o stu la te s; b u t here we h a ve gone further b a ck  to  

postulate the logical as w ell as the (in the ordinary sense) m ath em atical 

principles.

Inform ally, we h ave used m ath em atical induction not on ly in the sim ple  

(or ordinary) form, b u t also in a m odification called ‘course-of-values  

induction ' (cf. § 7 including E x a m p le  2, the proof of Theorem  1 § 21, etc.). 

I t  is of interest now to recognize th a t in the form al system  this m od

ification can be derived from  the sim ple form  of induction w hich is 

p ostu lated  for the system . W e shall state  it as a theorem  schem a; the  

m ethod, of form ulating a rule on the basis of the schem a has been suf

ficie n tly  illustrated on sim ple induction (cf. A xio m  Schem a 13 in § 19 

w ith  the induction rule in § 38).

In  the first schem a *16 2 a, the expressions A(0) and  

V x [ V y ( y < x  D A (y)) 3  A (x')] form alize the basis and induction step, 

re sp e ctiv e ly ; in the m ore com pact form *16 2 b , the tw o are brough t  

together in the single expression V x [ V y ( y < x  3  A (y)) D A (x)].

*162a. b A(0) &  V x [ V y ( y < x  3  A(y)) 3  A (x')] 3  A (x).

*16 2b . b V x [ V y ( y < x  3  A (y)) 3  A(x)] 3  A (x).

(Course-of-values induction.)

P roofs. *16 2 a. A ssum e A(0) &  V x [ V y ( y < x  D A(y)) 3  A (x ')], deduce  

V y ( y < x  3  A(y)) b y  sim ple induction on x, and infer A (x) b y  V -elim .

Som etim es inductions require a double basis; i.e. w e establish as the  

basis A(0) and A( 1), and then for the induction step infer A(x") from  the  

tw o preceding cases A(x) and A(x'). T h is can be treated form ally as a  

course-of-values induction, using cases according as x ' — 1 or x ' > l  

under the induction s te p ; or we can m ake it into a sim ple induction b y  

using A (x) &  A (x ') as the induction form ula. T h is device of using a con

ju n ction  as the induction proposition applies sim ilarly to induction from a 
k-fold basis for a n y  fixed  k>2, and also to the inductive proof of several 
propositions simultaneously.

In d u ctive  argum ents are som etim es presented in the guise of a de
scending induction or proof b y  the method of infinite descent. T h is consists 

in establishing th a t A(x) is false for every  #, b y  show ing th a t if A  (*) is 

true for a n y  x, there is a  lesser num ber for w hich it is also true.
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♦ 163. b V x [A (x ) 3  3 y ( y < x  &  A (y))] 3  -iA ( x ) .

(M ethod of infinite descent.)

♦ 163a. b V x [A (x ) 3  - i in l y ( y < x  &  A (y))] 3  -iA ( x ) .

(A ddition al version of interest for the intuitionistic system .)

P roofs. A ssu m in g th e prem ise of either *16 3  or *163 a, n A ( x )  

follow s b y  a  course-of-values induction.

A nother method. T a k in g  - iA ( x )  as the A (x) of *16 2 b , the result is 

eq u iva len t to  *16 3 a  b y  th e follow ing steps.

b V y ( y < x  3  -iA ( y ) )  3  - iA ( x )  ~  ^ [ V y  ^ i ( y < x  &  A (y)) &  A (x)] [*58b  

twice] ~  A (x) 3  —i V y  —i (y < x  &  A (y)) [*33, *58b] ~

A (x) 3  - i - i 3 y ( y < x  &  A (y)) [♦ 86]. T h en  *16 3  follow s from  *163a.

Proofs of *16 3 a  and *16 3  can also be given  b y  reductio ad absurdum  

from  *14 9  or from  *14 9 b ; and con versely *14 9 b  can be proved b y  

reductio ad absurdum  from  *16 3 a  (using *60h, g). (In each case, the  

form ula of the one is deducible in the intuitionistic predicate calculus  

from  th a t of the other.)

Th ese exam ples suggest th a t the form s of argum entation ordinarily  

encountered in inform al elem entary num ber th eory w ill turn out to  be  

form alizable in our form al system . T h e  lack  of such functions as a l 
rem ains a cause for dou b t (although w e did get around it in provin g  

E u clid 's  theorem ). A tte n tio n  w ill be given  to  this question concerning  

function s in §§ 41, 49, 59, 74, 82.

In § 42 we shall tak e up the question of the com pleteness of the form al 

system . From  the standpoint of the interpretation, this includes w hether  

all the possible reasonings of elem en tary num ber th eory (not m erely  

the com m only encountered ones) are form alizable in the system , a t least  

in so far as th e y  con tribu te to  the proof of propositions expressible in the  

system . W e shall also consider a m ore specific, strictly  m etam ath em atical  

notion of com pleteness.

§  4 1. F o r m a l  c a lc u la t io n . A  form ula A  is sa id  to  be {form ally) 
refu tab le , if —iA  is provable.

A  closed form ula A  (end § 32) is {form ally) decidable, if A  is either  

p rovable or refutable, i.e. if either b A  or b "»A.

T h e  form al num ber-theoretic system  (or a system  w ith  form ation  

rules of a like sort) is said to be {sim p ly) com plete, if every  closed form ula  

A  is form ally  decidable; {sim p ly) incom plete  in the con trary case th a t  

there is a form ally undecidable closed form ula.
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T h e restriction th a t A  be closed is essential here, in order th a t th e  

m etam ath em atical notion of sim ple com pleteness should h a ve  the in

tended significance. Otherw ise, under the gen erality  interpretation of 

the free variables in b o th  A  and -* A ,  the second form ula w ould not e x 

press the negation of the proposition expressed b y  the first (§ 32).

E x a m p l e  1. T h e form ula 2 |a (i.e. 3c(0"-c= tf))exp resses : every  num ber  

a  is even ; and - i  2 |a  expresses: every  num ber a  is not even, i.e. e very  

num ber a  is odd. N either proposition is tru e; and, w e hope, neither  

form ula is provable. B u t V a 2 \a  expresses: every  num ber a  is even ; and  

-y V a 2 \a  expresses: not every num ber a  is even. B y  the classical law  of 

the excluded m iddle, one of the tw o propositions should be true. In  fa ct  

the second is; and the form ula -» V a 2 |a  is provable.

W e did not a p p ly  the notion of sim ple com pleteness to  the propo

sitional and predicate calculi, because the proposition and predicate  

letters h ad the role of free variables for the interpretation (§§ 28, 29, 36, 

37). Sim ple com pleteness is another exam ple of a notion of com pleteness  

w ith  a p ositive criterion (§ 29).

T h e term s 0, O', 0 ", . . . ,  w hich represent the particular natural 

num bers under the interpretation of the system , we call n u m era ls , and w e  

ab b reviate them  b y  the sam e sym bols “ 0” , “ 1” , “ 2 ", . . . ,  respectively, 

as w e use for the natural num bers in tu itive ly  (as in §§ 17, 37). M oreover, 

w henever we h ave introduced an italic letter, such as ‘V \  to designate  

an in tu itive  natural num ber, then the corresponding bold italic  letter*  

" x ” shall design ate the corresponding num eral 0(x), i.e. O'” *' w ith  x  
accents (x >  0) (as in § 37). In  this connection, w e can also use “ x — 1"  

to designate the num eral w ith  x — 1 accents (for x >  0); there is no 

am b igu ity, since we h a ve no form al B u t “ x + 1 ”  designates

0te,+ 0 '.

L e t P (x v . . . ,  x n) be an in tu itive  num ber-theoretic predicate. W e say  

th a t P (x v . . . ,  x n) is n u m eralw ise  expressible  in the form al system , if there  

is a form ula P (x x, . . . ,  x n) w ith  no free variables other th an  the distin ct  

variables x v . . . ,  x n such th a t, for each particu lar n-tu ple of natural 

num bers x nt
(i) if P (x v . . . , x n) is true, then P ( x 2, . . . ,  x n), and

(ii) if P (x l t . . . ,  x n) is false, then f- -i P ( x l f . . . ,  x„).

In this case, the form ula P ( x p . . . ,  x n) nu m eralw ise expresses  the predicate  

P (x v . . . ,  x n) (with the form al variables x v . . . ,  x n corresponding to the  

respective in tu itive variables x v . . . ,  x n).
O ur m etam ath em atical use o f this notion w ill be confined to cases
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w hen there is a  decision procedure for the predicate P ( x v . . x n) (§ 30), 

so th a t for e a c h ^ -tu p le  x v . . x n,
(iii) P (x v . . . ,  x n) is true, or P (x v . . . ,  x n) is false.

U sin g (iii) w ith  (i) and (ii),

(iv) b P ( x l f . . . ,  x w) or b P (X !,. . . ,  x n) ;

thus P ( x 1}. . . ,  xn) is decidable for each x v . . ., x n, or as w e shall sa y  

P ( x 1,. . . ,  x n) is n u m e r a l w i s e  d e c i d a b l e . T h e form ula - i P ( x 1, . . . ,  x n) then  

num eralwise expresses the predicate n ot-P (x v . . . , x n).
T h e notion of num eralwise expressibility gives on ly one of the senses in  

w hich a form ula P ( x 1, . . . , x n) m a y express a predicate P (x l t . . . ,  x n). 
I t  requires more of the d ed u ctive apparatus of the system  than  m erely  

th a t P ( x 1?. . . ,  x n) should express P (x v . . . ,  x n) under the interpretation of 

the sym bolism  (with the nam e form interpretation for x v . . x n, § 31), 

w hich after all requires nothing d ed u ctively. It does not require th a t  

form ulas expressing various general properties of the predicate should  

be form ally provable.

E xam ple  2. T h e form ulas 3c (c '-\ -a = b ) and 3c (a + c ' — b ) each e x 

press a < b  (with a , b  corresponding to  a , b )  under the m eanings of 

the form al sym bols, as we could see b ack in § 17 before w e knew  an yth in g  

about th e d ed u ctive rules.

T h e first form ula 3c (c '-\ -a = b ) (which is the one w e picked for our 

perm anent abbreviation §§ 17 ,3 9 ) num eralwise expresses a < b
in the form al num ber-theoretic system , and even in the system  w ith ou t  

th e induction schem a (or A xiom s 20 and 2 1), as we now establish.

F o r (i), w e m ust show th at, if a  and b  are an y tw o natural num bers  

such th a t a <  b , then b 3 c ( e '+ a = 6 ) .  For illustration, let a  =  3, 

6 =  5. N o w  b 0 " + 0 '"  -  ( 0 " + 0 " ) ' [Ax. 19] =  ( 0 " + 0 ') "  [A x. 19, 

A x . 17] =  ( 0 " + 0 ) " ' [A x. 19, A x . 17 twice] =  0 '" "  [A x. 18, A x . 17 

thrice]. Th u s (ta citly  using *102), b 0" + 0" ,= 0" " '.  B y  3-introd., 

b 3 c ( c '+ 0 /" = 0 " " /), i.e. b 3 c ( c '+ 3 = 5 ) .  A  sim ilar series of steps w ill 

giv e  us b 3 c ( c '+ a = 6 )  for a n y a  and 6 such th a t a  <  6. T o  prove  

this in general, we m a y  first establish as a lem m a b y  inform al induction  

on k th a t for a n y term  t, using A xs. 1 7 — 19 (and *102), b t + 0 (fe)= t (fc).

For (ii) we m ust show th at, if a  and 6 are an y tw o natural num bers 

such “th a t a  is not <  6, then b “i 3 c ( c ' + a = 6 ). If not a  < 6, then  

a  >  6. For illustration, let a  =  3, 6 =  2. B y  applications of A x s. 17— 19, 

e x a c tly  as ab o ve except th a t c ' replaces 0"  (or takin g c ' instead of 0"  as 

th e  t of the lem m a), b c ' + 0 " ' = c " " .  Thence c ' + 0 ' " = 0 "  b c " " = 0 "  

b c " = 0  [using A x . 14 tw ice]. B u t b y  A x . 15, b “i ^ ,=r0- B y
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reductio ad absurdum  (-i-introd.), b c ' + 0 " /= 0 " ;  w hence b y  V -introd.

and *86 § 3 5 , b -i3 c ( c ,+ 0 /" — 0"), i.e. b “i3 c ( c '+ 3 = 2 ) .  Sim ilarly for 

an y other a and b such th a t a >  bt b c(c'-\-a=b).
T h u s 3c(c'+a=b) num eralwise expresses a <b  in the form al system  

w ith ou t A xio m  Schem a 13. B u t we cannot exp ect th a t in this system  

form ulas expressing general properties of < ,  such as those of *13 4 a —  

146b (with “a < b ” as abbreviation  for 3c(c'+a=b)), w ill be provable, 

except in a few  cases (e.g. *135b ).

T h e other form ula 3c(aJr c,=b) (which b y  * 1 1 9  is equivalent to  

3c(c'+a=b) in the full system  w ith  A xiom  Schem a 13) seem ingly  

does not num eralwise express a< b  in the system  w ith ou t A xio m  Schem a

13. O f course it does in the full system  (or even w ith ou t A xio m  Schem a 13, 

provided * 118 or * 119  is supplied as an axiom ).

T h e num bered results of this section (beginning w ith  *(164)) refer pri

m arily to the full num ber-theoretic system  (as throughout this ch apter). 

B u t in fact for them  w e need no new applications of the form al induction  

rule (or A xio m  Schem a 13), provided certain particular form ulas previous

ly  proved b y  m eans of it are available. More precisely, w e can get along  

here w ith  the predicate calculus, the particular num ber-theoretic axiom s  

14 —  2 1 , the replacem ent property of equ ality  w hich depends on h avin g  

in addition on ly *10 4— *10 7 § 38, and * 13 7  (or *136) § 39, except in a  

few cases which we w ill keep track of and list at the end of the section. 

(This subsystem  of the full system  w as singled out b y  R aphael Robinson, 

1950 ab stract*, in a connection to be discussed in §76.)

The predicates
*(164) a=b, *(165) a< b
are numeralwise expressed by the respective formulas a = b  and a <b, 
i.e. lc (c '+ a= b).

P roofs. *(165). B y  E x a m p le  2; or (in the full num ber-theoretic  

system ) using *13 5a, *134 a, *140, *141.

If x  is a variable, A (x) and B(x) are formulas, k is a natural number, 

y  is a variable distinct from x and free for x in A (x) and not occurring free in 
A (x), and t is a term not containing x  and free for x in A ( x ) :

*166. A(0), A( l ) ,  . . . , A ( f c - l )  b V x ( x < *  D  A(x)).

*166a. A(0), A( l ) ,  . . . ,  A (k )  b V x ( x < f t  D  A(x)).

*16 7 . V x ( x < fc  D A(x)) b A (i) for i =  0, 1 , . . . ,  k—\.
*16 7 a. V x (x < fe  D  A(x)) b A(i) for i =  0, 1, . . k.
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*168. A (t) b V x [ x > t  D 3y ( y < x  &  A (y))].

*16 9 . V x [ x < t  D A (x)], ¥ x [ x ^ t  3  B(x)] b V x [A (x ) V B ( x ) ] .

W hen k  =  0, the list A(0), A ( 1 ) , . . . ,  A (fe— 1) of assum ption form ulas  

for *16 6  is e m p ty, and there are no A (i)'s  for *16 7 .

P roofs. *166. If w e can show th a t A(0), A( l ) ,  . . . ,  K { k — 1), x < k  
b A (x ), then * 166 will follow b y  D - and V-introd. B y  * 137* (or v ia  its proof, 

fr o m * 1 3 7 o r *136 ), b x = 0 V x = l  V . . .  V x = f c - 1  V x = *  V 3 y ( x = y (* +1)). 

A cco rd in gly  b y  V-elim. w ith  w eak -i-e lim . and 3-elim ., it w ill suffice to  

deduce either A (x) or a contradiction from  A (0), A( l ) ,  . . . ,  A (ft— 1), 

x < k  w ith  each of x = 0, x = l ,  . . . ,  x = f e — 1 , x = fe ,  x = y (/H1) in turn. 

B u t (using now  the inform al presentation, beginning § 38) from each of 

x = 0, x = l ,  . . . ,  x = k — 1 w ith  the corresponding one of A (0), A( l ) ,  . . . ,  

A(fe— 1), w e obtain A (x) b y  replacem ent (Corollary 2 Theorem  24 §38). 

From  x = k  w ith  x < k  b y  replacem ent, k < k ,  con tradicting - i f e c f e  w hich  

is provable b y  *(165). From  x = y (A:+1) and x < f e  b y  replacem ent, y ik+1)< k ,  
i.e. 3 z ( z '+ y (A;+1)= fe). Assum e (for 3-elim.) z fJr y {k+l)= k .  Thence b y  k - \- \  
applications of A x . 19 (w ith some applications of A x . 17), (z '- \-y ){k+1)= k ;  
w hence b y  k  applications of A x . 14, ( z ' + y ) ' = 0, con tradicting A x . 15. (Cf. 

the rem ark in the proof of * 140 § 39.)

*16 7 . Since i  < k, b y  *(165) b i<k.
*16 9 . U sin g cases from  *139 . Remark. W e require *13 9  on ly w ith  t  

su b stitu ted  for b. W h en  t  is a num eral fc, this form ula a < k V  a = k  
V a > k  can be proved from  * 1 3 7  or *13 6  sim ilarly to *166. (Use *(165) 

in the first k  cases. F or the & + 2-nd case, a — b {k+1) =  (b'){k) =  (b’+ 0 ) (k) 
[Axs. 18, 17] =  b ' + k  [Axs. 19, 17].)

A lth o u g h  thus each of the form ulas a < 0 V a = 0 V a > 0 , a <  1 V # =  1 
V # > 1 , a < 2 V  a = 2 V  a > 2 ,  . . .  is provable in the system  lackin g A x io m  

Schem a 13 (and even A x s. 14, 15, 20, 2 1 ) but h avin g the form ula of * 1 3 7  or 

* 136 as additional axiom , we h ave no ground for believin g th a t the form ula  

a < b  V a = b  V a > b  of *13 9  itself is provable in th a t system .

T h e rem ainder of this section m ay be postponed, if the reader prefers, 

until ju st before § 49.

U nder the interpretation of the form al sym bolism , a num ber-theoretic  

fu n ction  y {x 1}. . . ,  #n) is expressed b y  a term  t ^ , .  . . ,  x w).

E xample^ . T h e function (a + 1)2 is expressed under the inter

pretation  b y  the term s (a')-(a'), a a + ( 2 a + \ ) t etc.

T h e only num ber-theoretic functions w hich can be thus d irectly  e x 

pressed are the polynom ials. H ow ever, we shall find th a t it is possible
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to paraphrase m a n y propositions in w hich other num ber-theoretic fu n c

tions occur, so th a t those propositions becom e expressible in th e form al 

sym bolism  despite the lack  of term s expressing the functions them selves.

F o r let f ( % , . . . , x n) be a given  num ber-theoretic function, an d let 

P (x l f . . x nt w )  be the predicate y (x l t . . x n) = w ,  w hich w e call the  

representing predicate  of the function <?(xv . . . ,  #n). I f  th e predicate  

P (x v . . %n ) w ) is expressed in the system  b y  a form ula P ( x x, . . x n, w),  

and C(x) is a predicate expressed b y  C(x), then C(cp(xv . . . ,  x n)) is expressed  

b y  3w (P (x1, . .  . , x n,w) & C (w )) (and also b y  V w ( P ( x x, . . . , x n, w) D  C(w))).

T h is suggests th at, if the representing predicate of a fu n ction  is expres

sible in the system , we can hope to be able to express and develop the  

theory of the function in the system  m uch as th ou gh  a term  for the  

function itself were available. A  m etam ath em atical in vestigation  to  

confirm  this conjecture w ill be undertaken later (§ 74).

W e seek some inform ation now  (and in § 49) on the question for w h a t  

functions the representing predicates are expressible, or briefly, w h a t  

functions are 'representable'. T h u s far w e h ave been ta lk in g o n ly  ab ou t  

the interpretation of the sym bolism , b u t p resen tly we w ill introduce a  

notion for the representation of functions analogous to  'num eralw ise  

expressibility' for the expression of predicates.

T h e necessary and sufficient condition th a t a predicate P (x v . . . ,  x n> w) 
be the representing predicate of some (single-valued) function cp(#x, . . .  ,x n) 
is th a t for each w-tuple x v . . . ,  x n there exists a unique w  such th a t  

P ( % , . . . ,  x n, w). W hen this condition holds, the function <p(xv  . . . , x n) 
represented can be defined 'descriptively' from  the predicate P {x l f . . . ,  

x nf w) as the w  such that P {x l f . . . ,  x ni w).
W e now  introduce “ 3 !x A (x )'' under the usual stipulation s on the letters  

(beginning § 40, and end § 33) as abbreviation  for 3x[A (x) &  V y(A (y) D  

x = y ) ]  (read "th ere exists a unique x  such th a t A (x )” ). T h en  if 

P (x v . . . ,  x n, w) is expressed b y  the form ula P ( x x, . . . ,  x n, w), th e con

dition th a t P (x v . . . ,  x n, w) be a representing predicate is expressed b y  

the form ula V x x. . .V x n3 !w P (x x, . . . ,  x w, w), or sim p ly b y  3 !w P (x x, . . . ,  

x n, w) w hen x v . . . ,  x n h ave the gen erality  interpretation (§ 32).

I f  x ,  y  an d  z are d istin c t variab les , A(x) is  a fo rm u la , t, r an d  s are term s , 

T  are form ulas not con ta in in g  x  free, y , z, r, s and  t  are free for x  in  A (x), 

z and x  do not occur in  t, an d  y  and  z do not occur free in  A ( x ) :

*170 . I f  T , A (t), A (x) b t = x  w ith  the free variab les held constant for  
A (x), then  T, A(t) (- 3!xA (x).

* 1 7 1 .  b 3 !x ( t = x ) .
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* 17 2 . A(r), A(s), 3!xA (x) b r = s .

*1 7 3 . r ^ s ,  A(r), 3!xA (x) b n A (s ).

(Properties of 3!.)

*17 4 a . A (t) &  V z ( z < t  D -iA (z ))  b 3!y[A (y) &  V z ( z < y  D -iA (z ))].  

*17 4 b . b 3 y[A (y) &  V z ( z < y  D n A (z))]  ~  3!y[A (y) &  V z ( z < y  D ~iA(z))]. 

(Uniqueness of the least x  such th a t A(x).)

P roofs. *17 4 a . Using *170 , *139 . Cf. the rem ark in the proof of *169.

A n  in tu itive num ber-theoretic function <p(xv . . x n) is said to be  

numeralwise representable  in the form al system , if there is a form ula  

P ( x x, . . . ,  x n, w) w ith  no free variables other than  the distinct variables  

x v . . . ,  x w, w  such th a t, for each particular w-tuple of natural num bers  

x }̂. . . ,  x n,
(v) if <?(xlt . . . , x n) =  w , then b P ( X i , . . x tt, w ),  and

(vi) b 3 !w P (x 1, . . xni w).

In  this case, th e form ula P ( x 1, . . . ,  x n, w) numeralwise represents the  

function <?(xl f . . . ,  x n) (with the obvious correspondence of variables).

Our fin itary  (i.e. intuitionistic) use of this notion w ill be confined to  

cases w hen there is a calculation procedure for the function <p(xv . . x n) 
(§ 30), so th a t the w  of (v) can be found for a n y  given  x v . , . ,  x n (or w ill 

m ake this ta c itly  an hypothesis).

If (p(xv . . . ,  x n) is num eralwise represented b y  P ( x j , . . . ,  x n, w), the  

latter num eralwise expresses the representing predicate P (x l t . . . ,  x n> w) 
of 9 . For from  (v) and (vi), w e can infer th a t for every w,
(vii) if <p(xv  . . . , x n) ^ w ,  then b 1 P ^ , . . . ,  x n, 10),

as follows. T a k e  the w of (v) as the r and the w of (vii) as the s for *1 7 3 .  

U se *(164) to get the p ro v a b ility  of the r ^ s .

W e h ave no ground to  believe th at, conversely, (vii) for every  w  together  

w ith  (v) necessarily im plies (vi).

W e h a ve used th e 3!-notation to  state (vi) com p actly. 3!xA (x) is 

eq u ivalen t to 3 xA (x) &  V x V y (A (x ) &  A (y) D x = y ) ,  in w hich the first 

p art expresses existence and the second uniqueness. T h e existence p art  

for (vi) follows already from  ( v ) ; so w h at (vi) adds is the uniqueness.

In num eralwise represen tability of functions (just as in num eralwise  

exp ressibility  of predicates), w e are lim itin g ourselves to the consideration  

of the values for particular argum ents, in contrast to general properties. 

T h e  questions considered are in this w a y  analogous to com putation al 

questions in inform al arithm etic.

F o r exam ple, we h ave not required in defining 'num eralwise repre-
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se n ta b ility ’ th a t the form ula 3 !w P (x1, . . . ,  x n, w) should be provable  

w ith  x 2, . . . ,  x n as form al variables. T h a t w ould be stronger th an  our 

dem and th a t (vi) hold for e very  x l f . . . ,  xn w ith  % , . . . ,  x n as in tu itive  

variables, w hich w ould follow  from  it b y  substitution (*66  § 32 w ith  xlf. . x n as the t v . . t n). T h a t stronger condition (w ithout (v)) w ill 

be the prerequisite for the theory to be developed in § 74. F or the six  

functions w e consider now, we readily obtain th a t also.

The functions
*(175) a', *(176) a + b , *(177) ab
are num eralw ise represented by the respective form ulas a ' = b ,  a + b —c, a b ~ c .

Proofs. *(176 ) B y  * 1 7 1  and the form  of the representing form ula  

a - \ - b = c ,  (vi) is im m ediate (and even b 3 \c (a -\-b —c)). F or (v), w e m ust 

show th a t for each pair a, b of natural num bers, if c =  a -\-b , then  

b a - \~ b = c .  F o r exam ple, if a  =  2 and b =  3 (then c =  5), w e h a ve  

b a + b = c  (i.e. b 0 " + 0 " '= 0 '" " )  as for (i) in E x a m p le  2.

*(177 ) Sim ilarly. T h e  proof of (v) can be con ven ien tly  arranged as an  

in tu itive  induction on b. In d . step. S a y  c =  ab, d  =  ab' ( =  ab-\-a  =  

c + a ) .  T h en  b obf =  ab-\-a [A x. 21] =  c+a  [hyp. ind., *104] =  d 
[by (v) for *(176 )].

Som e general principles w ill illum inate our treatm en t of the n ext  

exam ples. A  p rim e  form ula is one containing no logical sym bols, i.e. 

here it  is s = t  for some term s s and t.

(A) E ach closed p r im e  form ula  s = t  is  form ally  decidable [and  s = t  

is  provable or refutable according as the term s  s an d  t  express the sam e or 
differen t num bers under the u su a l in terpreta tion  of 0, ', + ,  •). E ach p r im e  
form ula is  num eralw ise decidable.

Proof. U se *(176), *(17 7 ), Theorem  24 § 38, and *(164).

E xample 4. L e t s = t  be 0" /- 0" " + 0 ' = ( 0" '* 0" ) " , i.e. ab b reviated  

3*44-1 =  (3-2)". N o w  h 3 - 4 + l  =  ( 3 - 2 ) " ~  1 2 + 1  =  (3-2)" [since b y  *(177 ),  

h 3 * 4 = 1 2 ]  ~  1 3 =  (3*2)" [since b y  *(176), b 12 4-1 =  13] ~  1 3 = 8  [since 

b y  *(17 7 ), b 3 * 2 = 6 ; and noting th a t 6 ", i.e. (0 " "" )" , i s 8]. B u t b y  *(164), 

b —i 13 = 8 .  H ence b -i3 *4  4- l  =  (3*2)". W e h ave used ta c itly  Theorem  

24 (b) or its C orollary 1 , and *21 § 26, in concluding b y  the chain th a t  

b 3 *4 4-1  = (3 *2 )"  ~  1 3 = 8 ;  and *30 *18 b , or *20 and Corollary Theorem  

6 , in com bining this w ith  b 1 3 = 8  to  infer th a t b ~i3*44-1 =  (3*2)".

(B) L et  P ( x 1#. . . ,  x n) be a form ula  con tain ing free on ly the d is tin c t  
variables  x l f . . . , x n, and su ppose  P ( x 1, . . . , x n) is  num eralw ise decidable
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(<and n u m eralw ise  expresses P {x v . . . ,  x n)). Then: I f  t v . . . ,  t n are term s  
con ta in in g  no variab les {and therefore expressin g  num bers tv  . . . ,  t n),
p ( t i ........ t n) is  decidable {and  P( t 1?. . . ,  t n) is  provable or refutable according
as P { t l t . .  , , t n) is  true or fa lse ) . I f  t v . . t n are term s free for x v . . x n 

in  P ( x 1, . . . ,  x n), P ( t j , . . . ,  t n) is  n um eralw ise decidable.
P roved  like (A), w hich is the special case of (B) for w hich P(xli .. ., xn) 

is x 1= x 2.

(C) A  form ula com posed out of closed decidable form ulas u sin g  only the 
operators  D , & , V, of the p ro p o sitio n a l calculus is  decidable {and whether 
i t  is  provable or refutable can be determ ined by use of the classical 2 -valued  
tru th  tables § 28 tak in g  t an d  f as 'provable' and  ‘refu table', respectively).

B y  L em m a 13 § 29 w ith  Theorem  3 § 25.

(D) H e n c e : E ach form ula  w ithout variables is  decidable. E ach  form u la  
w ithou t qu an tifiers is  nu m eralw ise decidable.

(E) L et  A ( x x, <. . , x n,y )  be a num eralw ise decidable form ula  con ta in ing  
free on ly the d is tin c t variables  x 1#. . . , x n, y ;  and let z  be a variable  
d is tin c t from  x v  . . . ,  x n, y . Then  V y ( y < z  D A ( x 1, . . x n, y)) an d  
3 y (y  < z &  A ( x l l . . . ,  x n, y)) are num eralw ise decidable {and  V y ( y  < z D  
A ( X 1#. . x n, y)) is  provable or refutable, according as a ll of A{xv . . . ,  x n, 0), 

A(x2, . . . ,  x nt 1) , . . . ,  A{xv . . . ,  x w, z — 1) are provable or som e are re fu ta b le ; 

3 y ( y < * &  A ( x l f . . x w, y)), according as som e are provable or a ll are  
refutable). S im ila r ly  w ith  <  in  p lace of < .

Proof (for < ). U se *166, *16 7 , *(165) (also *58 b § 2 7 , *86  §3 5 ).

Consider the division of tw o  integers, a b y  b. F o r exam ple, 13 =  5 * 2 + 3  

where 3 <  5. In  words, w hen 13 is d ivid ed  b y  5, th e qu otien t is 2 and the  

rem ainder is 3. C ustom arily, th e division process, and therew ith  th e  

q u otien t function [afb] and the rem ainder function rm (a, b) are defined  

o n ly  for b +  0. T o  avo id  the trouble of discussing p artially  defined fu n c

tions now, w e exten d  the definitions to the case b =  0 b y  settin g  

[a/0] =  0, rm(tf, 0) =  a. T h is  preserves the law  a =  b[a/b] +  rm(a, b). 
T h en  b \a  {“ b divides a") if  and o n ly  if rm {a, b) =  0.

The functions
*(178) [ a f b l  *(179) rm (a ,b )
are nu m eralw ise represented by respective form ulas Q {a, b , cj) an d  R {a, b t r)
such th a t, for a n y  n um erals q  an d  r :
*178a. Q ( a ,b ,q )  |- 3\qQ (a , b, cj). *179 a . R ( a , b , r )  h 3 ! r R M ,  r).
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P r o o f s . *(179) and * 17 9 a . L e t S ( a ,b , r )  be th e form ula  

3q ( q < a  &  a = b q - { - r  &  r < b )  V ( b = 0  &  r = a ) .
T h en  let R (a, b , r) be

S(a, b , r) &  V e ( e < r  3  -iS(tf, A, e)).
N o w  * 1 7 9 a  is im m ediate from  * 1 7 4 a  (with r  as the t).

T o  establish (v) for *(179), consider a n y  pair of num bers a  and 6, and  

let r  =  rm (a, b) and q =  [a, b] . C a s e  1 : b ^  0. N o w  a  =  6g + r ; hence  

b y  (A), a = 6 g -f-r . A lso r  < b \  hence b y  *(165), b r < 6 .  B y  &-introd.

(or (C)), b a = 6 q + r  &  r < 6 .  B u t q <  a; so b y  (E), 

b 3^(gr<a & a=bq-\-r & r < 6 ) . B y  V-introd.,

b 3 g ( y < a  &  a = 6 g + r  &  r < 6 ) V ( 6 = 0  &  r = a ) ,  i.e. b S(a, 6 , r). N ow  

let e be a n y  num ber <  r. T h en  e <  b (so  b y  *(165), b e < 6 ). F or a n y  

num ber p , a ^  bp-\-e  (since q , r  is the on ly pair of num bers w ith  r <  b 
such th a t a =  b q + r ); so b y  (A), b “ i a = 6p + e .  T h ence b y  (C), 

b ~ i ( a = 6p + e  &  e < 6 ). In  particular this holds for p  — 0, 1 , . . . ,  a \  
so b y  (E), b " i3 ^ ( ^ < a  &  a — b q - \-e  &  e c b ) .  B u t b ^  0; hence b y  

*(164), b “ i 6 = 0. B y  *(164), either b e = a  or b i e = a .  C om bining  

these results b y  (C),

b -i(3q (q<a& a= bq+ e& e< b)V  (b=0& e=a))f i.e. b ~iS(a, 6, c). 
T h is w as for a n y  e <  r, i.e. it holds for e =  0, 1 , . . . ,  r — 1 ; so b y  (E), 

b V f(e < r  D  -iS ( « , 6 , e)). From  this and b S(a, 6, r) b y  & -in tro d ., 

b S(a, 6, r) & V e(e< r  3  -iS ( a ,  6, e)), i.e. b R(a, 6, r), as w as to  be  

shown. Case 2 : 6 =  0 . Sim ilarly. (Sum m arizing: From  the form  of 

R(tf, b y r),  b y  (A), *(165), (C) and (E), R(^, b f r) is num eralw ise decida

ble. B y  form al steps paralleling the interpretation, w e v e rify  th a t  

R (a , 6 , r)  is provable rather th an  refutable w hen r  =  rm (a, b).)
N ow  (vi) for *(179) follows b y  su b stitu tin g a n y  num erals a, 6  for a, b 

in *179 a , and using (v).

The function  
*(180) rm(c, (i'-d )')
is  num eralw ise represented by a form ula  B (c, d, i, w) such that, for a n y  
num eral w  :
*180a. B (c, d, i, w )  b 3 !wB(c, d, i, w).

Proof. L e t “ c ” , “ d ” , “ i” , fV ;, " w "  denote c, d , i , q, r, re sp ectively;  

and let B (c, d, i, w) be R (c, (i'-d)', w). U se *179 a , su bstitu tion  (*66), *(179)  

and (B).

T h e  foregoing treatm en t does not g iv e  the stronger p ro p erty  th a t



2 0 4 FORMAL NUMBER THEORY CH. VIII

b 3 !w P (x 1, , . . ,  x n, w) for the form ulas num eralwise representing  

[a/b], rm (a, b) and rm (c, {i'-d)'). H ow ever using *14 6 a and *14 6 b  (w ith  

*12 3 , *140, * 1 41 ,  *14 2 a  and *143a), this can be established also, and  

sim pler representing form ulas can be given  equivalen t to  the former. 

*17 8 b . h Q {a , b> q) ~  3r ( a = b q + r  &  r < h )  V b = q = 0.

*17 9 b . b K (a , b , r)  ~  l q { a = b q - \ - r  & r < b )  V ( b = 0 &  r = a ) .
*180b. b B (c, d, i, w) ~  3 v ( c = ( i '* d ) '* v + w  &  w < (i'-d ) ') .

*178c. b 3 lq Q ( a ,b ,q ) .  *179 e. b 3!rR(tf, b, r).
*180c. b 3!wB(c, d, i, w).

Lemma 18a. The resu lts  *(164) —  *180c an d  (A) —  (E) of th is section, 
excepting  * 169 an d  * 174a when  t  is  not a num eral, * 174b, * 178b, c, * 179b, c  

a n d  *180b, c, hold good for the form al system  lacking A x io m  Schem a  13 but 
h avin g  as a d d itio n a l p a rticu la r  num ber-theoretic ax iom s the form ulas of 
*10 4 — *10 7  an d  of * 1 3 7  or *13 6  (“ R obinson's system ").

§  42. GddePs theorem. From  a result of Presburger 1 9 3 0 , m eta- 

m ath em atical proofs of con sistency and com pleteness, and a decision  

procedure, can be given  for the form al system  w ith  the form ation rule 

and axiom s for • om itted. (Cf. E x a m p le  2 § 79. Presburger deals w ith  

a  classical system  of th e arithm etic of the integers, b u t H ilbert and  

B e m a y s  1934  pp. 359 ff. ad ap t his m ethod to essentially the present clas

sical system , and Joan  R oss has verified th a t the ad ap tation  works for  

th e  in tu ition istic system  as well.)

F o r th e full system  (or system s essentially equ ivalen t to it), these  

questions p roved to be v e r y  refractory. C onsistency proofs b y  A ckerm an n  

1924-5  and v o n  N eum ann 1927  lead to  the result th a t the system  is 

consistent under the restriction on th e use of the induction postu late  

(A xiom  Schem a 13) to  the case th a t the induction variable x  does not  

occur free w ith in  the scope of a  quantifier of the induction form ula  

A (x ). (Cf. Theorem  55 § 79. T h e restriction excludes e.g. our proofs of 

*10 5 , *13 6  and *148.)

T h is situation w as illum inated in 1931  b y  the appearance of tw o  

rem arkable theorem s of G odel “ on form ally undecidable propositions  

of Principia M athem atica and related system s". W e designate the first 

of these theorem s, w hich entails th e other as corollary, as “ G od el's  

theorem ", alth ou gh  it is o n ly one of a  series of im portant contributions b y  

its  author. These tw o theorem s, w hich becam e the m ost w id ely  noted in the  

su b ject, bear on the whole program  and philosophy of m etam athem atics.

T h e  m etam ath em atical results presented thus far in this book were 

reached along p aths m ore or less suggested b y  the interpretation of the
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system . These results of G odel are obtained b y  a kin d of m etam ath em ati- 

cal reasoning w hich goes m ore d eep ly into the structure of the form al 

system  as a system  of objects.

A s  is set forth in § 16, the ob jects of the form al system  w hich w e stu d y  

are various form al sym bols, form al expressions (i.e. finite sequences of 

form al sym bols), and finite sequences of form al expressions. There are an  

enum erable in fin ity  of form al sym bols g iven  at the outset. H ence, b y  th e  

m ethods of § 1 , the form al ob jects form  an enum erable class. B y  spec

ifyin g  a particu lar enum eration of them , and le ttin g  our m e ta m a th em at-  

ical statem en ts refer to the indices in the enum eration instead of to  the  

ob jects enum erated, m etam ath em atics becom es a branch of num ber  

theory. Therew ith, the p ossibility appears th a t the form al system  

should con tain form ulas which, w hen considered in th e ligh t of the  

enum eration, express propositions of its own m etam athem atics.

I t  w ill appear, on further stu d y, th a t this possibility can be exploited, 

and w ith  the use of C antor's diagonal m ethod ( § 2), a  closed form ula A  

can be found w hich, interpreted b y  a person w ho know s this enum eration, 

asserts its own u n p ro vab ility.

T h is form pla A  bears an an alogy to the proposition of the E pim en ides  

paradox (§ 11 ). B u t now  there is a w a y  of escape from  th e  paradox. B y  

the construction of A ,

(1) A  m eans th a t A  is unprovable.

L e t us assume, as w e hope is the case, th a t form ulas w hich  express false  

propositions are unprovable in the system , i.e.

(2) false form ulas are unprovable.

N o w  the form ula A  cannot be false, because b y  (1) th a t w ou ld  m ean  

th a t it  is not unprovable, con tradictin g (2). B u t A  can be true, p rovided  

it is unprovable. Indeed th is  m ust be the case. F or assum ing th a t A  is 

provable, b y  (1) A  is false, and hence b y  (2) unprovable. B y  (intuitive)  

reductio ad absurdum , this gives th a t A  is unprovable, w hereupon b y  

(1) also A  is true. T h u s the system  is incom plete in the sense th a t it fails  

to afford a proof of ev ery  form ula w hich is true under the interpretation  

(if (2) is so, or if at least the particular form ula A  is unprovable if false).

T h e n egation - i A  of the form ula is also unprovable. F or A  is tru e; 

hence ~ iA  is fa lse ; and b y  (2), - i A  is unprovable. So the system  is in

com plete also in the sim ple sense defined m eta m a th em atically  in the last  

section (if (2) is so, or if a t least the particular form ulas A  and - i A  are 

each unprovable if false).

T h e ab o ve is of course on ly a prelim inary heuristic account of G od el's  

reasoning. B ecause of the nature of this in tu itive argum ent, w hich skirts
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so close to and y e t  misses a paradox, it is im portan t th a t the strictly  

fin itary  m etam ath em atical proof of G o d el’s theorem  should be appreciat

ed. W hen th is m etam ath em atical proof is exam ined in full detail, it is 

seen to  be of the nature of ordinary m athem atics. In  fact, if w e chose 

to m ake our m etam ath em atics a part of num ber theory (now inform al 

rather than  form al num ber theory) b y  talk in g about the indices in th e  

enum eration, and if we ignore the interpretations of the ob ject system  

(now a system  of num bers), the theorem  becom es a proposition of or

dinary elem entary num ber theory. Its  proof, while exceed in gly long and  

tedious in these term s, is not open to a n y objection w hich w ould not equ ally  

in v o lv e  parts of tradition al m athem atics w hich h ave been held m ost secure.

W e can give the rigorous m etam ath em atical proof now, b y  borrow ing  

one lem m a from results of the n ext tw o chapters. O ur num bering of the  

lem m as and theorem s corresponds to the logical order.

In m akin g use of the idea of enum erating the form al objects, practical 

considerations d ictate  th a t the indices of form al objects should be  

correlated to the objects b y  as sim ple a rule as possible. W e can m od ify  

the ab o ve heuristic argum ent (inessentially) b y  using, rather than  an  

enum eration in the usual sense, an enum eration w ith  gaps in the natural 

num bers, i.e. a correlation of distin ct natural num bers to the distin ct  

form al objects, not all of the natural num bers being used in the cor

relation. W e call th is a G odel num bering, and the correlated num ber of 

a form al object its G odel num ber. (Som etim es separate Godel num berings  

are given  of the form al sym bols, of the form al expressions, and of the  

finite sequences of form al expressions. If  th a t is done, then w hen one 

speaks of a num ber as the G odel num ber of a sym bol, or of an expression, 

or of a sequence of expressions, in  each case a different correlation is being  

referred to.)

R e la tiv e  to a n y  specified G odel num bering, for a n y  n  w hich is the G odel 

num ber of a form ula, let “ A n” designate the form ula. (For other n ’s, 
w e need not define A w.) W e m a y  w rite this form ula A n also as “ A n{a)” f 
show ing the free variable a  for use w ith  our substitution notation (§ 18).

Lemma 21. There is  a Godel num bering of the form al objects such that 
the predicates A  (a, b) an d  B (a , c) defined as follows are num eralw ise ex
pressib le  (§41)  in  the form al system .
A {a f b): a is the G odel num ber of a form ula (nam ely A a(^)), and b is the  

G odel num ber of a proof of the form ula A a(a).
B (a , c): a is the G odel num ber of a form ula (nam ely A a(a)), and c is the  

G odel num ber of a proof of the form ula - i  A a(a).
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N o w  let A  (a, b) and B  (a, c) be particular form ulas w hich num eralw ise  

express the predicates A  {a, b) and B (a ,c ) ,  respectively, for the G odel 

num bering given  b y  the lem m a. T h e tw o form ulas A  (a, b ) and B  (a, c) 
could a ctu a lly  be exhibited, after w e h ave the proof of the lem m a (to be  

com pleted in § 52).

Consider the form ula mmyA(a, b) which contains a  and no other  

variable free. T h is form ula has a G odel num ber, call it p ,  and is then the  

sam e as the form ula w hich w e h ave designated “ A 9{a)” . N o w  consider 

the form ula A P(p), i.e.

K ip)-  V/> - iA ( p ,  b),
w hich contains no variable free. N o te  th a t we h ave used C an tor’s diagonal 

m ethod in su b stitu tin g the num eral p  for a in A p(a) to obtain this form ula.

T o  relate this to  the prelim inary heuristic outline, we can interpret 

th e  form ula A v ip )  from  our perspective of the G odel num bering as 

expressing the proposition th a t A P(p) is unprovable, i.e. it is a form ula  

A  w hich asserts its own u n p rovab ility.

In  the m etam ath em atical argum ent, the assum ptions of the heuristic  

argum ent th a t the system  should not allow  the proof of either of the  

form ulas A  or - i  A  if false w ill be replaced b y  m etam ath em atical eq u iva

lents. F or the u n p ro va b ility  of A  if false, this equ ivalen t w ill be the (simple) 

con sistency of the system  (§28). F o r the u n p ro va b ility  of - i  A  if false, 

we shall need a stronger con dition called ‘ co-consistency’ w hich w e shall 

now define.

T h e form al system  (or a system  w ith  sim ilar form ation rules) is said  

to be co-consisten t, if for no variable x  and form ula A (x) are all of the  

follow ing true:

b A (0), b A( l ) ,  b A ( 2), . . . ;  b -« V x A (x)

(or in other w ords if not b o th  b A (n) for every  n atu ral num ber n  and  

b "iV x A (x )). In  the co n trary case th a t for som e x  and A (x) all of A(0), 

A( l ) ,  A(2), . . .  and also -n V xA (x) are provable, the system  is (^-in
consistent.

N o te th a t co-consistency im plies sim ple consistency. F or if A  be a n y  

provable form ula co n tain in g no free variables, w ritin g it  as “ A ( x ) ”  

where x  is a  variable, all of A (0), A( l ) ,  A (2), . . .  are provable (under our 

substitution n o tation  § 18, eaeh of these is s im p ly  A  itself); and hence  

if the system  is co-consistent, -iV x A ( x )  is an exam ple of an unprovable  

form ula (cf. §28).
Theorem 28. I f  the num ber-theoretic form al system  is  {sim ply) con sis

tent, then not b K i p )  ; an d  i f  the system  is  co-consisten t, then not b ^ A P{ p ) .
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T h u s, i f  the system  is  to-consisten t, then i t  is  (sim ply) incom plete, w ith  
A P(p) as an  exam ple of an  undecidable form ula. (Godel’s theorem , in the  

original form.)

Proof th at, if the system  is consistent, then not b A p (p )- Suppose  

(for in tu itive  reductio ad absurdum ) th a t b A P(p), i.e. suppose th a t  

A P(p)  is provable. T h en  there is a proof of i t ,  let the G odel num ber of 

this proof be k. T h en  A (p , k) is true. H ence, since A  (a, b) w as introduced  

under the lem m a as a form ula w hich num eralwise expresses A  (a, b), 
b A (p , k ).  B y  3-introd., b 3 b A (p ,b ) .  Thence b y  *83a, b - iA ( p ,  b). 

B u t this is b ~ iA P(p ).  This, w ith  our assum ption th a t b A P(p ),  con

trad icts the hypothesis th a t the system  is consistent. Therefore b y  re

ductio ad absurdum , not b A  P(p), as w as to  be shown. (We could also 

h a ve con tradicted the con sisten cy b y  using V-elim . to infer b “iA(p , k) 
from  b A P(p).)

Proof th a t, if the system  is oo-consistent (and hence also consistent), 

then not b A P(p). B y  the consistency and the first part of the theorem , 

A  AP) is not provable. H ence each of the natural num bers 0, 1 , 2, . . .  is 

not the G odel num ber of a proof of A P(p );  i.e. A (p ,  0), A (p ,  1), A (p ,  2), 
. . .  are all false. H ence, since A  (a, b) num eralwise expresses A  (a, b),
b - i A ( p ,  0), b ~ iA (p, 1), b “"iA(p, 2) , ___B y  the (^-consistency, then

not b - i  A (p , b). B u t this is not b A P(p), w hich w as to be shown.

W e h ave given  the original G odel form  of the theorem  first, as the  

proof is in tu itiv e ly  sim pler and follows the heuristic outline. Rosser 1936 
has shown, how ever, th a t b y  using a sligh tly  m ore com plicated exam ple  

of an undecidable form ula, the hypothesis of co-consistency can be dis

pensed w ith, and the incom pleteness proved from  the (simple) con

sisten cy alone. Consider the form ula V b [- iA (a , b) V 3c (c <  b & B (a, c))]. 

T h is has a G odel num ber, call it q. N o w  consider th e form ula A Q(q), i.e.

A q( q ) : V b  [-1 A ( g ,  b) V 3c(c <  b  &  B (g , c))].

W e can interpret the form ula A a(g) from  our perspective of the G odel 

num bering as asserting th a t to  a n y  proof of A q(q) there exists a proof of 

“ iA a(g) w ith  an equal or sm aller G odel num ber, w hich  under the h y 

pothesis of sim ple con sistency im plies th a t A a(g) is unprovable.

Theorem 29. I f  the num ber-theoretic form al system  is  (sim ply) con
sisten t, then neither  b A g(g) nor  b A a( g ) ; i.e . i f  the system  is  consistent, 
then i t  is  (sim p ly) incom plete, w ith  A q(q) as an  undecidable form ula. 
(R osser's form  of G odel's theorem.)



§42 godel’s theorem 209
Proof that, if the system is consistent, then not |- Aa(q). Suppose 

that h Aa(q). As before (using q instead of p), A(q, k). Also, under our
hypothesis of consistency, the assumption that |- A„(qf) implies that 
not [- “i A,(qf), i.e. -iA „(q) is unprovable. Hence, in particular, each of 
B(q, 0), B(q, 1), . . . .  B(q, k) is false. Since B {a, b) numeralwise expresses 
B(a,b), therefore b -iB(qr, 0), (- —iB(qr, 1), . . \- -»B{q,k). Hence 
by *166a, b Vc(c<fe D -iB(qr, c)). This with b A(q, k) gives by &- and 
3-introd., b 3/>[A(qr, b) & 'ic{c<,b D -i B(q, c))]. Thence by *58b and 
*86, b 3b[A(q, b) &-*3c(c<:b &B(q, c))]. Thence by *57b (and *70), 
b 3/>-i[-iA(qr, b) V Bc(c<b & B(q, c))]. Thence by *85a, 
b “iV^[-iA(qr, b) V 3c(c<,b & B(g, c))]. But this is b “lAj(qr). Hence as 
before, not b AQ(q), as was to be shown.

Proof that, if the system is consistent, then not b As(qr). Suppose 
that b ~iA„(<jf), i.e. that ~\A„(q) is provable. Then there is a proof of it; 
let the Godel number of this proof be k.  Then B(q,  k) is true. Hence 
1- B(qr, k). By *168, h Vb[b>k  3  3c(c <̂ b & B(q, c))]. Also as before 
(with q instead of p)t h "iA(q, 0), b ">A(q, 1), b -iA(q, k — 1). 
By *16 6 , b V b[b< k  3  -iA(q, b)]. Now by *16 9 , b V/>[-iA(q, b) V 
3c(c^^ & B(q, c))]. But this is b AQ(q), Hence not b n A Q(q), as was 
to be shown.

Observe that we have not shown outright that AP(p)t -iA p(p), Aq(q), 
“i A0(q) are unprovable, but only that if the system is (simply) consistent, 
AP(p)t Aq(q), -I AQ(q) are unprovable, and if the system is ^-consistent, 
-iA p(p) is unprovable.

Consider our demonstration that AP(p) is unprovable, if the system 
is consistent. If a demonstration of the consistency of the system were 
now supplied, prefixing it to the former would complete a demonstration 
that AP(p) is unprovable.

Supposing such a demonstration that AP(p) is unprovable to exist, we 
could, using the representation of the formal objects by Godel numbers, 
express it as a demonstration in informal number theory. We now ask 
whether the latter demonstration could be formalized in the system.

In formalizing it, the formula Aj,(p) would itself be the formalized 
statement of what is demonstrated, i.e. that A„(p) is unprovable. Thus 
a formalized demonstration that AP(p) is unprovable would be a formal 
proof of AP(p). By Theorem 28, such a proof cannot exist if the system is 
consistent.

Thus, if we had an informal demonstration that A ^ )  is unprovable, 
the demonstration would be incapable of being formalized within the
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system , if the system  is consistent. T h e supposed inform al dem onstration  

w as to  consist of tw o parts, first a supposed proof of the con sistency of 

the system , and second the proof we h ave already given  (for the first half  

of Theorem  28) th a t A v(p )  is unprovable if the system  is consistent.

B y  show ing th a t the second part a ctu a lly  can be form alized in the  

system , w e h ave a m ethod of show ing th a t the first cannot be if the  

system  is consistent. T h is gives the n ext theorem . W e shall recapitulate  

this argum ent before sta tin g  th e  theorem .

T h e  assertion th a t the system  is (simply) consistent can be expressed  

in the form al system  v ia  th e G odel num bering variously. L e t C (a , b) be  

(D (a , c) be) the predicate: a  is the G odel num ber of a form ula, n am ely  

A tt, and b is (c is) the G odel num ber of a proof of A a (of - i A a). There  

are form ulas C(a, b) and D (a, c) expressing C (a, b) and D (a , c), respec

tiv e ly  (§52). T h e original definition of consistency in §28  is then rendered  

d irectly  into the form alism  b y  the form ula - \3 a [3 b C (a , b) & 3cD (a , c )]. 
B y  the second version of the definition, and the fa ct th a t - i l = 0  is 

provable (A x. 15), the system  is consistent, if and o n ly  if the particular  

form ula 1 =  0 is unprovable. L e t r  be the G odel num ber of this form ula. 

T h en  A r(r) is the sam e form ula, and consistency is expressed b y  

- i 3i>A(r, b) or V i> -iA (r , b). L e t us call one of these form ulas, at our 

preference, “ Consis” .

T h e assertion th a t A ^ )  is unprovable is expressed, v ia  the G odel 

num bering, b y  - i  A (p , b )} w hich is A v (P)-

T h e in tu itive  dem onstration of the first half of Theorem  28 is a dem 

onstration th a t

(I) {the system  is consistent} im plies { A P(p)  is unprovable}.

It  is now proposed th a t the entire m etam ath em atical dem onstration of

(I) should be form alized in the system , using the G odel num bering, so 

th a t we should then h ave

(II) h Consis D  A P(p).
N o w  assum e m eta m a th em atically  th a t b Consis. T h en  from  (II) we  

should h a ve b y  D -elim ination, b A j,(p). B y  Theorem  28, this is im 

possible, if the system  is consistent. B y  m etam ath em atical reductio ad  

absurdum , this w ould g iv e  the follow ing theorem . (The proof could  

also be based on Theorem  29, since b - i A (q , b) D  A Q(q).)
Theorem 30. I f  the num ber-theoretic form al system  is  {sim ply) con

s is ten t, then not b Consis; i.e . i f  the system  is  consisten t, then there is  no  
consistency proof for i t  by m ethods form alizable in  the system . (GodeFs 

second theorem .)
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T h e proofs of Theorem s 28 and 29 w ill be com plete w hen w e h a ve  

established L em m a 21 in C hapter X . F o r the proof of Theorem  30, there  

w ill rem ain the ga p  to  be filled in passing from  (I) to  (II). T h is is an  

exercise in form alizing an in form a lly  given  proof of considerable length, 

w hich w e shall not ta k e the space to  carry through in this book.

H ilbert and B ern ays 1939  carry it out for a certain form al system  Z u 

(cf. pp. 283 ff., especially pp. 306— 324), and thence infer (pp. 324— 328) 

th a t the theorem  holds also for a system  Z  w hich differs from our classical 

num ber-theoretic system  in  inessential respects (m ainly, in the use of 

predicate variables, cf. end § 37, and in the eq u a lity  postulates, cf. § 73). 

Thence Theorem 30 holds for our classical sy s te m ; and it can be inferred  

to hold for our intuitionistic system  (at least when Consis is Vb  - i A ( r ,  b) 
or -i3i>A(r, b), and A  (a, b) is su itab ly  chosen) b y  use of G odel 1932-3 
(cf. Theorem 60 (b2) § 81 and N elson 1947  pp. 326— 327).

It  m a y  be rem arked th a t this exercise is required on ly for the sake of 

using as the form ula Consis a direct form alization of the original d ef

inition of (simple) consistency or a close equivalent. In tu itiv e ly  A p(p )  
itself expresses an equivalent, v ia  the long in tu itive proof of G odel's  

theorem . F o |  b y  Theorem  28, if the system  is consistent, A P(p)  is un- 

provable, and b y  § 28, if A P(p)  is unprovable, the system  is con sistent; 

and the u n p ro vab ility  of A P(p)  is expressed b y  A P(p).
W h a t is the significance of these results for the proposed program  

of m etam ath em atics? W e certain ly hope th a t the form al system  is 

consistent. If so, then b y  Theorem  29 it is necessarily incom plete. W e  

h ave not succeeded in form alizing inform al num ber th eory com p letely  

exp licitly, so th a t each proposition or its negation is a consequence b y  

e x p lic itly  stated  rules of e x p licitly  stated  axiom s (§ 15).

T a k in g  the supposition of (simple) consistency in its fin itary m eaning,

i.e. if the con sistency is capable of being proved m etam ath em ati- 

cally, then the system  is incom plete also in the sense th at there are 

expressible in it propositions true on fin itary grounds, b u t unprovable  

form ally, three such propositions being expressed b y  A  P(p ),  A Q(q)  and  

Consis.

For the problem  of proving consistency m etam ath em atically, Theorem  

30 has the consequence th a t the m ethods w hich w e m ust trust in the  

proof m ust include some w hich lie outside the collection of the m ethods  

form alized in the system . T h is is not a priori incom patible w ith  the other  

requirem ent th a t the m ethods not include all w hich lie inside, our m is

trust of some of w hich w as the occasion for the form alist project of a t 

tem p tin g the proof. It does pose the challenge to the m etam athem atician
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to bring to bear methods of finitary proof more powerful than those 
commonly used in elementary number theory.

There is a further implication for the completeness and consistency 
problems. Suppose our system is (simply) consistent. Then, as in the 
proof of the second half of Theorem 28, AP(p) is unprovable, but 
h “"iA(p, 0), b ~iA(p, 1), b ""iA(p, 2), . . . .  Thus we have a formula 
A(x) (namely -tA(p, b)) such that b A(0), b A(l), b A(2), . . ., but not 
b VxA(x) (which is AP(p)). Tarski 1933a gives the name ^-incompleteness 
to this situation. If in this situation b ~tVxA(x) (which is -1 Ap(p)), the 
system would be co-inconsistent. The discovery that a system may be 
^-incomplete reveals the possibility that it may be co-inconsistent without 
being simply inconsistent. The system obtained from our system by taking 
“i Ap(p) as a new axiom definitely is, under the assumption that ours 
is simply consistent. To see that this system is simply consistent, we 
observe that if B and -iB were provable in it, then in the original system 
B and -iB would be deducible from -iA p(p) (end § 20); hence by 
-u-in trod., —1—1A P(p) would be provable; and by “i-elim. (or intuitionisti- 
cally by IVa2 3  IVax from Corollary Theorem 17 § 35), AP(p) would be 
provable, contradicting Theorem 28. There are evidently definable still 
higher orders of completeness and consistency.

We don’t want our system to be co-inconsistent, even if it is consistent. 
In particular, if the simple consistency were provable metamathematical- 
ly, then the formula -iA p(p) would under the interpretation express a 
proposition contradicting one that is true on finitary grounds; and in 
case - 1AP(p) were provable, following Hilbert and Bernays (1939 p. 282) 
we should call the system externally inconsistent, i.e. inconsistent with 
respect to the finitary interpretation. Thus a proof of simple consistency 
alone would not secure the formalized mathematics against the possi
bility of establishing something intuitively false. (This was first noted 
by Finsler 1926 in connection with a system that is not formal in our 
sense. Also cf. Godel ig3i-2a.)

Suppose our system is simply consistent. For brevity, call a formula 
“true” (“false”), if it expresses a true (false) proposition under the inter
pretation. Let B(x) be a formula which numeralwise expresses a pred
icate B(x), which it shall express under the interpretation. Then for each 
natural number x, the formula B(x) is provable if and only if it is true. 
The formula VxB(x) is true if it is provable (in view of V-elim.); but not 
in general conversely (e.g. AP(p)). The formula 3xB(x) is provable if it 
is true (in view of 3-introd.); but we have not shown the converse meta- 
mathematically (e.g. 3bA(p, b), from which -iA P(p) follows by *83a,
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and which we thus know to be false, but do not know without assuming 
also ^-consistency to be unprovable).

Thus (cf. § 14) a proof of (simple) consistency would be sufficient to 
justify the use of our classical system for proving “real” statements 
intuitionistically by an excursion through the “ideal”, for “real” state
ments of the forms B(x) and VxB(x), but not so far as we have yet shown 
for those of the form 3xB(x).

Suppose that we add to the system AP(p), A Q(q) or Consis as a new 
axiom, and iterate the whole process, to obtain a succession of systems. 
It can be shown that if these systems are consistent, then the class of 
provable formulas of the form VxB(x) is successively enlarged. G odel 

1931-2 states that the same is true of the systems obtained by admitting 
successively higher types of variables (at least, supposing co-consistency). 
Except that we lack proofs of the appropriate consistency properties, 
this shows (cf. § 14) that successively higher theoretical constructions do 
add to the class of “real” statements of the original sort which are 
comprised. Godel 1936 states also that in the higher systems infinitely 
many of the previously provable formulas have very much shorter proofs.

Thus far we have GodeFs theorem only for our particular formal 
system (except for the last remarks, which refer to a succession of systems). 
The question arises now whether it may not depend on some peculiarities 
of the present formalization of logic, and might be avoided in some other. 
In the next chapters, besides completing the proof of the required lemma 
for Godel's theorem, we shall reach a standpoint from which we can discuss 
these questions for formal systems in general, with the formal system 
studied here as an example (§§ 60, 61).
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Chapter IX
P R I M I T I V E  R E C U R S I V E  F U N C T I O N S

§  43. P r i m i t i v e  r e c u r s iv e  fu n c tio n s . T o  establish the lem m a for 

G odel's theorem , w e shall develop an in tu itive theory about a certain  

class of num ber-theoretic functions and predicates, even tu ally  show ing  

th a t ev ery  predicate of the class is num eral wise expressible in the form al 

system  (§ 49), and th a t the tw o predicates A  (a, b) and B (a , c) of the lem m a  

belong to the class (§ 52). T h is will save us m uch of the labor of a step b y  

step developm ent w ithin the form al system .

E x c e p t for the application ju st described, the theory of these functions  

and predicates w ill be developed indepen dently of the form al system  of 

the preceding chapters. In  this theory, as in m etam athem atics, w e shall 

use on ly fin itary m ethods.

T h e series of the natural num bers

0, O', 0", O'", ....

or 0, 1, 2, 3, . . we  described as the class of the objects generated from  

one prim itive o bject 0 b y  m eans of one prim itive operation ' or + 1 . 

T h is con stitutes an in d u ctive definition of the class of the natural num bers  

(§  6) .
Proof b y  induction, as a m ethod of proving a theorem  T (y)  for all n a t

ural num bers y ,  corresponds im m ediately  to  this m ode of generating the  

num bers (§ 7). D efin itio n  by in du ction  (not to be confused w ith  'in d u ctive  

definition', §§ 6 , 53), also called recursive d e fin itio n , is the analogous  

m ethod of defining a num ber-theoretic function <p(y) or predicate P ( y ). 

First <p(0) or P ( 0) (the valu e of the function or predicate for 0 as argum ent) 

is given. Th en , for a n y  natural num ber y , cp(y') or P (y ')  (the n ext va lu e  

after th a t for y)  is expressed in term s of y  and <p(y) or P (y )  (the value for y ) . 

A n alogou sly, we can conclude th a t under these circum stances the va lu e  

9 (y) or P (y )  of the function or predicate is defined for every  n atu ral 

num ber y .  F o r the tw o parts of the definition enable us, as w e generate  

a n y natural num ber y, at the sam e tim e to determ ine the valu e <p(y) or

P (y)-
217
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T o  exam ine this in m ore detail, let us w rite the pair of equations

to  express the definition of a function <p(y) b y  induction on y , where q 
is a g iven  n atu ral num ber, and yjy> z) is a given  num ber-theoretic function  

of tw o variables.

T h en  for exam ple, the valu e <p(4) is determ ined thus. T o  generate 4, 

w e generate successively 0, 1 , 2, 3, 4. B y  the first equation, the va lu e  

<p(0) shall be the given  num ber q; then b y  the second equation, the va lu e  

9 ( 1) shall be x(0 , f(0)), i.e. (using the valu e 9 (0) already found) x(0> ?)# 
w hich (since x(y* z) is a given  function) is a given  num ber; again the va lu e

9 (2) shall be x0» ?(!)), i.e. x0> x(°> 9))> the value ? (3) shall be x(2> ?(2)), 
i.e. x(2, x ( U  x ( 0 } ?))); and fin ally  the value 9 (4) shall be x(3, 9 (3))> i-e.
x(3>x(2> x0>x(°> ?))))*

T h u s w e h ave a process b y  w hich, to each natural num ber y , on the  

basis of the generation of y  in the natural num ber sequence, a corre

sponding num ber 9 (y) is determ ined. Since a num ber <p(y) is thus associat

ed w ith  y, for each y, a particular num ber-theoretic function 9 is defined  

w ith  these num bers 9 (y) as its respective values.

T h is function 9 satisfies th e equations (1), w hen (1) are considered as 

function al equations in an unknow n function 9 , since e very  particu lar  

equation com prised in (1) (nam ely, 9 (0) = ^ , 9 (0 ') = x ( 0, 9 (0)), 9 (1 ') =  

x( l ,  9 (1)), . . . )  is satisfied in the course of selecting th e successive num 

bers 9 (0), 9 (1), 9 (2) , ___A lso this 9 is the o n ly  function satisfyin g

(1) as function al equations, since the process b y  w hich w e determ ined the  

successive num bers 9 (0), 9 (1), 9 (2), . . .  from  the equations (1) can be  

interpreted as show ing th a t a n y  function 9 satisfyin g the equations m ust 

h a ve the valu es selected.

In other definitions b y  induction, the function 9  defined depends on  

additional variables %%t. . . ,  x nt called param eters , w hich h a ve fixed valu es  

throughout the induction on y.

E xample 1 . Consider in tu itiv e ly  the equations

w hich w e encountered in th e form al sym bolism  as A xio m s 18 an d 19. 

These define the function a + b  b y  induction on b, w ith  a  as param eter, 

an d ' as a previou sly know n function. T h en  th e equations

(i)

r 0+0 = a,
\  a + b '  =  ( a + b y ,

{
a-0  =  0, 

a-b' =  (a 'b )+ a
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define a*b b y  induction on b, w ith  a-\-b  as a know n fun ction ; and

r a° =  lf
\  a b' =  a b-a

define a b b y  induction on b, w ith  a-b as a know n function.

A n  exam ple of a definition of a predicate b y  induction w ill be g iven  

later (E xam ple 2 §45).

W h a t num ber-theoretic functions are definable b y  induction ? T o  m ake  

this question precise, we m ust specify w h a t functions are to  b e tak en  

as know n in itially, and w hat operations, including w h a t form s of definition  

b y  induction, are to be allow ed in defining further functions.

W e shall now select the specifications w ith  a vie w  to obtain in g functions  

definable b y  induction in an elem entary m anner. These functions w ill be  

called 'p rim itive recursive'.

E a ch  of the follow ing equations and system s of equations (I)— (V) 

defines a num ber-theoretic function <p, w hen n  and m  are p ositive integers, 

i  is an integer such th a t 1 <  i  <  n, q is a natural num ber, and Xi> • * •» 

Imp X are given  num ber-theoretic functions of the in dicated num bers of 

variables.

(I) ?(*) =

(II) ?(*!>• *») = ?•

(III) 9 = *<•

(IV) 9 = <MXl(*l. • • • > x n)> • • • > • • • > x n ) ) -

(Va) f 9(0) = q>

l  <p (/ ) = x(y> <p(y))-

(Vb)
r 9 (0, = li>(x 2’ • • • * X„),
I 9  ( y ' ,x 2, . . . , x n) = x(y- < ? { y , x 2l . - . , x n ) , x 2 > - - - > x n )-

((Va) con stitutes the case of (V) for n  =  1 , and (Vb) for n  >  1 .)

A  function is p r im itiv e  recursive , if it is definable b y  a series of ap

plications of these five operations of definition.

T h is definition can be given  in more detail, analogously to  the def

inition of provable form ula for the form al system  (§ 19), sa y  usin g the  

second version, as follows.

W e refer to the ab ove equations and equation pairs (I)— (V) as sche

m ata. T h e y  are analogous to the postulates, w ith  (I)— (III) in the role of 

axiom  schem ata (or m ore strictly, (I) to  a particular axiom ), and (IV) and  

(V) in the role of rules of inference.

A  function <p is called an in it ia l  function , if 9  satisfies E q u a tio n  (I),
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or E q u a tio n  (II) for a particular n  and q, or E q u a tio n  (III) for a particu lar  

n  an d i.
A  function 9  is called an immediate  dependent  of other functions, if 9 

satisfies E q u a tio n  (IV) for a particular n  and m w ith  %v . . . ,  Xm as th e  

other functions, or E q u atio n s (Va) for a particular q w ith  x  as the other  

function, or E q u atio n s (Vb) for a particular n  w ith  <J/, x  as the other fun c

tions.

A  function 9  is called pr im i t iv e  recursive,  if there is a finite sequence  

9 i » - - - , 9 * 1) of (occurrences of) functions (called a p r im i t iv e  re
cursive descr ipt ion of 9 ), such th a t each function of the sequence is either  

an in itial function, or an im m ediate dependent of preceding functions  

of the sequence, and the last function 9 *. is the function 9 .

§  44. E x p l i c i t  d e fin itio n . T h e first problem  of th is chapter is to  

recognize as p rim itive recursive various functions w hich m a y  already be  

know n to  us in other w ays. (Analogously, in stu d yin g the form al system , 

w e deduced from  the axiom s further form al theorem s, and derived rules 

as general m ethods for finding still others.)

T h e schem ata h ave been given  stereotyped forms to sim plify the def

inition of the class of prim itive recursive functions. In  the rem ainder of 

this section, w e shall learn to telescope several applications of them .

Schem a (I) gives the successor function  as one of the in itial functions. 

In  this connection, we designate it as 5 . T h e in itial functions given  b y  

Schem a (II) w e call the constant functions,  and we designate them  as C£. 

T h e  in itial functions given  b y  Schem a (III) we call the ident i ty  functions,  
and w e designate them  as £/?.

Schem a (IV) we call the schem a of def init ion by substi tution.  T h e expres

sion for the am biguous valu e of 9  is obtained b y  su b stitu tin g expressions 

for the am b igu o u s v a lu e s  of Xi»* * •> Xm for the variables of $  (cf. § 10). 

T h e  function 9  defined b y  an application of this schem a w e som etim es  

w rite as S ^ ,  x i >; • Xm)-
A n  explici t  defini t ion  of a function consists in givin g an expression for 

its am biguous valu e constructed sy n ta ctica lly  from  its independent 

variables (with no other variables occurring free) and sym bols for given  

functions, constants, operators, etc. In  particular, we sa y  th a t a  

function 9  is definable explici t ly  from (or is explici t  in) functions  

an d constants ql9. . . 9q99 if an expression for its am biguous  

va lu e <p(xv . . . ,  x n) can be g iven  in term s of the variables x Jf. . . ,  x n, the  

con stan ts ql9. . - 9q» and the functions (cf. E x a m p le  2 § 10).

In  this case 9  can be obtained from  ^ , . . . , ^ 1  b y  a series of applications
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of Schem ata (II) —  (IV). F or Schem ata (II) and (III) introduce each con

stan t and each of the variables % , . . . ,  x n as a function of all the variables  

x v . . . ,  x n ; and then the substitutions used in buildin g up the expression  

for the am biguous value . . ,  xn) all fit the standard form  (IV).

E x a m p l e  1 . Consider the explicit definition

(a) ? (* , 2, y) =  K{x, 7)(y, 0(%)), 2).

Considering x, y  and 2 on the right as each a function of x, z, y ,
<?(x, Z, y)  =  X,(U\{x, z, y), ri{U\{x,  z, y), 0(I/?(*, z, y))),  C\{x ,  z, y)).

Thence we see th a t the follow ing series of applications of Schem ata

(II) —  (IV) can be used to define 9 from £, yj, 0. T h e successive functions  

used are nam ed or defined at the le f t ; and the applications of the schem ata  

are an alyzed at the right. F or exam ple, at Step  5, Schem a (IV) is applied  

w ith n =  3 and m  =  1 and w ith  the preceding functions of Steps 3 and 4 

as the ^ and x  of (IV).

1 . £ —  first given  function.

2 . y] —  second given  function.

3. 0 —  third given function.

4. U \(£ ,  z, y) =  x  — (III), n =  3, i  — 1.

5. Q^x, z, y) =  Q(Ul(x,  z, y))  —  (IV), n =  3, m  =  1 ; 3, 4.

6 . U \{x ,  z , y )  =  y  —  (III), n  =  3, i  =  3.

7. t y { x , z , y )  =  r\{Ul(x,  z, y ) , ^ 1{x, z, y)) —  ( I V ) ,«  =  3, m  =  2; 2, 6 , 5.

8 . C\(x ,  z , y )  =  2 —  (II), n  =  3, q =  2.
9. f ( x , z , y )  = ' C , { U \ { x , z , y ) ,  t y ( x , z , y ) ,  C \ { x , z , y ) )  —  (IV), n  =  3,

m =  3; 1, 4, 7, 8 .

N o te th a t this definition of 9 from £, yj, 0 can be expressed sym b olically  

thus,

(b) 9 =  S»K, U \ ,  S|(y), U l  S>(0, (7?)), C 23).

If C  7], 0 are prim itive recursive, then so is 9 ; and a prim itive recursive  

description 9 ,, . . . ,  9 * of 9 is then . . . ,  £ , . . . ,  7), . . . ,  6, C7j, 0,, U \ ,  C |, 9

where . . . ,  y) ; . . . ,  0 are descriptions of £, 7), 0, respectively.

This use of the id en tity  functions U f  in the analysis of exp licit definition  

is due to Godel 1934 .

Schem a (V) is the schem a of p rim i t i ve  recursion , w ith ou t param eters  

(Va) or w ith  param eters (Vb). W e som etim es w rite the function 9 so 

defined as Rj(x) (for (Va)) or Rn(̂ > x) (̂ or (Vb)). H ow ever in speaking of 

a “ prim itive recursion” , we shall now  understand th a t the application  of 

(V) m ay h ave lum ped w ith  it some steps of explicit definition.



E x am ple  2. T o  an alyze the prim itive recursion for a+ b  (E xa m p le  

1 § 43), first let us restate it w ritin g cp(b, a) for a + b t
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<p(0, a) =  a [=  U\(a) ],
9(6'. «) =  (?(*.«))' [=  x(b> <?{*>■ «).«)>if X(b, c, a) =  c' =  S(t/23(&,c,«))].

T h is fits Schem a (Vb) w hen the right m em bers are expressed as show n  

in brackets. So w e accom plish the definition thu s:

1 . S(a) =  a ' ~  (I).

2 . U\(a) =  a —  (III), n — 1 , i  =  1.
3. U\(b, c, a) =  c —  (III), n =  3, i =  2.

4. X(b, c, a) =  S(U%(b, c, «)) —  (IV ), n =  3, m =  1; 1 , 3 .

H
f 9 (0,«) =  171(a) _

(Vb), »  =  2 ; 2 , 4.
( <p(i', a) =  x(6. 9(*. «). a )

T h is shows th a t a + b  considered as cp(b, a) (i.e. 9  =  },baa+bf cf. 

E x a m p le  3 § 10) is p rim itive recursive, w ith  S, U\, U \t x, 9  as a p rim itive  

recursive description. W e  can ob tain  a+ b  as 9 r(af b) (i.e. =  lab a+b)
b y  three m ore steps. S ym b o lica lly,

X b a a + b =  R2(U\, S?(S,£/f)),

lab a + b  =  Sf(R2(t/J, S?(S, 17®)), U\, V\).
T h is illustrates the general m ethod. B y  the com m u tative p rop erty of 

a + b t 9 x(a, b) =  9 (a, b), so the last three steps could be om itted  here; 

b u t not e.g. in treatin g the recursion for ab.
W e now  use these techniques to  establish the p rim itive recursiveness  

of a series of functions. E a ch  of the functions listed below  a t the left  

is p rim itive recursive. T o  ve rify  this, the reader m a y  recognize, first, 

th a t the exp licit definitions and prim itive recursions exh ib ited  at th e  

right do generate p rim itive recursive functions, and second th a t th e  

function s generated are the sam e as those defined or nam ed at the left.

#1 . a+b. | a + 0  — a,
l a+ft' =  (a+i)'.

#2 . «•&. |f «-0 =  0,
[ a-b' =  a-b-\-a.

# 3 . ab * (also w r itte n : ! 
a exp  b). |r « ° =  l.

[ a6' =  a6>a.
# 4 . a!. jf 0! =  1,

l «'! =  a\-a'.
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# 5 . pd(«) =

predecessor
r pd(0) =  0,

< of a  if a  >  0,
\  pd(a') =  a.

0 if a  =  0.

# 6 . a — b =  j
' a—b if a >  5, r a — 0 =  a ,

0 if a  <  b. \  a — b' —  p d (a — b).
# 7 . min(a,6). m in (a,b) =  b — {b— a).
# 7 a . m in (a l 9 . . . , a n) =

m in ( .. . m i n ^ i n ^ ,  a 2), a3) . . . ,  a n).
# 8 . m ax(a,6). m ax (a, b) =  (a-{-b)— min(a,b).
# 8 a . m ax(a1(. Sim ilarly to  # 7 a .

# 9 . sg(«) =jf 1 if a — 0, Sg(«) =  1 - 0 ,
or <

f sg(0) =  1,

[ 0 if a  >  0. or sg(a)  =  0°, { sg(fl') =  0.
# 10. sg(«) = |

f 0 if a =  0, sg(a) =  sg(sg(«)),
or |

f sg(0) =  0,
[ 1 if a  >  0. orsg(a) =  m in(a, 1), l sg(a') =  1.

# 1 1 . 1 <*-b |. | a—b | =  (a — b)-\-(b—a).
# 1 2 . rm (a,b) (cf. §41).

|  rm(0,6) =  0,

{ rm (a’,b) =  (rm (a,6))'-sg | b—(rm(a,6))' |.

# 1 3 . [*/*]• r [o/b] =  o,
l  [«'/*] =  [«/*] +  sg 1 b—{rm(a,b)Y |.

Remark 1. T h e particular list (I) —  (V) of schem ata for gen erating  

the p rim itive recursive functions (Basis A) is a h a n d y one. If con stants  

be allow ed as prim itive recursive functions of 0 variables, a basis is 

obtained b y  changing (II) to  

(IIB) 9 =  0,

allow ing n =  0 or m  =  0 in (IV), om ittin g (Va), and allow ing n  =  1 

in (Vb) (Basis B). T h is basis em phasizes the fundam ental role of 0 and  

The con stant functions C°q for q >  0 are introduced b y  successive ap

plications of (IV) w ith  n  =  0, m  =  1, 5  as the #  and C q_t  as the x i and  

C q for n  >  0 b y  (IV) w ith  m  == 0, and C q as the #  Sub stan tial reductions  

in the basis for gen erating p rim itive recursive functions h ave been given  

by Peter 1934 (see also D a v id  N elson 1947 P art II) and R ap h ae l R o b 

inson 1947. (It shall be understood throughout the chapter, outside of 

the present rem ark and R em ark 1 end § 47, th a t we are using B asis A.)
§ 45. Predicates, prim e factor representation. T h e follow ing  

notion of relative prim itive recursiveness enters n atu rally  into our theory  

for show ing functions to be p rim itive recursive, ju st as the notion of
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d ed u cib ility  entered into our theory for show ing form ulas to  be provable.

A  function 9 is pr im i t iv e  recursive in  . . . ,  (briefly Y ) ,  if there is a  

finite sequence 9 * , . . 9 *. of (occurrences of) functions (called a pr im i t iv e  
recursive der ivat ion of  9 from  Y )  such th a t each function of th e sequence  

is either one of the functions Y  (the assumed functions),  or an initial 

function, or an im m ediate dependent of preceding functions, and the  

last function 9 *. is 9 .

Since this definition has the sam e form  as th a t of d ed u cib ility, to each  

of the general properties of (- (§ 20) a corresponding principle can be  

stated  now. F o r exam ple, if 9  is prim itive recursive in Y ,  and som e of 

the functions Y  are p rim itive recursive, then 9  is prim itive recursive in  

the rest of the functions Y .  A n  exam ple (with l  =  1) w ill be g iven  later in  

w hich “ if ^ 1, . . . ,  are prim itive recursive, then 9  is p rim itive recursive”  

is true, b u t “ 9 is p rim itive recursive in . . . ,  is false (E xam p le 2 § 55).

E xample 1 . In E x a m p le  1 § 44, 9  is p rim itive recursive in £, y), 8, 

w ith  £, y], 0, XJ\t 0!, U \ ,  C |, 9 as a prim itive recursive derivation.

Our general result on exp licit definition (§ 44) can be stated  now  thus.

# A .  A  funct ion  9 definable expl ic i t ly  f rom functions  Y  and constants  
qv . . . ,  q8 i s  p r im i t iv e  recursive i n  Y .

B y  E  ty(xv . . . ,  x n, y)  w e m ean the sum  of the num bers i>(xv . . x n, y )
y<z

for all natural num bers y  such th a t y  <  z,  if z  >  0 ; and 0 , if z  =  0 . I t  

is a function of x v . . . ,  x nt z  for a n y  given  function ty{xv . . x n, y) .  B y  

II ( % , . . . ,  #n, y)  w e m ean sim ilarly the product of the num bers
y<z

. . . ,  x n, y)  for y  <  z,  if z  >  0 ; and 1 , if z  =  0.

# B .  The fini te su m  S  y) an d product  II . . , x n, y)
V<z y<z

are p r im i t i ve  recursive i n
P roof. T h e sum E ty(xl9 . . . 9x n, y )  is given from $ ( x l9. . . ,  x nt y)  b y

y<z
the follow ing recursion on z :

E  y) =  0,V<0
S  ty{xl t . . . , x n, y )  =  <\>(xl t . . . , x n, z )  +  2  , x n, y ) .

‘ y<z■' y<z

O ther finite sum s and products reduce to these b y  exp licit definition; 

e.g. 2  <J;(y) =  2  ^(y) =  2  <J;(y)f 2  t|/(y) =  2  <\>{y+w'),
y<z y = 0 y<z' w <y<z y < z—wf

2  ^(y) =  2  <}/(y) =  2  +(y+B»).
w Sv<z y —w y < z '—w
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A lth o u gh  in this chapter w e are developing an in tu itive  and not a  

form al theory, w e shall som etim es w ish the conciseness ofexpression w hich  

a logical sym bolism  affords, and in particular w e shall h ave a need for 

such a sym bolism  in form ing notations for predicates and functions. 

F or these tw o purposes, we now  introduce a new  logical sym bolism . T h is  

sym bolism  is to be taken  as inform al and m eaningful, in contrast to th a t of 

the form al system  as subject m atter for m etam athem atics. A n  expression  

in the new  in tu itive  sym bolism  is to be distinguished from  a form ula in  

the old form al sym bolism  b y  the differences in the sym bols excep tin g  

and b y  co n text. T h is distinction betw een tw o sym bolism s is introduced  

in th is b ook (and in G odel 19 3 1) for the nam ed purposes, and is not an 

established usage in the literature. (Our in tu itive  logical sym bolism , 

exceptin g “  =  “ (.E ly )” , and the operators w ith  " x c y ” etc., is the

form al sym bolism  of H ilbert and B ern ays 19 34 , 1 9 3 9 ; and our form al 

logical sym bolism , exceptin g and " 3 !y ” , is th a t of G en tzen

1 9 3 4 - 5 .)

Sym bols in the  

in tu itive  sym bolism .

W ords in the  

E n glish  language.

Sym bols in the  

form al sym bolism .

Q =  R- Q is equ ivalen t to R. Q ~  R-
Q ^ R . Q im plies R  (if Q,  then R). Q Z > R .

Q & R . Q and R . Q&R.
Q \ / R . Q or R. QVR.
Q- not Q. ~*Q-
(y)R(y) . for al ly ,  i?(y). VyR(y).
(Ey)R(y) . there exists a y  

such th a t i?(y).
3 y R (y ).

(E\y)R(y) . there exists a unique y  

such th a t R(y) .
3!yR(y).

iy)y<zR iy)- for all y  <  z, R(y) . Vy(y<z d R(y)).
(Ey)v < M y ) - there exists a y  <  z  

such th a t R(y).
2y(y<z & R(y)).

v-yy < M y ) - the least y  <  z  such  

th a t R (y ) ,  if (Ey)y<zR ( y ) ; 

otherwise, z..
Sim ilar notations are form ed b y  using “ (y)” , “ (E y )” and “ p y ”  w ith  the  

in eq u alities“y < , z ” , “ w < y < z ” , “w < y < z ” , ’‘w < , y < z ’' , “ w ^ y < z " . W hen
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the indicated range of y  is em p ty, the “ {y)” expression is true, an d th e  

“ ( E y ) ” expression is false. W hen the indicated range contains no y  such  

th a t i?(y), the va lu e of the “ \ iy” expression is the cardinal num ber of the  

range.

In  th e present theory w e often ta lk  about the tru th  values 'true' 

(briefly t) and 'false' (briefly f) of propositions, instead of the propositions 

them selves. (C ontext w ill distinguish this use of “ t ” and " f  ' to stand for 

the tru th  valu es of propositions from  the analogous use of them  in §§ 28, 

36 in a va lu atio n  procedure ap p lyin g to formulas.) W hen we do this, we  

h a ve im m ediately  four typ e s of functions, (a) F u n ction s from  {0 , 1 , 2 , . . . }  

to {0 , 1 , 2 , . . . } ,  called number-theoretic functions  or briefly here functions.  
(b) F u n ctio n s from  {0, 1 , 2 , . . . }  to {t, f }, called number-theoretic predicates  
or b riefly  here predicates,  (c) F unctions from {i, f} to  {t, f}, called truth-  
value funct ions  or proposi t ional  connectives.  W e use five of them  ==,

& , V, defined b y  the sam e tables as were given in § 28 for the respective  

form al operators 3 , &, V, -i. (d) F unctions from  {t, f} to  {0, 1 , 2, . . . } .  

T h e function of this ty p e  w hich correlates 0 to t and 1 to  f enters into the  

definition of 'representing function' given below.

O f course, w hen the propositions are not being identified w ith  their  

tru th  values, 'predicate' m eans proposi t ional  function of natural  numbers  
(§ 31). O ur practice of at tim es talk in g about the tru th  values t, f instead  

of the propositions calls for com m ent. In  fact it is im m aterial in m an y  

co n texts w hether w e th in k of the values of the predicates as propositions 

or tru th  valu es t, f. T h is is because the essential m ath em atical m eaning of 

the propositions com es from  the definition of the predicates w hich take  

them  as values. F or exam ple, consider the tw o propositions 3 < 5  and  

3 < 5 .  T h e y  are distinct propositions, differing in m eaning. A t  first sight  

som ething appears to be lost if we id en tify  them  b o th  w ith  the one 

object t. H ow ever, if we id en tify  the proposition 3 < 5  w ith  t, at the sam e  

tim e statin g  th a t this is the valu e of the predicate <  for 3 and 5 as ar

gum ents, w e express all the m eaning of the original proposition. In  other  

words, the proposition 3 < 5  is synonym ous w ith  the proposition th a t  

the predicate < ,  interpreted as h avin g its values in the dom ain {t, f}, 

takes the valu e t for 3 and 5 as respective argum ents. (Moreover, here it is 

im m aterial w hether " t "  and " f "  m ean 'true' and 'false' as w e provide  

above^ or are sim ply a n y  tw o distinct objects as in §§ 28,36. T h e predicates  

under the tw o  interpretations are isom orphic, so the abstract m ath e

m atical content of the proposition th a t the valu e of 3 < 5  is t is the same.)

In  w orking closely w ith  functions, w e need to be aw are of tw o m eanings  

of the com m on functional notation, as noted in § 10. F or predicates,
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there are three possible m eanings (or six  if w e distinguish betw een propo

sitions and tru th  values).

M eanings of (<P {x l f . . x n)” . A ltern ative  notations.

1 . T h e predicate P {x l f . . . ,  x n). P ,  or . , x n P (x 1, . .  , , x n)
2. T h e valu e of the predicate P  

for x l t . . x n as argum ents  

(the am biguous value).

N o altern ative notation.

3. T h e proposition th a t P (x l t . . .  ,x n) 
is true for all x l f . . . ,  x n.

These three senses correspond, respectively, to  the nam e form  (§31),  

conditional (§32), and gen erality  (§32), interpretation of the free varia

bles x x, . . x n in a form ula P (x v . . . ,  x n) of the form al system .

E xample 2. T h e tw o statem ents

t m  (or j£ ( 0) =  t),

1  E (a ’) =  E (a),
define the predicate E (a)  (== {a  is even}) b y  recursion. —  W e can define 

a function e(a) b y  the prim itive recursion 

f e(0) =  0,

\  «(«') =  sg(e(a))
(cf. # 9  §44). T h en  E (a)  =  e(a)= 0 .

W e sa y  th a t a function <?(xXi. . x n) is the representing function  of* a 

predicate P {x v . . . ,  #n), if <p takes only 0 and 1 as values and satisfies the  

equivalence

P (x v  S= y {x lt . . . , x n) = 0 ;
or in other words, when the values of P  are given  as t and f, if <p(xv . . . ,  x n) 
is 0 w hen P (x l t . . . ,  x n) is t, and y (x v . . . ,  x n) is 1 when P (x l f . . . ,  x n) is f.

W e sa y  th a t a predicate P { x ly. . x n) is p r im itiv e  recursive , if its  

representing function <p(xv . . . ,  x n) is prim itive recursive (e.g. E (a)  in 

E x a m p le  2). T h is definition follows G odel 1 9 3 1 .

A s  another exam ple, w e list the eq u a lity  predicate, the representing  

function being shown a t the right (cf. # # 10, 11 ).

# 1 4 .  a = b .  sg | a  —  b |.

W e furtherm ore sa y  th a t a function 9  or predicate P  is p r im itiv e  re
cursive in  predicates and functions Y ,  if the corresponding statem ent  

holds replacing the predicates am ong P , Y  b y  their representing functions. 

G odel 1931  g a v e  some theorem s concerning prim itive recursive fu n c
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tions an d predicates, w hich w e state as follows ( # # C — E ). T h e  facts  

h ad also been obtained b y  Skolem  1923 .

# C .  A  predicate P  obtained by subst i tut ing functions  Xi» • • • > X*» for  
the respective variables of a predicate Q is  p r im i t i ve  recursive i n  X\>. . . ,  Xm> Q-

P roof. If the given  predicate is Q (y v  . . . ,  y m) w ith  the representing  

function ^(yx, . . y m), and the functions su bstitu ted  are Xi(x v • • • j x n)> 
. . . ,  Xm(x i >. . . ,  x n), the representing function of the new  predicate

Q(XliXV • * • » Xn)f • • • > Xm(x l* • * •» Xn)) is *MXl(^l* • • • > Xn)> • • • > Xm{X\> • • • t x n))' 
T h is function is prim itive recursive in ty, x 1#. . Xm b y  Schem a (IV). W e  

know  from § 44 th a t no gen erality  is lost b y  considering the substitution  

as of this particular form ; and sim ilarly in # D :

# D .  The predicate Q(xv . . . ,  x n) is  pr im i t i ve  recursive in  the predicate Q. 
The predicates Q(xv  . . . , x n) V  R ( x v  . . . , x n), Q(xv  . . . , x n) &  R ( x v  . . . , x n), 
Q(xv . . . ,  x n) ->  R ( x v  . . . , x n) an d Q(xv  . . . , x n)== R ( x v  . . . , x n) are p r i m i 
tive recursive in  Q and  R.

P roof. L e t the representing functions of Q(xv . . . ,  x n) and R ( x v . . 

x n) be ^(^1, . . . ,  x n) and x ix v  • •> x n), respectively. T h en  the representing  

function of Q(xv  . . . , x n) is . . . ,  x n)) (# 9 ) , w hich is p rim itive

recursive in ty. T h e representing function of Q{xv . . . ,  x n) V R ( x v . . . ,  x n) is 

ty(xv . . . ,  x n)-x ix v  . x n), w hich is prim itive recursive in ^ and x- T h e  

rest of the theorem  follow s b y  know n equivalences for =  in

term s of and V (cf. C hapter V I, allow ing for the differences in the sy m 

bolism).

# E .  The predicates  (E y ) y<zR ( x 1, . . . ,  x n, y) an d (y)v<zR { x v  . . . , x n, y )  
an d  the function  [jiyy<zR ( x v . . . ,  x n, y) are p r im i t i ve  recursive in  the p red i 
cate R .

P roof. L e t x(x v  • • • > x n> y)  be the representing function of 

R ( x v . . . ,  x n, y) .  T h en  II x(x v  • •» x n> y)  is the representing function of
y< z

(E y )y<gR ( x v . . . , x n, y ) .  T h is is prim itive recursive in x  b y  # B .  Sim i

larly, sg(£ x ( * i> - - -> x n>y)) is the representing function of (y)y<8
y< z

R ( x v ' . . . , x n, y)  (# 1 0 ) . W e illustrate the proof for \ iyy<zR ( x 1, . . . , x n, y)  
w ith  an exam ple. L e t the values of x l f . . . , x n be fixed, and w rite  

sim p ly “ x(y)” for x(x v  • x n»y)  w ith  the fixed values of x v . . . , x n. 
Suppose th a t z  =  7, and th a t for y  =  0, 1 , . . . ,  6 (first row below) x(y) 

takes the values shown (second row).
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y 0 1 2 3 4 5

'O II
x ( y ) l 1 1 0 1 0 0

7i(y) =  n  x(s)
8 < V

l 1 1 0 0 0 0

<r(y) =  E  n{t) 
t<v

0 1 2 3 3 3 3 3

T h e  desired num ber \uyy<zR(y)  is the least y  (first row) <  z  for which  

R(y)  is true, i.e. for w hich a 0 appears in the second row, if there is such a 

y. In  our exam ple, there is, and the least is 3. T h is num ber also appears 

as the last num ber a(z)  in the fourth row. T h e device illustrated w ill 

ev id e n tly  w ork in a n y  case. T o  change the exam ple, if (Ey)y<zR(y) ,  so 

th a t no 0 occurs in the second row, then a(z)  w ill be z,  w hich is w h at  

|xy v<zR{y )  w as defined to be in this case. T h e function a{z) w ritten out in 

full is S  II x(x i >• . . ,  x ni s). B y  # B ,  this is prim itive recursive in x-
t<Z 8<t

In  using these theorem s, w e m a y  com bine several applications into  

one step. B y  # 1 4  w ith  # C ,  ^{xv . . . ,  x „ ) = x ( * n - . . ,  x n) is prim itive  

recursive in x> e -g- using § 44, c'-\~a— b is prim itive recursive. B y  

# # E ,  C and § 44, (Ey)y < ^[Xu Xn)R ( x v . .  . , x nf y)  is prim itive recursive  

in R ;  e.g. using § 4 4  further, the follow ing is prim itive recursive.

# 1 5 .  a < b .  a < b  == (Ec)c<h[ c ' + a = b ] ,  or s g (a'— b).
T h e in eq u ality  “ y < 2” in # E  can be changed to “y < z ” , (tw < y < z l>, 

“ w < y < z Z \  “ w < y < z "  or “ w < y < z ” ; for exam ple,

(y)w<v<zR ix v - > x n, y) =  {y)v<z^ wR {x 1, - . . , x  y + w ) .
A  set of predicates Q v . . Q m is mutual ly  exclusive,  if for each set of 

argum ents not more than  one of them  is true (cf. § 3).

# F .  The function  <p defined thus

? ( * ! ,•  • • . X „ )

• • • , * » )  if  Qi{xv . ■ - , x n),

n̂) i f  Q m { , X  11 • • *, X n ^ j,
(Pm+i(Xi,• . . , x n) otherwise,

where Qv . . . ,  Q m are mutual ly  exclusive predicates {or <p(xv . . . ,  x„) shall  
have the value given by the f irst  clause which applies)  i s  p r im i t i ve  recursive in  
<Pi.- • •, < P m + i>  Q m- (Definition b y  cases.)

P r o o f ,  for Qx, . . . , Q m m u tu a lly  exclusive. F i r s t  m e t h o d . L e t  

4<i,. . . ,  be the representing functions of Qx, . . . ,  Q m. T h en  (om itting  

“ {xv . . . ,  x n) ” to  save space)

?  =  Sg ( W  ‘ <Pl +  • • • +  Sg(+m) • <Pm +  • • • • ‘ ’ ?.»+!•
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Second method.

? =  m<9i+~+9m+i (01& y=<Pi) V . . .  V (Qm& y = 9 m) V_
((? !& ... &Qn &y=tpm+1).

Prime factor representation. Let the prime numbers in order of 
magnitude be p0t plt p2, . . . f (i.e. pQ= 2, pt= 3, p2= 5, . . .) .
The fundamental theorem of arithmetic (Gauss 1801) states that a given 
positive integer a can be factored into a product of prime factors which is 
unique to within the order of the factors. Thus we have a unique rep
resentation of a of the form
(1) a = p?-p?-p?-  . . . -P? ... (* #  0),
where a{ is the number of times p{ occurs in a as factor (0 if p{ is not a 
factor of a). We can regard the product (1) as extending indefinitely, 
all but a finite number of the exponents being 0.

We now add to our list of particular primitive recursive functions 
and predicates.
#16. a\b a divides b. a\b= (Ec)c<b[ac = b], or sgrm(6, a)
#17. Pr(a) =  a is a prime number. Pr(a) =  a > l  & (I c )1<0<o[c|a].
#18. pi =  the t+ l-s t  prime 

number. f Po =  2,
l Pv =  ŷ Pi<x<Pi'- +i Pr(%),

where the upper bound p{\ +1 for x is given by Euclid’s demonstration 
that to any p there exists a prime >  p and <; pl + l (§40). The com
bining of an application of # E  with a primitive recursion is legitimate, 
as it merely condenses what could be accomplished by first introducing 
X(c) =  \LXc<x<c[.n Vx{x)f and then writing the second recursion equation 
as pf =  tiPi)-

the exponent a{ of p{
#19. (a)i = in (1), if a ^  0; (a)t = \LXx<a[pxi\a & p f\a \

0, if a =  0.
We may write ((a),), as (a),„ (((a),),)* as (a)ii t , etc.

# 20. lh(a) =  ■
the number of non
vanishing exponents

lh(0, a) - 0,
a) =  j

\ lh(i,a)+l if pi\a,
in (1), if a # 0; [ lh(z',a) otherwise.
0, if a =  0. lh(a) =  lh(a, a).

We can represent the finite sequences aQt. . . ,  a8 of positive integers by 
the numbers a =  $J°*. . .  'p aB*\ then lh(a) is the length s-fl of the se
quence represented by a.
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T h en  if a =  p$ > -.. . ‘ p “ s (a0, . . . , a 8 >  0 ) an d  b =  p b0° - ____-p ht ‘
(■K > . . bt >  0 ), a*b  =  p% ■ ... • p f ’p^+ l  • • • . 1 Ps+t+v  F or an y  a and  
an y  such  b, a * \  =  a, 1 * 6  =  b, 1 *1  =  1 .

§  46. Course-of-values recursion. In  p rov in g  a  th eorem  T(y) 
b y  in d u ction , it  m a y  h ap p en  th a t th e  case T(y' )  of th e  theorem  d ep en ds  
n ot s im p ly  on  th e  im m ed ia te ly  preced ing case T(y ) ,  b u t on one or m ore  
preced ing cases. T h is k in d  of a proof b y  in d u ction  w e h a v e  ca lled  a  
‘cou rse-of-va lu es in d u ctio n 1. I t  can  b e reduced  to  a sim p le  in d u ction , b y  
first p rov in g  th e  lem m a (s)8<y T ( s ) b y  sim p le  in d u ction , a fter  w h ich  th e  
th eorem  fo llow s b y  se ttin g  s =  y  (cf. *162a § 40).

T h e an a logou s s itu a tio n  arises in  d efin ition  b y  in d u ction . T h e fu n ction  
v a lu e  <p(0 ) is g iv en  o u tr ig h t; an d  th e  fu n ction  va lu e  9 (y ') is exp ressed  in  
term s of y  an d  on e or m ore of th e  preced ing va lu es 9 (5) for s <  y.  T h e re
cursion  is th en  ca lled  a course-of-values recursion. W e sh all see th a t it  can  
b e reduced  to  a p rim itiv e  recursion b y  an  an a logou s d ev ice  (cf. P eter
1934)-

T he tw o  cases of th e  d efin ition  of 9  m a y  b e com b in ed  (cf. *162b), b y  
sa y in g  thajt 9 (y) is exp ressed  in  term s of y  and  9  (s) for s <  y. W h en  
y  =  0, th is  m ean s th a t  9 (0) is g iven  ou tr ig h t, sin ce th e  se t o f va lu es  
9 (s) for s <  y  is th en  em p ty .

More gen era lly , le t  th e  fu n ction  to  be d efin ed  b e 9 (3/, x 2, . . . ,  x n) w here  
x n are p aram eters (rem ain ing fix ed  th rou gh ou t th e  recursion). A s  

an  au x iliary  fu n ction , w e in trod u ce  
(i) ?(y; =  n p f u ..... **),
ca lled  th e  course-of-values func tion  ( in  y) for th e  g iv en  fu n ction

G iven  th e  seq u ence of th e  v a lu es  9(5, x 2, . . . ,  x n) of our orig inal fu n ction  
for s <  y , b y  ( 1) w e ob ta in  th e  v a lu e  9 (y; x 2, . . x n) of th e  course-of- 
v a lu es  fu n ction . C onversely , g iv en  $ (y ; x2f. . . ,  x n), w e  can  ex tra c t all th e  
va lu es 9 (s, x 2, . . . ,  x n) for s <  y  w ith  th e  h elp  of # 1 9  th u s,
(2 ) <p(s, x 2, . . . ,  x n) =  ( $ (y ; x 2, . . . ,  x „ ) )s if s <  y.
So in  a  sen se th e  k n ow led ge of th e  v a lu e  ? (y ;  x 2, . . x n) of th e  course- 
of-v a lu es fu n ction  is eq u iv a len t to  th e  k n ow led ge of th e  seq u en ce of 
va lu es 9 (0 , x 2y . . . ,  x n), . . . ,  9 ( y — 1 , x 2> . . . ,  x n) of th e  orig inal fu n ction .

# G . I f  9  satisfies the equation
(3) <p ( y,  x n) =  x(y , ? (y  ; x 2, . . . , x n) , x 2, . . . , x n),
then 9  is  p r im itiv e  recursive in

i< y
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Proof. First we set up a primitive recursion for 9,

u\ f  ? ( 0 ; * * , . . . , * « )  =  1 .
\ 9 ( y ' ; x 2, . . . , x n) =  y ( y ; x 2>. . . , x „ )  • px{v’ ?,iv;x*....*»>■ *»..... x»\

Then we obtain 9 from 9 by the explicit definition,
(5) <p(y, x2, . . . ,  *n) =  (9 (y' ; x2, . . . ,  *„))„.

E xample 1. Let
(a) <p(y) =  II (y +  <p(s)).

8<y

The sequence of the values of this function, and of its course-of-values 
function, are as shown.
y 0 1 2 3 4 . . .

?(y) 1 2 12 300 145920 • . •

?(y) 1 21 2U32 21-32-512 21-32-512-7800 . . .

N o te  th a t the last exponent in 9 (y') is alw ays the va lu e of 9 (y); e.g. 

(9 (3))2 =  12 =  9 (2). T o  a p p ly  # G ,  note th a t b y  (2)

(b) <p(y) =  n (y +  (?(y))s).
8<y

This is of the form (3), and by # # 1, 19, B and G, 9 is primitive re
cursive.

This version of #G  accomplishes the reduction of course-of-values 
recursion to primitive recursion, for cases when the course-of-values re
cursion is already given in the form (3) of a dependence of 9(5/, x2, . . . ,  xn) 
on the number 9(y; #2, . . . ,  xn) besides on y, x2, . . . ,  xn.

We illustrate further how to reduce course-of-values recursions not 
already so given to the form (3).

Example 2 . recursion from a double basis.
9 (0) =  ?o.(a) 9 (1) =

. W )  =  x(y. 9(y). 9 (y'))-
First we restate this in the more compact form for course-of-values 
recursion (using # # 6 ,  F), thus

f 0 if y =  o,II 9i  if y =  1.x(y—2, <p(y—2), ep(y — 1)) otherwise.
Then we express 9(y—2), 9(y— 1) as (<?(y))y^ 2> (?(y))v^ v  respectively.

The method applies also to definitions of predicates by course-of-values 
recursion.
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Example 3. Consider th e equivalence

(a) T(y )  =  y = 23 V F (y) V [ y = 2 17- 3 (̂ - 5 {̂  &  r ( ( y ) x) &  T ((y)2)] V

[y =  219*3(l/)l • 5 (y)2 &  r((y )j)  &  T ((y)2)] V [ y = 2 21-3 (l/)l &  T { ( y ) x)],

where F  is a  given  predicate. T h is defines T(y)  b y  course-of-values in

duction on y. F o r w hen y = 0, all d isju n ctive m em bers on the right are 

false excep t perhaps th e second; so T(0) == F ( 0). W h en  y  >  0, (y)i <  y  

and (y)2 <  y.

T h u s T(y) is expressed in term s of y, F  and T(s) for s <  y  only. L e t  

r(y) be the representing function of T ( y ) ;  and let T ((y)1), T((y)2) in the  

right m em ber of (a) be expressed as (T(y))(y) = 0, (?(y))^)2= 0, re

sp ectively. N o w  the definition of T  has the form

(b) T ( y ) = R < y , x ( y ) )
where, b y  # # 2 ,  3 , 14, 19, A , C  and D , R ( y ,  z) is p rim itive recursive in F .  

T h is m eans sim p ly th a t the representing function p of R  is p rim itive  

recursive in the representing function o of F ; so w e h ave an equation of 

the form

(c) T(y) =  p(y, ?(y))

where p is p rim itive recursive in o. B y  # G ,  t is p rim itive recursive in p, 
and hence in u; i.e. T  is p rim itive recursive in F  (and is prim itive recur

sive if V  is).

In  these exam ples w e do alw ays succeed in reducing th e given  course-of- 

values recursion to  the form  (3) b y  use of (2). Closer exam ination in § 47 

w ill show  w h y, and enable us to  form ulate a version of # G  w hich in

cludes th a t reduction.

E xample 4. simultaneous recursion. T h e  function valu es 9 x(y) 

and 9 2{y) are expressed in term s of y  and valu es 9 1(s) and 9 2(s) for 

s <  y . R edu ce to  # G  b y  using as au xiliary  function

9 (y) =  2 ^ liy)3 ^ {y).

* §  47. Uniformity. In  ^  # A  —  G  (considering for the m om ent on ly  

functions and not predicates), our concern w as not prim arily w ith  a n y  

particu lar functions 9  and b u t w ith  m ethods b y  w hich a function 9  is 

defined from  Y  as unspecified functions. In  show ing for a particular  

such m ethod th a t a function 9  of n  variables is prim itive recursive in Y ,  
our applications of th e sch em ata (I) —  (V) did not depend on w h a t  

functions are, so lon g as their num ber l  and the respective num bers  

tnv . . . ,  Wj of argum ents w hich th e y  ta k e  is fixed. In  other words, w e
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gave a primitive recursive derivation schema of 9 from Y, with a fixed 
analysis. The definition of 'analysis' is analogous to that given in § 20. 
For an application of Schema (II) it includes the specification of the n 
and q; for (III) of the n and i ; etc. (Analogously we often obtained derived 
rules for the formal system by exhibiting a 'deduction schema' with 
metamathematical letters standing for unspecified formulas, variables, 
etc.) Under these circumstances, we say that 9 is primitive recursive 
uniformly in Y.

We can also explain this uniformity notion as follows. For a particular 
method of defining a number-theoretic function 9 from number-theoretic 
functions Y, we can write 9 =  F(Y) to express the fact that what 
function 9 shall be is determined by what functions Y  are. Then F is a 
fixed mathematical function of higher type, namely one from l number- 
theoretic functions Y  of mlf. . . ,  mt variables respectively to a number- 
theoretic function 9 of n variables. We call such a function F a scheme 
function or schema or scheme or functional. We can also write y{x1$. . . ,  xn) 
=  F(Y ;xlf . . xn) (with the same F) to express the fact that (by the schema 
F) what natural number <p(xv . . . ,  xn) shall be is determined by what 
functions Y  are and what numbers xv . . . ,  xn are.

For any fixed n and m, Schema (IV) constitutes a functional, which 
we have already denoted by S .̂ For fixed n (and when n =  1, fixed q) 
Schema (V) constitutes a functional Rj or Rn. The other three schemata 
(I) — (III) define particular number-theoretic functions S, CJ, U% (or 
constitute functionals with l == 0).

Now we say that a functional (or schema) 9 =  F(Y) is primitive 
recursive, or that 9 is primitive recursive uniformly in Y, if F is definable 
explicitly from the functionals S*, R*, Rn and constants S, CJ, U£.

E xample 1. In Example 1 § 44, 9 is primitive recursive uniformly 
in £, y), 0. Under the first version of the definition of uniformity, we see 
this from the fact that the analysis of the primitive recursive derivation 
schema £, tj, 0, U\t 01# ZJ\, C|, 9 (consisting of the explanations opposite 
1 — 9 at the right) is fixed. Under the second version, we see it from the 
fact that (b) expresses 9 =  F(£, 7), 0) explicitly in terms of Sf, Sf, Sf andU\, u\, Cl

Sometimes a method for determining a function 9 from functions Y  
is specified only under some restriction on the Y's. To establish uniform 
primitive recursiveness, we show then that there is a fixed succession of 
applications of Schemata (I) — (V) which leads from Y  to the same func
tion 9 as the given method, for any Y  to which the given method applies
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(or is intended to apply). The succession of applications of Schemata 
(I) — (V) then leads in fact to some function 9 from any Y, since each 
of (I) — (V) has this property. Thus: The given method constitutes a 
functional 9 =  F(Y) defined only for a restricted range of Y. The suc
cession of applications of (I) — (V) constitutes a completely defined 
functional 9 =  FX(Y), which is primitive recursive and such that F1(XF) 
=  F(Y) on the range of definition of F.

E xample 2. Let a function 9 be defined thus,

(a) ?(*) =

? i ( * )  i f  + i W = o .

9s(x) if +2W=0,93(*) otherwise,
where <pv cp2, <p3, <p x, <p 2 are given functions such that, for each xy tyx(x) and 
$2 {x) are each either 0 or 1 and not both 0 . Then we can write
<b) ?(*) =  sg(^iW)-?iW +  sg(<M*))-<p,(*) +  +i(*)-+i(*)-<Ps(*).

and conclude that 9 is primitive recursive uniformly in <px> 92, 93, $x, <J>2 
(cf. the first proof of # F  § 45). The 9 of (a) was only defined for tyx, 
satisfying the restriction stated; but (b) defines a 9 without any restric
tion, which i<$ the same 9 as the former when the restriction is satisfied.

For schemes involving predicates, we say that a function 9 or predicate 
P  is primitive recursive uniformly in predicates and functions Y, if the 
corresponding statement holds replacing the predicates among P, Y  by 
their representing functions. The interpretation just explained applies 
when the functions introduced as representing functions of the predicates 
among Y are then treated as unrestricted function variables in applying 
the schemata (I) — (V).

Using the explained interpretation, we can say that a function 9 (or 
predicate P) is primitive recursive uniformly in Y, even when some of the 
Y ’s are particular functions (or predicates). Then if any of those Y's 
which are particular are primitive recursive, 9 (or P) is primitive re
cursive uniformly in the rest of the Y's.

If 9 is primitive recursive uniformly in 0, Y  as function variables, and 
we then take 0 to be 0*, the resulting function 9* is primitive recursive 
uniformly in 0*, Y  (and hence if 0* is primitive recursive, in Y). This 
principle works whether 0* is a particular function, or a function variable, 
including the case that it depends on additional number variables 

cP as parameters. The principle is stated accurately as Lemma I. 
To make it clear how many (and which) independent variables the 
functions have, we write 0 =  \sx. . .so0(s1, . . ., sq) (a function of q varia-
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bles), 0* =  . .sqcx. . ,cP 0Hc(s1, . . sq, cv  . . . ,  cP) (a function of q + p
variables), and Xsx. . .sQ Q*(slt . . . ,  sQ, cv . . cP) for the function of q 
variables sv . . . . , s Q which we get from 0* whenever c1, . . . , c P are fixed 
numbers.

Lemma I. Given a functional 9 =  F(0, W) as follows
9 (^1, . . . ,  %n) =  F(Xsx . . . s q Ofo.. .sq), Y ; xv . . xn), 

let a functional 9 * =  G(0*, Y) be defined as follows
* n ,  ^1>- • •> C p )  =

^(XSi. . .  • • . Cp 0*($i>. . .,  Sq, Cj,. . ., Cp), T*, X^, • • •, X n, C-±, • . ., Cp) =
F(XSj . . »Sq 0 (̂-Sj, • . . , Sqy Cj, . . . , 6j))> T* t t • • • f %n)-

If F is primitive recursive, so is G.
Proof. The essence of the proof is that both explicit definitions and 

primitive recursions remain such when parameters are introduced.
To give the proof in more detail, we use course-of-values induction on 

the length k of a primitive recursive derivation schema 9^ . . . , 9 *. of 
9 from 0, Y . Seven cases arise according as 9 (=  cpk) is 0, or one of the Y 's 
(say or an initial function by Schema (I), (II) or (III), or an im
mediate dependent of preceding functions by Schema (IV) or (V).

Case 6 : (p(xlf. . . ,  xn) =  <Kxi(*i> • • •, *«), • • • > X«(%> • • •, *«)), where <|/, 
Xi>- • Xm precede 9 (=  9 *) in 9 ^ . .  . , 9 *. Then9*{X1» • • • > Xn> 1̂* • • • t Cp) :=

V ( x t ( * V - > X n ,  C l t . . . , C p ) , . . . ,  x t ( * V - ’ X n ,  C v . . . , C p ) ,  C V . . . , C P ) .

By the hypothesis of the induction, ^*, y*, • • • > Xm are primitive re
cursive uniformly in 0*, Y . By #A, 9 * is primitive recursive uniformly 
in <J#*f Xi>* • Xm> and hence, in 0*, Y .

Example 3. Not every number-theoretic function is primitive re
cursive. (Why? Cf. §§ 1 , 2 : Is every real number algebraic?) Let £(c) be a 
particular function which is not primitive recursive. Let 9 be defined 
from an unspecified function 0 thus,

9(*) =  5(6(0)).
Then, for each particular 0, the resulting 9 is a constant function, and so 
is primitive recursive, by an application of Schema (II) with n =  1, 
q =  5(0(0))'. A fortiori, for each 0, 9 is primitive recursive in 0, with C\ 
for q =  5(0(0)) as a primitive recursive derivation of 9 from 0. But, 
because the analysis of this derivation depends on 0, we cannot conclude 
that 9 is primitive recursive uniformly in 0. Indeed if it were, by Lemma I
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ta k in g  U \{s , c) (which is prim itive recursive) as the 0*(s, c), the resulting  

function <p*(x, c) w ould be p rim itive recursive, and hence so w ould be  

<p*(0, c). B u t <p*(0 , c) =  £([/|(0, c)) =  £(c). —  T h u s also L em m a I does not 

hold, if the hypothesis th a t F is prim itive recursive, i.e. th a t 9 is prim itive  

recursive uniform ly in 0, Y ,  is w eakened to : 9  is prim itive recursive in 

0, Y ,  for each 0, Y .  —  In  this exam ple, of course 9 is p rim itive recursive  

uniform ly in £, 0.

Since the former proofs a ctu a lly  establish u n ifo rm ity :

# # A — G (second versions). R eread the orig in al versions w ith  “p r im 
itiv e  recursive u n ifo rm ly” in  place of “ p rim itiv e  recursive” .

U su ally  a course-of-values recursion arises in the follow ing form. T h e  

am biguous valu e <p(y, x 2, . . x n) is given  in term s of y ,  x 2, . . x n, other  

functions and predicates Y ,  and <p(s, x2, . . . ,  x n) as a function of s for the  

given  x 2, . . . ,  x n. T h e expression b y  w hich it is g iven  is the result of sub

stitu tin g  <p(s, x 2, . . . ,  x n) for a function variable 0(s) of a p rim itive re

cursive functional. T h is function al has the property th a t its valu e is 

not changed, if values of 0(s) are changed for s >  y  only. In  other words, 

there is a prim itive recursive function al F(Xs0(s), Y ;  y, x 2, . . . ,  x n) such th a t  

(6) cp (y, x 2, . . . ,  x n) =  F(Xscp(s, x2, . . . ,  x n), Y ; y , x 2, . . . ,  x n),
F(Xs01(s), Y ; y , x 2>. . x n) =  F(Xs62(s), Y ; y , x 2. . .  . , x n) 

w henever 0x(s) =  02(s) for all s < y .
U nder these circum stances, w e sa y  th a t 9 (3/, x 2). . . ,  x n) is p r im itiv e  re
cursive u n ifo rm ly  in  9  (s, x 2i. . . ,  x n) for s < y  an d  Y.

L ike term inology is used for predicates (reading “P ” , “H ” , in

place of "9”, “ =  ” )•
In  case w e are considering the definition of 9  from  Y  on ly  for a restricted  

range of Y ,  then (7) as w ell as (6) need on ly hold on this range.

E xample 4. L e t 9  (y, x) be defined b y

(a) ?{y, X) =  y  • P(?(o(y). *)) +  iLZz<y[<?(z, x) I y]
where p, a are given  functions such th a t a{y)  <  y  for y  >  0. T o  see th a t  

9 (3/, x) is prim itive recursive uniform ly in 9 (5, x) for s <  y  and p, a, let  

us insert an unspecified function Xs0(s) in place of Xs9 (s, x) in the right  

m em ber of (a), for convenience calling the resulting function Xi(y>x) :

(b) xi(y. *) =  y  ■ p(0(®(y))) +  ^ < , [ 6^) | y \ .
B y  # # A ,  C, E , 16 (using the second versions of A , C and E ), Xi(y> %) is 

prim itive recursive uniform ly in 0, p, a ; and changing values of d(s) for 

s > y  on ly w ill not change the va lu e of Xi{y, x) under the restriction on <r.
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E xample 5. W e can see d irectly  from  (a) of E x a m p le  1 § 46 ((b) 

of E x a m p le  2 § 46) th a t 9 (3/) is prim itive recursive uniform ly in 9 (s) 
for s <  y  (in 9 (s) for s < y and y). Instead of first w ritin g “ 0” in place of 

“ 9 ” , w e need m erely to exam ine how  the right m em ber is con structed  

out of 9 (5) regarded m om entarily as an unspecified function. Sim ilarly  

from (a) of E x a m p le  3 §46, T (y)  is prim itive recursive uniform ly in T (s) 
for s < y and V.

# G  (third version). I f  <p(y, x 2, . . . ,  x n) is  p r im itiv e  recursive u n ifo rm ly  
in  9 (s, x 2, . . . ,  x n) for s <  y  an d  Y ,  then  9  is  p r im itiv e  recursive u n ifo rm ly  
in  Y. S im ila r ly  for a pred ica te {reading “P ” in  place of "9 ” ).

P roof, for a function 9. B y  (6), (7) and (2),

^  <p(y- x 2, . .  •, X n) =  F(Xs (9 (y; x 2, . . . ,  x n))„  T ;  y , x 2, . . x n)
=  x(y> $ ( y ; x 2, . . . , x n) , x 2, . . . ,  x n)

where

(9) x (y f c , x 2, . . . ,  x n) =  F(Xs (c)„ Y ; y, x 2, . . . ,  x n).
B y  L em m a I, /  is prim itive recursive uniform ly in Xsc (c)8, Y ; and hence b y  

# 1 9 , in Y .  N o w  the second version of # G  applies.

T h e result for a predicate P  follows b y  going over from  P  to  its rep

resenting function.

R emark 1 . C f. R em ark 1 end § 44. I f  9 , Y  are functions of n f m l f . . . ,  

m x >  0 variab les , then  9 is  p r im itiv e  recursive u n iform ly  in  Y  under B a s is  
B , if  an d  only i f  under B a s is  A . For a n y  prim itive recursive derivation  

schem a of 9 from Y  under B asis A  can be transform ed into one under 

B asis B  as above b y  su p p lyin g a description under Basis B  of (of C®) 

for each application of (II) (of (Va)). Conversely, given  a prim itive re

cursive derivation schem a <plt . . . ,  9 *. of 9 from  Y  under B asis B , one 

under B asis A  can be obtain ed b y  the follow ing process. S a y  th a t n =  l  =  

m x =  1 , i.e. th a t the derivation is of 9 ^ ) from ^(y). L e t a param eter c be  

introduced into each of the functions 9 ^ . . . ,  9 *. Sim ilarly to the proof of 

L em m a I, w e can then ob tain  a prim itive recursive derivation schem a of 

y (x , c) from  <p(y, c) under B asis A . T o  this we prefix ^(y, c) — § {U \{y , c)) 
and su ffix  9 ^ ) =  9 {U \{x ), C l(x )).  —  F or exam ple, if 9 (0) =  ^(0), 9 (y') == 

X(y, ?(y))> then 9 is prim itive recursive uniform ly in 4>,X under B asis B  

(using successively (I I B), (IV) w ith  n — 0, (Vb) w ith  n =  1). H ence it is 

also under B asis A .

§  48. G o d e l ’s  p -fu n c tio n . T h e second problem  of this chapter  

is to show th a t e v e ry  prim itive recursive predicate is num eralwise
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expressible in the form al system  of C hapter IV , even though th a t  

system  has function sym bols o n ly  for the three functions ■ .
W e shall prove this in the n ext section, follow ing a m ethod of G odel 

(1 9 3 1 , 1934).

T h is proof is not essential to our program  of form alizing num ber theory. 

If it did not succeed, w e could h ave arranged instead th a t recursion  

equations for other functions besides +  and • should be axiom s of the  

system . Indeed, b y  an enum erably infinite system  of particular num ber- 

theoretic axiom s, we could include recursion equations for all the prim i

tive  recursive functions. H o w ever it is of some interest th a t a finite system  

suffices, the more so th a t we can get along w ith  the tw o chief functions +  

and • of tradition al arithm etic, when taken  w ith  the logical con stants  

and the predicate = .

G odel has called a predicate arithmetical, if it can be expressed e x 

p licitly  in term s of con stant and variable natural num bers, the functions  

+  and •, eq u a lity  = , the operations V, "“ of the propositional cal

culus, and the quantifiers (x) and (E x), com bined according to the usual 

syn ta ctica l rules. (This uses the a d jective ‘arith m etical’ in the narrower 

sense, § 9.)

T h e reader m a y  readily give  the definition more fu lly  as an in d u ctive  

definition, paralleling the definition of form ula for the form al system . 

T h e arithm etical predicates are precisely those w hich can be expressed b y  

nam e form s in the form al system  under the usual interpretation of the  

sym bols. (B y  com parison w ith  the form al treatm en t in §§3 9  and 41, 

a < b  and rm(c, d ) = w  are arithm etical.)

B u t, using the in tu itive  sym bolism , w e shall keep the discussion  

inform al for the present. F o r the application to p rim itive recursive pred

icates, w e shall require o n ly con structive use of the quantifiers.

In  the n ext section, we shall need a m ethod of dealing w ith  finite se

quences aQ, . . . ,  a n of natural num bers arith m etically; there w e cannot use 

the functions a h, p { and (a){ of §§ 44, 45 w ith  w hich w e handled finite  

sequences prim itive recursively in §§ 46, 47.

W e know  th a t the predicate rm(c, d ) —w, where rm(c, d) is the rem ain

der w hen c is divid ed  b y  d, is arithm etical.

A  set of p ositive integers d 0, . . . ,  d n are said to  be rela tively  p r im e , if 

no tw o of them  h a ve a com m on positive integral factor exce p t 1. F or  

exam ple, 3, 4, 5 are re la tive ly  prime.

Consider th e n - \- \  -tuples of the values of the function rm(c, d), for a 

fixed  w +1-tuple of re la tive ly  prim e divisors d 0, . . . ,  d n, as c increases. 

For exam ple (with n  =  1), if d Q =  3, d 1 =  4, th e y  are as follows.
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c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . «

rm(c, 3) 0 1 2 0 1 2 0 1 2 0 1 2 0 1 . . .

rm(c, 4) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 . . .

We see that, as c ranges from 0 to 11, the pair of remainders rm(c, 3), 
rm(c, 4) assumes each of the 12 possible ordered pairs of numbers aQt 
ax for a0< 3, ax< 4.

To establish this in general, let rm(c, dQ), rm(e, dx), . . . ,  rm(c, dn) take 
the respective values a0> av . . . ,  an for c = j and also later for c =  j+ k. 
Since j and j-\-k give the same remainder a{ on dividing by dt (i =  0, 
. . . ,  n), their difference k must contain dt exactly; say that k =  M*- Thus 

k =  bQdQ = bxdx =  . • • =  bndn.
Here k has each of d0, dx, . . . ,  dn as factor. Since by hypothesis d0> . . . ,  dn 
are relatively prime, by the fundamental theorem of arithmetic (§ 45) 
k must be a multiple of their product dQ- dx - . . .  • dn.

Therefore the ordered n + 1-tuple rm(c, i 0), Tm(c,dx), . . . ,  rm (c,dn) 
cannot return to a given sequence of numbers a0, ax, . . . ,  an after less 
than dQ- dx * . . .  • dn consecutive values of c. But there are exactly d0- dx * 
. . .  • dn distinct sequences of numbers a0, ax, . . . ,  an for aQ < dQ, ax < dv 
. . . ,  an < dn. Each sequence is therefore taken once in any dQ- dx - . . .  • dn 
consecutive values of c.

Following Godel 1934, we use this fact to construct a function (3(c, dt i) 
with the two properties,
(1) the predicate (3(c, d, i) =  w is arithmetical, and
(2) for any finite sequence of natural numbers a0, av . . . ,  an, there can be 
found a pair of natural numbers c, d such that

P(c, d, i) =  at (i =  0, 1, . . n).
As we know, a number c (c <  dQ • dx • . . .  • dn) can be chosen so that 

rm(c, d{) =  at for i  =  0, 1, . . . ,  w, provided d0, dv . . dn is a set of 
numbers such that (a) dQ, dx, . . . ,  dn are relatively prime, and (b) aQ <  d0t 
ai < dv . . .  ,a n < dn. Our problem will be solved, if we can obtain the 
numbers d0, dx, . . . ,  dn as the values of a function S(d, i) for i =  0, 1, . . . ,  n 
and a suitable number dy so that
(i) p(c, d, i) =  rm(c, S(d, i)) 
alsa satisfies (1).

Now (1)' will be satisfied if we take
(ii) 8(d,i) — l +  (̂  +  l)^-
For rm (c,d)=w  is arithmetical, and 8(d,i), which we substitute for 
d to get p(c, d} i)= w , is defined explicitly from 1, +  and \
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For the given sequence of numbers aQ, av . . ., an, let s be the greatest 
of n, a0, av . . ., an, and take d = s\.

Then, (a) the numbers dt =  §(d, i) for i =  0, 1 , .. n are relatively 
prime. For if two of them ! - } - ( / + 1  )s! and 1 +  (/+&+ l)s! had a 
factor other than 1 in common, they would have a prime factor p in 
common, and this factor p would divide the difference which is k*s\. 
But p cannot divide $!, since then it would divide (j-\-\)s\, which is 
impossible since it divides 1 +  (/+  l)s!. Then also p cannot divide k, 
since k < n < s and every number < s divides s\. Hence p cannot divide 
k-s\; so by reductio ad absurdum (a) is proved.

Moreover, (b) for each i (i =  0 , 1 , . . . ,  n), at < s < si < 1 +  (^+ l)s!
=  m  i) = dt.

Julia Robinson 1 9 4 9 * shows that the predicate j (#16) and function ' can 
be used in place of the two functions +  and • in defining the arithmetical 
predicates; and Church and Quine 19 5 2  show that a suitably chosen sym
metric 2 -place predicate can be used instead.

§ 49. Primitive recursive functions and the number-theoretic
fo rm alism s T heorem I. If  9(34,.. xn) is a primitive recursive func
tion, then the predicate <p(xv . . . , x n)=w is arithmetical. (Godel 1 9 3 1 .)

P roof, by course-of-values induction on the length k of a given 
primitive recursive description 9 ^ . . ., 9 *. of 9  (cf. § 43). The cases (I) — (V) 
correspond to the five schemata by which cpk, i.e. 9 , may occur in the 
description. (For a proof with a similar case structure, cf. that of Theorem
1 § 2 1 .)

Case (I): <p(x)t = x'. Then cp(x) = w == w—x-f-1, and w=x  -f-1 is arith
metical.

Case (II): <p(xv . .. , xn) =  q. Then <p(xlt . . . ,  xn) = w = w—q.
Case (IV). 9 (̂ i> • • • > xn) ~  • • • > xn)> • • • > "£m(xi> • * • > xn)),

where by the hypothesis of the induction, (̂>3 , . . ., ym) — w,
Xi(xv . . . , x n)=yv . ,.,Xm(xlt . . •, x n)-=ym are arithmetical.
Then <p(xv . . . , x n)=w =  (EyJ  . . . (£yra)[xi(#i, .. . , x n)=y1 & . . .  & 
Xm(xlt . . . , x n)= ym&^{yv . . . , y m)=w).

Case (Vb): 9 (0 , x2, . . . ,  xn) =  ty{x2, . . . , x n), 9  ( / ,  x2t . . ., xn) =
X(y> 9 (y> xn)> x2, .. ., xn), where p{x2, . . ., xn) = w and y(y, z,x2, . . . ,
xn)—w are arithmetical. Suppose that y, *2, . . . ,xn, w are numbers such that 
9 (y, x2, . . . ,  xn) = w is true. Then there is a finite sequence of numbers
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* 0 > ^ 1 * • • • >

(the values of <p(i, x %t. . x n) for i  =  0, 1 , . . . ,  y)  such th a t

«0 —  * • * * %n)>
«1

"’’isH*©

cTII

«2 X(  ̂ 1̂> %2> * • • * %n) *

•

a y "‘"’gKcaX<3Tii

w =  a y.
B u t then  there are num bers c, d  for G odel's (3-function such th a t (3(c, d, i) 
=  (i =  0, 1 , . . y),  and the facts (A) can be expressed using the  

(3(c, d t i ) fs instead of the a / s ,  thus:

(Ec)(Ed){p(c,  d , 0) =  ty(x2, . .  . , x n)
(B) &  { i ) [ i < y - +  P(c, d } i + 1 )  =  x(i,  p(c, d, i ) ,  x 2, . . . ,# * ) ]

& w  =  |3(c, d, y)}.
C onversely, if (B) is true, then for a n y  c and d  given  b y  (B), the num bers 

(3(c, d t i)  for i  =  0 , 1 , . . , ,  y  do con stitute a sequence a 0) % , . . . ,  a y 
satisfyin g (A ); and (A) im plies th a t <p(y, x 2f . . . ,  x n) = w .  T h u s  

9 {y, x 2, . . . , x n) = w  is equ ivalen t to  (B). B u t (B) is an arithm etical 

predicate of y ,  x 2> . . . ,  x nt w t as w e see b y  rew riting it in the form

(Ec){Ed){ (Eu)[${c,  d, 0 ) = u  &  ty(x2t . . . , x n) = u ]  & ( i ) [ i < y - >
(C) (Eu)(Ev )[$(c f d , i + l ) = u  &  $ ( c , d , i ) = v  & x { i , v , x 2, . . . , x n) = u ] ]

& p(c, d, y ) = w } ,
and ta k in g  into account the hypothesis of the induction and the arith m et

ical character of (3(c, d , i ) = w  and i c y .
T h e  analysis of p rim itive recursion in term s of finite sequences of 

natural num bers used here is a num ber-theoretic adap tation  of D ed e

kin d 's an alysis of prim itive recursion (1888).

Corollary. E very  p r im i t iv e  recursive predicate P { x lf . . x n) is  
arithmetical.

F or P ( x v  . . . , x n) = 9 (^1, . . . ,  x n) = 0 ,  where 9  is the representing  

function of P  (§45). C onversely, the theorem  follows from its corollary  

using #  # 1 4 ,  C. T h e theorem  how ever has the form  necessary to the proof 

b y  in du ction  on th e len gth  of the description 9 ^ . . . ,  9 *.

B y  tran slating from  the in tu itive  arithm etical sym bolism  into the  

form al sym bolism , we ob tain  a form ula P ( x x, . . . ,  x n, w) w hich expresses 

<p{xv  . . . ,  x n) ~ w  under the interpretation of the form al system . B y  this  

m eans w e shall now prove the follow ing theorem .
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T heorem 27. Every  pr im i t i ve  recursive function <p(xv  . . . ,  x n) is  
numeralwise  representable  (§ 41) in  the formal sys tem of Chapter  I V ; i.e. 
there is a formula  P ( x x, . . ., x n, w), containing no variables free other than 
the dist inct  variables x v . . . ,  x n, w,  such that, for each n-tuple of natural  
numbers xv . . . ,  x n>
(v) if . . . , x n) = w ,  then b P(xv . . x n, w ) ,  and
(vi) b 3 !w P (x 1, . . . ,  x n, w).

P roof. T h e construction of P ( x 1, . . . ,  x„, w), and the proof of the  

theorem , are b y  a course-of-values induction on k, w ith  cases (I) —  (V) 

corresponding to those in the proof of Theorem  I.

Case  (Vb). B y  the hypothesis of the induction, there are form ulas 

Q ( x 2 , . .  ., x n, w) and R (y, z ,  x 2 , . . . ,  x n, w) which num eralwise represent 

the respective functions ^{x2, . . . ,  x n) and x(y> z > %2, • • •, x n), i.e. th e y  h ave  

the properties for these functions corresponding to (v) and (vi) for 

?(*i> . . . , x n).
A ccording to *(180) §41,  GodeFs (3-function (3(c, d, i) [ =  rm(c, 1 +  

( i + \ ) d  =  rm(c, (i'- d)')] is num eralwise represented b y  a form ula  

B(c, d, i, w) h a v in g  a further property *180a.

T h e form ula

3c3 d {3 u [B (c, d, 0, u) &  Q (x 2, . . . ,  x n, u)] &  V i [ i < y  D 3 u 3 v [B (c , d, i', u) 

&  B (c, d, i, v) &  R (i, v, x 2, . . . ,  x n, u)]] &  B(c, d, y , w)}

shall be the form ula P (y, x 2,. . . ,  x n, w) to represent cp(y, x 2, . . . ,  x n). W e  

m ust show th a t it has the properties (v) and (vi).

T o  establish (v), let y,  x 2, . . . ,  x n, w  be num bers such th a t 9 (y, x 2, . . . ,  x n) 
—  w.  Then there are num bers a0, a l f . . . , a y as in the proof of Theorem  I, 

and also num bers c and d  for these a0, av . . . , a y such th a t (3(c, d, i) =  a t 
(i — 0, 1 , . . . ,  y). B y  the property (v) for B , Q and R , the follow ing sta te 

m ents h o ld :

1- B(c, d, 0, a0), h Q(x2, . . . , x n> a0),
h B(c, d, 1, aj), h R(0, a0, x2> . . . , x n, a j ,

. . .
h B(c, d,y,  ay), 1- R(y—1, ay_v x2, . . . , x n, ay),
h B(c, d, y, w).

W e can thence show th a t b P {y, x 2, . . . ,  x n, w )  b y  & -in trod., 3-introd.

and *16 6  § 41 .

T o  establish (vi), we use an in tu itive  induction on y.  I n d . s t e p . L et  

w =  9 (y, . . . .  x n) and 11 =  <p(y’, x 2, . . . .  x„) == x(y> w , x 2, . . . .  x n).
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B y  (v) and (vi) for R  (and for b re v ity  using the inform al presentation,

beginning § 38): (a) R  (y, w} x2, . . . ,  x n, u), and (b) 3!u R (y, u;, x 2, . . . ,  x n, u). 
B y  (v) (as already established for P ): (c) P (y , x 2, . . x n, w), 
and (d) P (y ', x 2, . . . ,  x n, 11). B y  the hypothesis of the induction on y : 

(e) 3!w P (y, x 2, . . . ,  x n, w). W e m ust prove 3 !w P (y ', x 2, . . . ,  x n, w). 

A ssu m e: (f) P ( y ' , x 2, . , x n, w). B y  * 1 7 0  w ith  (d), it w ill suffice to deduce  

a = w  w ith  w  held constant. F or & - and 3-elim . from  (f), assum e: 

(g) 3u[B (c, d, 0, u) &  Q(x 2, . .  . , x n, u)]f (h) V i [ i < y '  D 3 u 3 v [B (c , d, i', u) 
&  B (c, d, i, v) &  R (i, v , x 2, . . . ,  x n, u)]], and (i) B (c, d, y ',  w). From  (h) 

using *13 8 a  § 3 9  (or * 16 7  and *166):

(j) V i [ i c y  D 3 u 3 v [B (c , d, i ',  u) & B ( c ,  d, i, v) & R (i, v , x 2, . . x n,u)]], 
and (k) 3 u 3 v [B (c , d, y ' ,  u) &  B (c, d, y ,  v) &  R (y , v , x 2, . . . ,  x n, u)]. F o r  

& - and 3-elim . from (k), assum e: (1) B (c, d, y ',  u), (m) B (c, d, y ,  v), and

(n) R (y , v , x 2, . . . ,  xn, u). From  (g), (j) and (m) b y  & - and 3-introd.:

(o) P (y , x 2, . . . ,  x n, v). From  (o), (c) and (e) b y  *17 2 , v = w , w hich w ith  

(n) gives: (p) R (y , w t x 2, . .  . , x w,u).  From  (p), (a) and (b) b y  * 1 7 2  u = u ,  

w hich w ith  (1) g ives: (q) B (c, d, y ' , u ) . From  (q), (i), *180 a and *17 2 , u = w ,  

as w as to  be deduced.

Co ro llary . E very  p r im itiv e  recursive predicate P (x v  . . . ,  #n) is  
n u m eralw ise  expressible in  the form al system .

F o r if P (x x, . . . ,  x n, w) num eralwise represents the representing  

function 9  of P ,  then using (vii) § 41 (obtained there b y  *17 3 , *(164)), 

P (x j, . . . ,  x w, 0) num eralwise expresses P .

L emma 18b. Theorem  27 an d  C orollary hold for R aph ael R ob in son ’s 
form al system  (§§41, 76) consisting  of the predicate calculus w ith  thirteen  
p a rticu la r num ber-theoretic axiom s as fo llo w s: A x io m s  14 —  21, an d  {the 
form ulas of) *10 4 —  *10 7  an d  * 13 7  {or *136).

U sin g L em m a 18a § 4 1 .

R em ark  1 . A  more am bitious undertaking (relating to th e full 

system , not to Robinson's) w ould be to establish the p ro v a b ility  of 

form ulas w hich express the recursion equations; e.g. for Case (Vb), to  

e sta b lish :

(1) 1- P(0, x 2) . . . ,  xn, w) ~  Q(x2, . . . ,  x„, w).

(2) H P(y', x2, . . . , x n, w) ~
3 z[P (y, x 2, . . x„,  z) &  R (y , z ,  x 2, . . . , x n, w)].

From  ( 1) and (2) b y  form al induction on y  (given b y  the h yp o th e

sis of an in tu itive  induction on k th a t |- 3! wQ( x2, . . . ,  x n, w) and
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b 3!w R (y, z, x 2, . . x n, w)), then:

(3 ) b 3!w P (y, x 2, . .  . , x n, w).

T o  establish (1) and (2), we w ould begin b y  form alizing the theory  

of the ^-function, w hich w e g a v e  inform ally in § 48. It  w ould suffice  

to esta b lish :

(a) b 3c3dB (c, d, 0, w).

(P) b 3c23d2{ V i[ i< y  D  3 u [B (c1} d x, i, u) &  B (c2, d2, i, u)]] &  

b (c2, d 2> y '> w)}.

For then the four im plications of (1) and (2) could all be proved, using  

* 180c, (a) (for the second), and (p) (for the fourth). —  W e shall not tak e  

the space to  carry out the form alization to  establish (a) and (P). H ilbert  

and B e m a y s  1934  pp. 401— 419 do p ractically  this in another form al 

system , w hence (in the m anner to  be indicated before E xa m p le  9 § 74) 

it can be inferred th a t (a) and (p) hold in our (classical or intuitionistic)  

system .



Chapter X
T H E  A R I T H M E T I Z A T I O N  O F  M E T A M A T H E M A T I C S

§ 50. Metamathematics as a generalized arithmetic. A s we

rem arked in § 42 (following G odel 19 3 1), b y  selecting a particular enum er

ation of the form al objects, or a particular correlation of distinct natural 

num bers to the distinct form al objects (not using every  num ber), and then  

talk in g about the correlated num bers instead of the form al objects, 

m etam ath em atics becom es a branch of the arithm etic of the natural 

num bers. In  this chapter w e shall carry out such an arithm etization of 

m etam athem atics, using a G odel num bering sim ilar to th a t of H ilbert and  

B ern ays 1939 .

H ow ever instead of carrying out the arithm etization directly, w e shall 

first represent the form al system  in an interm ediate w a y  as a generalized  

arithm etic, and then represent the generalized arithm etic in the ordinary  

arithm etic. T h is w ill bring out som e analogies w hich are of heuristic value, 

and the representation of the system  as a generalized arithm etic w ill be  

of interest on its own account.

T h e  arithm etic of the natural num bers deals w ith  the dom ain of ob jects  

w hich is generated b y  startin g w ith  one prim itive ob ject 0 and ap p lyin g  

one prim itive operation ' or + 1  ( § 6).

A  generalized arithm etic (for the present purpose) is obtained b y  

supposing one or m ore zeros, arid one or m ore successor operations. W e  

shall adhere to  the con ven tion (not the on ly useful one) th a t ob jects  

generated from  the prim itives in distinct w ays are distinct. There are 

several possibilities for representing the form al system  as a generalized  

arithm etic. Herm es 1938  considers an arithm etic w ith  the e m p ty  ex

pression as the zero, and the operations of suffixing one of the form al 

sym bols as the successor operations.

T h e  generalized arithm etic w hich w e select has a more com plicated  

structure as an arithm etic, b u t is designed to  represent d irectly  the  

gram m atical and logical structure of the form al objects. There shall be  

r + 1 zeros 00, 0 V . . . ,  0r, where r  is a natural num ber to be specified later; 

and there shall be one successor operation ap p lyin g to an $ + 1  -tuple of

246
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argum ents, for each of the natural num ber valu es of 5 to be specified  

later. T h e result of the successor operation applied to  x 0, x v  . . . ,  x , as 

argum ents is w ritten  “ (xQ, x v . . . ,  x*)” or also som etim es “ x 0(x1, . . x s)” . 

W e call the objects belonging to  this generalized arithm etic entities.
W e can express this b y  an in d u ctive definition (analogous to  th a t given  

for 'natural num ber’ in § 6). 1 . 00, 0X, . . . ,  0r are entities.  2. F or each

ad m itted  s, if x 0, x v  . . . ,  x 8 are enti t ies , then (x0, x 1#. . . ,  x,) is an entity.  
3. T h e on ly entities  are those given  b y  1 and 2.

A s  we h ave already indicated, tw o entities shall be equal, if and on ly  

if th e y  are generated from  the zeros b y  the successor operations in the  

sam e w ay. T o  sa y  th a t x  and y  are equal w e w rite " x  X  y ”  (unequal, 

“ x  X  y ” )- W e use " x ” rather th an  “ =  ” m erely to  avo id  confusion w ith  

the =  of the form al system .

A xio m s characterizing the dom ain of entities can be stated, analogous  

to P ean o’s for the natural num bers (§§ 6 , 7). In  particular, th e y  include  

the principle of proof b y  m ath em atical induction in the form  corre

sponding to the m ode of generation of the dom ain of entities (or to  the in

d u ctive definition ju st g iv e n ): If  the entities 00, 0 V . . . ,  0r each possess 

a certain property, and if for each ad m itted  s, w henever entities x 0, 

x v . . . ,  x s possess the property, the e n tity  (x0, x x, . . . ,  x 8) also possesses 

it. then all entities possess the property. T h e  statem en t of th e other  

Peano axiom s for the generalized arithm etic is left to  the reader.

T h e  process of gen erating th e entities p a rtia lly  orders them  (end § 8); 

we w rite " x <  y ” to sa y  th a t x  is generated before y  in the process of 

generating y. E xpressed in d u ctiv e ly : 1 . F or each ad m itted  s an d each  

i  <  s, Xi  -< (x0, x l t . . . ,  x s). 2. F o r each ad m itted  s and each i  <> s , if 

x  -< x*, then  x  -< (x0, x x, . . . ,  x s). 3. x  -< y  on ly as required b y  1 an d 2.

W e define a function of an e n tity  x  and a  natural num ber i,  w hich  

gives the predecessors of a  successor e n tity , thu s:

, , w  /  x <( if x  X  (x0) x 1(. . x,) a n d i <  s,
' ”  ^  |  x, otherwise.

W e now  sp ecify  for the rest of this ch apter th a t the num ber r + 1  

of the zeros 00, 0X, . . . ,  0r shall be thirteen, and w e nam e them  as follow s: 

D , & , V, V, 3, = ,  + ,  •, ', 0, a,  ,.

W e further sp ecify  th a t s adm it the values 0, 1 and 2 . T h is com pletes the  

definition of our generalized arithm etic as a dom ain of ab stract objects  

w hich can be recognized and distinguished from  one another as individuals  

b y  the m ode of their generation.

W e now  h ave to fix  how  our form al system  (as originally introduced in
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C hapter IV ) is to be represented in the generalized arithm etic. T h is w ill 

consist in giv in g a correlation of entities to  the objects of th a t form al 

system . Those form al objects were explained in § 16 as consisting of form al 

sym bols, finite sequences of form al sym bols (called ‘form al expressions’), 

and finite sequences of form al expressions. It is not necessary to correlate  

an e n tity  to e v ery  form al object, bu t only to those form al objects w hich  

are significant for the m etam athem atics. F or exam ple, an asyn tactica l  

expression such as ((0V 00= w ill h ave no e n tity  correlated to it. A lso  

there w ill be entities w hich are correlates of no form al object.

T o  the first eleven of the form al sym bols listed in § 16 w e correlate  

the respective entities D , & , V, - i ,  V, 3, =  , +> •, ', 0, w hich we are 

design atin g now  b y  the sam e sym bols, i.e. w e correlate resp ectively the  

first eleven of the zeros of the generalized arithm etic.

T o  the variables a , b } c, d , . . .  of the form al system , we correlate, 

respectively, the entities

a > (i> a ), (,, a)),  (,, (,, (,, a))),  . . .

(som etimes w ritten  a , a lf an, a m, . . . ) ,  i.e. the tw elfth  zero, and the  

further entities obtained thence b y  repeated applications of the suc

cessor operation of the generalized arithm etic w ith  s =  1 and w ith  the  

thirteenth zero as the first predecessor.

T o  term s and form ulas such as r + s ,  r', r = s ,  A  &  B , n A ,  V x A (x )  

we correlate the entities ( + ,  r, s), (', r), ( = , r ,  s), (&, A , B ), ( - i , A ) ,  

(V ,x,A (x)), resp ectively, where r, s, A , B , x, A(x) are now  to be the entities  

correlated to  the given  r, s, A , B , x, A (x), i.e. we repeat the correlation  

procedure on the given  r, s, A , B , x, A (x).

E xample 1 . T h e  e n tity  correlated to the form ula 3/>(—i = 0 )  is 

(3,

B u t hereafter in design atin g these entities, excep t w hen w e w ish to  

em phasize their structure (i.e. m ode of generation) as entities, w e shall 

use the form er expressions. For exam ple, w hen V , x, A (x) are entities, 

we m a y  w rite their successor (V, x, A(x)) as “ V x A ( x ) ” ; and w hen + ,  

r, s are entities, we m a y  w rite ( + ,  r, s) as “ r + s ” . T h is w a y  of designating  

entities correlated to  objects of the form al system  will m ake our sta te 

m ents about the entities read as our former statem en ts about the objects  

of the form al system .

Furtherm ore, in dealing w ith  the generalized arithm etic, it is convenient  

to call the e n tity  V x A (x ) correlated to a form ula (i.e. the e n tity  (V, x, A(x))) 

sim ply a “ form ula” , the e n tity  r + s  a “ term ” , etc.; and the system  of 

these entities “ the form al system  as a generalized arith m etic” in con trast
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to the form al system  as originally described, w hich w e can distinguish  

w hen necessary as the “ form al linguistic system ” .

Proofs and deductions w ill b e represented b y  entities corresponding to  

them  in their tree form  (end § 24) rather th an  to  them  as finite sequences 

of form ulas. T hus, to  g e t th e e n tity  corresponding to  a deduction in  

sequence form  w ith  a given  analysis, let th a t deduction first be p u t into  

tree form. In  tree form  it  has one of the three forms

D ,
P

d ;

p  Q

D ,

where D  is a  form ula, and P  and Q  are deductions in tree form. In  the  

generalized arithm etic, w e construe these to  be the entities (D), 

(D, P), (D, P, Q), respectively, at the sam e tim e of course construing D  

P, Q  to  be the entities correlated to  the linguistic objects D , P , Q. (In  

particular, a form ula D , and a deduction consisting of the single form ula  

D , becom e different e n titie s; the e n tity  w hich th e latter becom es is th e  

successor w ith  s =  0 of the e n tity  w hich the form er becomes.)

E xample 2 . T h e  deduction (6) of § 2 1 , after being rew ritten in tree  

form  as in E x a m p le  1 § 24, becom es an e n tity  w hich w e can w rite as 

(8 , (7, (1), (6)), (5, (3, (1), (2)), (4))) where the num bers 1 —  8 ab b reviate  

the form ulas of (6) § 21 now  considered as entities.

T h is com pletes th e correlation of entities to  th e significant form al 

linguistic objects. D istin ct entities are correlated to  distinct form al 

linguistic o b jects (except in th e case of tw o inessentially differing proofs  

or deductions in sequence form  w hich becom e the sam e in tree form). 

T h e proof of this, for the case of term s and form ulas, depends on th e  

uniqueness of the scopes of the operators in the term s and form ulas as  

form al linguistic expressions (§ 17).

In  thus going over from  the form al linguistic system  to  the generalized  

arithm etic, w e h a ve effected tw o changes, either of w hich could h a ve been  

effected separately. T h e  first of these is in the structure a ttrib u ted  to  th e  

form al objects. In  th e linguistic representation term s and form ulas were  

finite sequences of form al sym bols, in w hich the significant parts h ad  

to be recognized as subsequences, w hile in the generalized arith m etic  

th e y  are con structed d irectly  out of the significant parts b y  tn e generalized  

successor operation. In  th e la tte r the an alysis of expressions in to their  

significant parts (including th e use of parentheses) is transferred from  

the form al level to  the exposition of the m etam athem atics, where w e do  

not let it w orry us.

For exam ple, consider (A) D  (B) as a form ula of the linguistic system ,
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where A  and B  are form ulas (i.e. “ A ” and “ B ” are m etam ath em atical 

letters designating form ulas). W e are then talk in g ex p licitly  abou t a 

finite sequence of sym bols, w ith  the four parentheses shown being  

sym bols of the sequence, and the sequences design ated  b y  " A ” and “ B "  

occurring in the indicated position in the sequence (§ 16).

O n the other hand, consider (A) D (B) as a form ula in the system  

of entities, where A  and B  are likew ise form ulas. T h en  “ (A) D (B )”  

m eans (D, A , B ), w hich is the successor of the three entities D, A , B . 

T h e  parentheses in “ (A) D  (B )” and the parentheses and com m as in  

“ (D , A , B ) ”  are not form al objects, b u t only part of our in tu itive  no

ta tio n  for nam ing the e n tity  under consideration.

A s the second change, w e are now tak in g a different vie w  of the role 

o f the sym bolism  in presenting the form al system . In  C hapter IV , the  

ob jects of the form al system  were considered to  be linguistic sym bols or 

m arks, and other linguistic objects constructed from  such. In  stu d yin g  

them  we h ad in principle to  w atch  the distinction betw een an object  and  

a name  or des ignation  for the object, and betw een the ment ion  of an e x 

pression (as itself the ob ject under consideration) and the use  of it (in 

design atin g another ob ject or expressing a proposition). T h is has been  

em phasized b y  Frege (1893 p. 4), Carnap (1934  pp. 153— 160) and Quine  

(1940  pp. 23— 37). T o  m ake a statem en t about an object, ordinarily a 

nam e for the o bject is used. (Another m ethod, som etim es applicable, is to  

point to the object, or to  use a linguistic construction w hich am ounts to  

p oin tin g to  the object, i.e. calls atten tion  to it instead of nam ing it.) W e  

do not speak our friend, b u t we speak the nam e of our friend. I t  is not 

lik e ly  th a t we shall m istake our friend John for a sequence of four letters, 

b u t in m etam ath em atics as treated in the preceding chapters we did  

h ave to  be careful because we were discussing objects w hich were th em 

selves linguistic.

One m ethod of obtain in g nam es for linguistic objects is to  place them  

in qu otation  m arks. T h e nam e of John is “ Jo h n ” , and the nam e of the  

nam e of John is “  “ J o h n ” ” . T h e nam e of the nam e of John consists of four  

letters enclosed in one set of qu otation  m a rk s; the second set of qu otation  

m arks used ab o ve is em ployed in nam ing that.

A  second m ethod is the use of separate m etam ath em atical letters  

and'expressions as nam es for the linguistic objects.

It  need hot be strictly  forbidden th a t a specim en of a linguistic ob ject  

b e used as nam e of the o b je ct; then the ob ject has tw o uses, its use as 

th e  o b ject of stu d y, and its use as nam e of itself. In  the latter use, it is 

called autonymous.
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T h e m ethod w e used in the preceding chapters w as a com bination of 

th e  second and third m ethods.

T h is problem  of designation, w hich is troublesom e to treat ex p licitly , 

is extraneous to the m etam ath em atics as m athem atics. T h e issue can b e  

a v o id e d  b y  using o n ly nam es of the form al objects, and not claim ing to  

e x h ib it the objects them selves. W e find it con venient to do this in the  

generalized arithm etic, considering now  “ D ” , " V ” , " V x A ( x ) ”  as nam es  

o f certain objects (the nam es are the expressions inside the quotation  

m arks), rather than  as the objects them selves. W e refrain from  specifying  

w h a t the objects are, other th an  th a t th e y  belong to  a dom ain of ab stract  

o b jects arranged in a certain w a y  in relation to one another, w hich w e  

are calling entities (cf. § 8). T h e objects nam ed could be form al sym bols, 

form al expressions, etc. in the sense of C hapter IV , though w e now  leave  

this open as irrelevant for the m etam athem atics. (W hile we can thus  

avo id  the problem  of designation in our m etam athem atics, it w ould h ave  

to  be faced in discussing the application of the m etam ath em atics to  a 

particu lar linguistic system .)

B y  going over from  the conception of the form al system  in term s of 

form al sym bols, treated as if th e y  were m arks on paper, to  an ab stract  

system  of objects, our m etam ath em atics (i.e. th e stu d y  of th e form al 

system ) becom es a branch of pure num ber theory entirely on a par  

co n cep tu ally  w ith  the arithm etic of the natural num bers and sim ilar 

m ath em atical disciplines.

Remark 1 . T h e usual con ven tion or practice in inform al m ath e

m atical w riting is to  w rite all the sym bols w ith ou t quotes, so th a t w hen  

a  sym bol is being m entioned rather than  used it is autonym ous. In this  

b o o k  our practice is to  em p loy quotes syste m a tically  in m etam ath e- 

m atical passages to distinguish the m ention of m etam ath em atical 

expressions from  their use in design atin g form al linguistic expressions, 

an d elsewhere o n ly  for em phasis.

§ 51. Recursive metamathematical definitions. T h e arith m etiza- 

tion of m etam ath em atics w ill be com pleted in § 52 b y  m ap p in g the  

generalized arithm etic into the ordinary arithm etic of the natural 

num bers. O ur m ain ob jectives are to com plete the proof of the lem m a  

for G od el’s theorem , and to  prove Theorem  31. B o th  results w ill follow  

from  the result th a t a certain succession of num ber-theoretic predicates, 

obtained b y  the m apping from  m etam ath em atical predicates, are all 

prim itive recursive.

It  is in tu itiv e ly  clear w h y  these results hold, and w ould h a ve to hold
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for a n y  form al system  of like structure, w hen we consider the nature of 

th e definitions of the m etam ath em atical predicates in the generalized  

arithm etic.

B ecause the entities are generated from zeros b y  successor operations, 

predicates and functions can be defined over the entities b y  recursion. 

W e use this idea now, w ith ou t stopping to state an accurate definition of 

* p rim itive recursive’ for the generalized arithm etic.

W e giv e  below  a series of thirteen definitions of m etam ath em atical 

predicates. E a ch  definition is given b y  listing the cases in w hich the pred

icate is to be true. (A few  clauses are starred for reference from  § 52.)

E a ch  definition is either explicit (the predicate being defined not  

appearing in a n y  of the defining clauses), or con stitutes a p rim itive  

recursion (the valu e of the predicate for a given  e n tity  depending on  

valu es of itself for im m ediately  preceding entities, or sim ilarly w ith  

param eters), except th a t in D n 5 a n d  D n l 1 the recursion is on tw o variables  

sim ultan eously (one a num ber variable in D n l l ) .  F or the discussion of 

a m etam ath em atical definition not of this nature, cf. § 53.

T h e reader should ve rify  th a t the definitions do define the predicates  

nam ed, as we know  them  from  earlier sections of the book (Chapter I V  

and § § 41 , 50) .

D efinitio ns of metamathematical predicates for the formal
NUMBER-THEORETIC SYSTEM AS A GENERALIZED ARITHMETIC

D n l .  y  is a num eral. (A bbreviation : 9?(y).)

1. y  X  0.

2. y  X  n ' (i.e. y  X  (', n), cf. § 50), where n is a num eral.
D n2. y  is a  variable. (A bbreviation : 93 (y).)

1. y  X  a.
2. y  X  x, (i.e. y  X  („ x)), where x  is a variable.

D n3. y  is a term . (A bbreviation : % (y)-)
1. y  X  0.

2. y  is a variable.

3— 5. y  X  r + s  or r-s, where r and s are term s, y  X  r', where  

r is a term .
D n4. D  is a  form ula. (A bbreviation : $ (D ).)

1. D  X  r = s ,  where r and s are terms.

2— 5. D X A D B ,  A  &  B  or A  V B , where A  and B  are fo rm u la s . 

D X " i A ,  where A  is a form ula.
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6— 7. D  X  V x A (x ) or 3 xA (x), where x  is a variable, and A (x) is a  

form ula.
D n5. (t is a term , x  is a variable, E  is a term  or form ula, and) D  com es  

from  E  b y  th e su bstitu tion  of t  for (the free occurrences of) x. 

(A bbreviation : @ (D , E , t, x).)

1 . t is a term , x  is a variable, E  X  x, and D  X  t.

2— 3. t  is a term , x i s  a variable, E  is 0 or a variable x  x, and D  X E .

4— 5. E  is a term  or form ula, and E  is (e0, ex) and D  is (e0, d x), where  

e0 X  , and @ (dx, elf t, x) (so t is a  term , and x  is a variable). 

E  is a term  or form ula, and E  is (e0, e lt e2) and D  is (e0, d lt d2), 

where e0 X  V  or 3, ©(d-^ e v  t, x) and © (d2, e2, t, x).

6— 7. t is a term , and E  is (V, y , e2) and D  is (V, y , d 2), w here y  is a  

variable, e2 is a form ula, and either y  X  x  an d @(d2, e2, t, x), 

or y  X x  and D  X E . Sim ilarly for 3.

D n 6 . (E  is a term  or form ula, x  is a variable, and) E  contains  x  free . 

(A bbreviation : ® g (E , x).)

1 . E  is a term  or form ula, x  is a variable, and @ (E , E , 0, x).

D n 7. (t is i  term , x  is a variable, E  is a form ula, and) t  is free  for x  in E .  

(A bbreviation : $ ( t ,  x , E )). B y  recursion on E , With seven  

clauses corresponding to  1— 7D n4. F or exam ple:

6 . t  is a term , x  is a variable, and E  X  V y A (y ), where y  is a  

variable, A (y) is a form ula, and either E  does not contain  

x  free, or t  is free  for x  in A (y) and t does not con tain y  free.

D n 8 . D  is an axiom . (A bbreviation : 21(D).)

1— 10. D  X A  D (B  D A ), where A  and B a r e  form ulas (A xiom  Schem a  

la). Sim ilarly for A x io m  Schem ata lb , 3, 4a, 4b, 5a, 5b, 6 , 7, 8. 
(N o t e : W e separate A x io m  Schem a 10 into tw o cases (Clauses 

11 and 13), according as the A (x) contains the x  free or not. 

Sim ilarly for A xio m  Schem a 1 1 .)

* 1 1 — 12. There exists a t such th a t D  X  V x A (x ) D  A (t), where A (x)  

contains x  free, t  is free for x  in A (x), and @ (A(t), A (x); t, x). 

(N o t e : T h a t x  is a variable, A (x) is a  form ula, an d t  is a term , 

is included here in th e stipulation “ t  is free for x  in A (x )” . 

In stead  of presupposing the con ven tion of § 18 b y  w hich A (t)  

stands for the result of su b stitu tin g t for x  in A (x), w e m ake it 

explicit b y  “  © (A (t) , A  (x), t , x) ’ \) Sim ilarly for A x io m  Schem a 1 1.

13— 14. D  X  V x A  D A , where x  is a variable, A  is a  form ula, and A  

does not contain x  free. Sim ilarly for A xio m  Schem a 1 1 .
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15. D  X  A(0) &  V x(A (x) D A (x')) D A (x), where A(x) is a form ula, 

@(A(0), A (x), 0, x) and @ (A (x'), A (x), x ',  x).

16— 23. D  X  a ' = b ' D  a = b  (A xiom  14). Sim ilarly for A xiom s 15— 21.

D n9. D  is an immediate  consequence  of E . (A b b revia tio n : (£(D, E).)

1— 2. E  X  C D A (x) and D  X  C D V x A (x ), where x  is a variable, 

A(x) and C are form ulas, and C does not con tain x  free (R ule 9). 

Sim ilarly for R u le 12.

D n lO . D  is an immedia te  consequence  of E  and F .

(A bbreviation : g ( D , E , F).)

1. D  and E  are form ulas, and F  X  E  D  D  (R ule 2).

D n  11. x  is the numeral  for  the natural num ber %.
(A bbreviation : 9?u(x, x).)
1. x  X  0 and x  =  0.
2. x  X  n ' and # =  n ' , where 9?u(n, n).

D n l2 . Y  is a proof . (A bbreviation : ^ f(Y ).)

1. Y  X  (D), where D  is an axiom .

2. Y  X  (D, P), where P  is a proof,  and D  is an im m ediate con

sequence of {P }0.

3. Y  X  (D, P, Q), where P  and Q  are proofs , and D  is an im m e

diate consequence of {P }0 and {Q }0.

D n l3 . A(a)  is a form ula, ^ is a natural num ber, and Y  is a proof of th e  

form ula A (x) (as a predicate of A ( a ) ,  Y ).

(A bbreviation : $f(A (tf), #, Y).)

* 1. A(a)  contains a  free, $ f( Y ) ,  and there is an x  such th at 9iu(x, x) 
and @ ({Y }0, A  ( a ) ,  x , a).

2. A  ( a )  does not contain a  free, ^ f(Y )  and {Y } 0 X  A  ( a ) .

D n l3 a . F or each n  d istinct variables x 1#. . . ,  x n and form ula A ( x l f . . . ,  x w) : 

Y  is a proof  of A ( x v . . . ,  x n). (A bbreviation :

$ fxi,...,xM,A(xlf...,xM) (Xl> • • • 9 xn>Y) or . . ., Xn,Y).)
Sim ilarly.

§  52. Godel numbering. W e now  com plete the arithm etization  

of m etam ath em atics b y  representing the generalized arithm etic w ithin  

the arithm etic of the natural num bers. First, we correlate distinct odd  

num bers to  the zero entities, th u s :

3 & V -i V 3 = + • / 0 a i
3 5 7 9 11 13 15 17 19 21 23 25 27
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Then, w henever x 0, . . . ,  x s are entities to  w hich respective num bers  

xQf. . . ,  x s h ave already been correlated, w e correlate to  the successor 

e n tity  (x0, . . . ,  x 8) th e num ber p %*-, .  . -p 8s ( # 1 8  § 45).

B y  a m ath em atical in d u ction  corresponding to  the definition of e n tity  

a natural num ber >  0 is th ereb y correlated to  each e n tity. T h is num ber  

we call the Godel num ber  of the e n tity , or sa y  th a t it  represents  the e n tity  

(or form al linguistic o b ject to  w hich th e e n tity  in turn is correlated). 

Since on ly even num bers are correlated to  successor entities (because 

p 0 =  2  and x 0 ^  0), and because a  g iven  p ositive integer has the form  

Po°* • • * *Pss (x o> • • • > % » >  0) f ° r a t m ost one s and x 0, . . . ,  x s, d istinct 

num bers are correlated to distinct entities.

E xample 1 . T h e G odel num ber of 3i>(-i i>=^0), or as an e n tity

(3. (,. a), ( - .,  ( = .  (,. a), 0))), is
Since x { <  p %<>•... 'px8s for 0 <, i  <  s, entities x  and y  in the relation

ship x  -< y  are alw ays represented b y  natural num bers x  and y  in the  

relationship x <  y .  (H ow ever x  <  y  m a y  hold for pairs of num bers x  
and y  correlated to  entities x  and y  w ith ou t x  -< y  holding ; e.g. 3 <  5 

b u t not 3  -< &.)

If x  is an e n tity  of the successor form  (x0, . . x„) w ith  s >  i ,  and x  
is the G odel num ber of x, the G odel num ber of th e predecessor {x}< is 

(*),. ( # 1 9  §45).

W hen w e pass from  entities to  their G odel num bers, a predicate or 

function of entities becom es a predicate or function of G odel num bers. 

A  num ber-theoretic predicate or function obtained b y  exten d in g the  

definition of the latter to all natural num bers w e sa y  corresponds  to  the  

original predicate. In  particular, in the case of a  predicate ^ ( x j , . . . ,  x„), 

w e shall understand b y  the corresponding num ber-theoretic predicate  

P (x 1, . . . , % „ )  th a t one w hich is obtained b y  tak in g th e valu e to b e f 

w henever not all of x 1, . . . , x „  are G odel n u m b ers; i.e.

P (x v . . . ,  x n) =  {x v . . . .  x n are G odel num bers of entities x 1(. . . ,  x n, and

$(Xi>. . x„)}.

Sim ilarly w hen some of the variables of the original predicate already  

range over natural num bers (e.g. D n l 1 § 51).

Lemma 19. F or each of the pred ica tes defined  by  D n l  —  D n l 3, D n l3a, 
the corresponding num ber-theoretic pred ica te is  p r im itiv e  recursive.

Proof. To illustrate the m ethod, let us treat D n3, assum ing D n 2  

already treated.
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W e can w rite D n 3 sym b o lically  as follows.

2(y) =  y x o
v  3S(y)

(0 v [y x (+, {y}1( {y}2) & £({y}i) & st({y}2)]
v [y X  (• , {yli, (y } 2) & £({y)i) & S((y}2)]
v  [ y x  ( '  . { y M & S K y W ] -

T h e  five d isju n ctive m em bers correspond to the five clauses of D n3 as given  

in § 51. F or the third clause we observe th a t if y  X  r-j-s, i.e. y  X  ( + ,  r > s)> 

for a n y  entities r a n d s ,  then r X  {y)i, s X  {y }2. T h e fact th at y  X  ( + , r > s) 

for some entities r and s is then expressed b y  y  X  ( + ,  {yK,  (y } 2)- 

In ( 1) let us replace the zero entities 0 b y  their G odel num bers

17, 19, 2 1 , 23, the assum ed predicate 9S(y) b y  its corresponding num ber- 

theoretic predicate V (y),  X  b y  = ,  successor entities (x0, b y  

Po0' ■ ■ ■ 'Pss’ predecessors (y ), b y  (y ){, and w rite T (y)  instead of % {y) 
for the predicate being defined. T h is leads form ally to the follow ing  

num ber-theoretic equivalence.

T (y)  =  y = 2 3  

V F ( y )

(2) V [ y = 2 17-3(!/)l-5(!/)2 &  r ( ( y ) x) &  T ((y)2)]

V [ y = 2 19-3<v>i-5(v>* & r ( ( y ) x) &  T ((y)2)]

V [ y = 2 21-3(!/)l &  7'((y)1)].

N ow  (2) defines a predicate T (y)  b y  course-of-values recursion in the  

arithm etic of the n atu ral num bers, since (y)< <  y  for y  ^  0 ;  and b y  

# G  w ith  # # 2 ,  3, 14, 19, A , C, D  and our h ypothesis th a t V  is prim itive  

recursive, T (y)  is prim itive recursive (cf. E x a m p le  3 § 46).

I t  rem ains to prove th a t the predicate T (y)  defined b y  (2) is the  

num ber-theoretic predicate corresponding to % {y)- F or this purpose, we  

prove tw o  propositions b y  course-of-values induction on y :

(a) I f  T (y )  (by (2)), then y  is  the Godel num ber of an en tity  y  such that
£ (y ) (by ( 1)).

(b) I f  % {y) (b y (1)), an d y  is  the Godel num ber of y , then T {y )  (by (2)).

Proofs, (a) B y  (2), T(y) is true on ly w hen one of the d isju n ctive  

m em bers (or “ clauses” ) on the right of (2) is true; so w e h ave five cases 

to  treat. Case 2: V (y).  T h en , since V  is the predicate corresponding to  93, 

y  is the G odel num ber of a variable y , i.e. 93( y ) ; and b y  the corresponding 

clause of (1), 2 (y ) . Case 3: y  =  217-3<^-5(̂  & r ( ( y ) x) & T ((y )2). T h en  

(y)x. (y)2 <  y ;  so from  r ( ( y ) x) &  r ( ( y ) a) b y  the h ypothesis of the induction  

on y, ( y ) t and (y)2 are G odel num bers of entities r and s such th a t $(r) 

and % (s). T h en  y  ( =  217 • 3(w)l • 5 lvh) is the G odel num ber of ( + ,  r, s).
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C alling the latter y , then r X  {y}i, s X  {y}2; so y  X  ( + ,  {y}i, {y }2) &  

2 ({y }i) & % ( { y } 2)» and b y  the respective clause of (1), % (y)- T h e proof 

of (b) is sim ilar, w ith  cases from  the d isju n ctive m em bers (or “ clauses” ) 

on the right of (1).

T h e other definitions of predicates in the list D n l —  D n l 3 ,  D n l 3 a  are 

handled sim ilarly, excep t as noted below  for the recursions on tw o  

variables and for the starred clauses. Af t er  tran slatin g (as from  ( 1) to (2)), 

the num ber-theoretic predicate defined is true on ly for G odel num bers  

as argum ents, since in each clause of the original definition each variable  

e n tity  is required to sa tisfy  an earlier predicate of the list, or is a suc

cessor of entities w hich are fixed  or m ust satisfy  such predicates or the  

predicate being defined. F o r exam ple, we translate Clause lD n 9  as

e = 2 3,3(e)l-5(e)a &  d = 23.3(e)'-5^ 3(d)2,1-5W2 &  V ((d )2A)
&  F ((e)2) &  *"((«),) &  C F ((*)1((rf)2jl),

where “(d)2 1 ” abbreviates “ ((d)2) 1,\  N o te th a t CF(e, x) is not qu ite the  

num ber-theoretic predicate corresponding to g g j(E , x), since it is true w hen  

e or x  is not a G odel num ber. B u t this does not m atter here, since (e)t 
occurs also in F((e)^) and (d)2 l  also in V ((d )2 l ), corresponding to the  

stipulations in lD n 9  th a t C  is a form ula and x  is a variable.

D n 5 and D n l 1 are recursions (of a sim ple kind) on tw o variables. F or  

D n5, e.g., let T (z, t, x) == {z  =  2d-3e where S (d } e, t, x )}. T h en  T  satisfies  

a course-of-values recursion on the one variable z, and S (d , e, t, x) ^  
T (2 d-3et t, x).

It  rem ains to consider the starred clauses 11 and 12Dn8, and 1 D n  13 

and 1 D n l3 a . W e translate H D n 8 .as

(E t)t< d [ d = 23-32l l -3(<?),’1-5Wl’2-5<d>s &  C F ((d )h2> (d )1A)
&  F (t, (d )ifi, (d) 12 ) &  S((^)2> (d ) it2> Wi, i )]»

and use # E .  T h e bound t < d  is justified, since w hen A (x) contains  

x  free, t -< A (t) <  V x A (x ) D  A (t) X  D . W e translate l D n l 3  as 

C F (a , 25) &  P f(y )  &  (E n )n < y[N u (n , x) &  S((y)0, a, n, 25)].

T h is com pletes the proof of L em m a 19. T h e gist of this proof is th a t  

the p rim itive recursions in the generalized arithm etic becom e course-of- 

values recursions in the ordinary arithm etic, since the G odel num bering  

preserves the order relationships although it destroys the relationships of 

im m ediate succession. I t  is necessary to ve rify  th a t the range of each  

variable w hich we elected to introduce w ith  a quantifier rather th an  as a  

function of the independent variables of the predicate being defined  

(e.g. t in H D n 8 and x  in 1 D i l i 3) can be restricted.
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Lemma 20. U nder the Godel num bering of th is section, the p red ica tes  
A  (a, b) and  B (a , c) of L em m a  21 § 42 are p r im itiv e  recursive .

Proof. B y  L em m a 19, since we can express A  {a, b) and B (a , c) in 

term s of the num ber-theoretic predicate P f(a , x, y )  corresponding to  

th e predicate ?Pf(A(^), x, Y )  of D n l 3  thus,
A  (a, b) == P f(a , a , b)t B (a , c) =  P f (29-3«, a , c).
L em m a 21 § 42 follows now  using Corollary Theorem  27 § 49,

Theorem 31. F or a n y  given  form ula A (a) (cf. D n l3 ), the pred ica te  
‘A (x ) is  provable* (as pred ica te of x, where x  is  the num eral for x) is  ex
pressib le  in  the form  (E y )R (x , y) where R  is  p r im itiv e  recu rsive ; i.e . g iven  a 
form u la  A  (a), a p r im itiv e  recursive predicate R (x , y) can be found such that

(E y )R (x } y)  -  b A ( x ) .

(S im ila r ly  for  A ( x x, . . x n); cf. D n l 3a.)

Proof. A  form ula is provable, if and on ly if there exists a proof of it. 

L e t a  be the G odel num ber of the particular form ula A (a)  of the h ypothesis  

of the theorem , and set

R (x , y) =  P f (a , x, y ).
(For A ( x x, . . x n), set R (x v  . . . , x n, y )  =  P f A(xlf y).)

E xample 2 . L e t @ (E, t, x) X  {the result of su bstitu tin g t for x  in  

E , if t is a term , x  is a variable, and E  is a term  or form ula; otherwise, E } ;  

and let yiu(x)  X  {the num eral x  for the natural num ber x}. These m eta- 

m ath em atical functions @ (E , t, x) and -Ku(#) can be defined b y  recursion, 

sim ilarly to the predicates @ (D , E , t, x) (Dn5) and 9iu(x, x) ( Dnl  1); and  

the corresponding num ber-theoretic functions S (e f t, x) ( =  e , w hen e , t , x  
are not all G odel numbers) and N u (x )  are prim itive recursive.

* §  53. Inductive and recursive definitions. T h e definitions of 

‘term ’ and ‘form ula’ were g iv e n  originally in § 17 as in d u ctive definitions. 

O ther exam ples of in d u ctive definitions are the definition of ‘natural 

num ber’ (§ 6), of ‘provable form ula’ in the first version (§ 19), of ‘prim itive  

recursive fu n ctio n ’ if phrased sim ilarly (§ 43), and of ‘e n tity ’ (§ 50). T h e  

results of this chapter m a y  be view ed in term s of the relationship betw een  

in d u ctive and recursive definitions. W e begin w ith  a few  rem arks about  

in d u ctiv e  definitions generally.

Inductive* definitions occur in tw o different roles, and we call them  

fu n dam en ta l and n on -fu n dam en ta l accordingly. T o  w hich category a  

given  in d u ctive definition belongs m a y  v a r y  w ith  the co n text or theory in  

w hich it is being used.
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F o r the generalized arithm etic, the definition of 'e n tity ' is the  

fundam ental in d u ctive definition. I t  establishes the dom ain of objects for 

the arithm etic. A n  e n tity  is thereafter understood to be given , w hen and  

on ly  w hen its m ode of generation under th e in d u ctive definition of 

'e n tity ' is given.

T h en  the non-fundam ental in d u ctive definitions, such as those of 

'term ', 'form ula' and 'provable form ula', a p p ly  to objects already know n  

in their statu s as entities. These definitions each define a class of entities,

i.e. a subclass of the entities. W e  can ask in the arithm etic w hether or not 

a g iven  e n tity  belongs to the subclass; and w e can associate w ith  the  

subclass a predicate tak in g the valu e t for an e n tity  belonging to  the  

subclass and f for an e n tity  not belonging. W e can regard the non

fundam ental in d u ctive definitions as definitions of these predicates.

T h u s the fundam ental in d u ctive definition establishes the range  

of a variable, over w hich one m a y  subsequently define predicates b y  non

fundam ental in d u ctive definitions (including as a special case the constant  

predicate t).

T h e m anner in w hich a non-fundam ental in d u ctive definition defines 

a predicate is the following. T h e direct clauses tell us certain objects for 

w hich the predicate takes the valu e t. T h e extrem al clause  says th a t those  

are the on ly objects for w hich the valu e is t, so th a t we can attrib u te the  

valu e f w henever we are able to see th a t the direct clauses do not require 

the valu e to be t.

T h e direct clauses generally include basic clauses, each of w hich tells 

us outright (or under hypotheses in volvin g on ly previously defined  

predicates) th a t the valu e is t for a certain object, and in du ctive  clauses, 
each of w hich tells us th at, if the valu e is t for certain objects (and possibly  

under hypotheses in vo lvin g previously defined predicates), then the valu e  

is t for the o bject related to those in a given  w ay. (If basic clauses are 

missing, then the predicate takes the valu e f for all argum ents. If in

d u ctive clauses are m issing, the definition is sim ply an explicit definition  

b y  cases.)

N on-fun dam en tal in d u ctive definitions can also be used to define  

predicates of more than one variable. Such a definition som etim es has 

the form of an in d u ctive definition of a  class depending on a param eter  

(e.g. th a t of ' < '  § 6), and in general it can be considered as the in du ctive  

definition of a class of ordered ^-tuples.

In d u ctive definitions, b oth  fundam ental and non-fundam ental, ju stify  

corresponding forms of 'proof b y  m athem atical induction'. Those cor

responding to the in ductive definitions of 'natural num ber' and ' ent i ty'
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h ave already been m entioned (§§ 7, 50). A s  another exam ple, the principle  

of induction corresponding to  the in d u ctive definition of ‘provable for

m ula' is t h is : If every axiom  has a certain property, and if w henever the  

prem ises for a form al inference h ave the property so does the conclusion, 

then ev ery  provable form ula has the property. (This induction principle  

could h ave been in voked for the proof of Theorem  9 § 28, instead of 

course-of-values induction on the length  of a proof. T h en  Lem m as 12a  

and 12b them selves con stitu te the basis and induction steps of the proof.)

In the sam e w ay, fundam ental in d u ctive definitions (under the con

ven tion  th a t differen tly generated objects are distinct) ju stify  ‘definitions  

b y  induction' or ‘recursive definitions' of a function over the dom ain  

established b y  the in d u ctive definition. (B ut a recursive procedure cor

responding to a non-fundam ental in d u ctive definition of a class w hich  

allow s an ob ject to be recognized as in the class b y  different successions 

of applications of the direct clauses m a y  lead to  more than  one function  

va lu e for such an object, e.g. “ 9 (A) =  0 if A  is an axiom , 9 (A) =  9 (B) +  1 

if A  is an im m ediate consequence of B , and 9 (A) =  9 (B) +  ? ( Q  +  1 

if A  is an im m ediate consequence of B  and C "  does not define a single

va lu ed  function 9 from provable form ulas to natural numbers.)

Predicates can be introduced from  recursively defined function s  

serving as their representing functions, or often as w e h ave seen in § 51 

b y  recursive procedures directly.

In recursions (of such kinds as we h ave been considering for the sim ple  

arithm etic in C hapter IX ) the valu e of a function or predicate, sa y  of 

one variable, for a n y  given  non-zero argum ent is determ ined from  the  

values of the sam e for on ly argum ents preceding the given  argum ent in 

term s of the order of generation of the dom ain b y  the fundam ental 

in d u ctive definition. T h is has the consequence th a t we can prove b y  a  

corresponding induction th a t a recursively defined predicate takes the  

valu e t or f for every argum ent. T h u s the law  of the excluded m iddle is 

proved in tu itio n istically  to a p p ly  to every proposition taken  as valu e of 

a recursively defined predicate.

T h is is not in general so for an in d u ctively  defined predicate, as the use 

of the extrem al clause to assign the valu e f w henever the direct clauses 

do not assign the va lu e t m a y  leave us w ithout the know ledge of effective  

m eails to determ ine w hich is the valu e for a n y  given  argum ent (s).

In a special case it is so, nam ely (e.g. for the in d u ctive definition of a 

class) w hen the order in w hich the in d u ctive clauses introduce m em bers of 

the class agrees w ith  the order of generation of the objects under the fun

d am en tal in d u ctive definition. I t  is inductive definitions of this sort
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w hich w e can recast as recursive definitions, as we did for those of ‘term ’ 

and ‘form ula’ in § 51.

A n  in d u ctive definition not of this sort is th a t of ‘provable form ula’ 

in the first version (§ 19). In  the second version, the definition is set apart 

from the m etam ath em atical definitions of § 51 b y  the fact th a t an existen

tial quantifier “ there exists a proof Y ”  is used w ith ou t a bound being  

know n for its variable Y  (in contrast to  11 — 12D n 8 and lD n !3 ). (Cf. § 30.) 

From  this second version, w e obtain  as the corresponding num ber-theo

retic predicate (E y )[P f(y )  &  (y)Q= d ]  (cf. D n l2 ), w hich is of the form  

(.E y)R (d , y)  where R  is p rim itive recursive.

W h en  the form  of an in d u ctive definition (with elem entary direct 

clauses) is specified in a n atural w ay, the predicates P (x v  . . . ,  x n) 
definable b y  use of in d u ctive definitions in the natural num ber arithm etic  

are e x a c tly  those expressible in the form  (E y )R (x lt . . . , x n, y )  w ith  R  
p rim itive recursive. T h e  proof can be given  b y  an extension of the above  

m ethods, as w as suggested in K leene 1943 pp. 66— 67; or b y  another  

m ethod, indicated in K leene 1944* p. 48 .



Ch a p t e r  X I

G E N E R A L  R E C U R S I V E  F U N C T I O N S

§ 54. Formal calculation of primitive recursive functions.
E a c h  of the schem ata (I) —  (V) of § 43 considered in tu itive ly  is an  

operation defining a function 9 from  zero or more given  functions. 

A c tu a lly  we stated  the schem ata b y  m eans of equations.

L e t us review  the m anner in w hich the equations define the function

9 , to  see w hether w e cannot an alyze our use of them  in determ ining  

particu lar values of 9  into form al operations.

Example 1 . L e t x  be a given  function, tw o of whose values are: 

1. X(0,4) =  7. 2. x (1<7) =  7.

L e t 9 be introduced b y  Schem a (Va) w ith  q =  4, thus:

3. 9 (0) =  4. 4. 9 (y') =  x (y, 9 (y))-

In § 43 we convinced ourselves th at, for a n y  num ber y, the recursion  

equations for 9 determ ine the corresponding valu e 9 (y) of 9 , if the valu es  

of x  are already determ ined. In  particular, w ith  the tw o values of x  ju st  

given , the reasoning of § 43 tells us th a t 9 (2) =  7. W e now ask: W h a t  

sorts of form al inferences w ill enable us to  deduce the equation " 9 (2) =  7 ”  

from  E q u atio n s 1 —  4 ?

S u b stitu tin g “ 0” for “ y ” in E q u atio n  4 :

5. 9 ( 0  =  X(0, 9(0)).

R ep lacin g " 9 (0)”  in the right m em ber of E q u a tio n  5 b y  “ 4” from  

E q u atio n  3:

6. 9(l) =  x(0, 4).
F o u r more steps of these tw o sorts com plete the d ed u ctio n :

7. 9 ( 1) =  7  —  R eplacem ent, 6 , 1 .

8 . 9 (2) = >X(1, 9 (1)) —  Substitu tion , 4.

9. 9 (2) =  x ( l, 7) —  R eplacem ent, 8 , 7.

10. 9 (2) =  7 —  R eplacem ent, 9, 2 .

T h u s a substitution  and a replacem ent operation suffice for th e de-
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duction from  the given  equations 1 — 4 of the equation “ <p(2) =  7 "  

w hich states th a t the va lu e of <p for the argum ent 2  is 7. M oreover, 

quite evid en tly, no succession of these tw o sorts of inferences can lead  

from E q u atio n s 1 —  4 to  a n y  other equation whose left m em ber is 

“ 9 (2)”  and whose right m em ber is a numeral.

E xample 2. Suppose now  more p articu larly  th a t x is the con stant  

fu n ction  (C|) defined b y  the equation

—2- x(y»z) = 7,
while 9  is defined from  x  as in E x a m p le  1 . (Then 9  is prim itive recursive, 

w ith  x> 9  as a p rim itive recursive description.) N o w  w e can deduce  

E q u ation s 1 and 2 from  E q u a tio n  — 2 b y  substitution, as fo llo w s:

— 1 . x(0> z ) =  7 —  Subst., — 2 . 0 . x 0 » * )  = 7  —  Su bst., — 2.

1 . x(0, 4) =  7 —  Subst., - 1 . 2 . x0> 7) =  7  —  Subst., 0 .

Com bining these tw o deductions w ith  th a t of E x a m p le  1 , w e ob tain  

a deduction of " 9 (2) =  7 ” from  the three equation s — 2, 3, 4 defining 9  ab  

initio.

In these exam ples w e h ave been considering questions of a  form al 

kind, w ith o u t h avin g e x p licitly  set up a form al system  in advance. W e  

shall now  establish a suitable form al system , and m ake our discussion  

rigorous as a m etam ath em atical discussion referring to  this system .

T h e new  form al system  w e call the form alism  (or form al system ) of 
recursive functions. W e describe it now  in the linguistic m anner, an d  

later (§ 56) as a generalized arithm etic.

T h e form al sym bols  of the system  are as follow s: =  (equals), '(successor), 

0 (zero), a, b , c ,  . . . ,  a v  a 2> . . .  (variables for natural num bers), f, g ,  h t 
• • •> f v  f*> • • • (function letters, i.e. sym bols for unspecified num ber- 

theoretic functions), (,) (parentheses), and , (comma). A  (potentially) 

infinite list of variables and of function letters are supposed to  be given.

W e call f, g ,  h , . . . ,  f v  f %, . . .  "fu n ction  letters" rather th an  "fu n ctio n  

sym b o ls" here to distinguish them  from  '. A lso the nam e is appropriate, 

because th e y  w ill h ave a role sim ilar to th a t of the predicate letters in the  

pure predicate calculus, i.e. th e y  are to  be interpreted as expressing dif

ferent functions a t different tim es, b u t there is no postulated rule of sub

stitu tion  for them . In  discussions in w hich f t g ,  h , etc. express fixed  

functions, and are not being treated  differen tly from  e.g. w e m a y

call them  "fu n ction  sym b ols".

T h e form al expressions 0, O', 0", . . .  w e call num erals. A s  before  

(§ 41),  w e ab b reviate them  resp ectively b y  " 0 " , " 1 " ,  " 2 " ,  . . . ;  and we
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continue to use the con ven tion w hereby “ x ” , “y ” , etc. designate the  

num erals for the natural num bers designated resp ectively b y  ‘ V " ,  “ y ” , 

etc.

T h e  term s are 0, the variables, and expressions of the form  r' where r 

is a term , or f(rx, . . . ,  rn) where f is a function letter and rv  . . . ,  rn are 

term s  (n >  0, om ittin g the parentheses w hen n  =  0).

A  form al expression r — s where r and s are term s is an eq u a tio n . 
T h e equations are the o n ly  “ form ulas” for this system . By a system  

of  equations we m ean a finite sequence e0, . . . ,  es of equations (not em p ty,  

unless otherwise stated).

N o axiom s w ill be p rovided; and we shall define on ly  ‘deducibility"  

b u t not ‘provability".

T h e  rules of inference shall be a one-prem ise su bstitu tion  rule R 1 
and a tw o-prem ise replacem ent rule R 2 , as follows.

R 1 : to  pass from  an equation d containing a variab le y  to the equation  

w hich results from  d b y  su bstitu tin g a num eral y  for y.

R 2 : to  pass from  an equation r — s con taining no variables (the m ajor  

p rem ise ) and an equation h ( z l9 . . . , z P) = z  where h is a function  

letter and z v  . . . ,  z P, z  are num erals (the m in or  p rem ise ) to  th e  

equation w hich results from r = s  b y  replacing an occurrence of 

h (zv . . . ,  z v) in s (or several such occurrences sim ultaneously) b y  z .
A  deduction  of an equation e (the endequation  of the deduction) from  a  

system  (or set, possibly infinite) E  of equations is to be one in tree form  

(end § 24); i.e. it shall h a ve one of the three forms

c where c is one of the equation s of E ,

W

c
where W  is a deduction from  E , and c  is an im m ediate consequence  

b y  R 1 of the endequation of W , or

W X

C
where W  and X  are deductions from  E , and c is an im m ediate  

consequence b y  R 2 of the endequations of W  and X  respectively.

If  there is a deduction of e from  E , then  e is deducible  from  E  (in sym bols, 

E  h e).

E xample 2 (continued). T ran slatin g E q u atio n s — 2 to  10 into the  

new  form alism  (using th e form al fun ction  letters h  for the in tu itive  

function letters “ <p” , “ x ” , and b , c  for the in tu itive  num ber variables  

“y ”, “ z ” ) ,  and going over from  the sequence to the tree form , w e ob tain  

th e follow ing figure.
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42. f ( b ' ) = h ( b ,  f[b ))
5. f ( l ) = h ( 0 ,  f(0 ))  3. f { 0 ) = 4  — 21. h (b , c ) = 7

(a) 1 — 1 . h (0 , c ) = 7
4i- f ( b ' ) = h ( b ,f { b ) )  6 . f ( l ) = h { 0 ,4 )  l . A( 0,  4 ) = 7 — 2 2. h { b , c ) =  7

8. f ( 2 ) = h ( l , f ( \ ) )  7 . f ( l ) = 7 0 . h ( l , c ) = 7
9. f ( 2 ) = h ( l , 7 ) 2 . A ( l , 7 ) = 7

10. f { 2 ) = 7

T h is is a deduction of the equation / (2) = 7  from  the system  of equations

h ( b , c ) = 7, } (bi)
(b) />(0 )= 4 , 1

(b2)f { b ' ) = h { b , f { b ) ) .  /

E xample 1 (continued). Consider the part of the tree (a) w ith ou t the 
(occurrences of) equations —2lt  — 1 , — 22, 0, call it (a2). This is a deduction  

of f(2 ) = 7  from  A ( 0 ,4 ) = 7 , h { \ , 7 ) = 7  and (b2).

Remark 1. One m a y  ask: W h y  ta k e the trouble o f tra n sla tin g? T h e  

reasons are of course the sam e as those w h ich  d ictated  our use of a  special 

sym bolism  in the num ber-theoretic form al system  of C hapter IV , d istin ct  

from the sym bolism  of in tu itive  num ber theory. R e c a p itu la tin g : T h e  

translation now  from  “ 9 ” , “ x ” * to f 9 h , b , c  is called for under

the linguistic conception of a form alism , because the form al sym bols m ust  

be from  a fixed  preassigned list of sym bols considered in the m etam ath e

m atics as m ere m arks. T o  use these au ton ym o u sly (§§ 50, 16) w ith o u t  

risk of confusion, m ost of them  should be from  a special alphabet. U nder  

the conception of a form alism  as a generalized arithm etic, w e m a y  if  

we w ish consider th a t f  is (i.e. th a t “ f ” is a nam e for) “ 9 ” (but then it is 

a nam e for “ 9 ”  only, and not som etim es for “ <J/\ etc.). T h e  “ f ” used e.g. 

in the definition of 'term ', on the other hand, is a  nam e for an unspecified  

one of f t g ,  h, etc. (and if w e consider th a t “ f ”  is a nam e for “ <p” , “g ”  f ° r 

“ h 99 for “ x  ’> etc., then “ f ”  is a  nam e for an unspecified one of 

“ 9 ” , ' Y ' ,  Y .  etc.). T h e n et result of tran slatin g is to  enable us to  ta lk  

clearly about the sym bols as distinguished from  the functions, num bers, 

etc. w ith ou t going to  the trouble of con tin u ally  using qu otation  m arks and  

related devices (such as Q uine's “ corners” 1940).

Suppose th a t a function 9  of n  variables has been defined in tu itiv e ly  

from l  (;> 0) functions ^1, of m v  . .  . , m x variables, respectively.

Before w e can discuss w hether a given  system  E  of equations “ defines”  

9 from  in the form alism , we m ust sa y  w hich function letters

f, g i, . . gi  are to express 9 , . . . ,  <ph respectively.
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I t  is  con v en ien t to  em p lo y  con v en tio n s w h ich  m ak e th ese  le tters  rec
ogn izab le  from  E  itse lf. I t  su ffices to  consider sy stem s E  in  w h ich  th e  
first (leftm ost) sy m b o l of th e  la st  eq u ation  is  a fu n ction  le tter  f ; and  w e  
ca ll th is  th e  p r in c ip a l function  letter of E , and  use it to  express 9 . T h e  
d istin ct fu n ction  le tters  w h ich  occur in  right m em bers of eq u ation s of 
E  b u t n o t in  le ft  m em bers w e ca ll th e  given function  letters of E . I t  su ffices  
to  consider sy stem s E  in  w h ich  th ere are l  of th ese; an d  w e u se  th em  
gx, . . . ,  g t in  th e  order o f their  occurrence in  th e  p reassigned  list of fu n ction  
le tters  to  exp ress t|/x, . resp ective ly . I t  su ffices to  u se  sy stem s
E  in  w h ich  f, g x, . . . ,  g l occur o n ly  in  term s form ed w ith  n, m v  . .  
argu m ents, resp ec tiv e ly  (or w e cou ld  for th e  present purpose cou n t as  
d istin c t a  fu n ction  le tter  w ith  each  num ber o f argu m ents, as w e d id  
p red icate  le tters  in  § 31); w e th en  ca ll th e  oth er fu n ction  le tters  
(if any) occurring in  eq u ation s o f E  th e  a u x ilia ry  function  letters o f E .

W h en  /  >  0 , w e  sh a ll n eed  to  h av e  ava ilab le  as " assu m ption  equations'"  
n o t o n ly  th e  sy stem  E  w h ich  w e asso cia te  w ith  th e  sch em e d efin in g  9  
from  . . . ,  b u t a lso  eq u ation s g iv in g  th e  va lu es of th e  fu n ction s  

L et d en ote  th e  set of th e  eq u ation s
S t fr v  • • • > ym j)= *y  w here <h(yx, . . . ,  y mj)  =  y,  for j =  1 a nd a ll m f  
tu p les y lt  . . . ,  y mj of n atu ral num bers {ylf . . . ,  y mj, y  b ein g  th e  num erals  
for th e  n um bers y x, > . . ,  y mj, y). T h is set o f eq u ation s is  in fin ite , w h en  
l  >  0 (unless m 1 +  * . .  +  m x =  0); em p ty , w h en  l  =  0.

W e bring th ese  id eas togeth er  in  th e  fo llow in g  m eta m a th em a tica l 
d efin ition . A  sy stem  E  of eq u ation s defines 9  recursively in  (or from ) 
^x, . . ^ 1 ,  if for each  w -tu p le x v  . , x n of n atu ra l num bers:
E gJ”*^, E  (- f(Xx, . . x n) = x ,  w here f is th e  principal fu n ction  le tter  
of E , g x, . . . ,  g i are th e  g iv en  fu n ction  le tters  o f  E  in  order of their  
occurrence in  th e  p reassigned  list of fu n ction  le tters, an d  x  is a num eral, 
if an d  o n ly  if cp(xv  . . . ,  x n) — x.

In  o th er w ords, E  d efin es 9  recu rsively  from  § lf  if (for f,
g i,  as describ ed ): (- f fo ,  . . xn)= x  w here
x x, . . . ,  x n, x  are num erals, if {completeness property) and  o n ly  if {con
sistency property) f (x x, . . . ,  x w) = x  £ E^.

E xamples 1 and 2 (con tinu ed ). T he p rin cip al fu n ction  le tter  of (b) 
is  f ;  h  is ah  au x iliary  fu n ction  le tter ; and  q u ite  ev id e n tly  (b) defines  
recu rsiv e ly  th e  fu n ction  9  (where 9(y) =  4 if y  =  0 , an d  9(3/) = 7  if  
y >  0). T h e sy stem  (bx) defin es x  ( =  Cf) recu rsively; an d  (b2) defines  
9  recu rsive ly  from  x> w ith  h  as th e  g iv en  fu n ction  le tter .
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Theorem II. I f  9 is  p r im itiv e  recursive in  . . . ,  then there is  a  

system  E  of equations which defines  9  recursively  from
It  is quite evident th a t we obtain such a system  E  b y  tran slatin g the  

schem a applications for a n y  prim itive recursive derivation cpk
of 9 from  <Ĵ , . . i nt o the form alism , if we choose the function letters  

su itab ly, and if w e first arrange (if necessary) to h ave each used in some 

schem a application (since our conventions provide th a t <J/X, . . . ,  be  

expressed b y  function letters g v  . . . ,  g h respectively, all occurring in E ). 

H ow ever we shall give the m etam ath em atical an alysis in detail, w ith  five  

lem m as, to la y  the basis for brief treatm ent of sim ilar m atters later.

B y  the p r in c ip a l branch  of a deduction, we m ean the branch which, 

traced upw ard from  the endequation, contains the m ajor prem ise at each  

application of R 2 . T h e equation w hich stands a t the top of the principal 

branch we call the p r in c ip a l equation. T h e deductions (occurring as parts  

of the given  deduction) of the m inor premises for the applications of R 2  

along the principal branch w e call the contributory deductions.
E xample 2 (continued). T h e principal branch of (a), read dow n

wards, consists of the equations num bered 4 lt 8 , 9, 10. T h e  principal 

equation is f ( b f) = h ( b ,  f(b )) .  T h e  tw o con tribu tory deductions are the  

trees ending w ith  7 and w ith  2 .

T h e principal branch of a deduction of an equation of the form  

f( x x, . . . ,  x n) = x  where f is a function letter and x v  . . . , x n, x  are 

num erals, read dow nw ards, consists of zero or more applications of R l ,  

follow ed b y  zero or more applications of R 2. T h e  applications of R l  

su bstitu te respective num erals for the variables of the principal equation, 

until the left m em ber becom es f( x x, . . x M). T h e applications of R 2  

replace parts h ( z v  . . . ,  z P) in the right m em ber (originally present or 

resulting in the course of these replacem ents) b y  respective num erals z, 

until the right m em ber becom es x .

B y  the iden tica l schem a , w e m ean:

<p (x v  . . . , * * )  =  . . . , * « ) .
Lemma H a. I f  9 is  an  im m edia te  dependent of by one of

Schem ata  (I) —  (V) or the iden tica l schem a, then the system  E  of equations  
obtained by tran sla tin g  the in form al equations of the schem a a p p lica tio n  in to  
the form alism  {with an y  a p p ro p ria te  choice of the function  letters) defines  
9 recursively  from  tylf . . . ,

Proof of Lemma I la . T h e proofs parallel the inform al reasoning  

b y  w hich we recognized th a t the schem a applications define the function s.
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Schema (Vb). T h e E  is of the form f(0, x 2, . . x n) = g ( x 2, . . x n)> 
f( y ,» x 2, . . . ,  x „ ) = h ( y ,  f(y,  x 2, . .  ., x„), x 2, . . . .  x„). Choose a n y  n — 1 
num bers x 2, . . . ,  x„. W e use induction on xv B a s is : x x — 0. T h e n  

9 {xx, =  ^{x2, . . . , x n). N o w  E ^ ( E  b f(Xi, . . . ,  x n) = x  for

x =  <p[xv  . . . ,  x n), using the first equation of E  as the principal equation* 

and the equation g ( x 2, . . . ,  x n ) — x  from  E | *  as a m inor premise for R 2. 

M oreover, to deduce i ( x v  ..., x n ) = x  for a n y num eral x ,  w e m ust use 

th e sam e principal equation and the sam e substitutions of num erals b y  

R 1 (apart from their order), since from  no other equation of E |£ , E  

and b y  no other substitutions can w e obtain an equation w ith  f( x x, . . . ,  x n )  

(for %  =  0) as left m em ber. T h en  the replacem ent step b y  R 2  is also  

u n iq u ely determ ined. So E ^ ,  E  b f( x x, . . . ,  x n) — x  w ith  x  a num eral 

o n ly  for x  =  <p(%, . . . ,  x n). I nduction s t e p : xx =  y '.  Sim ilarly.

L emma l i b .  L e t  D b e  a  s e t  o f  e q u a t i o n s  [ f i n i t e  o r  i n f i n i t e ), F  b e  a  

s y s t e m  o f  e q u a t i o n s  w h o s e  l e f t  m e m b e r s  c o n t a i n  n o  f u n c t i o n  l e t t e r s  w h i c h  

o c c u r  i n  [ e q u a t i o n s  o f )  D , a n d  g  b e  a  f u n c t i o n  l e t t e r  o c c u r r i n g  i n  D . T h e n  

D , F  h g ( y lf . .  - > y m ) = y  w h e r e  y v  y  a r e  n u m e r a l s , o n l y  i f

D i- g(yi» ■ ■ ■ ,ym)=y-
P roof of L emma l i b .  Consider a n y  deduction from  D , F  of an  

equation of the described form  g ^ ,  . .  . , y w) = y .  W e prove b y  course- 

of-valu es induction on the h eight t of this deduction th a t on ly  equation s  

of D  are used in it as assum ption equations (i.e. occur in it a t the tops o f  

branches). T h e principal equation is an equation of D , since its first sym b ol  

is g, w hich occurs in D  and hence not in the left m em ber of an equation  

of F. E a ch  con tribu tory deduction is of height <  t , and term inates in  

an equation h ( z lt . . . ,  z P) = z ,  where h is a function letter occurring on  

the right side of the principal equation, and thus in D . Therefore, b y  th e  

hypothesis of the induction, the con tribu tory deductions use on ly as

sum ption equations from  D .

Lemma lie. L e t  D a n d  F b e  a s  i n  L e m m a  lib. L e t  G b e  t h e  s e t  o f  t h e  

e q u a t i o n s  o f  t h e  f o r m  g[ y lt . . . ,  y m ) z = z y } w h e r e  g i s  a  f u n c t i o n  l e t t e r  o c 

c u r r i n g  i n  b o t h  D  a n d  F  a n d  y lt . . . ,  y m, y  a r e  n u m e r a l s , w h i c h  a r e  d e d u c i b l e  

f r o m  D . L e t  f b e  a  f u n c t i o n  l e t t e r  n o t  o c c u r r i n g  i n  D . T h e n  

D , F  b f(Xj, ..., xw)=x w h e r e  x v  ...,xn, x a r e  n u m e r a l s , o n l y  i f  

G , F  b f(xu ..., xn)=x.
P roof of L emma H e, b y  course-of-values induction on the h eight  

t of the given  d eduction of f [ x v  ..., xn)=x from  D , F . T h e principal 

equation is an equation of F , because its first sym bol is f, w hich does n ot
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occu r in  an y  eq u ation  o f D . A n y  m inor prem ise along th e  p rin cip al 
b ran ch  is of th e  form  h (z 1, . . z p) = z  w here h  occurs in  th e  r ight 
m em b er of th e  principal eq u ation  and hence in  F . If h  occurs in  D , 
th e n  u sin g  L em m a l i b  h (zv  . . . ,  z P) = z  is an  eq u ation  of th e  form  
g (y v  . . . , y m) = y  w hich  is d ed ucib le from  D , i.e . h (zv  . . . ,  z P) = z  6  G. 
If h  does n ot occur in  D , th en  b y  th e  h y p o th esis  of th e  in d u ction  
on  t, h (zv  . . z P) = z  is d ed ucib le from  G, F .

Lemma l i d .  (1) Let f v  . .  . , f k be d istinct function  letters in  order of 
occurrence in  the given lis t of function  letters. (2) Let <px =  . . . ,
(3) F o r i  =  Z + l ,  . . . ,  k (k >  l ) t let E* define recursively from  <pjiv  
. . . ,  (qi >; 0;  jn ,  . . . ,  j i Qi <  i) ,  w ith  f t- as the p r in c ip a l func tion  letter, 
and jiQ' as the given func tion  letters. (4) Let the a u x ilia ry  function
letters of E i { if  any) be d is tinct from  those of each E ?. fo r j  ^  i  and from  
fi,  . .  ., f fc. Then f o r i  =  1, . . . , k : , E l+ 1 . . . E k j- f ^ ,  . . . ,  x ni) = x
where x lf  . . ., x ni, x  are numerals, i f  and only i f
fi(*i> . . X,H) = X  8 E * \

E xample £ (concluded). L et k == 2 ; l =  0; <px, cp2 b e th e  p rim itiv e  re
cu rsive d escrip tion  9 ; and E 1; E 2 be (bj), (b2) in terch an gin g  f  an d  h.

E xample 3. L et <px, . . 9 *. (w ith  k =  9 , 1 = 3) be th e  p r im itiv e  
recursive d eriv a tion  £, y), 0, U \,  0X, U \,  G |, 9 of E x a m p les  1 §§ 44 an d  45 ,
and  E { ( i =  4 , . . . ,  9) be th e  eq u ation  (ct) :

(c)

fM > c > b ) = a , (c4)
f5(a, c, b ) = f 3(fi {a, c, b)), (c«)
fs(a, c, b ) = b , (c«)
f}(a, c, b) =  f2(f6(a, c , b), f&(a, c, b)), (ct)
f s(a, c, b ) = 2, (C8)
f 3{a, c, b ) = f 1(fi (a, c , b), f ,{a , c, b), fs{a, c, b)). (C9)

Proof of Lemma l id . W e ea sily  see, b y  gen era l properties of r , th a t
E l+1. . .E *  h X n * )= x , if f^X i, . . Xn. ) = x  S E 9\  W e

prove th e  con verse b y  in d u ction  on  k. Basis: k =  l. T hen  E i+1 . . .  E fc 
is em p ty . T h e con clusion  fo llow s b y  th e  co n stitu tio n  of E ^ 1’’’̂  (noting  
th a t it  con ta in s no prem ise for R1 an d  n o m ajor prem ise for R 2). 
Induction step: k >  l. B y  h y p o th esis  o f th e  in d u ction , o n ly  th o se  
eq u ation s of th e  form  f^ x ^  . .  . ,  x ni) = x  for i  <  k w h ich  8 E 9* are 
d educib le from , E j+1 . . .  E fe_1. B y  H y p o th esis  (3) for i  =  k
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(and w riting "9” for ‘ V \  “ 9is”  for ‘ W ’, "f” for etc.), on ly those  

equations of the form  f( x lf . . . ,  x n) = x  w hich £ are deducible from

and b y  L em m a l i e  no others becom e deducible

w hen is replaced in the list of assum ption equations b y

Lemma l ie .  L et (plt . . . ,  <pk be a fin ite  sequence of functions such that 
(pk is  9  an d for each i  (i — 1 , . . . , & ) ,  either  (A) <pt- is  one of the fu n ction s  
4 i, • • • > 4^  or (B) 9 t- is  defined recursively  by a system  E t of equations from  
9 iiV •••>  WiQi (f t ^  0; jn> . . j iQi <  i) . Then there is  a system  E  of 
equations which defines cp recursively  from  4 i> . . . ,  4 ^

Proof of Lemma H e. If  it is not already the case th a t each of the  

<J/s is introduced under (A) as one of the <p’s and is thereafter used under  

(B) as one of the <p/^, . . . ,  cp̂  for some <pt-, w e can m ake it so (increasing k) 
b y  introducing some applications of the identical schem a (cf. L em m a H a). 

Then, b y  rearranging and renum bering the <p's and E / s  and changing th e  

function letters in the latter (if necessary), w e can bring abou t the situation  

described in L em m a l i d ,  w ith  k  >  /, cp* =  9 , and w ith  i lf  . . . ,  f t as th e  

given  function letters of E i+1 . . .  E *. L e t E  be E i+1 . . .  E fc.

Proof of Theorem II. B y  L em m a H a  and the hypothesis of th e  

theorem , the h ypotheses of L em m a l i e  are satisfied.

§  55. General recursive functions. T h e schem ata (I)— (V) are

not th e on ly schem es of definition of a num ber-theoretic function, ab  

initio or from  other num ber-theoretic functions, w hich can be expressed  

b y  system s of equations, using in the equations o n ly  function letters, ', 

num ber variables and num erals.

L e t us consider other exam ples, calling them  all "recursions” . W e keep  

th e equations in the inform al language for the tim e bein g; and to  keep  

them  of the sort described now, w e elim inate certain other m odes of 

expression w hich were used in C hapter I X , e.g. II ( # B ) ,  W y< z  ( # E )’

cases. ( # F ) .

T h u s (a) of E x a m p le  1 § 46 w e can w rite now

(a)
rc(0, y) =  1 ,

iz { z ' ,y )  =  (y +  ?(*))• 7c(z,y),

<p(y) =  7r(y, y)
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(defining the auxiliary function n as well as cp), while (a) of Example 2 
§ 46 is already in the form under consideration. We showed in § 46 that 
these course-of-values recursions are reducible to primitive recursion, i.e. 
the same function can be defined by a series of applications of Schemata
(I) -  (V).As another very simple example, consider the recursion
(b) [ * (0*z) =

l  <p(y', * )  =  ? ( y . a(y, *))•
This is not primitive, because the z, instead of being held fixed as a 
parameter, has a(y, z) substituted for it in the induction step of the 
definition. This recursion too can be reduced to primitive recursion. 
Expanding (b) for y  — 0, 1, 2, . . .  (as we expanded (1) in § 43), we find 
that the value 9(3/, z) is

<t(0, <j(1, <t(2, . . .  a(y—3, a(y—2, c(y—l,z))) ...))).
Consider the sequence of the numbers z, a(y—1, z), a(y—2, a(y—\,z))f 
. . . ,  cr(0, a(l, a(2, . . .  a(y—3, c(y—2, c(y— 1, z)))...))), which occur in 
building up this value from the inside instead of as (b) gives it to us. 
These are the values for u — 0, 1, 2, . . . ,  y  of the function |x(u, y, z) defined 
by the primitive recursion
/b } f  p(o. y >z ) =  * .1 l  V-(u', y, z) = a(y—u', [i(M, y, z)).
Since the value for u = y is the same as the value 9 (y, z)t
(b2) ? (y . z) =  n (y . y, * ) ;
as can also be seen by using induction on u to prove that
(c) \x(u', y \  z) =  y, <r(y, z)),
and thence that the 9 defined by (bx) and (b2) satisfies (b).

In a similar manner, Peter (1934 , 1935a) showed that every recursion 
(called “nested”) in which 9 (0, z) is a given function of z, and 9(3/ ,  z) 
is expressed explicitly in terms of y , z, given functions (and constants), 
and 9(3;, t) as a function of t, is reducible to primitive recursion.

Are there recursions which are not reducible to primitive recursion; and 
in particular can recursion be used to define a function which is not 
primitive recursive?

This question arose from a conjecture of Hilbert 1926 on the continuum 
problem, and was answered by Ackermann 1928 . Let (b, a) =  a-\-bt 
^ ( 6, a) == a-b, E,2(bt a) =  ab; and let this series of functions be extended 
by successive primitive recursions of the form £n/(0, a) =  a, £n,(&', a) =  
5n(5n'(̂ » #)» #) (» >: 2), so that e.g. ^ (^  a) =  aa'"a with 6 exponents.
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N o w  consider 5n(b, a) as a function 5(w, 6, a) of all three variables. L e t a  be  

th e p rim itive recursive function defined thus,

(d ) oc(n, a) =
0 if n  =  0,

1 if n =  1,

a  otherwise.

T h en  the follow ing recursion defines 5(w, 6, a),

( 5(0 , 6, a) =  a + b ,
(e) I 5(n', 0, a) =  <x(n, a),

U «  6', a) =  5(», 5 K ,  6, a), a).
T h is is an exam ple of a “ double recursion” , i.e. one on tw o variables  

sim ultaneously. If the function 5(n, 6, a) defined b y  (e) were p rim itive  

recursive, then the function %(a) of one variable defined ex p licitly  from  it  

thus,

(f) U a) =  Z ( a ,a ,a ) ,
w ould also be p rim itive recursive. A ck erm an n ’s in vestigation  shows 

th a t 5(a) grows faster w ith  increasing a than  a n y  prim itive recursive  

function of a  (just as 2 a grows faster than  a n y polynom ial in a), i.e. given  

a n y  prim itive recursive function <p(a), a natural num ber c can be found  

such th a t 5(a) >  <p(a) for all a >  c. T h u s 5(«), and hence also 5(», 6, tf) 

(since 5(#) com es from  it b y  the exp licit definition (f)), are not prim itive  

recursive. T h is exam ple w as sim plified b y  P eter 1935  (cf. also H ilb e rt-  

B ern ays 1934  pp. 330 ff.) and R ap h ael R obinson 1948 .

A  different m ethod w as follow ed b y  Peter 1935  in con structing another  

exam ple. T h e class of the initial functions definable b y  Schem ata (I) —  

(III) is enum erable. T h en  the class of the prim itive recursive functions  

definable using Schem a (IV) or (V) ju st once is enum erable, since the  

m + 1-tuples <{/, xi, • • Xm for (IV) or the pairs <J/, x  (or q , x) for (V) 

form ed from  an enum erable class are enum erable (§1).  T h en  the prim itive  

recursive functions definable using Schem a (IV) or (V) a second tim e are 

enum erable; and so on. T h u s the class of all the p rim itive recursive  

functions is enum erable, as we could also see b y  enum erating the system s  

E  for Theorem  II  § 54. In  particular, the prim itive recursive functions of 

one variable are enum erable. H ence b y  C antor's diagonal m ethod (§ 2) 

th e y  cannot com prise a ll the num ber-theoretic functions of one v a ria b le ; 

and if

cp0 ( « ) ,  ? a ( « ) .  • • •
is a n y  enum eration of them  allow ing repetitions (i.e. a n y  infinite list of 

them  in w hich each occurs at least once), then <pa(#) +  l is a num ber-
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theoretic function of one variable not in the enumeration, and so not 
primitive recursive. The enumerating function <p(n, a) such that 
<p(n, a) =  <pn(a) is a function of two variables which is not primitive re
cursive, since <p0(^)+l =  ?(a> #) +  l. This of course only establishes 
that number-theoretic functions <pa(a) +  l and cp(n, a) can be found 
which are not primitive recursive. What Peter did was to show that, for 
a suitable enumeration (with repetitions) of the primitive recursive 
functions of one variable, the enumerating function can be defined by a 
double recursion (besides applications of Schemata (I) — (V)).

E xample 1. Do double recursions lead to any predicates which are 
npt primitive recursive ? Yes, for 1 —<p(a, a) takes only 0 and 1 as values, 
and cannot occur in the above enumeration, so it is the representing 
function of a predicate not primitive recursive. (Skolem 1944.)

P£ter 1936 studies &-fold recursions for every positive integer k. These 
comprise primitive recursions for k  =  1, double recursions for k  =  2, 
and so on. She shows that, for each successive k, new functions are ob
tained. Functions definable using (besides explicit definition) recursions 
up to order k  she calls “^-recursive” . She shows that every 2 -recursive 
function is definable by a single double recursion of the form

r 9(0, b)  =  <p(«, 0) =  1,
(S> l  ?(» ', V)  =  «(«, b, < p ( » ,  P(», b, 9 K  b))), 9 (»', b))
besides applications of Schemata (I) — (V); and similarly (with a scheme 
reducing to (g) for k =  2) for each k  > 2 .

Example 2 . To settle a point raised in § 4 5 , suppose 9 is 3-recursive 
but not 2-recursive, and ^ is 2-recursive but not 1 -recursive, i.e. not 
primitive recursive. Then “if is primitive recursive, then 9 is primitive 
recursive’' is vacuously true, but “ 9 is primitive recursive in <]/’ is false, 
since that would make 9 2-recursive.

These subjects are treated in Peter’s monograph 1951 (not available 
during the writing of the present book).

It is not to be expected that the £-fold recursions with finite k  exhaust 
the possibilities for defining new functions by recursion. In 1950 Peter 
uses “transfinite recursions” (first employed by Ackermann 1940) to 
define new functions.

This brings us to the problem, whether we can characterize in any 
exact way the notion of any “recursion”, or the class of all “recursive 
functions”.

The examples (I) — (V), (a), (b), (e) (and others cited) of schemes of
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definition of a function w hich w e h ave thus far agreed to call ‘ ‘recursions’ ' 

possess tw o fea tu re s: (i) T h e y  are expressed b y  equations in the m anner  

w hich w e an alyzed  form ally (for (I) —  (V) particularly) in § 54. (ii) T h e y  

are definitions b y  m ath em atical induction, in one form  or another, 

excep t in the trivial case when th e y  are explicit definitions.

T h e characterization of all “ recursive function s” w as accom plished in 

the definition of 'general recursive fu n ction ’ b y  G odel 1934 , w ho bu ilt  

on a suggestion of H erbrand. T h is definition succeeds b y  a bold general

ization, w hich consists in choosing Feature (i) b y  itself as the definition.

W e say  then th a t a function 9 is general recursive , if there is a system  

E  of equations w hich defines it recursively (§ 54, w ith  l =  0).

T h is choice m a y  seem unexpected, since the w ord “ recursive” has its  

root in the verb “ recur” , and m ath em atical induction is our m ethod for 

handlin g recurrent processes. T h e m eaning of the choice is not th a t  

F eatu re (ii) w ill be absent from an y particular recursion, b u t th a t it  

is transferred out of the definition itself to the application of the definition. 

T o  show b y  fin itary  m eans th a t a given  scheme has Featu re (i), except  

in trivial situations, one w ill presum ably h ave to m ake use of m ath em at

ical induction som ehow. B u t in defining the to ta lity  of general recursive  

functions, w e forego the atte m p t to characterize in advan ce in w h a t form  

the in tu itive principle of induction m ust m anifest itself. (B y  G od el’s 

theorem  § 42 we know  th a t the a tte m p t at such a characterization b y  

the form al num ber-theoretic system  is incom plete.)

In  statin g the H erbrand-G odel definition of general recursive function  

e x a ctly , there is some latitu d e as to  the details of the form alization, so 

th a t versions of the definition can be given  w hich are equivalen t to  

G o d el’s b u t a b it sim pler (cf. K leene 1936 , and 1943  § 8). T h e present 

version is th a t of K leene 1943 , except for inconsequential changes in R l  

and R 2 w hich sim plify § 56 slightly, and the inclusion of functions of 0 
variables in the treatm ent. (To relate the present treatm ent to K leene  

1943 , we note: (1) T h e inclusion of functions of 0 variables does not alter  

the notion of general recursiveness for functions of n  >  0 variables. For  

one can show th at, if an au xiliary function letter h occurs as a term  

w ith  0 argum ents in the assum ption equations, all occurrences of this  

term  m a y  be changed to k(c), where k is a new  function letter and c a 

new variable, w ith ou t altering the class of the deducible equations  

con taining o n ly  the principal function letter. A fte r  this: (2) One can  

show in a few  lines th a t e x a c tly  the sam e equations of the form  

f ( xx, . . . ,  x n) =  x ,  where f is a function letter and x lf . . . ,  x n, x  are nu

m erals, are deducible from  given  assum ption equations b y  the present
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R 1 and R 2  as b y  the R 1 and R 2  of 19 4 3 ; or w ith  on ly a little  more 

trouble one can carry out the treatm ent of §§ 54 and 56 w ith  the R 1  

and R 2  of 1943 .)

A  function 9 is general recursive in  functions ^1, . . . ,  tylt if there is a  

system  E  of equations w hich defines 9 recursively from <\>v  . . . ,  <]>i (§ 54). 

This includes the definition of general recursive function as the case 

1 =  0. For l >  0 (Kleene 1943), w e are u su ally considering a schem e or 

functional 9 =  F(̂ x, . . . ,  ^i) (§ 47) w hich defines a num ber-theoretic  

function 9 of n  variables from  tj'z* for any  ̂ num ber-theoretic

functions . . . ,  of m v  . .  . , m l variables respectively, or a n y  such  

functions subject to some stated  restrictions. T h en  if the E  can be given  

indepen dently of ^1, . . (for the fixed n, l, mv . . . ,  m f), we sa y  th a t  

the schem e F is general recursive, or th a t 9 is general recursive u n iform ly  in  
. . . ,  4̂ - Since our treatm ent w ill alw ays give  u n iform ity in the fy’s 

(subject to a n y  restrictions stated), we usually om it the word “ u n iform ly”  

except for em phasis. (U nlike the prim itive recursive case § 47, if the  

original schem e is for some restriction on ^x, . . it is not im plied th a t  

the schem e can necessarily be extended to a general recursive one de

fining a 9 w ith ou t restriction on the <\>v  . . . ,  ^ t.)
U sing the present term inology to restate the results of Lem m as I l a  

and H e, we now h ave:

Theorem II  (second version). I f  9 is  defined  from  tpi, . by
a succession of a p p lica tion s of general recursive schem es, then  9  is  general 
recursive in  tpx, . . . ,

In  particu lar, Schem ata  (I) —  (V) are general recursive. H e n c e : I f  
9 is  p r im itiv e  recursive in  ^x, . . . ,  ^ 1, H is  general recursive in  4>x, . . . ,  y*. 

A n y  p r im itiv e  recursive scheme is  general recursive. I f  9 is  p r im itiv e  re
cursive, i t  is  general recursive.

T h e definition of general recursiveness has been stated  for the case  

that the function 9 is already know n, b y  in tu itive  use of the sam e  

equations which are form alized as the E , or b y  some other m eans. T h is  

anticipates our purpose of show ing th a t various functions and schem es, 

known to us indepen dently of the form alism  of recursive functions, are gen 

eral recursive (as we h ave ju st done for the prim itive recursive functions  

and schem es). For the case th a t the 9 is not previously know n, we then  

h a v e : A  system  E  of equations defines recursively a function of n  v a r ia 

bles from . . . ,  if for each w-tuple x v  . . . ,  x n of natural num bers, 

there is e x a c tly  one num eral x  such th at E ^ ‘“^ , E  b f( x x, . . . ,  x n)=x,  
where f is the principal function letter of E , and g x, . . . ,  g t are the given



function letters in order of their occurrence in the given  list of function  

letters. If so, the function <p w hich is defined recursively b y  E  is the  

function whose valu e cp(%, . . x n) for the natural num bers x lt . . x n 
as argum ents is the natural num ber x  for w hich th a t x  is the num eral.

A s  w ith  prim itive recursiveness (§§ 45, 47), the notion of general 

recursiveness for functions extends to predicates and to m ixed cases b y  

use of the representing functions for the predicates.

§ 56. Arithmetization of the formalism of recursive functions.
T h e form alism  of recursive functions w ill be treated now as a general

ized arith m etic of the sort described in § 50. W e list below  recursive  

definitions for this generalized arithm etic, as in § 5 1 .  Sim ultaneously, 

w e indicate how  to pass to the sim ple arithm etic b y  G odei num bering, 

as in § 52.

T h e generalized arithm etic shall h ave six  zeros, w ith  respective  

G 5d el num bers, as follows.
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Z e ro s: = f 0 a i f
Correlated G odel num bers: 15 21 23 25 27 29

W e perm it successors to be form ed of a n y positive num ber of entities,

i.e. all natural num bers are ad m itted  now as values of s.

A s our list f, g , h, . . .  of function letters we use the entities f,
(,, (,, /')), . . .  (som etim es w ritten  f, fu . . . ) ,  constructed from  the zero 

e n tity  f  in the sam e m anner as the (number) variables from  the zero 

e n tity  a.
A  term  of the form  f(rx, . . . , r n) where f is a fun ction  letter and  

r v  . . . ,  rn are term s (n >  0) w ill be represented as the e n tity  (f, rlf . . . ,  r w). 

So in particu lar the function letter f and the term  f (rx, . . . ,  r n) for n  =  0, 

alth ou gh  u su ally  w ritten  alike linguistically, are not treated as the sam e 

e n tity ; in the generalized arithm etic, if the former is f, the latter is (f). 

(W e still h ave a unique e n tity  correlated to each significant linguistic  

ob ject, if w e consider th a t the omission of parentheses, w hen i( r lf . . . ,  rw) 

for n =  0 is w ritten lin gu istically  as “ f ” , is m erely an abbreviation.) For  

exam ple, the equation f =  0 is the e n tity  ( = ,  ( f ) ,  0).

A  system  of equations e0, . . . ,  es is represented as the e n tity  (e0, . . . ,  es).

In  the passage from the generalized arith m etic to the natural num ber 

arithm etic, b y  Godei num bering, the clauses using a variable num ber  

s +  1 of predecessors are handled w ith  the help of and 20 (§ 45).

F o r these clauses (and a few  other definitions), we append the cor

responding num ber-theoretic clause (or definition).
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D efinitio ns of metamathematical predicates and  functions for the

FORMALISM OF RECURSIVE FUNCTIONS AS A GENERALIZED ARITHMETIC
Df l .  y  is a num eral. (A bbreviation : -Jl(y)-) Sam e as D n l § 5 1 .

D f2. y  is a  variable. (A bbreviation : 58 (y)-) Sam e as Dn2.

D f3. y  is a  function  letter. (Abbreviation: % 2{y).)  Like D f2.

D f4. y  is a term . (A bbreviation : Jrrt(y)-)

1. y  X  0.

2. y  is a variable.

3. y  X  r' (i.e. y  X  (', r)), where r is a term .
4. y  x  f(rlf . . . ,  r„) (i.e. y  X  (f, rv  . . . ,  r„), cf. § 50), where f

is a function letter, and rx, . . . ,  r n are term s (n >  0).
FL{{y)o) & (i)o<i<mv>Tm ((y)i)-

D f5. z is an equation. (A b b re via tio n : @q(z).)

1. z X  r = s ,  where r and s are term s.

Df6. Z  is a system  of equations. (A bbreviation : @@(Z).)

1. Z  X  (z0, . . . ,  z s), where z 0, . . z 3 are equations. 

lh ( z ) > 0 & ( i ) {<lh(s,£:?((z)t).

D f7. (t is a term , x  is a  variab le, e is a term  or equation, and) d com es 

from e b y  the substitu tion  of t  for x. (A b b revia tio n : @b(d, e, t, x).) 

1. t is a term , x  is a variable, e X  x, and d X  t.

2— 3. t  is a term , x  is a variable, e is 0 or a variable X  x , and d  X  e.

4. t  is a term , x  is a  variable, and e is a term  or equation of the

form  (e0, e^ . . . ,  e n) and d is (d0, d 1( . . . ,  d m), w h e re m  =  n,
e0 X  i, d 0 X  e0, @ b(d1( e lr t, x), . . . ,  ©&(d„, e„, t, x).

T m (t)  &  V{x) & (T m (e)  V E q(e)) &  lh (e )> 0  &  lh(tf)=lh(e) &  

(^ 0 ^ 2 7  &  (d)0— (e)0 &  (f)o<i<lh(e)^((^)*> (e)i> L x )-
Df8. (e is a term  or equation, x  is a variable, and) e contains x .  

(A b breviation : £t(e, x).) L ik e  D n6.

D f 9. c is an im m edia te  consequence of d (b y R 1). (A b b re via tio n : £ n  (c, d ).) 

* 1 . d is an equation, and there exist a (variable) y  and a num eral 

n, such th a t d contains y , and @b(c, d, n, y).

E q(d) & (E y )y< d(E n )n<c[N (n ) &  C t(d , y) & Sb(c, d, n, y ) ] .
I f  d is an equation and Gt(d, y), then y  is a  variable -< d ;  

and if also @b(c, d, n, y), then n «< c.

D flO . c is an im m edia te  consequence of d and e (by R2).

(A bbreviation : ©tt(c, d, e).)

* 1 . e X  h (z1( . . . ,  zv)—z, where h is a function letter, and
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zv  . . . ,  zP, z are numerals (p > 0); d is an equation, con
taining no variables, call it dx= d 2; and c is of the form 
dj^Cg, where, for some term u containing a>
@b(d2, u, h {zlf  . . . ,  z p), a) and ©b(c2, u, z, a).

Eq(e) &FL((e)h0) & {i)0<i<mehrN ^ ) i .i l  & ^ 2) & Eq(i) & 
ty)y<d c m  y) &  c = 2 15*3(d)l*5(c)2 &  (E u)u<d[T m (u)  &

Ct{u, 25) & Sb((d)2, u} (e)lt 25) & Sb((c)2, u, (e)2, 25)].
Since a has a smaller Godel number than any function letter, 
a has a smaller Godel number than h(z1, . . . ,  z P) ; and hence u 
has a smaller G5del number than d.

Df 11. x  is the numeral for the natural number x . (Abbreviation: 9fu (x , x).)
Same as Dnl 1.

Dfl2. (Z is a system of equations, and) Y is a deduction from Z (by
R1 and R2). (Abbreviation: 5)(Z, Y).)
1. Z is a system of equations (z0, . . . ,  zs), and Y X  (z*) (i <  s). 

S E (z)  &  (E i)i< m z)[ y = 2 ^ ] .
2. Y X (c, Yj), where Yx is a deduction from Z, and c is an 

immediate consequence of {YJq.
3. Y X (c, Y v Y2), where and Y2 are deductions from Z, and 

c is an immediate consequence of {Y1}0 and {Y2}0.
D f 13. Y  is a deduction from  Z  of an equation of the form  f ( x2, . . .  , x n) = x ,  

where f is the principal function letter of Z, xv . . . ,  xn are the  

num erals for the natural num bers x v  . . . ,  x n, resp ectively, 

and x  is a num eral (as a predicate of Z, x v  . . . ,  x n, Y ,  for each  

fixed  n >  0). (A bbreviation : © n(Z, x v  . . . , x n,Y ).)
1 . Y  is a deduction from Z, { Y }0 X  f( x 2, . . . , x n) = x ,  where 

f is a function letter, f X  {zs}1>0 if Z  X  (z0, . . . , z s), etc. 

D (z, y)  &  lh((y)0>1) = » '  &  F L {{y )Q10) &  (y)0, i ,o = ( * W ) -M ,o  &  

N u (( y) & • • • & N u ( M 0,1,«> *«)& (̂(y)o.*)-
Df l 4.  SRu-^y) =  j

( x , if y  is a num eral x  (i.e. if 9?u(y, x)),
[ the G odel num ber of y , otherwise.

N u ~ 1(y) =  y.xx<yN u ( y ,x ) .
D f 15. U( Y)  =  S R u -V W o .j).

T h en  U (Y) =  w henever Y  is a deduction of an equation of 

the form  r = x  where x  is a numeral.

U (y) =  N u ~ 1((y )02).
B y  the m ethods illustrated in § 52, and the indications accom pan yin g  

these definitions:
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Lemma I II. F or each of the predicates and  functions defin ed  by  
D fl —  D f 15, the corresponding num ber-theoretic predicate or a corresponding  
num ber-theoretic function  is  p r im itiv e  recursive.

§  57. T h e  (x-operator, e n u m e r a tio n , d ia g o n a l  p r o c e d u r e . W e

shall now begin using the least num ber operator jxy (§ 45) w ith o u t a  

bound on the y. T h u s for a num ber-theoretic predicate R (y)  such th a t  

(E y )R (y )f fxyJ?(y) =  {the least (natural number) y  such th a t R {y )} .  F o r  

the tim e being, we use (xyi?(y) on ly w hen the existence condition (Zsy)i?(y) 

is fulfilled.

T h u s we h a ve a new schem a  

(Via) cp(xv  . . . , * » )  =  y.y[x (x i. y ) = 0 ]

for the definition of a function cp of n  variables (n >  0) from  a n y fun ction  

/  of n + \  variables such th a t

(la) (*i) • • • {xn)(E y )[x (x lt y ) = 0].

B y  takin g R {x v  . . . , x n, y )  =  x (*i, y ) = 0  if x  is g iven  first,

or if R  is given  first b y  tak in g 7  to  be the representing function of R ,
we can also w rite the schem a thus,

(VIb) <p(*i> . . . , x n) =  \xyR(xlt y)

as a definition of a function <p from  a predicate R  such th a t

(lb) (*1) • • • {xn)(E y )R (x v  y).

Theorem I I I. Schem a  (V ia) w ith  (la) holding  ((VIb) w ith  ( lb )  holding) 
is  general recursive. H ence b y  Theorem  I I :  A  function  <p defined  from  
functions an d  predicates  Y  by a p p lica tio n s of Schem ata  (I) —  (VI) w ith  
(1) holding for the a p p lica tio n s  of (VI) is  general recursive in  Y .  (Church  

1936, K leene 1936 .)

Proof. W e recast (VI) into a schem a (V I') suitable for translation 
into the form alism  of recursive functions, as fo llo w s:

(VI')
tc(x 1( y) =  n x (*i. • • • , * » .  s),

s<y

x{z', 0, y) =  y,

?(*i> . . . , x n) =  x{n (xu  y), n (x v  . . . , x n, y ') , y ) ,

(V I|)

(vi;)
w here t ( w , v, y) is an  au x iliary  fu n ction  w h ich  is le ft  u n d efin ed  for u =  0  
or v >  0. (For an oth er sim p le  m eth o d , see K leen e 1943.)

F irst le t us con v in ce  ou rse lves in form ally  th a t (VI') is eq u iv a len t to  
(VI). Consider a n y  fix ed  v a lu es  of x v  . . . ,  x n, an d  w rite  s im p ly  “ x (y )”
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for “ x (x v  . .  x n) y )” , etc. T o  illustrate, suppose th a t for y  — 0, 1 , 2 ,  

(first row below), x(y) takes the values show n (second row).

y 0 1 2 3 4 5 6 7 . . .
x(y) 3 1 2 0 9 0 1 5 . . .

Ay) =  n  x(s) 1 3 3 6 0 0 0 0 . . .
s<y

A cco rd in g to  (VI), 9 =  ]xyR{y) =  i.e. 9 is the least valu e

of y  (first row) for w hich a 0 appears in the second row, n am ely 3 in this  

exam ple. T h is num ber 3 is also identifiable as the unique y  for w hich a  

successor (here 6) im m ediately  precedes a 0 in the third row. N ow  (V I2) 

gives this num ber and no other as valu e to 9 , thus. S u b stitu tin g 3 for y  
in the last equation and evalu atin g,

9 == t (7c(3 ), 7c(4), 3) =  t (6, 0, 3) =  3.

If  we su b stitu te a n y  other num ber than  3 for y  in the last equation, we  

are unable to evalu a te t . (If the exam ple be changed so th a t (Zsy)2?(y), 

then we get no valu e for 9 .)

N o w  let E 2 be the system  of equations obtained b y  tran slatin g (V I2) 

using sa y  p , t, f, a v  . . a n, b for ‘ V \  “ t ” , “ <p” , “ V ’> • • - , “ * » ” > “ y ” >
respectively.

T h e follow ing propositions (i) —  (iv) treat the situation for a n y  fixed  

^ -tu ple x lf . . . , x n, w ith ou t using (1). F or (i) and (ii), n  m ust be the  

function defined from x or i? b y  (V I X).

(i) If (E y )R (x 1, . . . , x n, y ) ,  then  E " , E 2 b f(xv when x
=  (J.yi?( î, . . . , x n, y). (ii) If E£, E 2 b f(x v . . . .  x n) = x  where x is 
a n u m era l, then (.E y )R (x v  . .  ., x nt y) and  x  =  ^ yR {x li . . . ,  x n, y ) .

T h e proofs closely parallel the inform al explanation.

B u t 7u is prim itive recursive in x  ( # B  § 45), so there is a system  E x 

of equations w hich defines n  recursively from x (Theorem  II  §54). W e  

can choose E x so th a t p  is the principal function letter, h  is the given  

function letter, and the au xiliary  function letters do not occur in E 2. 

L e t E  be E XE 2. T h en  clearly E^, E  b f(xv . . . ,  x n) = x  if Ejf, E 2 b 

f(xlt . . x n) = x ;  and the converse follows from L em m a l i e  § 5 4  as 

in the proof of L em m a l id .  U sin g this in (i) and (ii), and com bining the  

results into one statem en t:

(iii) E^, E  b f(xr, . . . ,  x n) =  x for some num eral x, if  and  only if  
(E y )R (x l t \  . . ,  x nt y), in  which case x =  (jly R (x v  . . . ,  x nt y).

N ow  using (1) w ith  (iii), for each n-tuple x v  . .  ., x n, E^, E  b f(xx, . .  ., 

x n) = x  where x  is a num eral, if and on ly if x =  [iyR (x v  . . . ,  x n, y ) ;  
i.e. E  defines the function \LyR{xv  . . . ,  x n) y)  recursively from R .
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Proof of Theorem IV . N o w  suppose th a t R (x lt . . . ,  x n, y )  is general 

recursive. L e t D  be a system  of equations w hich defines recursively th e  

representing function x  of R t w ith  h  as principal function letter, and w ith  

au xiliary  function letters not occurring in E . L e t F  be D E . N o w :

(iv) F  h f ( x v  . . . ,  x n) = x  for some num eral x ,  i f  an d  on ly  i f  
(E y )R (x v  . . . , x n, y ) ,  in  which case x  =  fxyi?(%, . . . , x n,y ) .

U sin g D f l 3  § 56, w e state this result (om itting the final remark) in  

sym bolic form, thus:

(2) (E y )R (x v  y) =  ( £ Y ) @ n(F, * n, Y ).

N o w  let / be the G odel num ber of F . B y  the definition of 'th e cor

responding num ber-theoretic predicate* § 52, S n(/, x v  . . . ,  x ni y )  =  { y  is 

the G odel num ber of an e n tity  Y  such th a t @ n(F, x v  . . . ,  x ni Y )}. H en ce  

( £ Y ) @ W(F, x v  . . x n, Y )  =  (E y ) S n(f, x l9 . . . , x nt y ).  So (2) gives

(3 ) {E y)R {x lf . . . , x n, y )  =  (E y )S n(f, * n, y ).
B y  L em m a I I I ,  S n is p rim itive recursive.

In  statin g the result in the theorem , w e replace S n b y  the predicate  

T n defined from  it thus,

T n{z, x v  v  ., x n, y)  =  S n(z, x v  . . . ,  x nt y)  &  (it)t<vS n{*> • • •. 0-

For given  z t x v  . . . ,  T n(z, x lf . . . ,  #n, y)  is true for a t m ost one y  
(cf. * 1 7 4  §41) .  T h e ad va n ta ge of using T n instead of S n as the basic  

predicate of the th eo ry w ill appear in § 58. B y  #  # D  and E , T n is also  

prim itive recursive. B y  the inform al counterparts of & -elim ., *70  § 32  

and *14 9 a  § 40 (noting th at, since 5 n is recursive,

S n(z, x v  . . . ,  x n, y )  V S n{z, x v  . . . ,  x n, y) 
intuitionistically, as w ill be discussed in §§ 60 and 62), 

i*i) T n{z> • j %n> y) ~  ̂ E n(zf x^f . . . ,  x ni y),

(5 ) (E y )T n(zf % , . . . ,  x n9 y) =  (.E y )S n(z , % , . . . ,  x nty ).
Theorem I V.  F or each n  >  0: G iven a n y  general recursive p red ica te  

R {x v  . . . ,  x nt y),  num bers f  an d  g can be found such that
(6) (E y )R (x v  . . . 9 x n ty)  =  (E y )T  n ( / ,  x n9 y),

(7) (y)R (x  i, . . . 9x n9y)  =  (y )T n(g9 x l9 . . x n9 y),

where T n(zt x v  . . . ,  x n, y) is  the p a rticu la r p r im itiv e  recursive pred ica te  
defined above. S im ila r ly  w ith  m ore q u a n tif ie rs ; e.g. g iven  a general recursive  
predica te R {a v  . . . ,  a ni x, y), a num ber g such that
(8) (£ *)(? )£ (« !, . . . , a n, x , y )  =  {E x )(y )T n+1(g, av  . . . .  a n, x , y). 

(Enum eration theorem , K leene 1943 .)
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Proof (com pleted). Form ula (6) follows from (3) b y  (5). T o  infer

(7), we a p p ly  (6) to  the predicate R (x v  . . x n, y ) ,  calling the / for th is  

predicate “g ” , and transform  the result b y  the inform al counterparts  

of *30 § 26 and *86 § 35 to

(y )R {x i, . . . , x n, y )  =  (y )T „ (g ,x v  y).
Since R  is general recursive, we h ave R \J  R , and hence (cf. *49c § 27) 

R  =  R .  F o r (8), w e a p p ly  (7) w ith  n + 1 as the n  of (7), a v  . . . ,  a nt x  
as the x v  . . . ,  x n, and y  as the y ,  and use the inform al counterpart of 

*72 §33.
D iscussion. B y  this theorem , we obtain an enum eration (with  

repetitions) of the ^ -variable predicates of the form  (E y )R (x lf . . . ,  x n, y) 
where R  is general recursive b y  takin g z =  0 , 1 , 2 , . . .  in the fixed n + 1- 

variable predicate (E y )T n(z, x lt . . . ,  x n, y)  of like form. B riefly, 

(E y )T n(z, x v  . . . ,  x n, y)  'enum erates' the predicates of the form  

(E y )R (x lt . . . ,  x n, y)  w ith  a general recursive R . Sim ilarly,

( y )T n(z, x v  . . . , x n, y)  enum erates the predicates of the form  

(y )R (x v  . . ., x nt y)  w ith  a general recursive R  \ e t c .— Since T n, T n, T n+1, 
etc. are p rim itive recu rsive:

Corollary. The class of the predicates expressible in  a g iven  form  
con sistin g  of a fixed  succession of one or more qu an tifiers prefixed  to a 
predicate R  is  the sam e whether a general recursive R  or a p r im itiv e  recursive  
R  be allowed. (Kleene 194 3 , generalizing a lem m a of Rosser 1936  p. 87.)

W e now  use the above enum erations as the basis for an application  

of C antor's diagonal m ethod to prove the n ext theorem . G iven  a general 

recursive predicate R (x , y ) ,  and using (6) for n =  1 , there is a num ber  

/ such th a t

(9) _ _ ( E y W x . y ^ i E y W M . x . y ) .
S u b stitu tin g  f  for # in this equivalence,

(10) ( E y ) R ( f , y ) ^ { E y ) T 1( f , f , y ) .
Thence, using the inform al counterpart of *50a § 27,

( 1 1 )  (Ey)R(f, y) *  m T . i f ,  f, y ) .
Form ula (12) of the theorem  follows, using the inform al counterpart of 

*86  § 35. T o  prove (13), using (7) we h ave

(y)B(g> y) =  ( y ) n t e »  s> y) =  iEy)Ti{g> g. y) ^ (Ey)Ti(g> g> y)-
T o  infer (14) and (15), given  a n y general recursive R (x), let R { x ,y )  =  
R ( x ) & y = y  or R { x ,y )  == R ( U \{ x ,y ) )  (§44), so th a t R { x ,y )  is general 

recursive and R (x) =  (E y )R (x , y )  =  {y )R {x y y).
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T heorem V  (Part I). Given any general recursive predicate R(x, y), 

numbers f and g can be found such that
(12) (E y)R {f,y )^{y)T 1(f,f,y),
(13) (y )R {g .y )  & (E y )T 1t e ,g , y ) .
A  fortiori, given an y general recursive predicate R{x)} numbers f and g 
can be found such that
( H )  R{f)*(y)T1(f,f,y),
(15) R(g) & {Ey)Tx{g, g ,y ) .

D iscussion . B y  this theorem , (y)T±(x, x, y) is an exam ple of a pred

icate of the form (y)R(x, y) w ith  a recursive R w hich is not expressible  

in the dual form (Ey)R(x, y) w ith  a recursive R. T h a t is,

{x ){{y )T i{x , X, y) =  (E y )R (x , y)]
cannot hold for an y general recursive predicate R (x , y); and for a given  

R (x , y), t h e / o f  (12) is a valu e of x  which refutes it. A  fortiori, (y)T1(x,x,y) 
is also not general recursive (cf. (14)).

T h e proof (above) am ounts sim ply to this: (E y)7\(z, x, y)  for z  — 0, 
1 , 2 , . . .  is^an enum eration (with repetitions) of all predicates of the form  

(E y)R (x , y) w ith  R  recursive. B y  C antor's diagonal m ethod, (E yjT ^ X ) x , y) 
is a predicate not in the enum eration. T h e latter is equ ivalen t to  

(y)Ti(*,*,y).
From  the enu m erability of all system s E  of equations, we can conclude  

w ith ou t the present theory th a t the general recursive predicates are 

enum erable, and so also the predicates of the form  (E y )R (x , y)  w ith  R  
recursive. H ence b y  C antor's results ( § 2), th e y  cannot con stitu te all 

num ber-theoretic predicates. T h e additional content of the present 

theorem  is th a t an exam ple of a predicate neither general recursive nor 

expressible in the form (E y)R (x , y)  w ith  R  recursive is given  w hich is of 

the dual form (;y )R (x , y)  w ith  R  recursive; and vice versa.

T o  save space, we w rite the n ext part of the theorem  for predicates of 

one variable a ; b u t it holds likewise for predicates of n  variables a lf . . . ,  a n 
for each n >  1 . In  the proof of (b) we use a classical equivalence, not 

available to us in tu ition istically. W e accordingly label (b) w ith  a “ c ”  

(cf. § 37). T h e results so labeled in this chapter are all on the num ber- 

theoretic level.

Theorem V  (Part II). C onsider the predicate form s 
R (a) (E x )R (a ’ x ) (x )(E y )R (a > x < y) { E x ) ( y ) ( E z ) R ( a ,x ,y ,z )  . . .

(x )R (a ,x )  (E x)(y)R (a , x, y) (x )(E y)(z)R (a , x, y ,  z) . . .
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where the R  for each is  general recursive. To each form  w ith  k  + 1  qu an tifiers  
(k >  0), there is  a pred ica te expressible  (a) in  the negation of the form  
((b)c in  the other k -f- \-q u a n tifie r  form ), but not in  the form  itse lf nor in  
a n y  of the form s w ith  <  k quantifiers. B y  P art I, the “ c ” is unnecessary  

i o r k  =  0. (K leene 19 4 3 ; M ostow ski 194 7 .)

P roof. F o r exam ple, tak e k =  1 . From  (8) (for n  =  1) w e infer

(16) (E x)(y)R (g , x, y) & (.E c )(y )T 2{g, g, x, y ) ,
ju st as from  (6) we inferred (11). T h u s (E x )(y )T 2(a, a, x, y)  (equivalent 

classically to (x )(E y )T 2(a, a, x , y ) } cf. Theorem  18 § 35) is not expressible  

in the form  (E x )(y )R (a , x, y ). Sim ilarly, (x ){E y )T 2{a, a, x, y)  (equivalent 

classically to  (E x )(y )T 2(a, a, x , y))  is not expressible in the form  

(x )(E y )R (a t x , y ) .  A  fortiori, these predicates are not expressible in a n y  

of the three forms w ith  one or no quantifier.

T heorem V I. F or each n >  0 : (a) E very  general recursive pred ica te  
P {x lt . . . ,  x n) is  expressible in  both of the form s (E y )R (x lf . . . , x n, y )  
an d  (y)S(% , . . . ,  x n, y )  where R  and S  are p r im itiv e  recursive. (b)c Con
verse ly , every predicate expressible in  both of these form s where R  and S  are  
general recursive is  general recursive, (c) A  predicate P {x lt . . . ,  x n) is  
general recursive , if  and  only if  P (x lt . . . ,  x n) and  P (x lf . . . ,  x n) are each  
expressib le  in  the form  (E y )R (x lt . . . ,  x n, y) w ith  a general recursive R } an d  
(*i) • • • (x„ )[P {x  1, . . . , x n) y  P (x v  . (Kleene 1943 , P ost 1944 ,

M ostow ski 19 4 7 .)

P roofs, (a) T a k e  P (x v  . . . ,  x n, y) =  P {x lt y = y ,  so th a t

P (x  1, . . . y x n) =  {E y )P {x lt y) == (y)P (% , y), and a p p ly

C orollary Theorem  IV . (b) Suppose P {x v  . . . ,  x n) =  (E y )R (x v  . . . ,  x n fy) 
=  (y)S(^x, . .  . t x n,y ) .  T h en  b y  classical logic (cf. *85 § 35), P (x v  . . . ,  x n) 
=  (E y )S (x v  . . . , x n, y ). B y  the classical law  of the excluded m iddle, 

P {X i, . . . , x n)\J  P (x lt . . . t x n). H ence  

P (x  1, • • • ,Xn) =  ^ (^ 1, • . ., Xn, W [ R (Xl> y) V S (x v  . . . ,  x n, y)]),

where the second m em ber is general recursive b y  Theorem  I I I .  (c) T h e  

last hypothesis m akes the statem ent va lid  intuitionistically.

In  K leene 1943 , 1944 , a  predicate was called “ elem en tary” , if it can  

be expressed e x p lic itly  in term s of con stant and variable natural num bers, 

general recursive predicates, the operators &, V, of the proposi

tion al calculus, and the quantifiers, com bined according to the usual 

syn ta ctica l rules.
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T heorem V I I .  (a) E very  arithm etical predicate  (§ 48) is  “ elem en tary” , 

a n d  (b) conversely, (c) E very  predicate expressible by m eans of qu an tifiers  
prefixed  to a general recursive pred ica te is  expressible in  one of the form s of 
Theorem  V  w ith  a general recursive R . (d)c E very  arithm etica l pred ica te  
is  expressible in  one of the form s of Theorem  V  w ith  a general recursive R .

P roofs, (a) B y  # # 1 , 2 , 14, C (§§4 4 ,4 5), every predicate form ed  

e x p licitly  using +  , •, =  is prim itive recursive, and hence general re

cursive. (b) B y  Theorem  V I  (a) and Corollary Theorem  I § 49. (c) A s  x 
ranges over all natural num bers, the w - f - 1-tuple of prim itive recursive  

functions (x)0, . . . , ( % ) m ( # 1 9  §45)  ranges (with repetitions) over all 

w + 1  -tuples of natural num bers. Therefore

(17) (E x0) . . .  (E x m)A (x 0, . . x m) =  (E x )A ((x )0,
(18) (*0) . . .  {xm)A (x 0, . . . , x m) =  {x )A {{x)0, . . . .  {x)m).
W e use these to con tract consecutive quantifiers of the sam e kind,

(d) B y  (a), the inform al counterpart of Theorem  19 § 35, and (c).

R emark 1 . For a n y predicate A (i, x),
(19) (i)i<a(Ex)A(i, x) =  (E x )(i)i<aA ( i ,  (*),).

B y  su bstitu tin g A (i, x) for A  (i, x) and using (the inform al counterparts  

of) *30, *85, * 86 , *58 and *49 (cf. the proof of Corollary Theorem s 8 

and 18), we infer classically the dual

(20) c (Ei)i<a(x)A(i, x) =  (x ){E i)i<aA ( i,  (*),).

(But (20) does not hold in general intuition istically, b y  E x a m p le  4 § 82.) —  

Sim p ly b y  *95 and *7 7 , {i)i< a {x )A (i, x) =  {x )(i)i<aA (i,  x ) ; and sim ilarly  

for (E i)i< a{E x), {i)i< a (x)x<b and {E i)i< a {E x)x<b.
A lth o u gh  there is a substantial difference betw een the notions  

‘arithm etical' and ‘elem entary', w hich requires tw o basic theorem s 

to bridge (Theorems I and IV ), henceforth in the interest of u n ifyin g  

term inology we shall u su ally sa y  “ arith m etical" (even w hen prim arily  

we h ave the other notion in mind).

E xample 1 . “ E le m e n ta ry" is used b y  K alm ar 1943* in another  

sense, equivalent to the following. A  function is “ elem en tary", if it can  

be expressed ex p licitly  in term s of variable natural num bers, the con stant 

1, the functions + ,  • and [afb], and the operations S  and II. E x te n d in g
y <z  y <z

the notion to predicates, and to the case of assum ed functions and  

predicates, in the fam iliar w ay, we can recognize successively th a t the  

follow ing of our list # # 1— 21 of prim itive recursive functions and predi

cates (§§ 44 ,45) are elem entary, and the follow ing of our results #  # A — G
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hold reading “ elem en tary” in place of “ prim itive recursive” : # 1 , # 2 , 

# 1 3 ,  # # A — C, # 3 , # 4 , # 9  (sg(«) =  [ l/ ( « + l) ] ) f # 1 0 , # D ,  # E  

(II is II ), # 1 5  (the representing function is s g [ ( « + 1 ) / ( 6 + 1)]), # 6
*<< s < t +1 ________
( a - b  =  y.ccSa[ b + c < a  V a < b ] ) ,  # 5 ,  # 7 ,  # 8 , # 1 1 ,  # 1 2  (rm(a, b) 
— a — b[afb]), # 1 4 ,  # F ,  # 1 6 ,  # 1 7 ,  # 1 9  as a function of a for each  

fixed  t ; also G o d el’s ^-function (§48). —  N e x t we show th a t (A) if  9 
comes from  #  y {from y) by a p r im itiv e  recursion {Schema  (V)), and  
9 (y, x 2, . . . ,  x n) <  i](y, x 2, . . . ,  x n), then  9 is  elem entary in  #  •/, {in  7 , 7]). 

In  the proof of Theorem  I § 49 Case (Vb), (B) is of the form  

{E c){E d )R {y , x 2, . . . ,  x n, w, c, d), where R  is elem entary in <p and y, and

(c)(i)[i?(y, x 2, . . . , x n, w ,  c, d) 9 (9 , x 2, . . . , x n) = w ] .  H ence  

9 (y, * 2> • • • >* «)  =  {\dR {y , x 2, . . . , x n, {t)0, {t)v  {t)2))0. So b y  # E  it w ill 

suffice to find a bound elem entary in 7) on the t. B u t b y  § 48, we can  

choose d  =  (m ax(y, a0, . . . .  ay))\ where a t =  9 (i, x 2, . . . ,  x n), so th a t  

d  <, D  where D  =  ( y +  E  r\{i, x2, . . . ,  x n))\, and c <  II S{d, i) =
n  (l +  (* +  l)rf) ^  C  where C  =  II (l +  (f +  l)Z>). So w e can tak e

i < y  i S y
t  <  2E -3C -5 D where £  —  73(3;, x 2, . . x n). — N o w ^  ( # 1 8 )  is elem entary, 

for an elem entary bound can be found, e.g. p t <  2 2i ( =  only for i  =  0), 

as w e prove b y  course-of-values induction on i ,  thus. True for i  =  0, 1 . 

F o r i  >  2 , <  P q'P i * . . . *  P i-\  —  1 (by reasoning as in the proof

of E u clid 's  theorem  §40) <  22° - 2 21 * ..  .* 22i_1 (using the h yp. ind.) 

=  22°+ 2 l+ - + 2l_1 =  22l- i  <  22t. —  T hen the follow ing are elem entary: 

# 1 9 ,  # 2 0  (lh( i , a ) < a ) } # 2 1 . A lso (cf. # G )  (B) i f  cp comes from  
X by the course-of-values recursion  (3) §4 6 , and  <p(y, x 2, . . x n) <  
?l(y> • • •> x r)> then  9 is  elem entary in  x, y). For then U p y il’ x*’ ~"xn) is

^ ** <2/
a  bound elem entary in tq for 9 (3/; x 2> . . . ,  x n) in the prim itive recursion

(4) § 46. —  It  follows th a t the num ber-theoretic predicates and functions  

corresponding to the m etam ath em atical ones defined b y  D n l — D n l3 a  

§ 51 (cf. L em m a 19 § 52) and D f l — D f l 5  § 56 (cf. Lem m a III) are elem en

tary. F or recursions are used in those m etam athem atical definitions in 

the generalized arithm etic on ly to introduce (the representing functions  

of) predicates, and so (B) applies to each corresponding recursion in the  

sim ple arithm etic w ith  73 =  1. In particular, S n ( D f l3), and hence (C) 

T n {preceding Theorem  IV ), and U  ( D f l5) are elem entary. T h is corresponds 

to the result o f Ilona B ereczki (1949* unpublished) th a t (by m eans of 

devices used in K alm a r 1943) each of the predicates and functions  

show n in K leene 1936  to  be prim itive recursive is either elem entary or 

ca n  be replaced b y  one w hich is elem entary w ithout deranging the
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argum ents of th a t paper. —  So (D) we can add  11 or an elem entary R  
{in  K a lm a r  s sense)” in  C orollary Theorem  IV . —  K alm a r (1943 , 1948 , 

1950 , 1950a) uses his elem entary functions in presenting GodeFs theorem  

and other results w hich are presented in this book using prim itive re

cursive functions. —  Miss B ereczki (1952*) shows th a t the p rim itive re

cursive function ha defined b y  °a =  1 , b'a =  a ^  (so th a t b+1a =  
| 3(5, a) § 55) is not elem entary because aa  grows too fast as a  increases. 

She obtains another exam ple of a non-elem entary prim itive recursive  

function b y  constructing a prim itive recursive enum erating function  

(p{n, a) for the elem entary functions of one variable (cf. § 55). From  this  

it follows th a t there are non-elem entary p rim itive recursive predicates  

(sim ilarly to E x a m p le  1 § 55).

Theorem V I I I 0. F or the p r im itiv e  recursive V  and  u defined below, 
the predicate M (a , k) defined by in du ction  on k thus,

M {a ,  0) ^  V {a),
• M (a , 2 k - \- \)  == (Ex)M (\>(a, x), 2k),

M {a , 2 k + 2 )  =  (x)M {u{a, x), 2 k + \ ) ,  
is  not arithm etical. (Kleene 1943 .)

K alm ar first obtained a result of this sort, w hich appears in Skolem  

1936-7  pp. 86 ff. A lso cf. W a n g 19 5 3 , M ostow ski 1 9 5 1 .

P roof (optional). L e t us in the expression for S n(z, % , . . . ,  x n, y)  (D f 13 

§56) replace “n '” b y "  {%)'” , and “N u {(y )Q lA ,x ^  & . .  .&  N u ({y )  0>, 

b y  “ {i)i<i<(x)jyu{{y)<sti fi, {%)i— !) ” • T h e result is a  p rim itive recursive  

predicate S (z, x , y)  such th a t

(21) S (z, 2  n-pf'- . .  =  S n(z, x v  . . . , x n, y ).
L e t T {z, x, y) =  S (z, x, y) &  (t)t< yS(z, x, t). T hen

(22) T (z,  2“ • . . .  • P I ,  y)  -  T n(z. x l t . . . ,  x n, y ).
N ow  let V{a) =  T ((a )x— \ , a ,  («)(a)o-—  1). T h en  for n >  1 ,

(23) V (2 n ■ p f ' • . . .  • p ? '-  p ^  =  T n(xv  x v . . . .  x n, y ).
L et u {a, x) — a * 2 x' (cf. # 2 1  § 45). N o w  M (a , k) takes for k =  0, 1 , 2 ,  . . .

the values V [a), (E x )V (a * 2 X'), (x )(E y)V ({a * 2 x')*2v' ) , ----- Suppose M (a , k)
were arithm etical. B y  Theorem  V I I  (d), then it w ould be expressible in  

one of the form s of Theorem  V . F or illustration, suppose M (a , k) =  

(E x)R (a , k, x) fo r a  recursive R .  T h en  (E x )R (2 2-3a', 2, x) == M (2 2 -3 a', 2) =  

(x)(E y) V {{(22 • *2X')*2*')= (x)(E y) V (2 2 • 3°'- 5 '̂* 7 ^ >  (x )(E y )T 2(a, a, x , y ).

B u t {E x )R {2 2 • 3a', 2 , x) is of the form  (E x )R (a f x) w ith  R  recursive; and
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in th e proof of Theorem V  P art II  we saw  th a t (x )(E y )T 2(a, a, x , y )  is 

not expressible in this form,

T h e  reader m a y  pass if he wishes to §§ 60— 62, w hich do not depend  

excep t in cid en tally  on §§ 58 and 59. B u t § 58 contains a result w hich  

is fundam ental for §§ 63— 66 and later.

§  58. Normal form. P o s t ’s  theorem. U sin g D f l 3  and D f l 5  (§ 56), 

w e can restate the definition of 'general recursive fu n ction ’ (§§ 55, 54) 

as follows. A function <p(%, . . x n) is general recursive, if and on ly  

if there exists a system  E  of equations (w ithout g iven  function letters) 

such th a t

(24) (Xl) . . .  (xn) ( E Y ) B n(E, x v . . . ,  x n, Y ),

(25) (*,) . . .  (* .)(Y )[@ « (E , * x> Y ) - *  U (Y) =  9 (*1......... *„)].

O n passing over from  the generalized arithm etic to  the sim ple arithm e

tic  b y  the G odel num bering, @>n becom es S n, U  becom es U , E  becom es its  

G odel num ber e, and (24) and (25) give

(26) (*i) . .  • (x n){E y )S n(e, x v  . . . .  x n> y ) ,
(27) (*,) . . .  (xn) (y ) [S n(e, x v  . . . , x n, y )  ->  U (y)= < p(xv  . . . , * „ ) ] .

B y  L em m a I I I ,  U  as w ell as S n is prim itive recursive.

It  follows from  (26) and (27) th a t the function y (x v  . . . ,  x„) can be  

expressed in term s of th e num ber e thus,

(28) ? (*!, . . . , * „ )  =  U (tiy S n(e, x v  . . . ,  y)).
B y  (5) and (4) § 57, now (26) and (27) and therefore also (28) rem ain  

va lid  w hen S n is replaced b y  T n.
Theorem I X . F or each n  0: G iven a n y  general recursive fu n ction  

<p(xv  . . . ,  x n), a num ber e can be fou n d such that
(29) (*x) . . .  (xn){E y )T n{e, y ) ,
(30) • • • j x n) =  U ( w T n(e, Xi, . . . ,  x n, y )) ,
(31) (%) . . .  (xn) { y ) [T n(e, x v  . . . ,  x n, y ) -+  U (y)= < p(xv  . . . , « » ) ] ,

where T n(z, x lt . . . ,  x n, y ) an d  U (y) are the p a rticu la r p r im itiv e  recursive  
pred ica te  an d  fu n ction  defin ed  above. (Norm al form  theorem , K leene 1936 ,

1 9 4 3 )

T h e  a d va n ta ge of using T n instead of S n is th a t (31) holds for a n y  

num ber e such th a t (29)  an d (60) hold (whereas (26) and (28) m ight hold  

an d (27) be false, w hen e is the G odel num ber of a system  E  of equations  

w hich lacks th e con sistency property for defining 9 recursively).
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W e now  say, for a n y  general recursive function 9 , th a t a n y  num ber  

e (whether or not it is the G odel num ber of a system  E  of equations  

defining 9  recursively) such th a t (29) and (30) (and hence (31)) hold  

defines  9 recursively  or is a Godel num ber of 9 .

A  num ber e defines recursively  (or is a Godel num ber of) a  general re

cursive predicate P {x lt . . . ,  x n) t if it defines recursively the representing  

function of P . In  this case,

(32) jP^ 1’ • • • ’ =  (£ y) «(«. * ! '• • • •  y ) & ^ (y )= ° ]
=  (y)[r n(e, *lt y) -►  tf(y )= 0].

T o  prove co n stru ctively  th a t a function 9 is general recursive, one 

m ust exh ib it (or im p ly  a m ethod for obtaining) equations E  w hich define  

9  recursively. T h u s to g iv e  a general recursive function effective ly  m eans  

to g iv e  an E , or now  a G odel num ber e.
T h e theory of the G odel num bers of recursive functions w ill b e treated  

in the n ext chapter (§ 65).

E xample 1 . Is every general recursive function <p(xv  . . x n) e x 

pressible in the form  \iyR {x v  . . . ,  x nt y)  where R  is p rim itive recursive  

(and (lb) hplds) ? H in t : U se E x a m p le  1 § 55 and # E  § 45. (A different 

m ethod was used b y  P ost 1946a.) —  Call a function 0(y) “ u n iversal” , 

if for each general recursive function <p(xv  . . . ,  x n) there exists a p rim itive  

recursive predicate R (x v  . . . ,  x nt y)  w ith  (lb) holding such th a t  

<p(xv  . . . ,  x n) =  Q([iyR(xv  . . . ,  x nt y ) ) ; and call 0(y) “ of large oscillation ” , 

if (x )(z)(E y)y> J d (y )= x .  M arkov 1947c, 1949  shows th a t a sufficient 

and classically necessary condition th a t a prim itive recursive function 0 
be universal is th a t it be of large oscillation. K u zn eco v 1950  announces  

further results concerning such functions 0.

Corollary. E very  general recursive function  9 is  definable by a p 
p lica tion s of Schem ata  (I) —  (VI) w ith  (1) holding for the a p p lica tio n s  of 
(VI). (Converse of Theorem  I I I ,  for W  em pty.)

For sim plicity, beginning w ith  Theorem  IV , we confined our atten tion  

to functions and predicates general recursive absolutely, i.e. recursive  

in 4>i, . . . ,  for 1 =  0. N o w  w e shall extend the theory to relative general 

recursiveness, i.e. to  l >  0.

W e shall find th a t Theorem  I X  and the earlier results hold, if instead  

of a prim itive recursive predicate T n, we use one prim itive recursive  

in ijq, . . . ,  L e t us w ork first w ith  the case th a t l  =  1 and ^ ( =  £x) is 

a function of one variable (m t  = 1).

B y  definition (§ 55), 9 is general recursive in if there is a system  E
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of equations w hich defines <p recursively from  ^ (§54). If  there is a n y  

such E , then w e can choose one in w hich the given  function letter g  

(with G odel num ber g) is the first in the fixed enum eration of function  

letters.

N ow  we state  appropriate m odifications of D f l 2  and D f l 3  § 56.

D f 12* (for l =  m x =  1). (Z is a system  of equations, and) Y  is a de
duction  from E |, Z  (by R l  and R2). (A b b re via tio n : ®^(Z, Y).)

*0. Z  is a system  of eq u a tio n s; and for some natural num ber  

u lf Y  is (g(«i) =  u) where u  =  ^(%).

S E (z)  &  y  == 2 exp  215 • (3 exp  2° • 3(i/)o>m) • 5 i y ) &
{E u i ) U l < v [N u ( ( y ) o , i , i > u i) & N u ((y)o, 2 > ^K))]-

1— 3. L ike 1— 3 D f 12, except reading “ from E | ,  Z ” in place of

“ from  Z ” .

D f l 3 *  (for l =  m 1 =  1). L ik e  D f 13, reading “ from E | ,  Z ” in place of 

“ from  Z ” , and y)"  in place of <tD { z ,y ) i\
(A b breviation : <5^(Z, x v  . . . ,  %w, Y).)

T h e reasoning used before to show th a t D (z, y)  and S n(z, x lf . . . ,  x n> y) 
are p rim itive recursive (Lem m a I I I  § 56) shows now  th a t D ^(z, y)  and  

S^(2, x v  . . . ,  #n, y) are prim itive recursive in and in place of (26) and  

(27) for a general recursive function y (x lt . .  ., x n), we now  h ave for a  

function <p(xv  . . . ,  x n) general recursive in ty,
(33) (*i) • • • (x „ )(E y)S j(e , x v  . . . , x n, y ),
(34) (*,) . . .  {xn)(y)[S%(e, x lt . . . , x n, y ) ~ *  U {y)= < p(x lt . .  . , * , ) ] .

W e could continue as b efo re; bu t we shall show  also th a t the depend

ence on can be given  a special form.

T h e course-of-values function $(y) ( =  II § 46 (1)) for is prim 
l y

itiv e  recursive in ^ ( # # A ,  B , 3, 18, §§ 44, 45).

U sing § 46 (2), ^(% ) in ODf 12* can be w ritten as ($(y))M , since u x <  y ,  
or even as (4,(^))m1 for a n y  v >  y .  L e t D 1(w, z, y)  be the predicate obtained  

in place of D'^(z, y)  when we replace <];(%) in ODf 12* b y  (w) u . T h en  D 1 
is prim itive recu rsive; and b y  course-of-values induction on y  (with cases 

corresponding to the four clauses in the recursive definitions of D 1 and  

D *, cf. § 52),

(35) . (v)v> um $ ( v ) , z , y )  =  D H z ,y ) ] .
U sing D 1( w ,z ,y )  in place of D ^ (z ,y )  in D f l 3 * ,  we obtain a prim itive  

recursive predicate S* (z£>, z, x v  . . . ,  * n, y)  such th a t

(36) (v)r>y[5 i($ (v)> z, x v  . . y)  =  S%(z, x v  . . . , x n, y)].
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W e define T \  and T  ̂ thus,

T ln{w, z , x lt . .  . , x n,y )  =  S 1n(w ,z , x v  . . . , x n, y )  & {t)l< ^Sln{ w ,z ,x 1, .
*1> • • • > y) — Tn{^{y), Z, A j ,  . . . ,  x„, y).

Then T ln is prim itive recursive, and is prim itive recursive in tj/. U sing

(36) first w ith  y , y  and then w ith  y, t as the v, y ,
(37) T ft(z, x v  . . . ,  x n, y) = S*(z, xlt . . . , x „ , y )  & (0t< ^ (z ,  xv . ..,x„ , t).
N ow  we can continue from  (33) and (34) w ith  (37), as we did before 

from (26) and (27) w ith  the definition of T n (preceding (4) § 57).

Our statem ents here are to be understood in tu ition istically  as con

sequences of the hypothesis th a t particular values of ^ are available on 

dem and. T h is hypothesis justifies e.g. expressing a given valu e ^(jq) as 

($(v))w1 for a given v >  u v  w hich requires the other values am ong  

+(0), . . . ,  and b y  it

* 1 .  • • • - X„, t) V S%(Z, Xv . . . .  X„, /)]
for a given  y, w hich requires the values ^(0), . . . ,  y(y  — 1) (cf. the proof 

of (5)).

T h e results obtained in § 57 beginning w ith  Theorem  I V  exten d  

sim ilarly. "

T h e case of a n y  l functions of m v  . . m t variables, respectively, can  

be reduced to the case l =  m 1 — 1 (by tak in g ^*(*) =  ^ i(W i, . . . ,  (x) ,„•), 

^ =  p ^ v . . .  • p p  ); b u t is also easily treated directly. For exam ple, if 

l =  tn1 =  2, m 2 =  0, we define the course-of-values function ijq for ^1 
(in b oth  variables) thus, !jq(y, z) =  II p t exp  (II p } exp  <jq(/, /)), so th at

K U
^x(s, t) =  ( ^ (y , z))8i t if s < y  & t < z .  W e define =  <y2. D f 12* and  

D f 13* are form ulated for / =  m x =  2 , m 2 =  0; and we introduce succes

sively  predicates D ^1’ ^2, D 2,0, S ‘y °, T%°, and let

r t *■  * n . y) = Tn y ) >  * 1 . • • • .  * » .  y)-
In general, we com e out w ith  a p rim itive recursive predicate T "*1.....mi
of 2  variables, and a predicate T ^ 1 ^/ of n -\-2  variables

prim itive recursive in . .  .,

W hen T* is a list of l functions and predicates, the foregoing applies b y  

takin g as . . . ,  ^  the list obtained from W  b y  replacing the predicates  

(if any) b y  their representing functions (cf. end § 55); and we then w rite  

T * '.... also as T * '.

T h e definition of 'arithm etical predicate* (§ 48) is adapted to / >  0 b y  

adding the functions <Jq, . . . ,  to the initial functions +  and •; th at of 

"elem en tary predicate" (§ 57 preceding Theorem  V II)  b y  su bstitu tin g
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"gen eral recursive in Y ” for "gen eral recursive” . (‘U n ifo rm ity' can be  

defined in the usual m anner, and th e resulting relationships in our 

theorem s are uniform  w hen the g iven  ones are uniform.)

T heorem  X . L et l t m lt . . . ,  m t be fix ed  num bers  ;> 0, an d  Y  be l  
fu n ction s an d  pred ica tes of m lt . . . ,  m x variables, respectively. T hen  Theo
rem s  I, I V  —  I X  an d  corollaries hold good reading “general recursive in  Y ” , 

“ p r im itiv e  recursive in  Y ” , “ arithm etica l in  Y ” , “ elem entary in  Y ” , 

" T j ” , “ V ^ " , “ M ^ \  in  p lace of “ general recu rsive" , “p r im itiv e  recur
sive"  t “ arith m etica l" t “ elem en tary" , “ T n", “ V " , “M " , respectively  {w ith  
U  a n d  o unchanged).

T h e  theorem s I, I V  —  I X  thus exten ded w e cite using stars. F o r e x 

am ple : T heorem  I X * .  F o r each n  >  0: G iven a n y  fu n ction  (p{xv . .  . , x n) 
general recursive in  Y ,  a num ber e can be found such that
(38) (x,) . . . ( x n) ( E y ) T j ( e , x 1, . . . , x n, y ) ,
(39) <p(xv  . . . , * „ )  =  U { w T %  (e, x lt . . . .  x n, y )) ,
(40) (% ) . . .  (xn) ( y ) [ T j ( e ,  x v  y)  -  t/(y)=<p(*i. . . . .  *„)].

where U (y) is  the p r im itiv e  recursive function , an d  T v[ { z , x 1, . . . ,  x n, y )
the pred ica te  p r im itiv e  recursive in  Y ,  defined above ; e.g. for l =  m x
=  l , T j ( z , x v  . . . .  x„, y )  =  r i( $ ( y ) , z , x lt . . . .  x n, y) where
T \{w , z, x v  . . . ,  x n, y) is  the p a rticu la r p r im itiv e  recursive pred ica te defin ed
above.

A  num ber e such th a t (38) and (39) (and hence (40)) hold is said to  

define  9  recu rsively  in  (or from ) Y  or to be a Godel num ber of 9 from  Y  

or of the function al 9  =  F(Y). T h e notion extends to  a predicate P  w ith  

representing function 9 as before.

Co r o llar y , (a) E very  pred ica te  P  general recursive in  arith m etica l 
predica tes  Y  is  arithm etical. {S im ila r ly , i f  P  is  general recursive in  Y ,  0 ,  

an d  Y  are arithm etical, then P  is  arithm etica l in  ©.) (b)° The pred ica te  
M {a , k) of Theorem  V I I I  is  not general recursive in  a n y  arith m etica l 
predica tes.

P roof of (a). B y  Theorem  V I *  (a), P  is expressible b y  a quantifier  

prefixed to  a  predicate R  p rim itive recursive in Y .  B u t  b y  C orollary

Theorem  I*, R  is then arithm etical in Y ;  so since Y  are arithm etical, 

R  and hence P  is arithm etical. See N o te 1 on p. 316.

U nder the definition of "elem en tary p red icate” (preceding Theorem  

V I I  § 57), the general recursions were applied on ly before the logical
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operations. T h e m eaning of Corollary (a) is th a t perm ittin g general re

cursive operations at all stages (i.e. interspersed w ith  the logical operations  

in a n y  manner) does not lead to a larger class of predicates.

It  is natural to inquire ju st w h a t happens to  predicates fallin g in a 

given place in the scale of Theorem  V  P art II  (cf. Theorem  V I I  (d)) w hen  

general recursive schem es are applied to them .

T h e distinction (for k >  0) betw een the tw o ^-quantifier form s is 

lost w hen prim itive recursive operations are applied. F or exam ple, 

although (Ex)Tx(af a t x) is not expressible in the other one-quantifier  

form (x)R(a,x)f its negation (ExjT^a, a, x) is prim itive recursive in  

it ( # D  §4 5 ), and assumes th a t other form  (cf. *86  §3 5 ). F o r a n y  

predicate P (a ),  the representing predicate P (a , w) (§ 41) of the represent

ing function (§ 45) of P (a )  can be expressed thus,

(41) P(af w) ss {P (a )  &  w = 0} V (P(a) &  w =  1}.

T h is is prim itive recursive in P (a ).  W hen P (a )  == {E x )T x(a9 a, x ), P (a , w) 
is expressible in neither of the one-quantifier fo rm s: e.g. if P (a , w) =  

(x)R(af w, x), then (x)R(a, 0, x) =  P ( a , 0) s= P(a) =  {E x )T t {af a , x ) f w hich  

con tradicts Theorem  V  if R  is recursive.

M ostow ski 1948a gives (classically) an exam ple of a predicate, w hich  

(by (b) of the n ext theorem ) is general recursive in predicates of th e  

1-quantifier forms, b u t w hich cannot be expressed in term s of predicates  

of the 1 -q uantifier form s b y  the operations of the propositional calculus.

T h e follow ing theorem  and corollary are P o st’s on the basis of an  

abstract (1948), as the author becam e aw are after w orking out the  

present treatm en t (in 1949)„

T heorem  X I c , (a) I f  a pred ica te  P  is  general recursive in  pred ica tes  
Qv  . . . ,  Qi of the k -qu an tifier form s of Theorem  V , then P  is  expressib le  in  
both the k  ~f 1 -qu an tifier form s, an d  (b) conversely.

T h e  proof of Theorem  V I  (b) establishes th e present (b), w hen reread  

tak in g the R  and S  now  to be of appropriate ^-quantifier forms. T h e  

proof of (a) w ill be com pleted follow ing the lem m as.

L emma I V c . The represen ting  pred ica te of the represen ting fu n ction  of 
a predicate of either k -qu an tifier form  is  expressible in  the k -qu an tifier  
form  w ith  existence first.

P r o o f  o f  L emma IV . F or exam ple, suppose P (a )  == (x )(E y )R (a f x , y )  
w ith  recursive R .  T h en
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P (a ,w )  =  { (x ) (E y )R (a ,x t y) & w = 0 }  V { (x ) (E y )R (a ,x ,y )  & w  =  \ }  (by (41)) 

^ ■ {(x J iE y J R ia , x lf y 1) & w = 0} V { (E x 2){y 2)R {a , x 2, y 2) & w =  1}

(cf. *85, * 86)

=  ( E x ^ x ^ y ^ E y ^ i i R i a ,  x lf yx) & 0} V {R (a , x 2> y 2) & w =  1}]

(cf. *89— *92)

^  (E x )(y )(E z)[{R (a ,  (y)0, z ) & w = 0} V { * ( « , x, (y),) & w  =  l} ]  (by (18)).

T h e last expression is of the form  (E x )(y )(E z)R (a , w , x, y, z) w ith  re

cursive R . (This and the n ext lem m a could also be proved for gen erality  

first.)

Lemma V . L et %(aly . . . ,  a m) be the course-of-values ju n ction  for  
ty{alt . . . ,  a m). I f  the represen ting pred ica te of ^{aly . . . ,  a m) is  expressible  
in  the k + 1  -qu an tifier form  w ith  existence first, so is  the representing  
predica te of $(a, . . . ,  a).

P roof of Lemma V . F or exam ple, ta k e m  =  k  =  1 . B y  hypothesis, 

ty (a )= w  =  (E x)(y)Q (a , w , x, y)  w ith  recursive N ow

ty (a )= w  ^  w =  U & {i)i< M i ) = { w ) i
i < a

=  w  =  R  & (i)i< a {E x)(y)Q (i, (w )0 x , y)
i < a

=  W =  n  p W i  &  {E x )(y ){i)i< aQ (i, (w )t , (x)0 y )  (by R em ark 1 § 57)
i < a  *

=  {E x )(y ){w  =  II p 'f'i  &  (i)i< aQ {i, (w )it (x)it y ) }  (cf. *9 1, *89).
i < a

T h e last expression is of the form  (E x )(y )R (a t w , x, y )  w ith  recursive 2?.

P roof of T heorem X I  (a). F or exam ple, tak e l == m  =  k  =  1. T h e  

hypothesis th a t P  is general recursive in Q m eans (§ 55) th a t P  is general 

recursive in the representing function of Q. B y  Lem m as I V  and V ,  

ty (a )= w  =s (E x )(y )R (a f w , x, y)  w ith  recursive R . W e show first th a t  

P (a )  is expressible in the 2-quantifier form w ith  gen erality first. U sin g  

Theorem  V I *  (a) w ith  its proof from Theorem  I V *  (7),

P (a )  =  (f)T}($(<), g, a, t) =  (f)(s)[$(/)=s ->  T\(s, g, a, <)]

=  V )(s)[(E x){y)R (t, s, x , y)  - *  T\(s, g, a, *)]

=  W(s) (*)(£>)[/?(<, s, x, y ) -+  T\(s, g, a, /)] (cf. *96, *98)

=  W (£ y )[R (W o , W x, (*)„  y) -+  r } ( ( * ) lf g, a, (*)„)] (b y (18)),

vhich is of the desired form. T o  express P {a)  in the other 2-quantifier
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form, w e h a ve sim ilarly using Theorem  I V *  (6),

P(«) ^  (£ *)r i($ (0 . /, «, t) =  (E t)(E s) W ) = s  & T \(s ,  f, a , t)} , etc.

Corollary0. F or each of the k -\- \-q u a n tif ie r  fo rm s, the pred ica te of 
Theorem  V  (b) which is  expressible in  the other k -\- \-q u a n tif ie r  form  but 
not in  the form  itse lf is  not recursive in  pred ica tes expressible in  the form s  
w ith  k {or fewer) qu antifiers.

W e get a Theorem  X I *  (with corollary) b y  replacing “ general re

cu rsive”  for the form s of Theorem  V  (b) b y  “ general recursive in Y ” .

*§ 59. General recursive functions and the number-theoretic
f o r m a lis m . In  this section, “ (i)” — “ (vii)”  w ill refer to § 4 1 .

W e sa y  th a t a num ber-theoretic predicate P {x x, . . . ,  x n) is resolvable 
in a form al system  (or decidable w ith in  the system ), if there is a  num eral- 

wise decidable form ula P (x x, . . . , x n) (cf. (iv)) w ith  no free variables  

other than the distin ct variables x x, . . . ,  x n such th a t, for each n -tu p le  

x v  . . . ,  x n of natural num bers,

(viii) P {x v  =  I- P ( x 1, . . . ,  x n).
In  this caie, P ( x x, . . . ,  x n) resolves P {x ly . . . ,  x n) (w ith the obvious  

correspondence of form al to in tu itive  variables).

A  num ber-theoretic function <p(xlt . . . ,  x n) is reckonable  in a form al sys

tem  (or calculable w ith in  the system ), if there is a form ula P ( x x, . . . ,  x n, w) 

w ith  no free variables other th an  the d istin ct variables x v  . . . ,  x n, w  

such th at, for each x v  . . . ,  x n, w f
(ix) <?(xv  . . . t x n) = w  s= b P ( x lf

In  this case, P (x x, . . . ,  x n, w) reckons <p(xv  . . . ,  x n).

Theorem 32. L et S  be the num ber-theoretic form al system  of C h apter  I V  

{or R obinson 's system  described in  L em m a  18b § 49). I f  S  is  s im p ly  con
sisten t, then: {<p is  general recursive}  =  {9  is  n u m era lw ise  representable in  S }  
s= {<p is  reckonable in  S }.

P roof. W e establish three im plications.

(a) I f  (p is  general recursive, then  <p is  num eralw ise representable in  S .
B y  Theorem  I X  § 58, there is a num ber e for (29) and (30).

U sin g (29) and the definition of T n preceding Theorem  I V  § 57,

( 4 2 )  w T " ^  * i>  • • • > y )= w =
Sn  ( ,̂ ) • • •, Xnt w) &  5 n {c, X f̂ • • *, Xnt Z).

B y  Corollary Theorem  27 § 49, since S„(z , x v  . . x„, w) is p rim itive



296 GENERAL RECURSIVE FUNCTIONS CH. XI

recursive, it is num eralwise expressed b y  a formula S(z, x v  . . . ,  x n, w). 

W e shall prove th a t the form ula

S(e, x v  . . . ,  x n, w) &  V z ( z < w  D  i S ( e ,  x lt . . . ,  x n, z)),

call it “ M (xv  . . . , x n, w)", num eralwise represents 
\uyTn(e, x v  . . . ,  x n, y ). L e t x v  be an y fixed w-tuple. T o  establish

(v) for M, suppose that (i y T n( e ,x lt . . , ,  x nf y) — w. T h en  using (42), 

and (E) and (C) § 41 with (i) and (ii) for S, (- M ( x l f . . . ,  x n t w ) .  T h u s  

we h ave (v) for M. B u t then we also h ave (vi) b y  *17 4 a  (with w  as 

the t). So i i y T n (e, x v  . . . ,  x n, y)  is numeralwise representable.
B y  Theorem  27, since U (y)  is prim itive recursive, it is num eralwise  

representable.

B y  the reasoning for Case (IV) in the proof of Theorem  27, then the  

com posite function U (\iy T n (e, x l9 . . . , x n, y )),  i.e. (by (30)) <p(xlt . . x n), 
is num eralwise representable.

In  this proof, besides the predicate calculus, A xio m s 14 —  21, the  

replacem ent property of equality, and results already em ployed in  

obtain in g Theorem  27, we h ave used on ly (E) and *1 7 4 a  (with the  

num eral w  as the t). H ence, using Lem m as 18a § 41 and 18b § 49, the  

im plication (a) holds also for R obinson's form al system .

(b) I f  s  is  s im p ly  consistent, and  <p is  n um eralw ise representable in  S , 
then  9 is  reckonable in  S  (and an y form ula  P  which num eralw ise represents  
<p reckons cp (and  b y  § 41 is  n um eralw ise decidable)).

Consider a n y  fixed x v  . . . ,  x n. W e h ave (v) b y  hypothesis. T o  establish  

the converse, assume th a t (- P (xx, . . . ,  x n, w ) .  N ow  

<p(#i, . . . ,  x n) = w  V <p(%, . . . , x n) ^ w  (cf. *15 8  §40). B u t if 

<p(xv  . . . ,  x n) ^ w ,  then using (vii) we con tradict the sim ple consistency.

(c) I f  cp is  reckonable in  S , then <p is  general recursive.
Suppose cp(%, . . . ,  x n) is reckoned b y  the form ula P (x 1? . , . , x n, w). 

If S  is the full num ber-theoretic system , let P / P be the prim itive re

cursive predicate corresponding b y  the G odel num bering to ^$fp (cf. 

D n l3 a  § 51 and L em m a 19 § 52, or Theorem  31 § 52). If  S  is R obinson's  

system  (Lem m a 18b), we m ust first m ake the appropriate changes in  

D n 8 . N o w  (%) . . .  (xn)(E y )P fp (x 1, . . . , x „ ,  (y)0, (y),) and =

([xyP/p {xv . . . ,  x n, (y)0, (y),)),,. H ence using Theorem  III § 5 7 , 9 is 

general recursive.

Corollary. U nder the hypotheses of the theorem, an d  if  
(%) . . .  (xn)[P (x x, . . . ,  x n) V P (x v  . . x ^ ] : { P  is  general recursive} =  

{ P  is  n um eralw ise expressible in  5 }  =  { P  is  resolvable in  5}.
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P roof. L e t <p be the representing function of P .  W e  establish four  

im plications,

{ P  is  general recursive}  ^  {«p is  num eralw ise representable in  S }
^  { P  is  num eralw ise expressib le in  S }
^  { P  is  resolvable in  S  (and a n y  form ula  P  which nu m eralw ise expresses  

P  resolves P ) }
{ P  is  general recursive},

where the s im p le  consistency of S  is  a further hypothesis f o r  (f) a n d  (g), 

and also  ( % ) . . .  (xn) [P (x lf . . . ,  x n) V P (% , x n)] for  (f) (to m ake  

the proof of (f) va lid  in tu ition istically).

(d) From  (a) b y  the definition of general recursive predicate.

(e) A s in the proof of C orollary Theorem  27 § 49.

(f) W e obtain (iv) as in § 41. W e h ave (i) b y  hypothesis. T o  establish  

the converse, assum e th a t b P(*i> . . . , * * ) .  N ow

P (x v  . . . ,  x n) V P (x lt B u t  if P (x v  . . . , x n), then using (ii) w e

con tradict the sim ple consistency.

(g) Suppose th a t the form ula P (x 1, . . , ,  x n) resolves P (x lf . . . ,  x n). 
Sim ilarly to (c),

(*i) • • • (* n )(E y)[P fp (xv  • • • >* «.  y)  V P f - ,A x v  •••>*»> y ) ]  (since P  is 
num eralwise decidable) and

P (x v  . , . 9x n) s= P fp (x v  . . . , x n,v.y[P fj>(xv  . . . , x n, y ) V  P f^  P(x l t . .  . , x n,y)])  

(using (viii) and the sim ple con sistency of S). (The sim ple con sisten cy  

of S  is im plied b y  (viii), if (E x^  . . .  (E x n)P (x v  . . x n).)
T h e equivalence of reckon ab ility  (resolvability) to  general recur

siveness w as proved b y  M ostow ski 1947  for a n y  sim p ly  consistent S  
containing the usual num ber th eory and such th a t (R x) prim itive re

cursive predicates are resolvable in S  (cf. C orollary Theorem  27) an d  

(R 2) the predicates P f A are p rim itive recursive (cf. D n l3 a  and L em m a 19). 

O ther references w ill be given  in § 62. Cf. R . M, R obinson 1950  abstract.

L e t T  be a list . . . ,  fa of functions of m lt  variables, re

spectively. Choose d istin ct predicate letters Qi» . . . » Qi,  and an n ex  

them  to the stock of form al sym bols for S .  E x te n d  the definition of 

form ula for S  b y  p rovidin g th a t Q i(t1, . . . ,  t mj, t) be a form ula for each j  
(| =  1, . . . , £ )  an d term s t v  , . . , t m., t. L e t  be the set of th e

form ulas Q ,( y v  . . . ,  y mjt y )  & V z (Q ,(y v  . . . ,  y mji z) D  y = z )  where  

b t y v  . =  y , for / =  1, . . . ,  / and all m r tuples y v  . . . ,  y mj  of

natural num bers. L e t notions s im p ly  consistent (num eralw ise decidable,



298 GENERAL RECURSIVE FUNCTIONS CH. XI

num eralw ise expressible, num eralw ise representable, resolvable, reckonable) 
in  (or from ) Y  be obtained b y  changing to “ F q^"qJ h” (or in 

words, " p ro v a b le ”  to “ deducible from F ^ g ” ) in the form er def

initions. Theorem s 27, 31, 32 and corollaries (including (a) —  (g)) hold  

w ith  these notions and " F q*”[q* b” > "p rim itive  recursive in Y ” and  

"general recursive in Y ” in place of the respective former notions. (Also  

P  is num eralw ise expressible u n iform ly  in  (or from ) Y ,  if a form ula P  can  

be given  indepen dently of Y  w hich num eralwise expresses P  from  Y  

for each choice of Y  under con sideration; and sim ilarly for num eralwise  

represen tability, reso lvab ility  and reckon ability. T h e theorem s hold  

w hen the notions for P  or cp relative to Y  are understood throughout as 

uniform.)

E q u iv a le n tly , we m a y  instead choose distinct function letters g v  . . . ,  g lt 
exten d  the definition of term  to include g;(t1} . . . ,  t m.) w hen t lf . . . ,  t m/ 

are term s, and su b stitu te h” (§ 54) for “  h” in the former

definitions.

If  we let Y  include predicates, we m a y proceed in either of these  

w ays, tak in g as ^  the representing function of w hen the /-th  of the  

Y ’s is a predicate Q j ; or instead for each such j  w e m a y  introduce a pred

ica te  letter Q , to be used w ith  m j argum ents, and let the assum ption  

form ula corresponding to this j  and a given  m r tuple y v  . . . ,  y m- be  

Q j( y v  or -I Q i(y v  • • •, ymf) according as Q ,(y lt . . . ,  y m,) or

Q i(y  ...........ym,)-

§ 60, Church’s theorem, the generalized Godel theorem. We
now  undertake to answer fin ally  the question w hether inform al m ath e

m atics can be co m p letely  form alized (§ 15). W e know  b y  G odel's theorem  

(§ 42) th a t the particular form al system  of C hapter I V  does not com 

p le te ly  form alize in tu itive  num ber theory.

In  inform al num ber theory w e consider propositions depending  

on param eters. In fin itely  m an y particular propositions arise, according  

to  th e natural num bers taken  as values b y  these param eters. W e describe  

this situation b y  sayin g th a t the propositions are the values of predicates. 

G en erally  w e h ave under consideration a num ber of predicates sim ul

taneously. H ow ever, let us discuss the form alization in relation to  one of 

them , sa y  a predicate P (x )  of one variable

T h e  form al num ber-theoretic system  of earlier chapters provides  

one illustration of how  form alization can be carried out. L e t us p u t
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aside all the finer details, and consider on ly the bare skeleton of w h a t  

a  form al system  m ust provide if it is to serve its purpose.

T h e form al system  m ust h ave some dom ain of ‘form al objects*. A m o n g  

these, if the system  is to con stitu te a form alization of the theory of the  

predicate P (x ),  there m ust be particular distinct form al ob jects w hich  

we id en tify  as expressing the propositions P(0), P ( l) ,  P ( 2), . . . ,  i.e. 

P (x )  for x  =  0, 1 , 2 , . . . .  W e m a y  con ven ien tly  designate these form al 

ob jects b y  “ A(0)*’ , “ A(l)**, “ A(2)**, . . . ,  respectively, i.e. “ A(x)** for 

x  =  0 , 1 , 2 , . . . ;  and call A (x) ‘the form ula expressing P { x ) \  W e do  

this w ithout m akin g a n y  assum ption as to w hether there be such thin gs  

as num erals x , a variable x, and a form ula A(x) from  w hich A (x ) com es 

b y  su bstitu tin g x  for x.

N e x t, there m ust be a category of form al objects called ‘proofs*. 

E ach  proof m ust be a proof ‘of* a particular form al object, w hich m a y  

or m ay not be the object A (x) for a given  natural num ber x. L e t “ SR(x, Y)** 

stand for the m etam ath em atical proposition th a t Y  is a proof of A (x ). 

T he object A (x) is said to be ‘provable*, if there is a proof of it. L e t  

“  b A(x)** stand for the proposition th a t A (x) is p ro v a b le ; i.e.

{43) ,  (E Y )9 i< *,Y ) s  h A (x).

W h at is the nature of the predicate 9t(x, Y ) ? O ur purpose in form al

izing a theory is to m ake exp licit the conditions w hich determ ine w h a t  

propositions hold in the sense of being provable in the theory (§ 15), or 

in brief to giv e  an explicit definition of w h at con stitutes a proof. T h is  

purpose w ill be accom plished, for the theory of the predicate P (x )  as 

expressed b y  the form ula A (x ), on ly if there is a preassigned procedure, 

not requiring a n y m ath em atical invention on our part to  ap p ly, b y  w hich, 

w henever we are given  a particu lar natural num ber x  and form al ob ject Y ,  

we can tell w hether Y  is a proof of A (x) for th a t x. T h a t is, there m ust  

be a decision procedure or algorithm  for the question w hether 9t(x, Y )  

holds (§ 30). W e shall also express this b y  sayin g th a t 9l(*, Y ) m ust be  

an “ effective ly  decidable** m etam ath em atical predicate.

W e h ave not stip u lated  w h a t kind of structure the dom ain of the  

form al ob jects should have. H ow ever each form al ob ject Y  m ust be  

capable of being given  as a finite object, as otherwise it w ould m ake no 

sense to  speak of a decision procedure for $t(x, Y ). T h is m a y  m ean th a t  

each Y  can be generated from a finite num ber of initial objects b y  a  

finite num ber of applications of recognized operations, as in our con

ception of a generalized arithm etic (§ 50); or th a t each Y  can be given  

as a figure con stituted out of a finite num ber of occurrences of sym bols
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from  a preassigned enum eration of sym bols. B y  fam iliar m ethods (§§ 1, 

50, 52) we can then giv e  an effective enum eration of the form al ob jects, 

or perhaps more co n ven ien tly  an effective G odel num bering, i.e. a

1-1 correspondence betw een the form al objects and a subset of th e  

natural num bers. T h e effectiveness m eans th a t, given  a n y form al o b je ct  

Y  we can alw ays find the corresponding num ber y, and inversely g iv e n  

a n y natural num ber y we can alw ays determ ine w hether it corresponds 

to a form al o bject, and if so find th a t object Y . T h ere b y w e correlate to  

the e ffective ly  decidable m etam ath em atical predicate 5ft(x, Y ) an ef

fe ctiv e ly  decidable num ber-theoretic predicate R {x , y), where R (x , y) =  { y  
is the natural num ber correlated to a form al ob ject Y  such th a t 9t(#, Y )}.  

T h en  (£ Y )R (x , Y ) =  (E y)R (x ,  y ); and b y  (43),

(44) (E y)R (x ,  y) -  b A (x).

W h a t kind of a num ber-theoretic predicate can m eet the condition  

on R ( x ,y )  of being e ffe ctive ly  decidable? F or the form al system  o f  

C hapter IV , and a n y  form ula A  (a) in th a t system , this predicate R (x , y )  
(corresponding b y  the G odel num bering to ‘Y  is a proof of A (x )')  is  

p rim itive recursive, as w e showed in proving Theorem  31 § 52.

A n y  general recursive predicate is effective ly  decidable. For a n y  

general recursive function <p is effective ly  calculable. G iven  a system  E  

of equations defining 9 recursively, an effective process for finding th e  

valu e of 9 for given  argum ents x v  . . . ,  x n is afforded b y  deducing equa

tions from  E  u n til one f( x 1? . . . ,  x n) = x  expressing th a t this valu e is x  
is found. Such a system  E  alw ays does exist and such an equation can  

alw ays be deduced, according to  the definitions of 'general recursive  

function ' (§ 55) and ‘E  defines <p recursively' (§ 54). (W e can also see th a t  

9 is e ffe ctiv e ly  calculable, b y  considering Theorem  I X  (29) and (30) 

§ 58, or Corollary Theorem  IX .)  T h en  if R  is a general recursive predicate, 

w e can decide w hether it is true or false for given  argum ents x v  . . . ,  x n, 
b y  calcu latin g the valu e of the representing function for those argum ents, 

and reading w hether th a t va lu e is 0 or 1 .

T h e converse of this has seem ed also to be true. E v e r y  exam ple of a  

function (predicate) acknow ledged to be e ffective ly  calculable (de

cidable), for w hich the question has been in vestigated , has turned out to  

be general recursive. T h is heuristic evidence and other considerations  

led Church 1936  to  propose the follow ing thesis.

Thesis I. E very  effectively calculable fu n ction  {effectively decidable  
predicate) is  general recursive.

T h is thesis is also im plicit in the conception of a com putin g m achine
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form ulated b y  T u rin g 1936-7  and P o st 1936 . W e postpone the discussion  

of the evidence for the thesis to  the n ext tw o  chapters, and proceed at  

once to  consider its im plications.

T h e thesis and its converse provide the ex a ct definition of the notion of 

a calculation (decision) procedure or algorithm , for the case of a  function  

(predicate) of natural num bers, w hich we were not read y to  provide in  

§ 30. T o  give a decision procedure for a predicate P {x)  thus m eans to  

giv e  a general recursive predicate i?(*) such th a t P (x ) =  R {x ). B y  

Theorem  V  (14) and (15) § 57, w e h a ve the follow ing theorem , originally  

stated  b y  Church 1936  w ith  a different exam ple of an “ u n so lvable”  

decision problem .

T heorem X I I .  There is  no decision  procedure {or algorithm ) for 
either of the pred ica tes {y )T x{x, x, y) or (E y )T x (x, x, y ) .

From  the considerations in the first part of this section, b y  ap p lyin g  

Thesis I to  the R  of (44), w e obtain  a  second thesis.

T hesis II. F or a g iven  form al system  S  in  which the values of a p red 
icate P (x ) are expressed by designated d istin c t form ulas  A (x ) (x =  0, 1 , 

2 , . . . ) ,  the pred ica te  'A (x ) is  provable in  S ’ is  expressible in  the form  
(E y )R {x } y) where R  is  general recursive, i.e . there ex ists a general recursive  
predicate R  such that (44) holds. {S im ila r ly  for a pred ica te P {x lt . . . ,  x n) 
of n  variables.)

R emark 1 . H ere w e h a ve  considered o n ly  the form ulas A (x ) in  

w hich we are interested. I f  w e ta k e other form ulas into account, and  

the system  satisfies our usual conceptions of w h a t it should accom plish, 

we can an alyze further. L e t “ *g(A, Y ) ” denote ‘Y  is a proof of A ' as a  

predicate of a n y  tw o form al ob jects A , Y . T h is predicate *JS(A, Y ) w ill 

be e ffe ctive ly  decidable, A (x ) w ill be an e ffective ly  calculable function of 

#, and the effective d e cid ab ility  of 9i(#, Y ) w ill result b y  ta k in g  

9t(*, Y ) =  sj$(A(x), Y ). F o r an effective G odel num bering of the form al 

objects, let “ A a” stan d for the ob ject (if any) h avin g a  as its n u m b er; 

and let “ b A a” express th a t this ob ject is a provable form ula (“ b A 0”  

being false w hen a  is not a G odel num ber). T o  ^$(A, Y ) we correlate P {a , y ). 
U sin g Thesis I : (a) There is  a general recursive pred ica te P  such that 
{E y)P {a , y )  =  b A a. (b) The Godel num ber ol{x ) of A (x ) is  a general 
recursive function  of x. Thesis I I  follow s b y  ta k in g R {x , y )  == P { ol{x ), y).

Thesis II  form ulates th e (minimum) structural requirem ent on a 

form al system  5  in order for it to  serve as a form alization of the theory  

of a predicate P ,  w ith  the propositions P {x)  for x  =  0, 1 , 2, . . .  expressed
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b y  the respective form ulas A (x ). A s in the case of Thesis I, the converse  

holds (as stated  below).

It  remains to state the conditions on S relating p ro va b ility  of the for

m ulas A (x ) w ith  the propositions P (x)  w hich th e y  are intended to express. 

F o r the form alization to be correct (or consistent) for P (x ),  it is required  

th a t

(45) b A(x) -  P (x ),
i.e. A (x) is provable in S  o n ly w hen P (x)  is true. If the system  S  is also  

to con stitu te a com plete  form alization of the theory of the predicate, w e  

m ust also h ave, conversely, th a t P (x )  ->  p A ( x ) , i.e. A (x) is provable  

w henever P (x )  is true. Com bining this w ith  (45),

(46) h A (x) =  P (x)
in the case th a t S  is com plete as well as correct for P {x).

C om bining this w ith  the structural requirem ent given  m  Thesis I I :  

T o  giv e  a correct form al system  for the predicate P (x )  entails finding a  

general recursive predicate R  such th at

(47) (E y )R (x ,y )  - *  P (x );  
to  set u p one th a t is also com plete, such th a t

(48) (E y)R (x , y) =  P (x ).
N o w  suppose P (x )  is the predicate {y )T 1 (x, x, y ). T h en  there is no 

general recursive R  such th a t (48) holds for all x \  for then b y  Theorem  

V  (12), given  a n y general recursive R } there is a num ber / such th a t (48) 

fails for x  =  /. T h u s :

T heorem X I I I  (Part I). There is  no correct and com plete form al 
system  for the predicate (y )T 1 (xt x , y ). (A generalized form  of G od el’s 

theorem , K leene 1943 .)

T o  exam ine the situation in more detail, consider a n y  form al system  

S  and choice of form ulas A (x) in S  to express (y )T 1(xt x , y)  for x  =  0,

1 , 2 , --L e t R  be the general recursive predicate such th a t (44) holds

(given b y  Thesis I I ) ; and consider the / of (9) for this R . Suppose S  is 

correct for (y )T 1 (x> x f y ) ;  then b y  (45),

(49) b A (x) ->  (y )T x ( x ,x ,y ) .
B y  the'inform al counterpart of *86  § 35, (9) and (44),

(50) (y )T ,  (/, /, y) =  (E tiT y U , f , y )  -  {T y )R {f i y)
Assum e b A (f). T h en  b y  (49), {y )T 1 (/, /, y );  and b y  (50), b A (/). B y  

reductio ad absurdum , b A ( f) ;  and b y  (50), {y )T 1(ft f f y ) .  T h u s:
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T heorem  X I I I  (Part II). I n  p a r ticu la r , su ppose S  is  a form al system  
with^ d is tin c t form ulas  A (x ) designated as expressin g  the p roposition s  
(y)7\ {%> x, y ) for x  =  0, 1 , 2 , . . . .  T hen a num ber f  can be found such that: 
I f  S  is  correct for {y )T x{xt x , y), then ( y f f ^ f ,  /, y)  &  b A ( f ) ; i.e . the p ropo
sitio n  (y )T 1(f> /, y) is  tru e , but the form ula  A (f )  expressing i t  is  unprovable.

T h u s no form al system  can be com plete for the purpose of proving the  

true (and o n ly th e true) propositions taken  as the values of a certain pre

assigned in tu itive  predicate ( y ) r x(A;, x , y).  N o th in g is assum ed about the  

form al system , except th a t it fulfils the structural requirem ent expressed  

in Thesis II, and yields o n ly  results correct under the interpretation of 

the form ulas A (x ) as expressing the values of the predicate ( y ) r x(%, x , y ).
These assum ptions con stitu te a ve ry  considerable abstraction from  

the particu lar form al system s w e h a ve  studied. In  those, a proof consisted  

in applications of listed postulates. W e had grounds for belief in the cor

rectness of each of these postulates separately, and hence in the system  

as a whole. T h e G odel incom pleteness, w e now  see, does not depend on the  

nature of this in tu itive  evidence.

T o  em phasize this, w e can im agine an om niscient num ber-theorist. 

W e should exp ect th a t his a b ility  to see in fin itely  m an y facts at once  

w ould enable him  to  recognize as correct some principles of deduction  

w hich w e could not discover ourselves. B u t a n y  correct form al system  

for (y )T 1(xf x t y ) ,  w hich he could reveal to us, telling us how  it w orks  

w ith ou t telling us w hy, w ould still be incom plete.

T o  understand the m eaning of the propositions (y)T x(x, x, y), o n ly  

the notion of a particular e ffective ly  calculable predicate (indeed, of 

one w hich is prim itive recursive), and of the universal quantifier used  

co n stru ctively, are required. Lesser con ceptual presuppositions, if a n y  

m ath em atical infinite is to  b e allow ed, are h ard ly conceivable.

In  using this predicate ( y ) r x(x, x, y )  on the m etatheoretic level, as 

already m eaningful to  us, w e h a ve not assum ed th a t each va lu e of it  

is either true or false. W h a t we can conclude b y  on ly fin itary  reasoning  

w ith  this predicate is enough, taken  w ith  Thesis II , to  rule out the  

possibility of our ever h avin g a correct and com plete form al system  for it.

H ere w e h ave been dealing w ith  the incom pleteness of a n y  (correct) 

form al system  as a form alization of the existing in tu itive  theory of the  

predicate ( y ) r x(x, x, y). B ecause this interpretation has been handled  

in a fin ita ry  w a y, the theorem  can be considered as m etam ath em atical 

in the broader sense of the term .

For form al system s h a v in g  som e ordinary form ative and d ed u ctive  

properties, the theorem  can also be form ulated m eta m a th em atically  in
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the narrower sense, replacing the reference to the interpretation of the  

form ulas A(x) as expressing the values of the predicate (y)T1(x, x, y) 
b y  con sistency and com pleteness defined as intrinsic properties of the  

s y s te m ; e.g. briefly thus:

T h e o r e m  X I I I  (P a r t  III). Let S be a formal system having distinct 
formulas T(x,y), -iT(x, y), A(x) (also written “Vy -iT(x, y)”) and 
—iA(x) {also written “-i Vy nT(x, y)”) (x, y =  0, 1,2, . ..). Suppose that
(A) T^x, x, y) -> b T (x , y )  and Tx{x, x, y) ->  b - i T ( x ,  y ) ,
(B) pV y-iT (x , y) -> (y){ b “iT(x, y)}, and (C) for some general re
cursive R , (44) holds. Then a number f can be found such that: I f  S  is simply 
consistent in the sense that for no x, y both b T(x, y) and b “ iT(x, y), 

then b A  (f). I f S  is also {^-consistent in the sense that for no x both 
( y ) {  b “ i T (x, y)} and b V y  —iT(x, y), then b  "»A(f). Thus if S  is simply 
and {^-consistent, it is simply incomplete in the sense that for some x neither 
b A(x) nor b nA(x).

P r o o f . Assum e th a t S is sim ply consistent, and (for reductio ad  

absurdum ) th a t b A (f). Then b y  (44), (.E y )R (f , y );  b y  (9), (E y jT ^ f ,  /, y);  

and b y  (A), b T(f, y )  for some y. B u t also from b A (f) b y  (B), b “iT (f, y )  
for this y , con tradicting the sim ple consistency. B y  reductio ad absurdum , 

b A (f). N o w  assume th a t S  is also co-consistent. From  b A (f) b y  (50), 

(y)^i(/>/>y); b Y (A), (y){\- ^T (f,y )} ; and b y  the co-consistency, 

b -i Vy - i T {f, y), i.e. b - i A (f).
M ostow ski 1952 , w hich w as not available during the w riting of the  

present book, com pares various proofs of G odeks theorem .

T h e incom pleteness theorem s X I I  and X I I I  appear in our presentation  

as applications of the cases of Theorem  V  for the respective predicate  

form s R(x) and (Ey)R{x, y). T h is them e is developed a t length  in K leene  

1943*. W e conclude this section w ith  some further rem arks about the  

predicate form [Ey)R[x, y).
Co n v e r s e  o f  T h e s is  II  (Part I). There is a correct and complete 

formal system for any predicate of the form (Ey)R{x, y) with R general 
recursive. {Similarly for {Eyj) . . .  {Eym)R{xlf . . xn,y lf .. ., ym) with 
R general recursive {n, m > 0).)

In m ore detail (for n =  m =  1): Given any general recursive predicate 
R{x, y), a formal system S with distinct formulas A (x) for x — 0, 1, 2, 
can be found such that (44) holds.

In E x a m p le  1 the correctness of the system  remains a hypothesis.
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H ow ever E x a m p le  3 provides a q u ick  and unim peachable dem onstration. 

(Here (44) is the (viii) of § 59, b u t in general (iv) is lackin g for resolva

b ility.)

E xample 1 . B y  Corollary Theorem  I V  § 5 7 ,  there is no loss of 

gen erality in tak in g R  to be prim itive recursive. L e t  S  be the num ber- 

theoretic form al system  of C h ap ter IV , R (x, y) be a form ula w hich num er- 

alwise expresses R (x , y)  (Corollary Theorem  27 § 49), and A (x ) be the  

form ula l y R ( x ,  y). T h en  clearly (E y)R (x , y)  ->  b A (x ). So (44) holds, 

if the system  has the property th a t b 3 y R (x , y) on ly  w hen (E y )R (x f y ). 
T h is is a  consistency property w hich (if {E x ){E y )R {x t y))  im plies sim ple  

consistency, so b y  G o d el’s second theorem  (Theorem  30 § 42) we cannot  

exp ect to  find an elem entary proof of it; and in fact for the classical 

form al system  it is not clear how  a n y  proof of it can be given  w ith ou t  

using classical logic in the m etalanguage.

E xample 2 . Sim ilarly tak in g as S  R obin son ’s system  (Lem m a  

18b § 49) w ith  o n ly thirteen num ber-theoretic axiom s. A  le n g th y  b u t  

elem entary proof of the required con sistency prop erty (for an R (x, y) 

constructed q.s in the proof of Corollary Theorem  27) w ill be g iven  in  

§§ 7 7 — 79 (cf. Theorem  53 (b) §79). —  A  fortiori (or d irectly, cf. Theorem  

53 (a)), R obin son ’s system  is sim p ly consistent.

E xample 3. L e t E be a system  of equations in the form alism  of 

recursive functions w hich defines recursively the representing function  

of R ,  w ith  f  as principal function letter. L e t  the predicate letter be  

added to  the sto ck of form al sym bols. L e t 5  be the system  h avin g the  

equations of E  as its axiom s, and h avin g as its rules of inference R l ,  

R 2  and the follow ing, where x  and y  are num erals:

f ( * . y ) = o

X{x).
T h e con sistency p roperty (with < ?̂(x) as the A (x)) is im m ediate.

E xample 4. L e t the form al sym bols of S  com prise on ly 0, ', and  

the tw o predicate letters 2^ and (with com m a and parentheses). T h e

form ulas shall be the expressions K .(x , y) and c2?(x) for y  =  0, 1 , 2 , -----

T h e postulates shall be an axiom  schem a 1 and a rule of inference 2 , 

as follows. F o r A xio m  Schem a 1 , x  and y  are stip u lated  to be num erals 

such th a t R (x , y).
K(x, y)

=3(x).
l .  K(x,y). 2.
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T h is form al system  m a y seem unorthodox. B u t the stipulation on the  

x  and y  for A x io m  Schem a 1 is an effective one (since R  is general re

cursive), ju st as e.g. th a t on the t for A xio m  Schem ata 10 and 11 § 19.

A  fifth  exam ple is given  as E x a m p le  2 end § 73.

Converse of T hesis II  (Part II). There is  a form al system  S  such  
th a t, given  a n y  general recursive predicate R ( x ,y ) ,  d is tin c t form u las A (x )  
fo r x  =  0, 1 , 2 ,  . . .  can be found such that (44) holds. (S im ila r ly  for a n y  n , 

m ; or for a ll n , m  sim ultaneou sly.)
P roof. L e t A (z , x ) (z, x  =  0, 1, 2, . . . )  be the form ulas obtained b y  

ap p lyin g P a rt I (for n =  2, m  =  1) to T ^ z , x, y ) \  and let A (x ) (x =  0, 

3, 2,  . . . )  be A (f, x )  for th e / of (9) § 57.

R emark 2. B y  adding new  postulates to  S  (in P art I or II), w e  

o b ta in  system s 5 '  such th a t (E y)R (x , y) ->■  b A (x ), b u t not necessarily  

h A ( x )  -  (E y )R {x ,y ) .
B y  Thesis II  and its converse, the sam e predicates are expressible in  

the form  (E y )R (x } y) for some general recursive R  as are expressible b y  

b A (x ) for some form al system  S  and effective designation of form ulas 

A (x ) for x  =  0, 1 , 2 ,  . . . .  B riefly, the predicate form (E y )R (x f y)  coin

cides w ith  the notion of p ro v a b ility  in some form al system .

B y  the result m entioned at the end of § 53 (with Corollary Theorem  IV )  

in d u ctive definitions (with con structive direct clauses) lead to  precisely  

the sam e class of predicates. T h is fact is closely related to the foregoing, 

in view  of the role often given  to in d u ctive definitions in defining formal 

system s.

R ecursive enum erability . A  set or class C  of natural num bers is 

recursively  enum erable , if there is a general recursive function 9 w hich  

enum erates it  (allowing repetitions), i.e. such th a t 9 (0), 9 ( 1), 9 (2), . . .  is 

an enum eration (allowing repetitions) of the m em bers of C. (Post 1944 
includes also the e m p ty  class as recursively enumerable.)

T heorem X I V . A  class C having a m em ber is  recursively  enum erable , 

i f  an d  only if  the pred ica te  x  £ C is  expressible in  the form  (E y )R (x , y) w ith  
a general recursive R .

In  more d etail: (a) I f  9 enum erates  C, then x  £ C == (E y )R (x ,y )  w ith  
an R  p r im itiv e  recursive in  9 . (b) I f  x  8 C  =  (E y)R (x , y) and C has a
m em ber m , then C is  enum erated by a function  0 p r im itiv e  recursive in  R  
(K leene 1936).
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P roofs, (a) x B C  =  (£y)[<p(y)==%] (cf. # 1 4  §45). (b) L e t

(y)o if ?((y)o- (y)i).
w  if /?((y)o, (y)i)

(cf. # # D ,  F , 19).

T h u s Thesis II  is equivalent to  sayin g th a t the class C  of the num bers 

x  for w hich A (x )  is provable is recursively enum erable (if it has a m em ber). 

W e call a set or class C general recursive , if the predicate x  £ C  is general 

recursive. Paraphrasing results of § 5 7: A  general recursive class C  is a 

fortiori recursively enum erable, if it has a m em ber (Theorem  V I  (a)); 

likew ise its com plem ent C ( # D  § 45). C lassically, a class C  is general 

recursive, if b o th  C  and C are recursively enum erable (Theorem  V I  

(b) or (c)). T h e class of the #'s such th a t {E y )T x{x, x f y )  (in sym bols, 

x {E y )T x{x, x ,y ) )  is recursively enum erable (by (29) §58, (E y jT ^ e , e, y), 

so e is a m em ber), b u t not general recursive (Theorem  V  (15)); its com 

plem ent x (y )T 1(x, x, y) is neither recursively enum erable nor general 

recursive (Theorem  V  (12) and (14)).

Corollary. I f  a class can be enum erated {allow ing repetitions) by a 
general recursive function , i t  can be enum erated {allow ing repetitions) by  
a p r im itiv e  recursive function . (Rosser 1936 .)

U sin g (a), then Corollary Theorem  IV , then (b).

E xample 5. A n  infinite class C  is general recursive, if and on ly  

if it is recursively enum erable w ith ou t repetitions in order of m agnitude  

(Kleene 1936). (H i n t : U se Theorem  III.)  E v e r y  infinite recursively  

enum erable class contains an infinite general recursive subclass (Post 

1944). If an infinite class is recursively enum erable allow ing repetitions, 

it is recursively enum erable w ith ou t repetitions (Kleene 1936).

E xample 6 . Problem; to define con stru ctively (i.e. intuitionistically)  

‘general recursive function' from ‘recursively enum erable class'. W e m ust 

avoid  the application of the law  of the excluded m iddle w hich occurs in 

saying th a t a class is either e m p ty  or has a m em ber, and the non-in- 

tuition istic steps in the proof of Theorem  V I  (b). Solution b y  com bining  

the first of the follow ing tw o propositions, Theorem  V I  (c), and the second  

(or Theorem  X I V ) : A  function y {x v  . . . ,  x n)  is general recursive, if and  

on ly if the class of the num bers •••’ Xn)- p * i - . . .•p% 1 is general re

cursive. A  predicate x  £ C  is expressible in the form  (.E y)R {x , y)  w ith  

general recursive R , if and on ly if the class (call it { 0 } + C ')  consisting of 

0 and the successors of the m em bers of C  is recursively enumerable.
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W e obtain a notion 'enum erable recursively in Y *  b y  reading "fu n ction  

9 general recursive in Y ” in place of "general recursive function 9 " in 

the definition of recursive enum erability. T h e results exten d  to  this.

§  61. A  s y m m e t r i c  f o r m  o f G o d e l ’s th e o r e m . Theorem  X I I I  § 60 

generalizes Theorem  28 § 42 (Godehs theorem  in the original form), 

w ith  A (f) corresponding to the A P(p). P art I I I  of Theorem  X I I I  was  

form ulated m etam ath em atically  in the narrower sense. W e shall now  

ta k e up thus a generalization of Theorem  29 (the respective Rosser form  

of G odei's theorem).

In place of (y)Ti(^, %, y ),  we now use the sligh tly  more com plicated  

predicate {y )[T x{{x)l t x ,y )_ V  (££)0<y7 \((*)o, #, z)] ,  or its equivalent

( £ y ) ! T i ( M i .  y) &  (* )* < y L ( M o .  * ) ] .
L e t “ W 0( x ,y ) ” abbreviate T 1((x)1, x , y ) & ( z ) ls£yT 1((x)0,x , z )  and  

" W ^ x , y ) ” ab b reviate 7\((x)0, x, y)  &  {z)s <yT 1{{x)l , x , z).
L e t x  be fixed. Suppose there is a num ber y 1 such th at (i) T 1((x)0, x, y x) 

and (ii) {z)z <y T 1{{x)1, x , z). T h en  there can be no num ber y 0 such th a t  

(iii) T 1((x)1, x , y 0) and (iv) {z)z <yJ ^ { x ) a, x, z). For (i) and (iv) im p ly  

Vi >  Vo* ai*d (ii) an<3 (iii) im p ly  y 0 >  y^  Thus

(51) (E y )W 1{x, y)  ->  (E y )W 0(x, y).
Since the predicates W 0(x, y)  and W x(x} y)  are prim itive recursive  

(using # 4 f:A, C, D , E , 19 § 45), the theory of the predicate (E y )W 0(x, y) 
can be com p letely  form alized, and likewise at least as m uch of the theory  

of (E y )W 0(x , y) as is given  b y  the sufficient condition (E y )W 1(x, y )  of (51) 

(by the Converse of Thesis II  and R em ark 2 § 60). W e shall now  show  

th a t a form al system  S  w hich form alizes at least this m uch, if consistent, 

cannot be com plete.

A ccord in gly  let S  be a n y  form al system  in w hich there are form ulas  

B(x) and iB (x )  for # =  0, 1 , 2 ,  . . ., all distinct. W e shall not m ake  

a n y  restrictive assum ptions as to w hat kind of sym bolism  5  has, or in 

particular th a t B(x) com es from  a form ula B(x) b y  su b stitu tin g a num eral 

x for a variable x, or th a t nB (x) comes from B(x) b y  prefixing a certain  

sym bol —1. T h e d ed u ctive rules of 5  shall be such th at

(52) (E y )W 0( x ,y )  - *  h B ( x ) , (53) (E y )W 1( x , y ) ^  b i B ( x ) .

T h e system  S  is to serve the purpose of giv in g an explicit criterion of 

w h at con stitutes proof for the form ulas B(x) and nB (x), and hence 

(although w e now avoid  specifying th a t B(x) and -iB(x) should express 

certain predicates) it is dem anded as before b y  Thesis II  th a t there exist
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general recursive predicates R0(x, y) and R-^x, y) such th a t

(54) (Ey)R0(x ,y )=  b B (x ), (55) (Ey)R1(x,y) =  b n B ( x ) .

B y  the (simple) consistency of S  we shall m ean th a t for no natural num ber  

x, b o th  b B (x) and |- “ iB ( x ) ; and b y  the (simple) completeness th a t  

for ev ery  x , either j- B (x) or h -n B (x).

Theorem X V . There is no simply consistent and complete formal 
system satisfying (52)— (55).

In  m ore d etail: Given any formal system S with distinct formulas B (x)  

and - i B ( x )  (x =  0, 1 , 2, . . .) and general recursive predicates R0(x, y) 
and Ri(xf y) such that (52) — (55) hold, a number f can be found such that, 
if S is simply consistent, then neither h B ( f )n o r  b ~ iB (f). (Rosser'sform  of 

G odel's theorem , in a generalized version.)

P roof. Assum e th a t S  is sim ply consistent, or in sym bols

(56) h B (x) &  |- - iB ( x ) .

B y  Theorem  I V  (6) § 57, there are num bers f0 and fx such th a t, if  

we p u t / =  2/o*3/l, then

(57) (Ey)R0(x,y) s  (Ey)Tx(U, x,y) =  (Ey)TM »*> y).
(58) (Ey)R1(x, y) ^  ( E y ) ^ ,  x, y) s  (Ey)Tt((f)v x,y).
In the rest of the proof, each tim e we use (52) —  (58), we su b stitu te the  

num ber / for the variable x. T o  show b y  reductio ad absurdum  th a t  

b B (f), suppose th at

(a) b B (f).

T h en  b y  (54), (Ey)R0(f, y); and b y  (57),

(b) ( E y ) T M » f 9y).
A lso b y  (a) and the sim ple consistency ((56)),

(c) b -« B (f).

H ence b y  (55), {Ey)R1{f, y); b y  (58), (Ey)T1{(f)1, f, y ); whence

( d )  ( y ) T M v  f ,  y ) .

B y  (b) and (d), (Ey)[TMo> A y) &  f> «)]. i.e. (Ey)W1(f, y);
and b y  (53), b “ «B(f), con tradicting (c). H ence, rejecting the assum ption

(a) b y  reductio ad absurdum , b B (/).

B y  sim ilar steps, or sim ply b y  observing the sym m etry betw een  

(52), (54), (56), (57) and (53), (55), (56), (58): b i B (/).
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D iscussion . W e m o tiva ted  the conditions for S  b y  suggesting th a t  

B (x) should express (E y )W 0 (x, y) and - iB ( x )  its negation. L e t us call 

this, for convenience, the preferred interpretation. U nder the preferred  

interpretation, - i B (f) corresponds to  the A Q(q) of § 42 and expresses a  

true proposition. H ow ever the preferred interpretation is not m entioned  

in the theorem  itself. T h e conditions for S  are entirely sym m etrical. 

There is nothing to keep us equ ally  w ell from  interpreting - iB ( x )  as 

expressing (E y )W 1(xf y)  and B (x) the negation of th at. T h en  B(f) cor

responds to A q(q) and expresses a true proposition, while - iB ( / )  is false. 

B etw een  these extrem es, there are m an y interm ediate possibilities for the  

interpretation. W e shall illustrate this further in connection w ith  the  

follow ing exam ples of system s S  for Theorem  X V .

E x a m p l e  1 . In  the num ber-theoretic form alism  of C hapter IV ,  

since T ^ a ) ^  a, b) and T 1((a)0f a, c) are prim itive recursive, b y  Corollary  

Theorem  27 § 49 th e y  are num eralwise expressed b y  form ulas A  (a, b) 
and B (a, c), respectively. L e t B (x) be 3i>[A(x, b) & >fc(c<,b  D  - i B ( x ,  c))], 

and - iB ( x )  be - i 3 i [ A ( x ,  b) &  V c(e<i> D  - i B ( x ,  c))]. T h en  (52) can be  

shown to hold b y  m ethods used in the first part of the proof of Theorem  

29 § 42. A lso b y  steps shown there and D -introd., 

b B (x) D  -iV i> [-iA (x , b) V 3c ( c < b  & B (x , c))]. Contraposing (by *13), 

b A (x , b) V 3 c ( c < b  &  B (x , c))] D  n B ( x ) .  T h is w ith  the m ethod  

of the second part of the proof of Theorem  29 gives (53). N o te  th a t this  

proof requires, besides the predicate calculus w ith  equ ality, A xio m s  

14 —  21 and Corollary Theorem  27, only *166a, *168, *16 6  and *16 9  

(with t a numeral). H ence b y  L em m a 18a (end § 41 )  and L em m a 18b  

(end § 49), it also holds good for the system  of R obinson. F or the  

num ber-theoretic system  of C hapter IV , we h ave (54) and (55) for some 

recursive R 0 and R v  b y  Theorem  31 § 5 2  (and for R obin son ’s system , 

b y  the m ethod of the proof of Theorem  31). In this exam ple, the - i  of 

- iB ( x )  for Theorem  X V  is a ctu a lly  the - i  of the num ber-theoretic for

m alism  ; and under the usual interpretation of the num ber-theoretic sym 

bolism , B (x) and - iB ( x )  h ave the preferred interpretation. N o w  let S  

be the num ber-theoretic system  of C hapter I V  (or R obin son’s), w ith  

this choice of B (x) and -iB ( x ) .  B y  the theorem , S  (if it is sim p ly  con

sistent) is sim p ly incom plete, and so is every sim p ly consistent en

largem ent oi S obtained b y  adding more postulates (in such a w a y  th a t  

(54) and (55) still hold for some recursive R 0 and R t ). Such an enlargem ent 

of S  m a y  even be at variance w ith  the preferred interpretation of B (x)  

and -iB ( x )  in S, provided on ly th a t the new  postulates do not conflict



w ith  the preferred interpretation in a sufficiently elem entary w a y  as to  

giv e  rise to a sim ple inconsistency.

E xample 2. Let the symbolism for a formal system S  include the 
numerals and four predicate symbols W0, W lt B  and (or in place of 

the last, an operator - 1). Let Shave as its postulates tw o axiom  sch em ata  

and tw o rules of inference, as follows. F or A x io m  Schem a 1, x  an d y  
are num erals such th a t W Q(xt y), and for A x io m  Schem a 2 such th a t  

W i( x ,y ) .
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T h e sim ple consistency of this system  is im m ediate from  (51). T h is  

system  S , or a n y  sim p ly consistent extension of it  obtained b y  adding  

more postulates (with (54) and (55) rem aining true for som e recursive  

R 0 and R x) is sim p ly incom plete. In  this S  the form ulas B (x) an d - i B ( x )  

are provable o n ly  as required b y  (52) an d (53). W e are unrestricted b y  

the interpretation in enlarging S.

Theorem  X I I I  § 60 is the case of Theorem  V  § 57 for the predicate form  

(.E y )R (x , y), in a m etam ath em atical application. Likew ise Theorem  X V  

adm its a version entirely in term s of predicate forms. L e t  us com pare  

Theorem s X I I I  and X V  using the language of recursively enum erable  

classes (cf. Theorem  X I V  § 60).

Remark 1. Theorem s X I I I  and X V  m ake it absurd th a t a n y  of 

the three classes ^ (E y^ T ^ x, x f y), x {E y )W Q{x) y) and x (E y )W 1(xt y )  be  

em pty. —  M em bers can be found thus. U sin g (29) Theorem  I X  § 58, 

(E y )T t (et e ,y ) .  Choose a n y  recursive R  such th a t (x )(E y )R (x f y), and  

choose / for this R  b y  (6) Theorem  I V  § 5 7 ; also choose a n y  recursive R  
such th a t (x )(y )R (x f y ) t and choose g  for this R  b y  (7). L e t e0 =  2<7*3/ 

and ex =  2/-3flf. T h en  (E y )W 0(e0t y)  and (E y )W 1(ev  y ).
In  Theorem  X I I I  w e h a ve a fixed  recursively enum erable class C 0 

of natural num bers (nam ely x {E y )T x{xt x , y)) whose com plem ent C 3 

( =  x (y )T x(xt x , y ))  is not recursively enum erable (Figure 1). In  Theorem  

X V  w e h a v e  tw o  fixed  recursively enum erable classes C 0 and C x (nam ely, 

x {E y )W ^ x , y)  and x (E y )W 1(x> y ) f respectively), w hich are disjoint (b y  

(51)) and such th at, for ev ery  separation of all n atural num bers into tw o  

disjoint classes C 2 and C 3 w ith  C 0 C  C 2 and C x C  C 3, the classes C 2 an d  C 3 

are not b o th  recursively enum erable (Figure 2). (Instead of (x)(x  £ C 2 V 

x  £ C 3) it  suffices to h ave (x)(x  £ C 2 V x  £ C 3), w hich is w eaker in tu itio n -
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istically.) O n ly  for the preferred interpretation is C 3 the com plem ent of 

C Q. In  provin g Theorem  X I I I  (Part II), we supposed given an y recursively

Figure 1. Figure 2.
enum erable class D z contained in C 3 (nam ely, x (E y )R (x , y )) ,  and found a  

num ber / contained in neither C 0 nor D z (Figure la). In proving Theorem  

X V , w e supposed given  tw o disjoint recursively enum erable classes D % 
and D 3 containing C 0 and C v  respectively (nam ely, x (E y )R 0(x, y)  and  

x (E y )R 1(x, y )) ,  and found a num ber / contained in neither D 2 nor D z 
(Figure 2a). T h e m etam ath em atical phraseology in the above proof can

Figure la. Figure 2a.
of course be bypassed, b y  first using (54) and (55) in (52), (53) and (56), 

so th a t the hypotheses becom e

(52a) {E y )W 0{ x , y ) - + (E y )R 0(x ,y ) ,  (53a) (E y )W 1{x ,y )  ->  {E y )R 1(x ,y ) ,
(56a) (E y )R 0(x, y)  &  (E y )R 1(x, y)
(K leene 1950). These results exten d  to classes enum erable recursively in  

Y ;  cf. end § 60 and Theorem  X  § 58.

T h e  num bers x  for w hich B (x ) is provable are recursively enum erable  

((54), Theorem  X I V ;  b y  (52) and R em ark 1, b B (e 0)).

Theorem X V I .  I f  S  as described in  Theorem  X V  (<om itting  (55)) is  
s im p ly  con sisten t, the num bers x  for which  B (x ) is  unprovable in  S  are 
not recursively  enum erable , or equ iva len tly  there i s  no general recursive  
pred ica te  Q (x , y) such that (E y)Q (x , y)  == b B (x). (A fter Rosser 1936 .)

Proof. F o r if x[b B (x)] were recursively enum erable, then tak in g  

C 2 =  x [ p  B (x)] and C 3 ~  x [ \-  B (x )], we w ould h ave the situation shown  

in Figure 2 w ith  C 2 and C 3b o th  recursively enum erable. (In tu ition istically, 

(x)(x  8 C 2 V a: £ C 3) ; c f. *51 a § 27.) T h e proof m a y  also be given  b y  observ

ing th a t (52) —  (56) w ould hold replacing “R ^  b y  " Q yi and b 

b y  <f b B ( x ) ,,> w hereupon the former proof th a t b B (f) &  becom es
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a deduction of the logical con tradiction b B (f)  &  b B (f). (W e use the  

hypotheses regarding i B ( x )  and the sim ple con sistency on ly to  infer 

th at (E y )W 1(x ,y )  ->  b B ( i ) .)

The decision problem for a formal system  (cf. §30). B y  Thesis I  

§ 60, 'effectively  decidable (calculable)' m eans 'general recursive' in the  

case of a num ber-theoretic predicate (function). T o  g iv e  an e x a ct sense to  

'effectively  decidable (calculable)' for a m etam ath em atical predicate  

(function), w e can require th a t the corresponding num ber-theoretic  

predicate (a corresponding num ber-theoretic function) be general re

cursive, in the case of a n y  particular form al system  S , the ob jects of 

which adm it an effective G odel num bering (as th e y  m ust, if S  is to  serve  

our purpose in form alizing, beginning § 60). F or exam ple, to  g iv e  a  

'decision procedure' for p ro va b ility  in S , i.e. for the predicate b A  (where 

A  is a m etam ath em atical variable ranging over all form ulas, or over all 

formal objects, of S), then m eans to give  a general recursive predicate  

R (a) such th a t R (a)  == b A a, in the notation of R em ark 1 § 60. (A  second  

m ethod of m akin g 'effectively  decidable (calculable)' e x a ct for a m eta

m ath em atical predicate (function) is indicated a t the end of § 70.) T h e  

following can be read either in term s of our in tu itive  conception of a  

decision procedure a p p lyin g to form ulas of S , or in term s of this e x a ct  

m athem atical definition. T h e condition th a t B (x ) be an effective m eta

m athem atical function of x  (or th a t its G odel num ber (3(#) be a general 

recursive num ber-theoretic function of x) m ust be m et, if S  is to  serve  

the purpose of form alization for the form ulas B (x).

Corollary. L et S  be as described in  Theorem  X V  (om itting  (54) a n d  
(55)), an d  such that B (x) can be effectively found from  x  (or that in  som e  
specified  effective Godel num bering, its  Godel num ber  (3(%) is  a general re
cursive function  of x). I f  S  is  s im p ly  consistent, then its  decision  problem  is  
unsolvable, i.e . there is  no decision  procedure for- determ in in g  whether a  
form ula is  provable in  S .

P roof. F or if there were a m ethod for determ ining e ffe ctive ly  

w hether a n y  given  form ula of the system  is provable, one could, g iven  

an y num ber x, find the corresponding form ula B (x) and then a p p ly  th e  

m ethod to th a t form ula. B y  Thesis I § 60, this w ould im p ly  th a t the class  

* [ b  B (x)] is general recursive. T h en  a fortiori the classes # [b  B (x)] and  

x [ \-  B (x)] w ould b o th  be recursively enum erable, and hence there w ou ld  

be general recursive predicates R 0 and Q such th a t (E y )R 0(x t y )  == b B (x )  

(for (54)) and (E y )Q (x ,y )  =  b B (x) (cf. end §60 , and R em ark 1), con
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trad ietin g the theorem . —  Otherw ise stated : Were there a general re

cursive R  such th a t R (a)  == h A a, then tak in g R 0(xt y)  =  2?(p(#)) and  

Q (x, y)  —  R (p(*)), w e w ould con tradict the theorem  as above.

T heorem  33. I f  the num ber-theoretic form al system  of C hapter  I V  

{or R obin son  s system  described in  L em m a  18b §49) is  s im p ly  consisten t, 

then its  decision  problem  is  unsolvable, and  rem ain s unsolvable when the 
system  is  extended by add in g  postu la tes in  an y  w ay such that the system  
rem ain s s im p ly  consisten t.

B y  th e corollary w ith  E x a m p le  1 . Since in E x a m p le  1 the —i of - iB ( x )  

is th e “ i of the num ber-theoretic system , ‘sim ple consistency' as used in  

Theorem  X V  coincides w ith  ‘sim ple con sisten cy’ as defined (in § 28) for 

th e  num ber-theoretic system . (For the definition of ‘decidable’ b y  use 

of a  G odel num bering, it m a y  be understood th a t the num bering is th a t  

of §§ 50, 52. U sin g E x a m p le  2 § 52, then (3(x) is p rim itive recursive.)

R e d u c ibility , degrees of unsolvability . M uch of the w ork on de

cision problem s is d evo ted  n ot to  outright solutions b u t to  reductions  

of one decision problem  to  another.

T o  ‘reduce’ the decision problem  for a predicate P  (or the calculation  

problem  for a function 9 ) of n  variables to the respective problem s for 

l  functions and predicates . . . ,  , Q lt . . . ,  Q x% (abbreviated Y )  m eans

in tu itiv e ly  to  find a uniform  m ethod of procedure b y  w hich, given  a n y  

w -tuple of argum ents x v  . . . ,  x nt one could decide w hether or not  

P { x lt . . x n) is true (calculate the valu e <p(xv  . . . ,  x n)), if, a t each stage  

of the procedure, he h ad availab le the valu es of the functions tylf . . . ,  ^  

an d  th e tru th  or fa lsity  of the valu es of the predicates Qv  . . . ,  Qh, for 

such argum ents as he m igh t then nam e; or briefly, to  establish th a t  

P  is e ffe ctive ly  decidable (9 is e ffe ctive ly  calculable) from  Y .

T o  ob tain  a precise m ath em atical notion to  correspond to  this in tu itive  

notion, w e n a tu rally  exten d  C hu rch ’s thesis (Thesis I § 60) to include the  

case of / >  0 assum ed functions and predicates Y  (calling it then Thesis  

I*). T h e evidence for Thesis I w ill also a p p ly  to  Thesis I* . T h e  converse  

o f Thesis I *  holds.

F o r exam ple, to  reduce  the decision problem  for a predicate P {a )  
to  th a t for another predicate Q{a) now  m eans to  find a predicate R (a) 
general recursive in Q(a) and such th a t P (a )  == R (a), or b riefly  to establish  

th a t P (a )  is general recursive in Q{a). W e  infer this from  our in tu itive  

notion of reduction b y  Thesis I * ;  or if w e ta k e it as a definition, w e appeal 

to  Thesis I *  in asserting th a t the defined notion agrees w ith  our in tu itive  

con ception  of reduction.
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P ost 1944  form ulated several m ath em atical redu cibility concepts. 

T h e  m ost general of them , w hich P ost takes from  T u rin g 1939 , is eq u iva

len t to the notion w e obtain from  Thesis I * . If  the decision problem  for 

P (a )  is reducible to th a t for Q {a \t and is unsolvable, P ost says further  

th a t  it  is of equal or lower degree of u n so lvab ility  than  th a t for Q(a) ac

cording as the decision problem  for Q(a) is or is not reducible to  th a t for 

P (a )  (cf. § 3). T h e degrees of u n so lva b ility  are at least p artially  ordered  

(cf. §8). Each of the predicates (E x )T x(a9 a, x )9 (x )(E y )T 2(a, a, x, y), 
(Ex)(y)(Ez)TB(af a, x, y, z), . . .  (cf. Theorem  V P art II  (b) §57) has a  

decision problem  of highest degree of u n so lva b ility  for predicates of the  

respective forms (E x )R (a 9 x ) f (x)(Ey)R(at x} y), (Ex)(y)(Ez)R(a, x t y, z)t . . .  
w ith  R  recursive, as we shall prove later (E xam p le 2 § 65; this holds  

in tu ition istically, if taken  to m ean sim p ly  th a t each predicate of the  

respective one of the form s w ith  a recursive R  is recursive in th a t  

non-recursive predicate, w hich is w h a t is d irectly  proved). C lassically  

then each of these predicates after the first has a decision problem  of 

higher degree of u n so lva b ility  than  the preceding (using also C orollary  

Theorem X I  § 58), and the predicate M (a , k) of Theorem  V I I I  § 57 has  

one of still higher degree of u n so lva b ility  (by Theorem  X  C orollary (b) 

§ 58 and the proof of Theorem  V II I ) . U sin g T%  instead of T n, w e ob tain  

degrees of u n so lva b ility  ascending from  th a t (by Theorem  X I *  end § 58 

an d  E x a m p le  2 § 6 5  for l  >  0). D a vis  (1950  abstract) explores those  

degrees of u n solvability. P o st 1944  raises, w ith ou t answering, the  

question w hether there exists a lower degree of u n so lva b ility  th an  

th a t of the decision problem  for (E x )T x(a9 a, x).

E xample 3. L e t Theorem  33 be restated using the stronger con

sisten cy property of E x a m p le  1 (or 2) § 60 in place of sim ple consistency. 

In this w eaker form  Theorem  33 can be proved from  E x a m p le  1 (or 2) § 60 

b y  tak in g the R (x t y )  there == T x(x9 x t y )  and using Theorem  X I I  § 60. 

From  this proof it  follows, b y  the results of E x a m p le  2 § 65 ju st cited, 

th a t, under the stronger con sistency hypothesis, the decision problem  for 

th e form al system  of C hapter I V  (or R obinson's, L em m a 18b), or for a n y  

extension h a vin g th a t con sistency property for the sam e or som e other  

R (x, y) w hich num eralwise expresses R {x t y )  ( =  T x(x9 x 9 y ) ) 9 is of the  

highest degree of u n so lva b ility  for 1-quantifier predicates. —  F or the  

system  of C hapter I V  (or R obinson's), w e can also show this (with  

another choice of R (x , y) and R (x , y)  in the stronger con sistency h y 

pothesis) from  the proof of Theorem  33 as given, thus. L e t / be chosen  

b y  (6) w ith  T t ((x)2f (x)2f y)  as the R ,  and g  be chosen b y  (7) for a n y  recur-
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s iv e  R  su ch  th a t  (x) iy )R (x , y ) . T h en  (Ey) T x(x, x , y) =  (Ey) W 0{2®*3A5*, y ) . 
T h is  red u ces th e  d ecision  prob lem  for (E y )T x(x, x, y) to  th a t  for  
(E y )W 0(x, y). S o  th e  d ecisio n  prob lem  for th e  sy stem  is o f th e  h ig h est  
degree for 1-q u an tifier  p red icates, if th e  sy stem  h as th e  prop erty  th a t  
th e  con verse  o f (52) h o ld s for th e  B (x )  o f E x a m p le  1 (as R o b in so n ’s  
sy s te m  d oes, b y  T heorem  53 (c) § 79). (T his B (x ) is  o f th e  form  3y R (x , y )  
w h ere R (x , y) num eral w ise  exp resses W 0(x, y), b y  § 41 (C) an d  (E ).)

In  th e  case  Y  are u n specified  fu n ction s and pred icates, on e m a y  d iscu ss  
th e  red u ction  of th e  d ecision  problem  for P  (the ca lcu la tion  problem  for <p) 
to  th e  resp ectiv e  prob lem s for Y  in  th e  sen se o f o b ta in in g  a  procedure  
u niform  in  Y  as w ell as in  x v  . . . ,  x n ; or b riefly , o f esta b lish in g  th a t  P  
is  e ffe c t iv e ly  d ecid ab le (<p is  e ffec tiv e ly  calcu lab le) u n iform ly  from  Y .  
T h en  T h esis I*  an d  C onverse are to  be s ta ted  read ing " u n iform ly” in  
h y p o th es is  an d  conclusion .
Note i. Proof of (a) bottom  p. 292 should be amplified as follows. The application 
of Corollary Theorem I* leads to (I) an expression for the  predicate R  in term s of 
the  logical operations of the predicate calculus w ith num ber variables, 0, ', -j-, •, =  
and the  representing functions 4i> • • • > 4z °f the predicates T \ By the  m ethod of 
proof of Theorem I* and Corollary, each of 4*1, • ••, 4z enters into th a t  expression 
only in parts  of the form “ 4(^i> • • •, am) =  w” . E ach such p a rt can be replaced by 
“ {Q{ai> • • •» am) & w =  0} V {Q(av . . . ,  am) Sc w =  \}”  where Q is the  predicate re
presented by 4- Thus we obtain (II) an expression for the predicate R  in term s of the  
logical operations of the  predicate calculus w ith num ber variables, 0, ', + ,  •, =  and 
the predicates T  themselves. Now we are ready for the final step (p. 292). — 
Actually, an expression (I) exists (which is w hat ‘ R  is arithm etical in T” means for 
predicates T , under our definition p. 239 w ith bottom  p. 291) if and only if an ex
pression (II) exists. W hy?
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§  62. C h u r c h ’s  t h e s i s .  O ne o f th e  m ain  o b jectiv es  o f th is  an d  th e  
n ex t ch ap ter is to  presen t th e  ev id en ce  for Church's th esis  (T hesis I
§ 60).

Since our original n otion  of e ffec tiv e  ca lcu la b ility  o f a  fu n ction  (or 
of e ffec tiv e  d ec id ab ility  of a predicate) is a  som ew h at v a g u e  in tu itiv e  
one, th e  th esis  can n ot be proved .

T he in tu itiv e  n otio n  how ever is real, in  th a t it  vo u ch sa fes as e ffec tiv e ly  
calcu lab le m an y  particu lar fu n ction s (§ 30), an d  on  th e  o th er h an d  
en ab les us to  recogn ize th a t our k n ow led ge ab ou t m a n y  o th er fu n ction s  
is in su ffic ien t to  p lace th em  in  th e  ca tego ry  o f e ffec t iv e ly  ca lcu lab le  
fun ction s.

F or an exa m p le  of th e  la tter , le t R (x t y) be an  e n e c tiv e ly  d ecid ab le  
pred icate, and  consider th e  fu n ction  eyR(x, y) (G odel 1931) d efin ed  c la s
sica lly  th u s,

zyR(x, y) =  j
\ th e  lea st y  such  th a t  R (x, y), if (E y )R (x , y),
[ 0, o th erw ise .

T his d efin ition  does n o t (of itself) p rovid e a  ca lcu la tio n  procedure. G iven  
x , w e can  search throu gh  th e  p rop osition s R (x, 0), R (x, 1), R (x, 2), . . .  
in  su ccession , look in g  for one th a t  is  true, as far as w e p le a se ; i.e . w e can  
in princip le com p lete  th e  exa m in atio n  of th e  first n o f th em , for a n y  fin ite  
n. If  th e  g iv en  x  is  su ch  th a t  (E y )R (x t y ), b y  p ersistin g  lon g  en ou gh  w e  
shall ev en tu a lly  en cou n ter a  first y  for w h ich  R (x f y) is  true, w h ich  y  is  
th e  v a lu e  o f th e  fu n ction  syR(x, y). B u t if x  is  su ch  th a t (E y)R (x, y ), 
w e sh a ll never learn th is  b y  p ersistin g  in  th e  search , w h ich  w ill rem ain  
forever u n com p leted . T he com p letion  o f th e  exa m in atio n  o f a ll Kq 
prop osition s, w h ich  th e  c la ssica l d efin ition  en v isages, is  im p ossib le  for 
a h u m an  com puter.

F or som e choices of R (x ,y ) ,  th e  fu n ction  eyR (x,y) m a y  n everth eless  
be e ffec t iv e ly  ca lcu lab le, n o t “ im m ed ia te ly"  on  th e  b asis  o f its  d efin ition , 
b u t b ecau se of th e  ex isten ce  of som e oth er procedure for d eterm in in g  th e  
va lu e , w hich  u n lik e th e  one su ggested  b y  th e  d efin ition  itse lf  is e ffec tiv e .
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For example, w hen R ( x ,y ) ~  (x)0{y)0+(x)1(y)1=(x)2t there is kn ow n  

to  be such a procedure (cf. E x a m p le  2 § 30).

T h e function eyR(x, y)  is effective ly  calculable, if and on ly if th e  

predicate (Ey)R(x, y) is effective ly  decidable. F or if (Ey)R{x, y) is effec

tiv e ly  decidable, then given  #, to  calculate eyR(x, y), we can first decide  

w hether or not (Ey)R(x, y) is true, and according to  the answer either  

search for the least y such th a t R(x, y) or take 0 as the value. Conversely, 

if  zyR{x, y) is effective ly  calculable, then given x> w e can decide w hether  

or not (.Ey)R(x, y) is true, b y  first calculating eyR(x, y), and then ascer

tain in g w hether or not R(x, zyR(x, y)) is true.
T h e intuitionist finds no justification  for the belief th a t we can alw a ys  

tell, for a g iven  predicate P(y), w hether or not (Ey)P(y). T h is is his 

ground for not accep tin g the law  of the excluded m iddle A or not A w ith  

his m eaning of “ or”  (§ 13). H is argum ent, applied to  R(x, y) as the P(y), 
is an argum ent th a t w e h ave no basis to suppose th a t, for a n y  R , the pred

icate (Ey)R(x, y) is effective ly  decidable.

Church's thesis, b y  su p p lyin g a precise delim itation of ‘all e ffe ctive ly  

calculable functions', m akes it possible to prove, for certain predicates  

R(x, y), e.g. T x(x, x , y) (Theorem  X I I  § 60), th a t there is no uniform  m ethod  

of solving the problem  w hether or not (Ey)R(x, y). T h ere b y B rouw er's  

argum ent, th a t H ilb ert's belief in the so lvab ility  of every m ath em atical 

problem  is unproven, is now  strengthened to an actu al disproof, w hen  

so lva b ility  is taken  to  m ean uniform  so lvab ility  and Church's thesis is 

accepted. T h e relationship of Church's thesis to intuitionism  w ill b e  

discussed further below  (§ 82).

T h e in tuitionist does not regard the definition given  ab ove for syR(x, y), 
lackin g a proof of effective calcu lab ility, as properly defining a function. 

B u t our discussion of syR(x, y) can refer in tu ition istically  to the predicate  

{R(x, w) & (z)z<wR(x> z)} V {(.Ey)R{x, y) & w= 0}. C lassically, this pred

icate, call it <tP{xi w)i,i is the representing predicate of zyR{x,y). B u t  

in tu ition istically, w e m a y  not be able to  prove th a t (x)(E\w)P(x, w), 
i.e. th a t P(x, w) is a representing predicate of a  function (cf. § 4 1 ;  

(x)[(Ew)P(x, w) == (Elw)P(x, w)]f cf. *174 b , *1 7 1 ).

W hile w e cannot prove Church's thesis, since its role is to delim it 

precisely an hitherto v a g u e ly  conceived to ta lity , we require evidence  

th a t it cannot conflict w ith  the in tu itive  notion w hich it is supposed to  

com plete; i.e. w e require evidence th a t every particular function w hich  

our in tu itive notion w ould au then ticate as effective ly  calculable is general 

recursive. T h e thesis m a y  be considered a hypothesis abou t the in tu itive  

n otion of effective calcu lab ility, or a m athem atical definition of effective
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ca lcu la b ility ; in the la tter case, th e evidence is required to  g iv e  the  

theory based on the definition the intended significance.

T h e  converse of Church's thesis, i.e. th a t every  general recursive  

function 9  is e ffective ly  calculable, w e ta k e to  be already confirm ed b y  

the in tu itive  notion (cf. § 60). W e use here the definition of ‘E  defines 

9  recursively' w hich says th at, given  x v  . . . ,  x n, a deduction from  E  of 

an equation f(xx, . . . , x n)= x  expressing th a t the va lu e y (x v  . . . , x n) 
is  x  a lw ays exists (or if w e base the com putation procedure on Theorem  

I X  (30), w e use (29); or if w e base it  on Corollary Theorem  I X , w e use (1)). 

In  con cludin g th a t w e h ave an effective com p u tation  procedure, the  

existential quantifier w hich appears in the definition of ‘E  defines 9 recur

siv e ly ' (or in (29), or in (1)) m ust be understood con stru ctively  (§ 13); 

and likew ise the existen tial quantifier in the definition of '9  is general 

recursive', w hich states th a t there exists an E  defining 9  recursively (or 

in Theorem  I X , th a t a  G odel num ber e can be fo u n d ; or in C orollary  

Theorem  I X  th a t a finite sequence of applications of (I) —  (VI) can be  

found).

In other words, we should not claim that a function is effectively 
calculable oq the ground that it has been shown to be general recursive, 
unless the demonstration that it is general recursive is effective (cf. 
Church 1936 Footnote 10).

W e now  sum m arize the evidence for Church's thesis (and Thesis I * ,  

end § 61) under three m ain headings (A) —  (C), and one other (D) w hich  

m ight be included under (A). Som e of this evidence w ill be given  in m ore 

detail in later sections.

(A) H euristic evidence.

(A l) E v e r y  particular e ffe ctive ly  calculable function, and every  

operation for defining a function e ffe ctive ly  from  other functions, for 

which the question has been in vestigated , has proved to  be general re

cursive. A  great v a rie ty  of e ffe ctive ly  calculable functions, of classes of 

effective ly  calculable functions, and of operations for defining functions  

effective ly  from  other functions, selected w ith  th e intention of exh au stin g  

know n typ es, h a ve been in vestigated .

(A2) T h e m ethods for show ing e ffective ly  calculable functions  

to be general recursive h ave been developed to a degree w hich v ir tu a lly  

excludes doubt th a t one could describe an effective process for de

term ining the values of a function w hich could not be transform ed b y  

these m ethods into a general recursive definition of the function.

(A3) T h e  exploration of various m ethods w hich m ight be exp ected  

to lead to  a  function outside the class of the general recursive functions
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has in every case shown either that the method does not actually lead 
outside or that the new function obtained cannot be considered as ef
fectively defined, i.e. its definition provides no effective process of cal
culation. In particular, the latter is the case for the Cantor diagonal 
method. (An illustration of the former will be given in Example 1 § 65.)

(B) Equivalence of diverse formulations.
(Bl) Several other characterizations of a class of effectively cal

culable functions with the same heuristic property ((A)) exist. These 
have turned out to be equivalent to general recursiveness, i.e. the classes 
of functions which they describe are coextensive.

In fact three notions arose independently and almost simultaneously, 
namely general recursiveness, k-def inability (successive steps toward 
which were taken by Church 19 3 3  and Kleene 1 9 3 5 ; cf. Church 1 9 4 1 ) 
and computability (Turing 1 9 3 6 -7 , Post 1 9 3 6 ). The equivalence (i.e. co
extensiveness) of the X-definable functions with the general recursive 
functions was proved by Church 1 9 3 6  and Kleene 1 9 3 6 a (also cf. the ref
erence to work of Rosser in Church 1 9 3 6  Footnote 16). The equivalence 
of the computable to the X-definable functions (and hence to the general 
recursive functions) was proved by Turing 1 9 3 7 .

The notion of a function reckonable (§ 59) in a certain formal system 
S1 described (very briefly) in Godel 1 9 3 6  is a fourth equivalent of general 
recursiveness, under the hypothesis that Sx is simply consistent (as 
Rosser remarked in a review 1 9 3 6 a).

Still another approach is given by Post (1 9 4 3 , 1 9 4 6 ) in terms of what 
he calls canonical and normal systems. What this gives directly, as 
it is presented, is an equivalent of recursive enumerability, but then as 
in Example 6 § 60 we obtain an equivalent of recursiveness.

The fact that several notions which differ widely lead to the same class 
of functions is a strong indication that this class is fundamental.

(B2 ) Of less weight, but deserving mention, is the circumstance 
that several formulations of the main notions are equivalent; i.e. the 
notions possess a sort of “stability”.

Thus, for general recursiveness, the formalism may be chosen in 
several ways (§55). Also one may give a formulation (f.i-recursiveness) 
not based on any formalism but using instead Schemata (I) — (VI) 
(Theorem III § 57 and Corollary Theorem IX § 58), or one using Schemata 
(III), (IV) and (VI) with x+ y, x-y  and 8* (=  1 if x = y, =  0 if x ^ y )  as 
initial functions (Kleene 1 9 3 6 b). (Also cf. Julia Robinson 1 9 5 0 .)

The notion of X-definability has the variants k-K-definability (studied 
by Rosser, cf. Kleene 19 3 6a Footnote 12) and k-8-definability (Church
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1935). A lso  there is a p ara llel d evelop m en t, s ta rted  b y  S ch on fin kel 
1924 an d  Curry (1 9 2 9 ,1 9 3 0 ,1 9 3 2 ) an d  co n tin u ed  by R osser (1 9 3 5 , 1942a*) 
(also cf. Curry 1948-9), w h ich  lea d s to  a n o tio n  th a t w e m a y  ca ll com
binatory d e fin a b ility , p roved  eq u iv a len t to  X -definability b y  R osser.

T he d eta ils  of th e  d efin ition  of co m p u ta b ility  can  also b e varied , 
as w e sh all see la ter (Chapter X I I I ) .

T he system  S x of G odel 1936 is th e  first sy stem  in  a h ierarchy of sy stem s  
Si { i =  1, 2 , 3 , . . . )  u sin g  su ccessive ly  h igher ty p e s  o f variab les (cf. § 12). 
G odel rem arks, “ It  can  b e sh ow n  m oreover, th a t  a fu n ction  w h ich  is 
reckonable in  one of th e  sy stem s S it or ev en  in  a  sy stem  of tran sfin ite  
order, is reckonable already in  Sv  so th a t  th e  con cep t ‘reckonable* is in  
a certain  sen se ‘absolute*, w h ile  a lm ost a ll h ith erto  know n m etam ath e-  
m atica l con cep ts (e.g. provable, d efin ab le , etc .) depend  v ery  essen tia lly  
on th e  sy stem  w h ich  is tak en  as th e  b a s is .” E x a c t ly  th e  sam e fu n ction s  
are reckonable in  our n u m ber-th eoretic  sy stem  of C hapter IV  or R o b 
in son 's described  in  L em m a 18b § 49 (by T heorem  32 § 59 and  th e  
eq u iva len ce  of reck on ab ility  in  G od el’s S1 to  general recursiveness). T h e  
eq u iva len ce of reck on a b ility  in  th ese  system s is under th e  h yp o th esis  of 
sim ple co n sisten cy  for G od el’s sy stem s and our sy stem  of C hapter IV . 
(The sim ple con sisten cy  of R ob in son 's sy stem  w ill be p roved  as T heorem  
53 (a) § 79 .) T w o oth er sy stem s (Z°) and (Z 00) h a v in g  th e  sam e class of  
reckonable form ulas are g iv en  in  H ilb ert-B ern a ys 1939 S u p p lem en t I I ;  
these  are form alization s of ^ -recursiveness ((Z00) u tiliz in g  also th e  norm al 
form ). (M ostow ski 1947 b ases h is version  of T heorem  V § 57 on th e  n otion  
of reso lv a b ility  of a p red icate P  in  a sy stem  S  (§ 59), w ith  S  su b ject  
on ly  to  som e q u ite  general con d ition s. A s w e sh all see b elow  in  con n ection  
w ith  (D l)  and  T h esis I I , o n ly  a general recursive fu n ction  can  be reck on 
able in  an  S  w h ich  is a form al sy stem  w ith  e ffec tiv e  r u le s ; b u t M ostow ski 
considers also n on -con stru ctive  gen era liza tion s of form al sy stem s in  
our sense.)

(C) T uring's con cep t of a com p u tin g  m achine.
T uring's com p u tab le  fu n ction s (1936-7) are th o se  w h ich  can  be com p u ted  

b y  a m ach ine of a k in d  w h ich  is designed , accord ing to  h is an a lysis, 
to  reproduce all th e  sorts of op eration s w hich  a h u m an  com p u ter cou ld  
perform , w ork ing according to  p reassigned  in stru ction s. T u rin g’s n otio n  
is th u s th e  resu lt of a d irect a tte m p t to  form u late  m a th em a tica lly  th e  
n otion  of e ffec tiv e  ca lcu lab ility , w h ile  th e  oth er n otio n s arose d ifferen tly  
and w ere afterw ards id en tified  w ith  e ffec tiv e  ca lcu lab ility . T uring's  
form ulation  hence co n stitu tes  an  in d ep en d en t sta tem en t of C hurch’s 
th esis (in eq u iva len t term s). P ost 1936 g a v e  a sim ilar form ulation .
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The work referred to under (A) (especially (Al)) was not all carried 
out originally for general recursiveness or the special notions of 
recursiveness subsumed under general recursiveness (§ 55), but much of 
it was done for X-definability (in Kleene 1 9 3 5 ) or computability (in Turing 
i 9 3 6 ~7 ). But by (B) the heuristic and other evidence accumulated in study
ing the various notions all applies to any one. The accumulation of 
methods shown to be general recursive under (Al) contributes to (A2).

The case under (A2 ) will be presented in this chapter in connection 
with the theory of partial recursive functions (cf. § 6 6). We shall take 
up computability in the next chapter, proving the equivalence of com
putability to general recursiveness in §§ 68, 69 (cf. (Bl)) and incidentally 
the equivalence of some differing formulations of computability (cf. (B2)), 
and giving the evidence under (C) in § 70.

(D) Symbolic logics and symbolic algorithms.
Church 19 3 6  gave the following arguments (in substance), as showing 

“that no more general definition of effective calculability than that 
proposed above can be obtained by either of two methods which naturally 
suggest themselves” (p. 358).

(Dl) Suppose that we are dealing with a function <p(.r) and a formal 
system such that the following is true. The set of the axioms is finite 
or (if infinite) effectively enumerable, and likewise the set of the rules of 
inference; and each rule of inference is an effectively performable oper
ation. We can effectively recognize a formula P(x, w )  which attributes 
a number w as value to 9  for a given argument x, and effectively read 
from it this number. The formulas P(x, w )  attributing the correct 
and only the correct values to 9 are provable in the system; i.e. 9 is 
‘reckonable’ § 59 (except that here we are not insisting that P(x, w )  
come from some P(x, w) by substituting x, w  for x, w). If the interpre
tation is allowed that the effectiveness of the metamathematical functions 
and predicate just mentioned implies that the number-theoretic functions 
and predicate corresponding to them under a suitable Godel numbering 
are general recursive, then 9 is general recursive. For by reasoning 
as in the proof of Theorem IX § 58 or (c) § 59, for some general recursive 
^ and R, (x)(Ey)R(x, y) and cp(x) =  §{\xyR(x, y)); whereupon Theorem I I I  

§ 57 applies.
(D2) Consider a symbolic algorithm for the calculation of the values 

of a function <p(x), which shall consist in a method by which, given any 
x, a finite sequence Exo, Exu . . EXVx of expressions (in some notation) 
can be obtained, in the following fashion. Given x, the first expression 
Ex0 can be effectively found. Given # and the expressions Exi for i  <; 7,
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it can be e ffe ctive ly  recognized w hether the algorithm  has term inated  

(i.e. w hether j  =  r x), and if so, the valu e <p(x) can be e ffective ly  fo u n d ; 

while in the con trary case, the n ext expression E a;>;.+1 can be e ffe ctive ly  

found. A gain , if the effective functions and predicate described becom e  

general recursive under some G odel num bering, then <p is general 

recursive. F o r we can reason as in (D l), regarding (x, E xo) now  as analogous  

to an axiom , and the operation of passing from (x, E x0, . . . ,  E x/) to 

(x, E xo, . . . ,  E^., E X' j +l) as analogous to a rule of inference.

In brief, ( Dl )  and (D2) show th a t if the individual operations or rules 

of a form al system  or sym bolic algorithm  used to define a function are 

general recursive, then the whole is general recursive. So we could in

clude ( Dl )  and (D2) as particular exam ples of operations or m ethods of 

definition under (Al).

N o te  th a t (Dl )  and (D 2) refer to form al system s and sym bolic al

gorithm s h avin g a special kind of structure, exem plified b y  particular  

form al system s and algorithm s we know. W e h ave elsewhere (§§ 30, 60, 61) 

used “ algorithm ’ ’ more b road ly to m ean a n y calculation (or decision) 

procedure; and we generalized the notion of a form al system  likew ise in  

connection w ith  Thesis II  and Theorem  X I I I  (§ 60). There is of course 

no circularity in adding the evidence provided b y  algorithm s and form al 

system s of the special sorts to the case for C hurch’s thesis, and afterw ards  

ap p lyin g the thesis (as in §§ 60, 61) to the discussion of algorithm s and  

form al system s in the broader sense.

If w e consider on ly system s satisfyin g Thesis II  (for n + l  variables), 

the functions (of n  variables) w hich are reckonable in various form al 

system s (i.e. each one in some system ) are all general recursive, and  

hence all are reckonable in one system  (e.g. a n y  one of the system s  

m entioned under (B2)).

§ 63. Partial recursive functions. A s at the beginning of § 62, let

R (x , y)  be an effectively  decidable predicate. Consider the procedure w hich  

consists, for a given x, in deciding as to the truth  or falsity  of each of the  

propositions R (x , 0), R ( x , l ) ,  R (x , 2), . . . ,  successively, until one is 

found to be true, and takin g the second argum ent y  of th a t one R (x , y ). 
This procedure leads to a natural num ber y  in a finite num ber of steps, 

if (E y)R (x , y)  and on ly then. Therefore it can be considered as an al

gorithm  for calculatin g a m athem atical function of x  defined over the  

subset x (E y )R (x , y)  of the natural numbers. T h e function calculated is 

The least y  such th a t R (x , y ) ’ or in sym bols iy R (x ,  y)'.

It m ay be im possible to extend the definition of this function [iyR (x , y)
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to  all natural num bers, in such a w a y  th a t there w ill be an algorithm  for 

ca lcu latin g the resulting com p letely  defined num ber-theoretic function. 

W e noted in § 62 th a t the particular extension ey R (x , y )  is effective ly  

calculable, if and on ly  if the predicate (.E y )R (x , y)  is effective ly  decidable; 

and the m ethod shows th a t no extension of \iyR (x , y)  to all natural num 

bers is e ffective ly  calculable, unless (E y)R (x , y)  is effective ly  decidable.

T h is can be stated  in term s of the theory of general recursive functions. 

Church 1936  called a function <p(%, . . . ,  x n) defined over a subset of the  

^ -tuples of natural num bers p o ten tia lly  recursive, if there exists a general 

recursive function <p'(xv  . . . ,  x n) such th a t <p'(%, . . . ,  x n) =  <p(%, . . . ,  x n) 
for each w-tuple x v  . . . ,  #n for w hich <p(%, . t x n) is defined. N o w  

if R (x , y)  is general recursive, then \iyR {x , y)  is p o te n tially  recursive if 

and on ly if (E y)R (x , y)  is general recursive. F or

(59) eyR (x , y)  =  \l w [R {x , w ) V {(E y )R {x , y)  &  ^ = 0 } ] ;

and therefore b y  # D  § 45 and Theorem  I I I  § 57, if (E y)R (x , y )  is gener

al recursive, then zyR (x , y)  is a general recursive extension <p'(x) of 

{jiyR (x , y ). C onversely, if fxyR (x , y)  is p oten tially  recursive w ith  <p'(x) as a  

general recursive extension, then (E y )R (x , y)  == R (x , and therefore

(E y)R (x , y)  is general recursive.

E xam ple  1 . H ence b y  Theorem  V  (15) § 5 7 ,  \xyTx{ x ,x , y )  is not 

p o te n tially  recursive (K leene 1938 , 1943*), and e y T ^ x , x, y)  is not general 

recursive (K leene 1936).

A n  algorithm  for calcu latin g a function 9 m ay, for a given  x , fail to  

lead to  a num ber as va lu e of y(x )  either b y  not term in atin g (so th a t no 

m atter how  m a n y steps h ave already been perform ed, the rules of the  

algorithm  call for a n ext step), or b y  term inating b u t w ith ou t giv in g  a  

num ber as value. W e can m od ify  a n y  given  algorithm  so th a t w henever, 

for a given  x, the given  algorithm  term inates w ith ou t producing a num ber  

as value, the new  algorithm  gives 0 as value. T h e new  algorithm  calculates  

an extension 9' of 9 defined e x a c tly  when the original (and the new) 

algorithm  term inate.

E xam ple  1 (continued). H ence a n y  algorithm  w hich w ill lead to 
the num ber \ iy T x{x, x, y) for every  # such th a t ( E y ^ ^ x ,  x , y)  cannot  

term inate for e v ery  x  (using Thesis I § 60).

If there is an algorithm  for deciding, given  #, w hether the function  

<p(x) calcu lated  b y  a given  algorithm  is defined or not, then a new  al

gorithm  can be set up w hich calculates an extension <pf(x) of 9 ^ ) to all 

natural num bers. (Also cf. E x a m p le  5 § 64.)
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E xample 1 (continued). Hence there is no algorithm for deciding, 

given x, whether p y T ^ x ,  x , y) is defined or not, as we can also see directly 
from its condition of definition (£ y)7\(# , x, y)  (cf. Theorem X I I  § 60).

W e can also m o dify a given  algorithm  w ith ou t exten d in g the function  

<p{x) so th at, for a given  x, the algorithm  w ill alw ays fail to term inate  

w henever <p(#J is undefined (as is already the case for the algorithm  for 

\iyR{xt y) described above). T o  do so, w e arrange th at, w hen the g iven  

algorithm  term inates w ith o u t g iv in g a num ber as valu e of <p(x), the new  

algorithm  calls for additional steps w hich w ill continue ad infinitum . In  

discussing algorithm s in the rest of this chapter, w e shall often ta c it ly  

assum e th a t the algorithm s are of this kind.

Suppose th a t x(x) is defined over all natural num bers, and <]>(#) over a  

proper subset of them  containing all the num bers taken  as valu es b y  x(#), and  

th a t b o th  functions are effective ly  calculable. T h en  *s com p letely  de

fined and effective ly  calculable. T h e function <{/(#) m ight be ^ y T ^ x ^ .y ) .  
T h u s an e ffective ly  calculable function restricted to a proper subset of the  

natural num bers m a y  be useful in con structing another e ffe ctive ly  calcu la

ble function defined over all natural num bers.

Also there are problems in foundations which call for a function, needed 
only on a proper subset of the natural numbers, to be effectively cal
culable. This occurs in the theory of constructive ordinals (Church- 
Kleene 1 9 3 6 , Kleene 1 9 3 8 , Church 1 9 3 8 ), and in studies of the intu- 
itionistic logic (cf. § 82).

These considerations indicate the desirability of including p a rtia lly  

defined functions under our treatm en t of effective calcu lab ility. W e  

shall accordingly exten d  th e class of the general recursive function s to  

tak e in certain in com pletely defined functions, calling the resulting class 

of functions the p artial recursive functions'. T h e  technical a d va n ta ges  

of thus exten d in g the class of the general recursive functions, even  if our 

purpose were o n ly to support Church's thesis for the case of com p letely  

defined functions (Theses I and I*), w ill becom e fu lly  apparent in §§ 65 

and 66 . A t  the end of the present section, we use the p artial recursive  

functions in sta tin g  C hu rch ’s thesis for the case of p a rtia lly  defined  

functions (Theses It  and I*t).

T o  fix  our term inology, let us now  call a function from  a n y  subset 

(proper or improper) of the n-tuples of the n atural num bers to the natural 

num bers a p a r tia l function . In  other words, a p artial function 9  is a fu n c

tion w hich for each n-tu ple x lt . . . ,  x n of natural num bers as argum ents  

takes at m ost one natural num ber <p(xlt . . . ,  x n) as value. F or an n -tu p le  

x v  . .  ., x n for w hich 9 has a natural num ber as valu e, we say  9 (or
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<p ( x l t  ..., x n ) ) is d e f i n e d ; for an w-tuple x v  ..., x n for which 9 has no 
natural number as value, we say 9 (or <p(x1} ..., x n ) ) is u n d e f i n e d  (some
times written “a”). The r a n g e  o f  d e f i n i t i o n  of a partial function is the set 
of the n-tuples x v  .. x n for which < ? { x l r ..., x n ) is defined. When this 
consists of all w-tuples, we have an ordinary ( c o m p l e t e l y  d e f i n e d )  number- 
theoretic function; otherwise an i n c o m p l e t e l y  d e f i n e d  function. When it 
is empty, we have the c o m p l e t e l y  u n d e f i n e d  function.

To obtain the definition of 'partial recursive function’ (Kleene 1938), 
we adapt the Herbrand-Godel definition of 'general recursive function’ 
to partial functions, as follows.

For the case that 4i> ..., 4* are partial functions (of m v  .. , f m l  

variables, respectively) we now understand naturally that (cf.
§ 54) is the set of the equations g,(jq, .. ., y u j ) = = y  where 4i(y1, ..., y m j )  

= y, for all j  = 1, ..., l and in the case of each j  for those mrtuples 
y l f  . .., y m . for which 4* is defined. Then for a partial function 9 the 
definition of E d e f i n e s  9 r e c u r s i v e l y  i n  (or f r o m )  4i, ..., 4* given in § 54 
reads correctly, if (for emphasis) we now replace "if and only if 
< p ( x v  . f., x n )  =  x ”  by "if and only if < p ( x v  . . . ,  x n ) is defined and 
9(%, ..., x n ) =  x ” . The second phrasing of the definition there (with 
a completeness and a consistency property) can be used, if we now under
stand EJP for a partial function 9 in like sense to that just explained for 

Finally we say (corresponding to the definition in § 55) that 
a partial function 9 is p a r t i a l  r e c u r s i v e  i n  4i, ..., 4*> if there is a system 
E of equations which defines 9 recursively from 4p ..., 4*-

In the case of a scheme 9 = F(<Jq, ..., )̂ where range over
partial functions (subject to any stated restrictions), we say that F is 
p a r t i a l  r e c u r s i v e , or that 9 is p a r t i a l  r e c u r s i v e  u n i f o r m l y  i n  ,.., 4̂  if 
(for fixed n ,  l ,  m v  .. ., m t) there is such an E independent of 4i- ..., 4i* 
As before, we omit the word "uniformly" except for emphasis.

We now have, for the case the 9 is not previously known (as at the 
end of § 55): A system E of equations defines recursively a partial re
cursive function of n  variables from partial functions 4i> • • •» if f°r 
each w-tuple x v  . .., x n of natural numbers there is at most one numeral 
x such that E b f(x1, ..., x„)=x (where f, g v  are
as before). Here no completeness property is required. The function 
which is defined recursively by E is the function 9 such that < p ( x v  ..., x n )  

is defined for a given w-tuple x v  . .., #n, if and @nly if there is an x for this 
x v  ..., x n t in which case < p ( x v  .. ., x n ) =  x  where # is the number for 
which the x is the numeral.
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T h e partial recursive functions include the general recursive functions  

as those for w hich the range of definition consists of all the w-tuples  

x v  . . . ,  x n of natural num bers.

W hen R {x Xt • . x n, y )  is a general recursive predicate, th e p artial  

function piyR (x x, . . . , x n9y)  (defined if and o n ly  if (E y )R (x lt . . x nt y ) ,  
in w hich case its valu e is the least y  such th a t R (x lt . . . ,  x nt y))  is partial 

recursive. W e h a ve already show n this (w ithout the present term inology)  

as (iv) in the first part of the proof of Theorem  I V  § 57. (Then  

\iyR {x X9 . . . ,  x n, y) is general recursive e x a c tly  w hen (lb) § 57 holds.)

E xam ple  1 (concluded). \LyTx{x, x, y )  is partial recursive.

F or partial functions Xi> • • •» X«, w e ta k e +(Xi(*i* • • • * * » ) , - • - *  

Xm(x v  • • •» *«)) to be defined w hen and on ly w hen • • •> xn)> • • •>

Xm(x i> • • •} xn) are all defined and their values con stitu te an w -tu p le  

for w hich is defined, except w hen w e h a ve otherw ise specified. W e  call 

this the weak sense  of Xiix v  • • • > xn)> • • •> Xm{x v  • • •> x n)). T h is con
ven tion  shall a p p ly  likew ise to definitions b y  su bstitu tion  not in this  

standard form  (cf. § 44). T h e a m b ig u ity  w hich the con ven tion rem oves  

arises w hen ^  is a con stant function, or becom es such in one variab le  

for some substitution  for the other variables. F or exam ple, shall 0 • x ( x ) 

h ave the va lu e 0 or be undefined, for an x  w hich m akes x ( x ) undefined ? 

A ccordin g to  our convention, it shall be undefined.

W e also em ploy p a r tia l pred ica tes  w ith  th e sam e convention. F or  

exam ple, b y  su b stitu tin g p artial functions if(xl9 . . . ,  x n) and x(% , . . . ,  x n) 
into the com p letely  defined predicate y x—y 2t w e ob tain  a p artial pred

icate ip(xv  . . x n ) = x ( x i> • • • * * ») •  T h is predicate, for given  x v  . . . 9x n9 
is defined if and o n ly  if and x  are b oth  defined, in w hich case it takes  

a true proposition as va lu e if and x  h a ve  the sam e valu e, and a false  

proposition as valu e if ^ and x  h ave different values.

Similarly, by substituting partial predicates Q (xv  . . . ,  x n) and 
R (x lt . .  . , x n) into the truth-value function Y x =  Y 2 ('equivalence', §45), 
we obtain a partial predicate Q (xx, . . . ,  x n) =  R (x v  . . . ,  x n), defined if 
and only if Q (xv  . . . ,  x n) and R (x Xt . . . ,  x n) are both defined, in which 
case it asserts the equivalence of those two propositions, being true or 
false according as the two are equivalent or not.

We now introduce ( t ^ { x Xf ..., x n )  ~  x ( x i ,  • • •>**)” to express, for 
particular x v  . . x n, that if either of ty{xx, . . . , x n ) and x ( x i> • • •> xn) 
is defined, so is the other and the values are the same (and hence if 
either of ^ ( x x , ..., x n) and x ( x v  • • •> xn) is undefined, so is the other). 
The difference in the meaning of (i) • • •> xn) = x ( x v  • • •> xnY’ and
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(ii) “ ty{xv  %(xlf . . . ,  x n) ” com es w hen one of ty(xl9 and

x(% , . . . ,  x n) is undefined. T h en  (i) is undefined, w hile (ii) is true or false 

according as the other is or is not undefined. W e distinguish =  and as 

weak  and com plete eq u a lity , respectively. Our use of ~  con stitutes an  

exception to  the con ven tion stated  above.

Sim ilarly “ Q (xlt . . x n) ^  R (x v  . . . ,  * tt)”  shall express, for particular  

x v  . . . ,  x ni th a t if either of Q (xv  . . x n) and R (x lt . . x n) is defined* 

so is the other and the tw o values are equivalent propositions (and hence  

if either is undefined, so is the other). W e distinguish == and ^  as weak  
and com plete equivalence.

N o w  (*,) . . .  (xn)[i>(xi, ~  x (*i. • • • • *»)]> or ty{xv  . . . ,  x n) ~

x (x v  . . . ,  x n) w hen x v  . . . ,  x n h ave the gen erality  interpretation, 

expresses th a t and x  are equal as functions, i.e. th e y  h ave the sam e  

range of definition, and over this com m on range th e y  agree in value. 

Sim ilarly  (*x) . . .  (xn)[Q (xv  =  R (x v  x n)}, or Q (xv  . . . , x „ )
^  i?(% , . . x n) under the gen erality interpretation of x v  . . x n, e x 

presses th a t Q and R  are equal as predicates.

W e sa y  th a t a partial function <p(%, . . . ,  x n) is the representing function  of 

a predicate P (x v  . .  . , x n), if <p(xv  . .  . , x n) takes o n lyO a n d  1 as values, and

P (x v  . . . , # » )  ^  <p(xv  . . tfw) = 0 ;

or in other words, if according as the va lu e of P {x v  . . . ,  x n) is t, f or u, 

th a t of y {x lt . . x n) is 0, 1 or u.

W e sa y  th a t a partial function 9 or partial predicate P  is p a r tia l  
recursive in  partial predicates and functions T ,  if the corresponding  

statem en t holds replacing the predicates am ong P , T  b y  their representing  

functions.

T h e role o f the tw o eq u a lity  predicates =  and w ill be different. 

T h e w eak eq u a lity  =  w ill serve as an operation in buildin g partial 

recursive predicates. W e shall see in a m om ent (Theorem  X V I I  # # 1 4 ,  

O )  th a t ty(xv  . . . ,  %n) = x ( x 1> . . . , # w) is partial recursive in and x- 

T h e com plete eq u a lity  w ill be used in expressing our theory ab ou t  

p artial recursive functions. T h e predicate ty{xlt . . . ,  x n) ~  x(% , . . . ,  x n) 
is not alw ays partial recursive w hen ^ and x  are partial recursive (cf. 

E x a m p le  7  § 64).

Sim ilar rem arks a p p ly  to  the tw o equivalences == and ^  (cf. Theorem  

X V I I  # D ^ a n d  E x a m p le  8 § 64).

T h e particular functions and predicates of # # 1 — 21 (§§44, 45), 

being p rim itive recursive, are general recursive (Theorem  II  § 55) and  

therefore partial recursive. R ew ritin g Schem ata (IV) and (V) (§ 43) w ith
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in place of “ = ” , and using our convention to read the expressions 

on the right in the w eak sense, the notion '9  is p rim itive recursive in Y' 
takes on a m eaning for the case th a t the assum ed functions and predicates  

are p artially  defined. F or exam ple, in a p rim itive recursion (Va), for a  

giv en  y , 9 (y') is defined, if and on ly  if 9 (y) is defined and %(y, z) is defined  

when z  is the valu e of 9 (y) (hence b y  induction, on ly if all of 9  (0), 9 (1) , . . . ,  

9 (y) are defined). T h e notion extends from functions to  predicates  

via  representing functions. N o w  the former proofs of # # A — G  (§§ 44—  

47) ap p ly, provided w e understand the resulting functions and predicates  

in the suitable w eak senses, e.g. S  ^(y) is defined w hen and on ly w hen all
y< z

of ^(0), . . . ,  ^(2 —  1) are defined, Q V  R  when and o n ly  w hen b o th  

Q and R  are defined, (E y)v < zR (y)  when and on ly w hen R (0), . . . ,  R (z  —  1) 

are, etc. In  each case the appropriate w eak sense is easily inferred from  

the proof. B u t also, w ith  these senses for (IV) and (V), the proof of 

Theorem  II  (§§ 54, 55) carries over. H ence:

Theorem X V I I .  (a) A n y  function  9 definable from  p a r tia l fu n ction s  
Y  by a succession of ap p lica tio n s of p a r tia l recursive schemes is  p a r tia l  
recursive in  Y . Schem ata  (I) —  (V) are p a r tia l recursive, (b) The functions  
and predicates of — 21 are p a r tia l recu rsive ; and  —  G  hold
reading “p a r tia l recursive” for “p r im itiv e  recursive” and  u sin g  the w eak  
senses of the resu lting  functions an d  predicates  (call them  then #  # A *  —  G *).

W e used the fi-operator above to form  [xyl?(%, . . x n, y)  as a partial 

function from  a com p letely  defined predicate R {x v  . . . , x n, y). N o w  

when R (x v  . . . ,  x n, y )  is a n y  p artial predicate, w e tak e \iyR (x lf . . . ,  x nt y )  
to be defined w hen and o n ly  w hen there is a y  such th a t R (x lf . . . ,  x n, y )  
is true and R (x v  . . . ,  x n, 0), . . . ,  R (x v  . . . ,  x ni y — 1) are all defined, in  

which case its valu e is the least such y. F or exam ple, if R (0) ~ R ( l )  =  f, 
R {2) ^  t, then jxyR {y) ~  2 , b u t if R {0) ^  f, R {  1) ^  u, R {2) ^  t, then  

fiy R {y )  ~  u.

N o w  w e can consider (VI) § 57 reading \ iy “ fo r “ =  \iy ” as a  schem a  

for a n y  g iven  p artial function x (x v  . . x n, y )  or p artial predicate  

R (x lf . . . ,  x n) y ) .  L e t the equations E  be set up as in the proof of Theorem

III. If  yiyR (xlf . . . i  %ri,y) is defined, then E^, E  f- f(*i> • • •> x n) —x  
when x  =  \jjyR{x1} . . . ,  x n, y) and for no other num efal x , ju st as before  

((iii) § 57). Conversely, if E^, E  b f ( x v  . . . , x n)= * x  where x  is a num eral, 

then the present conditions for [iyR (x lt . . x n, y )  to be defined are m et  

(noting th a t for # B t II x(% , . . . , x n,s )  is defined on ly if yXx i> • • • > x n> s )
s < y

for s =  0, 1 , . . y — 1 are all defined). T h u s:
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Theorem X V I I I  ( =  Theorem  I I I f ). Schem a  (VI) is  p a r tia l recursive . 

H ence b y  Theorem  X V I I : E very  function  9  definable from  p a r tia l functions  
a n d  pred ica tes  Y  by a p p lica tio n s of (I) —  (VI) is  p a r tia l recursive in  Y .

N o w  le t us see w h at happens to the proof of the norm al form  theorem  

(Theorem  I X  § 58) w hen w e tak e <p(%, . . . ,  x n) to  be a partial recursive  

function. L e t E  define 9 recursively. N ow  (24) and (26) do not necessarily  

hold, b u t instead, om ittin g the universal quantifiers, we o b tain  (from  

(26)) (E y )S n(e, x nf y)  as the condition on x v  . . . , x n th a t

<p(%, . . . ,  x n) be defined. A lso (25) and hence (27) hold w ith  in place of 

and (28) holds, not w ith  the gen erality interpretation, bu t for each  

n -tu p le % , . . x n for w hich <p{xv  . . . , x n) is defined. B u t under our 

m eaning of the ^-operator applied to a com pletely  defined predicate, 

U ([iy S n(e, x v  . , . ,  x n, y))  is defined e x a c tly  w hen (E y )S n(e, x v  . . . ,  x nt y ). 
H en ce b o th  m em bers of (28) h ave the sam e range of definition, so (28) 

w ith  “  =  ”  replaced b y  holds for all x t , . . . ,  x n. T h e  proof given  for 

Theorem  I X *  (under Theorem  X ) goes through w ith  the sam e m odifi

cation s, provided the assum ed functions <|̂ , . . . ,  ^  are com pletely defined  

(otherwise e.g. ( £ % ) Ul<v[iV«((y)0iU) «,) &  N u ((y )02 , ^ K ) ) ]  in 0D f l 2 *, 

likew ise $(y), m ight be undefined in some case in w hich for the proof 

w e w ould need it to  be defined). T h u s :

Theorem X I X .  (a) ( =  Theorem  IX *). G iven a n y  p a r tia l recursive  
fu n ction  <p(xv  * . . ,  x n) f a num ber e can be found such that
(60) <p(*i, . . . , x n) ~ U  (ji y T n(e, x v  . . . .  x n, y))
(so that (E y)T „ (e , x v  . . x n, y ) is  the condition  of d efin itio n  of the function  
<p(%, . and
(61a) (#,) . . .  (xn) ( y ) [ T n(e, x v  . . . , x n,y ) ~ *  U (y)  ~  y (x lt . . . , * , ) ] .

(b) ( =  Theorem  I X * f) .  S im ila r ly  reading  tfp a r tia l recursive in  Y ,#, 

in  place of “ p a r tia l r e c u rs iv e *, “ T n**, respective ly , where  “ Y "  

stan ds for a n y  l  ( >  0) com pletely defin ed  functions an d  pred ica tes of 
m v  . . . ,  m t variab les , respectively.

E x te n d in g  the definitions given  in § 58, w e sa y  th a t a n y  num ber e 
such th a t (60) (and hence (61a)) holds defines  9 recursively  or is a Godel 
num ber of 9 ; and sim ilarly in the case of a  function 9  p artial recursive  

in  co m p letely  defined functions Y .  T h e notions exten d  to a predicate P  
w ith  representing function 9  as before.

B y  the proof of Theorem  X I X ,  if E  is a system  of equations defining  

9  recursively (recursively from  com pletely defined Y ,  w ith  suitable
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g iven  function letters), and e is the G odel num ber of E , then e defines 9 

recursively (recursively from  Y ) .

E xample 2 . L e t / and g  be G odel num bers of partial recursive  

functions ^ and respectively. T h en  the predicate ${x) ~  x(x ) e x ‘

pressed b y

(y )[{T A f. x, y)  -> {E z) { T ^ ,  x , z) &  U (y) =  U (z))}
&  { ^ ( g ,  x, y)  -  (E zX T M , x, z) &  U {y) =  U {z))}].

Corollary. E very  p a r tia l recursive {unction  <p {{unction  9 p a r tia l  
recursive in  com pletely defined functions and  predicates  Y )  is  definable  
{definable from  Y )  by a p p lica tio n s of Schem ata  (I) —  (VI).

T h e algorithm  given  b y  (60) for ca lcu latin g a partial recursive function  

9  is of the kind w hich does not term inate when <p{xv  . . . ,  x n) is undefined.

B y  the theorem , a partial recursive function <p(xv  . .  . , x n) has a range  

o f definition of the form  x {E y )R {x v  . . . ,  x n, y )  where R  is prim itive re

cursive, or in other words for n  =  1 , the range of definition (if it has a  

member) is recursively enum erable (Theorem  X I V  § 60).

E xample 3. H ence b y  Theorem  V  (12) § 5 7 , no partial function w ith  

x {y )T i{x , x, y)  as its range of definition is partial recursive. I t  is im 

possible to devise a n y  algorithm  w hich w ill lead to some natural num ber  

for e x a c tly  those x ’s such th a t x, y)  and no others (by Thesis

V  (a) below). In  particular, the function 9 defined thus,

9 ( * ) ~ f °  “  (y )J l{X  X> y)>
1 u otherwise,

is not partial recursive. T h is function is effective ly  calculable for #’s in 

its range of definition, and is p o ten tially  recursive.

N o w  w e sta te  Church's thesis for the case of partial functions, keeping  

in m ind E xam p les 1 and 3. W e call a p artial function <p{xv  . . . ,  x n) 
p o ten tia lly  p a r tia l recu rsive , if there is a p artial recursive fu n ction  

9 ,(#1, . . . ,  x n) such th a t y '{x lt . . . ,  x n) =  y {x lt . . . ,  x n) on the range  

of definition of 9 . T h e thesis w ill be stated  in tw o parts, according as w e  

require th a t the effective calculation procedure lead to  no function va lu e  

off the range of definition of the function in question, or m erely disregard  

w hat happens off this range.

E xample 4. Show  th a t: If cp{x) is p o ten tially  partial recursive and  

has a range of definition of the form  x {E y)R {x , y)  where R  is general 

recursive, then 9 ^ ) is partial recursive.
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T hesis I +. (a) The function  which a n y  algorithm  calculates {the fu n ction  
being un defin ed  for each n -tu p le  of argum ents for which the algorithm  leads  
to no n a tu ra l num ber as value) is  p a r tia l recursive . (b) E very  p a r tia l fu n ction  
which is  effectively calculable {in  the sense that there is  an  algorithm  by  
which its  value can be calculated for every n -tu p le  belonging to its  range  
of defin ition ) is  p o ten tia lly  p a r tia l recursive.

T h e  thesis can also be phrased to a p p ly  to  predicates.

F o r l  (;> 0) assum ed functions and predicates Y ,  w e h a ve a  corre

sponding Thesis I * t ,  including the case of uniform ity.

M uch of our treatm en t of functions p artial recursive in l  assum ed  

functions and predicates Y  w ill be lim ited (for l  >  0) to  th e case each  

of the functions and predicates Y  is com pletely  defined, or is in com p letely  

defined b u t partial recursive or partial recursive in com p letely  defined  

functions. Th ese kinds of in com pletely defined functions h ave been  

introduced to  m eet the requirem ents of the th eory of algorithm s (in

cluding reductions of decision problem s), because it  m a y  be im possible  

to com plete the definition of such a function and still h a ve  an algorithm  

for it. O utside th e th eory of algorithm s, a like reason for not com pletin g  

th e definitions of in com pletely defined num ber-theoretic functions is  

not readily apparent (cf. E x a m p le  4 § 64).

E xample 5. If  ^(^) is a p artial function w ith  the range of definition  

x {E y )R {x , y)  (or xR {x))  where R  is a com pletely defined predicate, th en  

there is a co m p letely  defined function tyc{x) prim itive, recursive in <[/, R  
such th a t (p is partial recursive in <J/\ F or let C  =  x{E y)R (x, y ) ; let 0 

enum erate recursively { 0 } + C ' (cf. E x a m p le  6 § 60); and let  

4>c(y) =  2®iv) • 3 ^ {y)) where 7)(0) =  0, r\{x') c^^(#).

N o w  <|/(*) ~  (<i'c(^ [(^ °(y ))o = ^ ']))i-

E xample 6 . W 0{x, \ iy [W 0{x, y )  V W x{x, y)]) is a partial, b u t not

p o te n tia lly, recursive predicate (cf. §61).

§ 64. The 3-valued logic. In  this section w e shall introduce new  

senses of th e propositional connectives, in w hich, e.g. Q{x) V R {x)  w ill b e  

defined in som e cases w hen Q{x) or R {x)  is undefined.

I t  w ill b e con ven ient to  use tru th  tables, w ith  three “ tru th  v a lu e s"  

t (‘tru e’), f ('false') and u  ('undefined'), in describing th e senses w hich  

th e  con nectives shall now  have.

Som e rem arks are appropriate to ju stify  our use of tru th  tables here 

from  th e fin ita ry  standpoint, and to explain  how  w e are led to choose th e  

p articu lar tables given  below.
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W e  were ju stified  in tu ition istically  in using the classical 2-valu ed  

logic, w hen we were using the connectives in building p rim itive and  

general recursive predicates, since there is a decision procedure for each  

general recursive p re d ica te ; i.e. the law  of the excluded m iddle is proved  

in tu ition istically  to  a p p ly  to  general recursive predicates.

N o w  if Q(x) is a partial recursive predicate, there is a decision pro

cedure for Q(x) on its range of definition, so the law  of the excluded m iddle  

or excluded “ th ird ” (saying th a t, for each x, Q(x) is either t or f) applies  

in tu ition istically  on the range of definition. B u t there m a y  be no algorithm  

for deciding, given  x, w hether Q(x) is defined or not (e.g. there is none 

w hen Q(x) is p y T ^ x , x , y )= 0 ) . H ence it is on ly classically and not in

tu ition istically  th a t w e h ave a law  of the excluded fourth (saying th a t,  

for each x, Q(x) is either t, f or u).

T h e third  “ tru th  v a lu e ” u  is thus not on a par w ith  the other tw o t and f 

in our theory. Consideration of its statu s w ill show th a t w e are lim ited  

to a special kind of tru th  table.

In asserting e.g. th a t Q(x) V R (x)  is prim itive or partial recursive (uni

form ly) in Q and R , w e assert the existence of an algorithm  for obtaining  

the tru th  vali\e of Q(x) V R (x)  from  those of Q(x) and R (x). A gain , in the  

partial case, it w ill h ave a different statu s from  t and f.

Suppose w e are to pick a tru th  table for Q V R ,  so th a t Q(x) V i?(#) 

w ill be partial recursive (uniformly) in Q and R .  L e t us discuss this heuris- 

tically, for the m om ent, id en tifyin g partial recursiveness w ith  effective  

d ecidability. W e ask to be able to decide b y  an algorithm , given  x t w hether  

Q(x) V R (x)  is t or f (if it  is defined) from  inform ation th a t Q(x) is t or is f 

(if it is defined) and like inform ation abou t I?(a:). Inform ation th a t Q(x) 
is u is not utilizable b y  the alg o rith m ; u m eans on ly the absence of in

form ation th a t Q(x) is t or is f. I f  in case Q(x) is it, the algorithm  gives e.g. 

t as valu e to Q(x) V R {x), the decision to do so (for the given  x  and 2?(#)) 

m ust not h a ve depended on inform ation abou t Q(x) (since none w as  

available). In  particular, if w ith ou t changing the va lu e  of R (x ),  th a t of 

Q(x) were changed to  t or f, the sam e decision w ould still be m ade.

W e reach the sam e conclusion, if w e ask instead m erely th a t  

Q(x) V R (x)  be partial recursive, w henever Q and R  are partial recursive. 

In general, an algorithm  for Q(x) V R (x)  (ab initio) w ill h ave access to  

inform ation about Q(x) and R (x)  on ly b y  utilizing algorithm s for Q(x) 
and R (x)  w hich are incorporated into it. A  decision reached in pursuing  

the algorithm  for Q{x) V R (x)  th a t e.g. t is the valu e m ust h ave been based  

on inform ation about Q(x) and abou t R (x)  w hich had been produced at  

some finite stages in pursuing the algorithm s for Q(x) and R (x). A t  a n y
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stage in the algorithm  for Q (x), w e shall either h ave found out th a t  

Q(x) is t, or th a t Q(x) is f, or w e shall not h ave learned the truth  valu e o f  

Q(x). If Q{x) is a ctu a lly  u, w e cannot learn this b y  pursuing the algorithm , 

b u t if at all o n ly  in some other w a y, as b y  some m etatheoretic reasoning  

about the algorithm . For special Q ’s we m ight su b stitu te another al

gorithm  w hich w ould also tell us w hen Q(x) is u, b u t w e cannot do this  

in general. T hus, if w hen Q(x) is u, Q(x) V R (x)  receives the valu e t, th e  

decision m ust (in the general case) h a ve been m ade in ignorance about  

Q{x), and in the face of the possibility th a t, at some stage in the pursuit of 

the algorithm  for Q(x) later than the last one exam ined, Q(x) m ight be  

found to be t or to  be f.

Proofs in term s of the theory of partial recursive functions confirm ing  

these heuristic argum ents (and exten din g them  to other operators besides 

the propositional connectives) w ill be given at the end of the section  

(Theorem  X X I  and E xa m p les 6 —  8).

W e  conclude th a t, in order for the propositional connectives to b e  

partial recursive operations (or at least to produce p artial recursive pred

icates w hen applied to partial recursive predicates), w e m ust choose  

tables for them  w hich are regu lar , in the follow ing sen se: A  given  colum n  

(row) contains t in the u row (column), on ly if the colum n (row) consists  

en tirely  of f s ;  and likew ise for f.

W h en  w e exten d ed  # D  from  prim itive to partial recursiveness b y  

ta k in g  over su b stan tially  the form er proofs ( of Theorem  X V I I  § 63), 

w e were using the propositional connectives in the weak senses, w hich are 

described b y  the 3-valu ed  tables (the weak tables) obtained from  the  

classical 2-va lu ed  tables b y  su p p lyin g u throughout the row and colum n  

headed b y  u. These are regular tables (trivially).

N o w  w e introduce strong senses of the propositional connectives, 

described b y  the follow ing strong tables.

Q Q V R Q & R Q - + R Q =  R
R  t f u R  t f u R  t f u R  t f u

Q t f Q t t t t Q t t f u Q t t f u Q t t f Uf t f t f u f f f f f t t t f f i u
u u u t u u u u f u u t ni l u u u u

O f these tables, on ly those for V, &  and differ from  the respective  

w eak tables. H enceforth V, & , and =  applied to partial predicates  

shall be understood in these strong senses, except w hen otherwise  

stated.
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E xample 1. N o w  (61a) can be restated thus:
(61b) (xj) . . .  (xn) ( y ) [ T n{e, x v  y) U (y)= < ?{x1, . .  . , * , ) ] .

Statem en ts of the form  “ If (?{xlt . . . , x n) is defined, then . whe r e  

the conclusion is m eaningless w hen <p(xlf . . . , x n) is undefined, can be  

understood then as uses of the strong -> . (Such statem ents occur already  

in § 63.)

These strong tables are u n iq u ely determ ined as the strongest possible  

regular extensions of the classical 2-valu ed  tables, i.e. th e y  are regular, 

and h a ve a t or an f in each position where a n y  regular extension of the  

2-valu ed  tables can h a ve a t or an f (whether t or f being u n iqu ely de

term ined).

W e giv e  the follow ing three tables as exam ples of irregular tables. 

T h e present strong 3-valu ed  logic (Kleene 1938) is not the sam e as the  

original 3-va lu ed  logic of L ukasiew icz (19 2 0 ; cf. Lew is and L an gford  

1932  pp. 2 13  ff.), w hich differs from  it b y  h avin g t instead of u in R o w  

3 Colum n 3 of the tables for ->  and == (labeled here as - > L and = L).

Q ^ R Q ^ R Q ^ R
R t f u R t f u R t f u

Q t t f u Q t t f u Q t t f ff t t t f f t u f f t fu t u t U u u t u f f t
W e further conclude from  the in troductory discussion th at, for the  

definitions of partial recursive operations, t, f, tt m ust be susceptible of 

another m eaning besides (i) 'true', 'false', 'undefined', nam ely (ii) 'true', 

'false', 'unknow n (or valu e im m aterial)'. Here 'unknow n' is a category into  

w hich w e can regard a n y  proposition as falling, whose valu e w e either do  

not kn ow  or choose for the m om ent to  disregard ; and it does not then  

exclude the other tw o possibilities 'true' and 'false'.

Example 2. Suppose th at, for a given  x , we know  Q(x) to  be undefined  

and R (x)  to  be false. T h en  using t, f, u as 'true', 'false', 'undefined' ((i)), w e  

can conclude b y  the en try  of R o w  3 Colum n 2 in the table for V th a t  

Q(x) V R (x)  is undefined.

E xample 3. Suppose th a t, for a given  x, we know  Q(x) to be true. 

Then, using t, f, u as 'true', 'false', 'unknow n' ((ii)), we can conclude b y  

the en try  of R o w  1 Colum n 3 th a t Q(x) V R (x)  is true. T o  draw  this  

conclusion b y  using the tables w ith  M eaning (i), we w ould need to use the
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classical law  of the excluded fourth, thus: E ith er R(x) is t, f or u ; and ill 

each of R o w  1 Colum n 1 , R o w  1 Colum n 2 and R o w  1 Colum n 3 a t 

appears.

From  this standpoint, the m eaning of Q V R is brought out clearly b y  

the statem ent in w ords: Q V R  is true, if Q is true (here nothing is said  

abou t R )  or if R  is true (sim ilarly); false, if Q and R  are b oth  fa lse ; defined, 

on ly in these cases (and hence undefined, otherwise).

T h e strong 3-valu ed  logic can be applied to com pletely defined pred

icates Q(x) and R (x), from  w hich com posite predicates are form ed  

using V, == in the usual 2-valu ed  m eanings, thus, (iii) Suppose

th a t there are fixed algorithm s w hich decide the tru th  or fa lsity  of Q(x) 
and of R (x), each on a subset of the natural num bers (as occurs e.g. after  

com pleting the definitions of a n y  tw o partial recursive predicates clas

sically). L e t t, f, u m ean 'decidable b y  the algorithm s (i.e. b y  use of on ly  

such inform ation about Q(x) and i?(#) as can be obtained b y  the al

gorithm s) to be true', 'decidable b y  the algorithm s to be false', 'unde- 

cidable b y  the algorithm s w hether true or false', (iv) A ssum e a fixed state  

of know ledge about Q(x) and R (x)  (as occurs e.g. after pursuing algorithm s  

for each of them  up to a given  stage). L e t t, f, u m ean 'know n to be true', 

'know n to  be false', 'unknow n w hether true or false'.

T h e follow ing three classical equivalences

(62) Q & R ^ q V W ,  (63) Q ^ R ^ Q V R ,  
(64) Q ^ R ^ ( Q - + R ) & ( R - > Q )
hold, as the reader m a y  v e rify  b y  con structing the tables for the right 

m em bers, and com paring them  w ith  the given  tables for the left m em bers. 

B u t e.g. Q &  (R  V R ) ^  Q  (cf. *5 2  § 27) does not (when Q is t and R  is u, 

the left m em ber is u and the right is t).
T h e  proofs of (62) —  (64) b y  use of the 3-valu ed  tables can be construed  

as show ing th a t if either m em ber is defined the other is and has the same 

va lu e (as =  asserts), using the law  of the excluded third on the ranges 

of definition. T h is law  w e h ave given  when Q and R  are partial recursive; 

and the equivalences in the general case are su bject to it in tuition istically  

as an hypothesis. Sim ilar rem arks ap p ly  to (65).

Stron g senses are given  to  the bounded quantifiers, thus. F or each  

2 > -0 , (E y )y<zR {y ) ^  R (0) V . . .  V R (z  — 1); and (E y )y< 0 R {y ) ^  f. E x -  

pressed im words, (E y )y<zR (y ) is true, if i?(y) is true for some y  <  z; 
false, if R (y)  is false for all y  <  z;  defined, on ly in these cases.

Sim ilarly, for each z  >  0, (y )v<zR (y )  =  R (0) &  . . .  &  R (z  —  1); and

(y)v<0R(y) ~  t.
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W e then have

(65) (y)v <zR (y) ~  { E y ) v < M y ) -

Sim ilarly, we give strong senses to the unbounded quantifiers, b y  

thin kin g of (E y)R (y)  as the strong disjunction of R (y)  for y  =  0, 1 , 2,  

and of (y)R (y)  as the strong conjunction.

In words, (£y)i?(y) is true, if R (y)  is true for some natural num ber y ;  
false, if i?(y) is false for every y ;  defined, on ly in these cases. (Then  

(y)i?(y) ^  (£ y)^ (y).) U nlike the bounded quantifiers (Theorem  X X  (b)), 

the unbounded quantifiers are of course not partial recursive operations 

(Theorem  V  § 57).

E xample 4. Consider the class of the predicates expressible in the  

form {E y)R {x , y)  w ith  R  partial recursive. T h e definitions of all incom 

p le tely  defined predicates of this class can be com pleted w ith ou t going  

outside the class (in fact, w ith  a prim itive recursive R ). F or if r  is a G odel 

num ber of R (x , y ) ,  then (E y ) [T 2(r, x , (y)0, (y)x) &  t/((y)1)= 0 ]  is com 

p le tely  defined and =  (E y )R (x f y)  on the range of definition of the latter. 

Sim ilarly for the form (y)R (x , y ).  (Cf. K leene 1943  p. 57 Theorem  V I.)

Theorem X X . (a) The {strong) predicate Q(xv . . . , x n) is  p a r tia l  
recursive in  the predicate Q. The {strong) predicates  
Q(xv . . . ,  %w) V R {x v  . . . ,  x n), Q (xlt . . . , * « ) &  R (x v  . . . ,  x n),
Q (xv  . . . , x n) - >  R {x v  . . . , x n) and Q {xlt . . . , * „ ) =  R {x v  . . . , x n) are 
p a r tia l recursive in  the predicates Q and R .

(b) The {strong) predicates {E y)y < zR {x v  . . . , x n,y )  and  
{y)v<zR {x li . . . ,  x n, y) are p a r tia l recursive in  the predicate R .

(c) (Strong) definition b y  cases. The function  9 defined by

9(*i> ~
<P1(^1. • • • >*»)  if  Q i{x lt

(Pm(- l̂i • • •> *̂ n) i f  Qm(xlt • • •» ^n)»

where Qv  . . . ,  Q m are m u tu a lly  exclusive {under the in terpreta tion  that 
9 (#1, . . . , # „ )  shall <Pi{xv  . . . ,  x n) if  Qi{x1} . . . ,  x n) is  true, d isregard in g  
9 j {x1, . . . , x n) and Qj{xv . . . , x n) for all j  ^ i ), is  p a r tia l recursive in  
9l> * * •> Q l >  • • •> Q m -

Proofs, (a) T o  treat Q V R  for exam ple, let ^>{xl f . . . ,  x n), %{xv . . . ,  x n) 
and (p{xlf . . . ,  x n) be the representing functions of Q(xlt . .  ., x„), 
R{xv . . . ,  x n) and Q{xlf . . . ,  x n) V R{xv . . . ,  x^,  respectively. Consider 

the equations
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CT(0) =  0, t(1,1) =  1,

(A) . • • • ’ x ») =  •••>*«))>I 9(*lt ...,*„) = o(x(*i. • • •» *«)).
9(*lf . . . ,* „ )  =  ----- , *„). x(*i. • . . ,* .) ) ,

where a  an d t  are p a rtia lly  defined au xiliary functions. B y  tran slating  

these equations (A) into the form al sym bolism  of recursive functions  

(§ 54), w e ob tain  a system  E  defining 9 recursively from  x- —  T h e  

m eth o d  illustrated applies to  a n y  regular table. (A ltern atively, one 

ca n  treat the other con nectives thence, noting th a t Q has already been  

treated  in D t  of Theorem  X V I I ,  since the strong tab le for Q agrees w ith  

th e w eak one, and using (62) —  (64).)

(b) B y  (65) it  w ill suffice to treat (E y)y < z . L e t x(x v  y)

an d <f(xv  z) be the representing functions of R (x x, . . . ,  x„, y)
an d (E y )v < zR (x lt  y), respectively. T h en  (using # # 6 , B f) the

equations

(B)

a(0) =  0 , t (1) =  1,
?(#!, •••»#«> z') = <*(x(xl> ■ ■ •>xn, Z—y)),
<p(̂ i. • • •.*«>z) = t( n x(xv • ••>*„,y))

y<z

tran slate into a system  E  defining 9 recursively from  y.
(c) F irst method. L ik e  (a); e.g. for m  — 2  and n — 1 ,

ffi(0, x) =  ?].(*), <t2(0, x ) =  <p2(*),

<p(*) =  *). ?(*) =  ° M x).x)-

Second method, for Q v  sim ultan eously defined .

9 ~  w & Q x  &  y = 9 i)  V • • • V (Qm & y = 9 m)].
R emark 1 . F o r con sistency w ith  our usage in (V I') § 57, and at the  

beginn ing of § 54  where w e first handle quasi-form ally before trans

latin g, w e w rite (A) —  (C) here w ith  “ =  B u t considered in tu itively,

as law s ob eyed  b y  the p artial functions appearing in them , (V I') and  

(A) —  (C) should be w ritten  w ith

E xample 5. If  <p(x) is p artial recursive, and *<p(x) is defined' is 

general recursive, then <p(x) is p o te n tially  recursive. F or let

y '(x ) ~  fx y [ y = <p(x) V (<p(x) is defined &  y — o)]-

L e t T* be a sequence of partial functions . . . ,  <J»j. B y  an extension  
Y '  of T  w e m ean a sequence ijq, ■ . <Pi of partial functions w hich are
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extensions resp ectively of ipi, i.e. such th a t for i =  1 , . . . ,  l,
<K'(y 1. • • ym<) =  <k(yi, • • •. Vm,) on th e range of definition of <J/j. Sim i

larly  if Y  include predicates.

T h e reader w ishing to ad van ce rapidly to the m ain results of the ch ap ter  

in § 66 m a y  om it P a rt (b) of the follow ing theorem .

Theorem  X X I .  (a) I f  <p ~  F(Y) or y(x)  ~  F (Y ; x) is  a p a r tia l re
cursive fu nctional, and  F ^ ;  x-f) k, where Y x are p a rticu la r fu n ction s  
and x v  k are p a rticu la r n a tu ra l num bers, then for every extension  Y /  of Y j ,  

F(^i/ ; x i) —  k.
(b) L et a function  <p be defined  from  a function  ^ by an  operation  of the 

form  <p(x) ~  F(^(#)), where F(a) is  a function  from  {u, 0, 1, 2, . . . }  to 
{u, 0, 1 , 2 , . . . } .  I f  F(u) ^  k, where k is  a n a tu ra l num ber, but for som e  
natu ra l num ber m , not F(m) ~  k , then there is  a p a r tia l recursive function  
^ {taking only m  as values) for which the resu lting  function  <p is  not 
p a r tia l recursive.

W e can read “ x v  . . . ,  #w” , “x n , . . . ,  x ln” in place of “x ” , €tx x \  
respectively (where n  ;> 0 for (a), >  1 for (b)); and the theorem  can be  

stated for predicates, w ith  t and f tak in g the place of 0, 1 , 2 , . . .  as defined  

values.

P roofs, (a) B y  hypothesis, there is a system  E  of equations w ith  

given function letters G  and principal function letter f, such th a t, for 

an y natural num ber x  and partial functions Y :  E^T, E  b f ( x ) = y  

where y  is a num eral, if and on ly if F ( Y ; # ) = y .  B u t F ^ j ; ^ )  =  k f 
where k  is a natural num ber; so E ^ 1, E  b f(jcx) = fe. N o w  if Y x is a n y  

extension of Y x, then E j l C  E j 1'; hence also E ^ , E  b f( x 1) = fe ;  

and therefore F( Y / ; x x) — k. (If the function al F(Y) is defined o n ly  under 

some restriction on the range of Y ,  the theorem  applies on ly  to extensions  

T} satisfyin g the restriction.)

(b) L e t — m  +  0 * pjyT ^ x, x , y)  and p{x) ~  W i9(:x ) — ^ &  y = 0 ] .  

B y  Theorem  X V I I I ,  fy{x) is partial recursive, and p(x) is p artial recursive  

if cp(x) is. W e show now  th a t p{x) is not partial recursive. If  {E y )T x{Xy x , y), 

then \LyTx{x, x , y)  is undefined, hence ^(jt) is undefined, hence b y  h y 

pothesis <p(x) == k t hence p(x) is defined. Thus {E y )T x{Xy x , y)  ->  (p(x) is  
defined}. Sim ilarly, [E y )T x{Xy x t y)  ->  {p(*) is undefined}; or b y  con tra

position (cf. * 1 3  §2 6 ), {p(#) is defined} ->  {E y )T x{Xy x f y) .  T h u s {p(x) is 

defined} == [ E y ^ ^ x ,  x , y)  == {y )T x{Xy x, y ).  B y  E x a m p le  3 §6 3 , p(x) is 

therefore not partial recursive.

In  E xam p les 6 —  8 , we give  (a) and (b) parts separately, so as to
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illustrate b oth  parts of the theorem , alth ou gh  the conclusion of the (b) 

part im plies th a t of the (a) part.

E x a m p l e  6 . Can w e im prove upon Theorem  X V I I I  b y  strengthening  

Iiy R (x , y) to be the least y  such th a t R (x , y )  is true irrespective of w hether  

R (x ,  0), . . R (x } y -~  1) are all defined (write it then \ iy R { x ,  y))  ? 

(a) N o, since w hen R (x ,  1) is t, then \i'yR (x , y) changes from 1 to 0 when  

R (x ,  0) is changed from  u to  t. In  more d e ta il: L e t x i x > y ) be the rep

resenting function of R (x , y) and let <p(x) ~  \i,y R {x i y) ~  F(x; x). L e t  

Xx, %  be choices of x> x  sucb  th a t Xi(x v  0) ^  u, Xiix i> 0  —  0. T h en  

F (xi; x t ) ~  1 . N o w  b y  (a) of the theorem , if cp is partial recursive in x, 

then F(x{ ; x x) ~  1 for ev ery  extension x[  of Xi- B u t F (x i; x x) ~  0 for an  

extension xi such th a t X i\x i* 0) —  0- Therefore cp is not partial recursive  

in x- (b) W e can even find a particu lar partial recursive R  for w hich  

li'yR (x , y )  is not partial recursive. T o  see this, let R (x , y)  be of the form  

y = ^ ( # ) V y = l .  T h en  [ify R { x ,y )  changes from  1 to  0 w hen <]>(#) is 

changed from  u to  0. In  d eta il: L e t <p(x) [i'yR (x , y) ~  F(^(%)). T h en  

F(u) ~  1, b u t F(0) ^  0. H ence b y  (b) of the theorem  a partial recursive  

can be chosen so th a t <p is not partial recursive.

E x a m p l e  7. W hen x{x ) —  then ^(#) —  l i x ) changes from f to  t 

w hen is changed from  u to  0. H ence (a) ^  x M  is n° t  partial

recursive in <J>, y . Also (b) for some partial recursive ^ and x> —  x ( x ) 

is not partial recursive. (First tak e x to be C j § 44; then choose a ^ to go  

w ith  this x  b y  (b) of the theorem.)

E x a m p l e  8 . T h e table for Q ^ R  is irregular; e.g. w hen R  ^  t, 

then Q =  R  changes from  f to t w hen Q is changed from u to t. H ence  

(a) Q(x) ^  R (x)  is not partial recursive in Q and R , and (b) for some 

partial recursive Q and R , Q(x) ^  R (x)  is not partial recursive. —  A n y  

irregular tab le  can be dealt w ith  sim ilarly.

§ 65. Godel numbers. W e now abbreviate U (p y T n(z, x n, y))
as “ Q n( z ,x v  . . . , * n)” or even as ” {z }(x lt . . . ,  x n) ” or “ z(x v  . . . ) x n) >\  
B y  Theorem  X V I I I ,  is a partial recursive function of n  + 1  variables  

(and hence, for each fixed z, <!>n(z, x v  . .  . , x n) is a partial recursive function  

of the n  variables x v  . . . ,  x n). R ew ritin g Theorem  X I X  (60), a n y partial 

recursive function cp(xv  . . . ,  x n) of n  variables can be obtained from  <S>n> 
thus,

(66) <p(xv  . . . , x n) ~  <bn{e, x v  . . ., x n) ~  e(xv  . . . ,  x n),
where e is a n y  G odel num ber of <p. Sim ilarly, U ([L yT ^ (zf x v  . .  ., x n, y))
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w ill be w ritten  "(t>J (z , x v  . . . .  x n)” , “ {z}'F (*1, . . . ,  * „ ) ”  or “z ¥ (x1, . . . , x „ ) ” 
for com p letely  defined functions Y ,  w ith  corresponding remarks. Su m 

m arizing :

T h e o r e m  X X I I  ( =  Theorem s X V I I I  +  X I X ) .  The fu n ction  
® n(z, x n) is  p a r tia l recursive , an d  4>n(z, x n) for z  =  0, 1 , 2 ,

is  an  enum eration  (w ith  repetitions) of the p a r tia l recursive functions  
of n variables. S im ila r ly , for com pletely defined  Y ,  is  p a r tia l recursive in  
Y  an d enum erates (w ith  repetitions) the functions of n  variables which are  
p a r tia l recursive in  Y .  (Enum eration theorem  for partial recursive  

functions.)

T h is theorem  is on ly possible because a p artial recursive function  

m ay be undefined for some sets of argum ents.

L e t us recapitulate the usual C antor diagonal argum ent for com p letely  

defined functions. Suppose C  is a class of such functions of various  

num bers of v a ria b le s; and th a t <I>(z, x v  . . . ,  x n) enum erates (w ith rep

etitions) the n -variable functions of C  (for som e fixed  n >  1). T h e n  

<I>(#i, x v  x 2, . . . , # * )  + 1  cannot 8 C , because otherwise w e w ould h a ve

<%> q>*2> • • • . * » ) + !  =  $ (? , q,
for some num ber q, w hich is im possible. If  C  is closed under the operation  

of passing from  a function cp(z, x v  . . x n) to  <p(xl9 x lf x 2, . .  . , x n) - \ - \ ,  
then $>(z, x v  . . . ,  x n) cannot 8 C. In  particular, this shows th a t there is 

no corresponding enum eration theorem  for the general recursive functions.

B u t w ith  p artial functions, w e w ould h a ve instead

0% ,  qf x 2, . .  . , x n) + l  ^  <t>(q, q, x 2, .

w hich is not im possible, b u t sim p ly m eans th a t <&(#, q, x 2, . . . ,  x n) m ust  

be undefined. In  particular, w e thus prove th a t the p artial recursive  

function O n(z, x v  . . . ,  x n) is undefined, w hen z  =  %  =  q  where q is a n y  

Godel num ber of <&n(xv  x v  x 2, . . . ,  x n) - \ - 1 .

T h e R ich ard  paradox ( §1 1 )  arose b y  a tte m p tin g to m ain tain  sim ul

taneously th a t 0 (£, x v  . . . ,  x n) is in the class and is co m p letely  defined. 

(In § 1 1 , n  =  1.)

D iagon al reasoning w ith  p artial functions w ill be exploited further  

in establishing Theorem  X X V I I  § 66 .

E x a m p l e  1 . L e t ri(zv  . . . ,  z r) be a given  p artial recursive function. 

For each z v  . . . ,  z r> let (pZl,...,Zr(xlt . . . ,  x n) be the partial recursive  

function w hich is defined for an n -tu p le x v  . . x n on ly if rj(zv  . . . ,  z r) 
is defined, and of w hich in this case r\(zv  . . . ,  z r) is a G odel num ber.
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Then <pzlt„.,zr(%lt . . . »  x n) considered as a function <p(zv  . . . ,  z r, xv . . . ,  x n) 
of all r-\-n  variables is partial recursive. For

(67) (?(zv  . . . , Z r9Xv  . . ., * w) —  V  • • • » Zr)> %1> * * * > *»)•

(This is an exam ple for the first altern ative under (A3) § 62.)

T h e o r e m  X X I I I .  F or each m , n >  0, there is  a p r im itiv e  recursive  
function  S™{z, y lt . . y w) {defined below) such that, if  e defines recu rsively  
9 (yx, . . . ,  y m> x lf . . . ,  #n) as a function  of the m -\-n  variables y l9 . . . ,  y m, 

% ,  . . . ,  #n, then for each fixed  m -tu ple  y v  . . . ,  y m of n a tu ra l num bers, 
S™(e, y v  • • •» Vm) defines recursively  9 ^ ,  . . . , y m, x v  . . . ,  #„) as a function  
of the rem ain in g  n  variables x v  . . . ,  xn. S tated  in the X-notation (§ 10): 

I f  e defines l y t . . .  y w% . . .  x n f { y v  . . . , y m, x v  . .  . , x n) recursively , then  
S™(e, y v  . . . ,  y m) defines  X% . . .  * w cp(yv  . . . , y m, x v  . . . ,  x n) recu rsive ly .

S im ila r ly  reading (t p r im itiv e  recursive fu n ction  S™'mi"'”mi{z ,y 1, . . .  , y m),f, 

<(defines recursively  from  T ’ m  >̂Zac£ 0/ <(p r im itiv e  recursive function  
S™(z, y lt  . . . , y m)” , C( defines recu rsively” , respectively, where Y  are l 
com pletely defined functions and predicates of m lt variables,
respective ly .

P r o o f  (for l =  0). L e t 5®(2) =  z. For m  >  0, choose num bers y x, . . . ,  y m. 

W ith  these fixed, let 9 (yv  . . . ,  y m, x v  . . . ,  #w) be w ritten “ <p{xv  . . . ,  #n)”  

N o w

(68) <p(xv  . . . , X n) ~  ®m+n{e> Vi > . . • , ym> Xv  . . ., Xn).
L e t D  be a system  of equations defining O m+n recursively, w ith  g  as 

principal function letter, and not containing f. L e t C consist of the equa

tions of D  follow ed b y  the equation

f{&  1, • • • > a n) • • • 1 • • • > &n)
w hich w e obtain  b y  tran slating (68). T h is system  C defines <p(xlf . . . ,  x n) 
recursively. L e t d, f, g, a v  . . . ,  a n be the G 5del num bers of D , f, g ,  
a v  . . . ,  a n, respectively. L e t S%(z, y v  . . y m) =

d  * [2 exp  2 15•3 2/*pl 1*,•, ^ n*5 2a#3iVrw(2!)’p2rw(,/l)***/p^+(J/m),pwl+2*,,,,pm+w+i]

(cf. § 56, # 2 1  § 45, E x a m p le  2 § 52). T hen S%(z9 y l9 . . . ,  y m) is prim itive  

recursive as a function of z, y lf . . . ,  y m; and for the fixed  y lt . . . ,  y m, 
S™(e, y lf . . .  ; y w) is the G 5del num ber of C, and hence defines f ( x v  . . . ,  x n) 
recursively.

E x a m p l e  1 (concluded). W e do not get a larger class of functions  

9 (zv  . . zr, x v  . . . ,  x n) b y  startin g w ith  a partial recursive r\ (as above)
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than  w ith  a prim itive recursive r). F o r let the (pfo, . . . , z r, x ,  of

(67) h ave e as G odel num ber. T h en  S rn(e, z v  . . . ,  zr) is a G odel num ber

of 9Zl....zr{xv . . x n), i.e. S rn(e, z v  . . . ,  zr) is a p rim itive recursive

zr)” for the sam e <p2l.... , r{x i> • • •> *«)•

Example 2 . F or a n y  general recursive predicate R (x v  . . . ,  x „ ,y )  
(with n  >  1), let e b e a G odel num ber of the partial recursive function  

~hxxzx 2 . . .  x n piyR{xv  . . . , x n, y ) .  F o r a n y  fixed  x x, then S \ ( e ,x x) is a  

G odel num ber of l z x 2 . . .  x n \xyR{xx, . . . ,  x n,y ) .  T h is function is defined  

for a given  n -tu p le z, x 2, . . . , x „ ,  if and o n ly  if (E y )R (x x, . . . , x n, y ) .  
H ence b y  Theorem  X I X ,

(69) (E y )R {x 1, . . . , x n, y )  =  (E y ) T  x x), z, x 2l . . . ,  x n, y ).
S u b stitu tin g S* (0, x j  for z,
(70) (E y )R (x x, . . . , x n, y )  =  ( £ y ) T n(S‘  (e, x x), S ln(e, x x), x 2, . . . ,  x n, y ) .
T a k in g n  — 1 and w ritin g " a ”  for “ x and “x ” for " y ” , this shows th a t  

(E x )R (a t x) is p rim itive recursive in (E x )T x(a, a, x). T h u s the decision  

problem  for {E x )T x{at a, x) is of highest degree of u n so lva b ility  for pred

icates of the fdrm (E x )R (a t x) w ith  general recursive R  (cf. end § 61). 

Furtherm ore, b y  the definition of S \ t a x^ a 2 -+  SJ(^, a x) ^ S \( e ,  a 2). 
Th u s there is a general recursive function ^(a) such th a t  

[a x^ a 2 ->  7*4 W }  &  {(•E x )R (a , x) =  ( E x ^ T ^ a ) ,  <J;(a), x )};  in P o st's

term inology {1944), the decision problem  for the set a (E x )R (a f x) is 

1-1 reducible  to  th a t for a f t x ^ ^ a ,  a, x). T h a t  this is so for every  set 

a (E x )R (a , x) w ith  general recursive R  is a  property of the present set 

# (£ # )7\(a, a t x) w hich P o st show ed is possessed b y  another recursively  

enum erable set “ K "  called b y  him  “ th e com plete se t"  (1944  p. 295 and  

Theorem  p. 297). W e  ob tain  like results for th e form s w ith  m ore q u a n ti

fiers and for l  >  0. F o r exam ple, from  (70) w ith  n  =  3 (l =  0), w e infer  

th at

(E x )(y )(E z)R (a , x , y ,  z) =  (E x )(y )(E z)T 3(S l(e , a ), S \(e , a), x , y ,  z)
(cf. * 7 1 , *7 2  §33). T h u s (E x )(y )(E z)T z(at a, x , y t z) has a decision prob

lem  of highest degree of u n so lva b ility  for predicates of the form  

(E x )(y )(E z)R (a , x , y ,  z) w ith  R  recursive, and th e decision problem  for 

an y predicate of this form  is 1-1 reducible to  its decision problem .

E xample 3. O m ittin g  the 2 in E x a m p le  2, we ob tain  th a t the decision  

problem  for a (E x )R (a > x) is 1-1 reducible to  th a t for a (E x )T 0(a , x) (and  

hence b y  E x a m p le  2, the predicates ( E x ^ ^ a ,  a t x) and (E x )T 0(a t x)
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h ave decision problem s of the sam e degree of u n so lva b ility); and sim 

ilarly  w ith  more quantifiers, e.g.

(■E x )(y ){E z)R (a , x, y ,  z ) =  (E x ){y )(E z )T 2{S l2(e, a), x, y ,  z), 
where e is a G odel num ber of \LzR(a9 %, y , z).

T h e m ajor part of § 66 can be understood w ith ou t the rest of this  

section.

The A -notatign (to be used in § 82). When
• • • ym * 1 • • . ?(yi, • • • , *«)

is partial recursive and e defines it recursively, we shall use

9 ( y V  • * • > ym> %1> • • • > %n)

as an abbreviation  for S™(e, y l9 . . . ,  y m). U su ally  we om it the subscript 

“ (e)” . T h u s (for m  =  0) “ A x 1 . . .  x n <p(%, . . . ,  x n)” w ill stand for some 

G odel num ber of the function \ x 1 . . .  x n y (x lt . . . ,  x n) ; and (for m  >  0) 

<iA x1 . . .  x n <p(yv  . . . ,  y m, x v  . . . ,  x n) ” w ill stand for some prim itive  

recursive function, whose valu e for each w -tu p le  y v  . . . ,  y m of natural 

num bers as argum ents is some G odel num ber of the function  

\X i . . .  x n <p(yv  . . . ,  y m, x v  . . . , x n).
U sin g this abbreviation w ith  the abbreviation

"{*}(*!. . . x n)” for <Dn(z, x v  . . . , * „ ) ,  

w e have, for a n y  w-tuple tv  . . . ,  t n of natural num bers,

. . . x n <p(yl9 . . . ,  y m, x v  . . . ,  x n)}(tlf 
—  9 ( y v  • • • > y mJ v  • • • > n̂) •

L ik e  notation w ith  “ A m a y  be used, w hen T  are l com pletely  

defined functions and predicates of m lt . . . ,  variables, respectively.

Lemma V I. L em m a  I § 47 holds reading “p a r tia l recursive'y in  place  
of “p r im itiv e  recursive  \  T h u s (for p =  1): I f  <p{xlf . . . , x n) is  p a r tia l  
recursive u n iform ly  in  functions  0, Y ,  and  <p*(%, . . x n, c) is  the function  
obtained when  0 in  the d efin itio n  of 9 is  taken to be a function  0* depending  
on a param eter c, then  9 * is  p a r tia l recursive u n iform ly  in  0*, Y .

P roof. B y  h ypothesis there is a system  E  of equations such th at,  

for each choice of 0, Y f the system  E  defines the resulting function 9 
recursively from  0, T .  L e t Y  be <|̂ , . . . ,  ; and say th a t the given  function

letters of E  (expressing 0, Y t respectively) are t, g v  . . . ,  g lf and the  

principal function letter is f. L e t c be a variable not occurring in E . L e t
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E J  result from  E  b y  changing sim ultaneously each part h(rx, . . . ,  r8) 

where h is a function letter and rx, . . . ,  rs are term s to h ^ ,  . . rs, c). 

L e t E *  be the system  of equations

g 1(a1, . . . »  a mi, c) = g i ( a 1, . . . ,  a TOi), . . . ,  • • • > am/, c) =  gi(ax, . . . ,  a ^ ),

where g x, . . . ,  g z are d istin ct function letters not occurring in E . L e t  

E *  be E * E | .  W e show th at, for each choice of 0*, Y ,  the system  E *  

defines <p* recursively from 0*, Y .

Consider a n y  fixed choice of 0*, Y  and c. L e t (E^*)c be the set of the  

equations t(s x, . . . ,  s fi, c )= u  w hich £ E X\  L e t (E^)c be the set of th e  

respective equations t ( s 1# . . s q) = u , i.e. the set of the equations  

expressing the values of the function 0 w hen w e tak e 0(sx, . . . ,  sq) =  

0*($x, . . sq> c) for the fixed c.

We easily see th at if (E?)c, E ^ ; ”'£j, E  f(x1, . . x„)=x, then 
(E?*)c, E f e *  k f( x 1( . . . , x n ic ) = x ,  a fortiori e J’ J j;; ;^ ,E *  h 

f(x1( . . . , x „ , c ) = x .
W e now dem onstrate the converse. L e t ( E ^ ' ^ ) c be the set of 

the equations g ^ ,  . . . .  y mj, c ) = y  where g ^ y ^  . . . .  y m,) = y  6 E ^ " ’^ .  

L e t (E *)c b e % the system  of equations w hich results b y  su b stitu tin g c  

for c throughout E * . W e sa y  th a t an equation e is a c-equation , if there  

is a deduction of e from  E x E *  and either e 8 (E^*)c, or e S (E ^ * '^ )c,

or the principal equation (§ 54) of th a t deduction of e 8 E *  and the prin

cipal branch contains an application of R 1 w hich su bstitu tes c  for c. 

W e can prove (by induction on the height of a given  such deduction of e) 

th at, if e is a c-equation, then (E^*)c, ( E | j “;|p c, (E *)c b e. In  this  

resulting deduction, every occurrence of a function sym b ol h is in a p art  

of the form  h(rx, . . . ,  rs, c). A n y  equation of the form  f( x x, . . . ,  x n, c ) = x  

deducible from E x E *  is a c-equation. If  in the resulting

deduction ju st described w e change sim ultaneously each part h(rx, . . . ,  rs, c) 

to h(rx, . . . ,  r8), w e obtain a deduction of f( x x, . . . ,  x n) = x  from

(e ?),. E t r f j .  e .

Theorem X X I V .  (a) I f  y (x x, . . . , x n) is  p a r tia l recursive u n ifo rm ly  
in  p a r tia l recursive functions  01( . . . ,  0r, then there is  a p a r tia l recursive  
function  <${zx, . . . ,  z r, x v  . . . ,  x n) such that, when tv  . . . ,  tr are a n y  GSdel 
num bers of Qx, . . . .  0r, respectively, y (x x, ~  <p(<x, . . . , t r, x x, . . . .  x n).

(b) I f  cp is  p a r tia l recursive u n iform ly  in  p a r tia l recursive fu n ction s  
0X, . . . ,  0r, then there is  a p r im itiv e  recursive function  rj(zv  . . . ,  z r) such
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th a t, when tlf . . . , t r are a n y  Godel num bers of 0X, . . . ,  0r, respectively , 

73(Zlf . . . ,  Zr) is a Godel num ber of 9 .

yl/so both f a r ts  hold reading  t(p a r tia l recursive in  01# . . . ,  0r, Y ” , “ p a r tia l  
recursive in  Y ” , “ Godel num ber from  Y ” in  place of “ p a r tia l recursive in  

. , . , 0r” , “ p a r tia l recursive” , “ Godel num ber” , respective ly , w Airi Y  

l  com pletely defined  fu n ction s .

P roofs (for Z =  0). (a) B y  use of L em m a V I, the result of replacing  

0<(slf . . . ,  sa.) b y  Q qfai, s v  . . sq%) (i =  1 , . . r) in the definition of 

9 ^ ,  . . . ,  x n) from  01, . . . ,  0r is a function y ( z lf . . z r, x v  . . . ,  x n) partial 

recursive in , O ar. B u t  <&3i, . . . ,  ® Qr are partial recursive, so

<p(zlf . . . ,  z rt x lt . . . ,  x n) is p artial recursive. Also

• • •, S«i) ^  $«<(*,•, Si, • • •. %•), SO <p(*1( — 9^!, . . . , tr, x1, . . . , xn).

(b) L e t £ be a G odel num ber of 9 (2̂ , . . zr> x lt . . x n), and ta k e  

*}(*i> . . . , z r) =  S£(e, z v  . . . , z r).
E xample 4. B y  our proof of Theorem  X I I I  § 60 (going b a ck  upon  

th a t of Theorem  I V  § 57), the / of Figure la  § 61 can be a n y  G odel num ber 

of the partial recursive function [ iyR (x f y ).  A s \iyR {x , y)  is partial recursive  

uniform ly in R ,  b y  Theorem  X X I V  (b) (applied to  the representing  

function of R )  there is a general recursive (actually, p rim itive recursive) 

function r\{z) such th a t, for a n y  G odel num ber r  of R (x ,  y), r\(r) is an / for 

F igu re la. T h is shows th a t the recursively enum erable set C 0 (nam ely, 

£ (E y )7 ,1(#, x, y))  is w h a t P o st 1944 calls a creative set. (The G odel num ber  

r  of R (x , y )  takes the place here of P o st's  “ basis B ” for the recursively  

enum erable set x {E y )R {x f y ).)
E xample 5. O ur exam ples of predicates not general recursive g iven  

in Theorem  V  § 57 were of n  >  1 variables. —  T h e predicate {E x)R {x) 
of 0 variables is not general recursive uniform ly in the predicate R . 
F o r suppose it were. T h en  b y  Theorem  X X I V  (a) for n =  0 (applied to  

th e  representing functions), there w ould be a partial recursive predicate  

Q(z) such th a t (E x)R (x) =  Q(t) for a n y  G odel num ber t of R (x ). N o w  

let e be a G odel num ber of the predicate T x{at a , x). T h en  ^(S}(^, a)) w ould  

b e a general recursive predicate of a, and {E x )T x{at a , x) =  Q {S \{e t a)). 
B u t [ E x ^ ^ a ,  a , x) is not general recursive (Theorem  V  (15)).

Indefinite description. Theorem X X V . F or each n ^ O ,  there is  
a p a r tia l recursive fu n ction  vn(z, x lf . .  ., x n) w ith  the fo llow ing property . 
S u p p o se  r  is  a Godel num ber of a p a r tia l recursive predicate R (x v  . . . ,  x n, y ). 
T hen  vn(r, x lt . . . ,  x n) is  defined if  an d  only if  (E y )R (x v  . . x n, y),



§ 6 5 GODEL NUMBERS 347

in  which case its  value is  a num ber y  such that R {x v  . . . ,  xm y ).  W e u su ally  

ab b reviate vn(r, xv . . . , x n) as l<vy ir)R (x lf . . . , x n, y ) ” or even  

4tv yR (x v  . . . ,  x nt y ) ” t and read it “ a y  (depending on r) such th a t

R(xlt . . . t xnfy)”.
S im ila r ly  for l com pletely defined functions an d  pred ica tes  Y ,  read in g  

44p a r tia l recursive in  Y ” , (<Godel num ber from  Y ' \  in
place of 14p a r tia l recursive” t (<Godel num ber” , “ vn” , “ vy(r)” , respectively.

P roof (for 1 =  0). W e define

v n(zf x l9 . . . , x n) ~  (|i y [ T n+1(z9 x l9 . . . 9x nt (y)0, (y)x) &  C 7((y)i)=0])0.

D iscussio n . T h e least num ber operator \iy  and the indefinite de

scription vy correspond to tw o different effective procedures for cal

cu latin g a y  such th a t R {x v  . . . ,  x n$ y), each w ith  respective lim itations.

L e t i? be effective ly  decidable. T o  calculate \iyR {x v  . . . ,  x n, y), w e  

first try  to settle b y  the algorithm  for R  w hether R (x lf . . . , x n90) is true  

or false. If it is true, we tak e 0 as the num ber so u g h t; if false, w e then tr y  

n e x t to settle w hether R (x v  . . . ,  x nt 1) is true or fa lse ; and so on. I f  

before finding a y  for w hich R (x v  . . . ,  x n, y) is true, w e com e to one for 

w hich R (x v  \  . . ,  x n, y)  is undefined, w e are unable to get p ast this y, b u t  

m ust (in obedience to the rules of our calculation procedure) continue  

ad  infinitum  in the futile effort to settle w hether R (x v  . . . ,  x n, y)  is true  

or false for it. F or a particular R ,  we m ight find another procedure w hich  

w ould get around this obstacle, b u t w e cannot in general (cf. E x a m p le  6 

§64).

T o  calculate vyR (x v  . . . , x n, y ) f w e distribute our efforts to  settle  

w hether R (x v  . . . ,  x n, y) is true or false for various y 's, so th a t, w hile  

our efforts to settle w hether i?(% , . . . ,  x n9 0) is true or false are in progress, 

if after a certain num ber of steps th e y  h a ve not led to a decision, w e then  

set to w ork also on R (x lt . . . ,  x n, 1), and so on. T h e search, if not ter

m inated, w ill for each y  ev en tu a lly  carry the algorithm  for determ ining  

the tru th  or fa lsity  of R (x v  . . . ,  x n, y)  for th a t y  arbitrarily far. A s  

soon as R (x lt . . . ,  x n9 y)  is found to  be true for a n y  y, w e accep t th a t y  

w ith ou t atte m p tin g to settle w hether it is the least. T h e y  obtain ed b y  

this procedure m a y  v a r y  w ith  the algorithm  for R  (or the G odel num ber r) 
w hich is used. A ccord in g to  the follow ing exam ple (stated for n  =  0), 

this is u n avoidable in general.

E xample 6 . Suppose v'(z) is a  partial function w ith  the tw o  prop

erties: (a) If  r  is a G odel num ber of a p artial recursive predicate i?(y), 

then (E y)R (y)  ->  i?(v'(r)). (b) I f  r  and s are G odel num bers of th e  sam e
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predicate, then v'(r)^v'(s). We shall show that then v' is not partial 
recursive. For each k} let partial recursive predicates R k and S k be defined 
thus:
R k(y) ~  y = 0 V y = l+ 0-lLzT1(k> k, z), S k{y) ^ y ^ O ^ z T ^ k ,  kf z) V y = l .
Let rk and sk be any Godel numbers of R k and S k, respectively. Given 
k , R k(0) and S k( 1) are true; so by (a), v'(rk) and v'(sfe) are both defined. 
If (EzjT^k, k, z)} then (y)[i?fc(y) ^  S fc(y)], i.e. R k and S k are the same 
predicate; and hence using (b), v'(rk)= v(sk). Thus 
(EzjT^k, kt z) -> v'(r*)=v'(sfc), or contraposing (cf. *12 § 26), 
v '(r k) ^ v ( s k) -> (EzjT^k, k, z). Conversely, if (2lz)7\(&, k, z), then R k(y) 
is true only for y =  0 and S k(y) only for y =  1, so by (a), v'(rfc) =£ v'(sfc). 
Thus v'(r*) ^  v'(s*) =  {E z^^k , k , z) =  (.z)Tt{k, k, z). The expressions 
defining R k(y) and S k(y) are partial recursive predicates of the two 
variables k, y ; say those predicates have Godel numbers r and s, respec
tively. We can take rk =  Sj(r, k) and sk =  S\(s, k) in the above, obtaining 
the equivalence v'(Sj(f, k)) ^  v'(S}(s, k)) =  fyT ^k, k , z). If v' were 
partial recursive, the left member would be a general recursive predicate 
of k\ but the right is not (Theorem V (14)).

§ 66. The recursion theorem. T heorem XXVI. For any n >  0,
let F(£; xv  . . . ,  xn) be a partial recursive functional, m which the function 
variable £ ranges over partial functions of n variables. Then the equation

. . . , *„)  ~  F(£; xlf . . . , x n)
has a solution 9 for £ such that any solution 9' for £ is an extension of 9, 
and this solution 9 is partial recursive.

Similarly, Y  are l partial functions and predicates,
£(%, . .  •, xn) ~  F(£, Y ; #*)

has a solution 9 for £ swcA 2Aa£ any solution 9' for £ is aw extension of 9, 
awi solution 9 is partial recursive in Y. (The first recursion theorem.)

P roof (for l =  0, w =  1). Let 90 be the completely undefined 
function. Then introduce 9!, 92, 93, . . .  successively by

9 i W ^ f(?o; *)> ?*(*) — F(<Pi; *), ^ f(92; x ) , . . .
Since 90 is completely undefined, cpx is an extension of <p0; then by Theorem 
XXI (a), 92 is an extension of <pv cp3 of 92, etc. Let 9 be the “limit function” 
of 90, <pv  92, . . . ;  i.e. for each x, let cp(x) be defined if and only if cps(x) 
is defined for some s, in which case its value is the common value of 
9*(#) for all s >  the least such s. Now:
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(i) F or each x, cp(%) ~  F(ip; x). For consider any x. Suppose <p(*) is 
defined. Then for some s, cp(x) ~  <p>+i(%) [by definition of 9] ~  F(9„; x) 
[by definition of <p,+1] ~  F(9; x) [by Theorem XXI (a), since 9 is an 
extension of 9,]. Conversely, suppose F(9; x) is defined; call its value k. 
Since F is partial recursive, there is a system F of equations defining F(£; x) 
recursively from £, say with f as principal and g as given function letter; 
so now there is a deduction of f(x)=fc from Ef, F. Let g (y i)= z1, . . . ,  
g(yp)=zp (where zt =  9(y,)) be the equations of E |  occurring in this de
duction. But 9(yx) =  9Sl(yi), • • . ,  9(y„) =  9sp(yP) for some sx, . . . ,  s P. 
Let s =  m a x ( S j ,  . . . ,  s P). Then 9(yx) =  9,(yi), . . . .  9(y„) =  9,(y,). So 
g(yi)=*x» • • "%&*)=** 8 E| s- Thus E! S«F b i(x)=k. Hence k ~  
F(9s;x) ~  9m (x) ~  9(x).

(ii) I f  for each x, <p'{x) ^  F(cp'; %), then  9' is  an extension of 9. It will 
suffice to show by induction on s that, for each x } if <ps(x) is defined, then 
cp'(x) <ps{x). Ba sis : s =  0. True vacuously. In d . step. Suppose for a 
given x  that <ps+1(#) is defined. Then 9S+1( )̂ ^  F(9S; x) ~  F(9'; x) [by 
Theorem XXI (a), since by hyp. ind. 9' is an extension of 9J <p'(x).

(iii) I f  F defines  F(^; x) recursively  from  and  E comes from  F by
su bstitu tin g  the p r in c ip a l function  sym bol f for the given function  sym bol g, 
then  E defines  9 recursively. It will suffice to show that E b f(x)=ft, 
if and only if <ps(x) k for some s. We easily see that if <ps(x) =  k, then
E b f(x)=fe. For the converse, we show by induction on h that if there 
is a deduction of f(x)=ft from E of height h, then y s{x) =  k for some s. 
The deduction can be altered if necessary, so that in each inference by 
R2 with a minor premise of the form i(y)—z only one occurrence of f(y) 
in the major premise is replaced by z (Act 1). The occurrences of f in 
equations of the deduction can be classified in an evident manner into 
those which come from an occurrence of f in F, and those which come via 
the substitution of f for g from an occurrence of g in F. Now consider the 
inferences by R2 with minor premise of the form f(y)=z in which the 
f of the part f(y) replaced comes from a g in F. Say there are p  such infer
ences, the minor premises i(yi)=zv . . . ,  f(yp)=zp of which do not stand 
above other such premises. Each of these p  premises occurred above 
the endequation of the given deduction before Act 1; so using the hy
pothesis of the induction, z1c^ f s ^ )  ~  <p8(yi), • • • > ^  <?8P(yp) ^  9 s{yp)
where s =  max(s1, . . . ,  s p). Now consider the tree remaining from the 
deduction after Act 1, when all the equations above i(y1)=zv . . . ,  f(yp)=zP 
are removed (Act 2). In this tree, let each occurrence of f which (before 
Act 2) came from a g of F be changed back to g (Act 3). The f  s in question 
all occurred in the right members of equations, since g being the given
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function sym b ol of F  occurs in F  on ly on the right; so no f is changed b y  

A c t  3 in w h a t w as a m inor prem ise for R 2 before A c t  3 or in the end- 

equation f( x ) = ft .  F in a lly , let the f s  of i(yt)=zlf . . . , f (yP)=zP be  

changed to  g  (Act 4), w hich restores the inferences b y  R 2  w hich A c t  3  

spoiled. T h e  resulting tree is a deduction of f ( x ) = f t  from E |« , F . H ence

k ~  F(<p,;*) ~  <pJ+1(*).

E xample 1. Consider the p ro b lem : to  find a partial recursive function  

9 such th a t

(a) <p(*) = * <p(*);
i.e. to  solve the equation Z,(x) cm £(*) for O b vio u sly  a n y  partial function  

satisfies this equation. T h e  partial function w ith  the least range of 

definition w hich satisfies is the com pletely  undefined function. T h is is 

the solution 9  g iven  b y  the theorem  (with F(£; x) cm £(#)).

E xample 2 . T o  find a p artial recursive function 9  such th a t

(a) <p(*) =* ? W  +  i ;

i.e. to solve £(,x) £M £(#) +  l for C  O n ly  the com pletely undefined partial 

function satisfies. T h is of course is the solution 9 g iven  b y  the theorem  

(with F K ; * ) ~  « * )  +  l).

E xample 3. T o  find a function 9  partial recursive in x  such th a t

/a\ f  ?(°) —  i >( ) l  9 ( /)  =* xiy. 9 (y))
(Schem a (Va) § 43). O n ly  one function 9 satisfies for a given  x> and we  

already kn ow  b y  Theorem  X V I I  (a) th a t it  is p artial recursive in x- 

H ow ever to  see how  the theorem  applies, we rewrite (a) as

(b) » ( , ) ~ F ( » , x ; * ) w h O T F « , x ; . ) ~ { 9 (^ * " ^ _ 1)) a  x > 0
(equivalently,

F(C X ‘> x ) —  ^ [ { ^ = 0  &  w = q }  V { x > 0  &  w = x ( x - 1- 1, ^( •̂J~ 1))}]).

Since F(£, x ^ )  *s p artial recursive (using Theorem s X V I I ,  X X  (c); or 

X V I I ,  X V I I I ,  X X  (a)), b y  the theorem  9 is partial recursive in x-

E xam ple , 4. W e g iv e  a new  proof of Theorem  X V I I I  (which proof in 

various guises appeared in K leene 1935, 1936, 1943). L e t  

<p(x) ~  \xy\x(x > y ) = 0 ] .  T h en  9 (3;) cm <p(x, 0) where

(a) 9(*. y )— V̂ t>vlx(x> 0=°]-
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B u t <p (x ,y )  is the partial function <p w ith  the least range of definition such  

th at

(b) ?(*. y) — y  if x{x, y) =  0,
<p(x, y ')  if x(* . y)  #  0.

B y  Theorem  X X  (c) (with the first proof), the right side of (b) is of th e  

form  F(<p, x ; x , y )  where F(£, x ; %, y) is p artial recursive; so b y  the present 

theorem  cp(x, y ) } and hence <p(x), is p artial recursive in x-

D iscussio n . T h e theorem  for Z =  0 asserts th a t w e can im pose a n y  

relationship of the form

(72) <p(%, . . . ,  x n) ~  F ( < p , x n)
expressing th e am biguous va lu e y {x Xi . . . ,  x n) of a function 9 in term s  

of 9 itself and x v  . . . ,  x n b y  m ethods already treated  in the th eo ry of 

partial recursive function s; and conclude th a t the p artial fu n ction  w ith  

the least range of definition w hich satisfies th e relationship is p artial  

recursive.

M oreover the case of the theorem  for l  >  0, in w hich

(73) <p(xv  . . . ,  x n) ~  F(<p, Y ;  x v  x n)
is the relationship im posed, can be used to exten d  the b o d y  of the m ethods  

available for use in further applications.

In our exam ples of special kinds of “ recursion” (§§ 43, 46 and beginn ing  

§ 55) the am biguous function valu e <p(xlt . . . ,  x n) w as expressed in term s  

of values of tne sam e function for sets of argum ents preceding the given  

w-tuple x v  . . . ,  x n in term s of some special ordering of the n-tuples. W e  

now h ave a general kind of “ recursion” , in w hich the valu e <p(xv  . . . ,  x n) 
can be expressed as depending on other values of the sam e function in  

a quite arbitrary m anner, provided o n ly  th a t the rule of dependence is 

describable b y  previously treated effective m ethods.

T h e given  “ recursion”  m a y  now  be am biguous as a definition of an  

ordinary (i.e. com p letely  defined) num ber-theoretic function 9 , in the  

sense th a t it is satisfied b y  m ore than  one such function (E xam p le 1 , or (b) 

in E x a m p le  4 w hen x(#, y) does not vanish for in fin itely  m a n y valu es of y). 

B u t now  we choose as the solution w hich interests us th a t p artial function  

w hich is defined o n ly w hen the recursion requires it to  be. T h e  g iven  

“ recursion” m a y  be inconsistent as a  definition of an ordinary function  

(E xam ple 2); again the d ifficu lty  is escaped now  through the fact th a t it  

is on ly a p artial function w hich w e are seeking as the solution. B o th  

these situations can arise w hen the F is general recursive (E xam ples 1 
and 2). W hen F is incom pletely defined, the recursion m a y  also d irectly
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dem and under our usual con ven tion (§ 63) th a t 9 be undefined for some 

argum ents (e.g. E x a m p le  3 w hen % is given  to be the com pletely unde

fined function), as w ell as indirectly through an inconsistency (not 

necessarily as obvious as in E x a m p le  2).

G iven  a particular relationship of the form (72) or (73), it m a y  be a 

difficult problem  to recognize for w h at argum ents x v  . . . ,  x n the function  

valu e <p(xlt . . . ,  x n) m ust be defined. T h is problem  is separate from  the  

problem , w hich the first recursion theorem  solves, of recognizing the  

partial recursiveness of the solution 9 h avin g the least range of definition.

W e can use the theorem  in presenting the case under (A2) § 62. Our  

m ethods for show ing given  effective ly  calculable functions to be partial 

recursive (and hence w hen com p letely  defined, general recursive) are 

now developed to  the point where th e y  seem adequate for handling an y  

effective definition of a function which m ight be proposed. T o  describe 

in ordinary language a process for calculating a new function 9 , we w ould  

h ave to  explain e ffective ly  how  an y function valu e <p(xlf . .  ., x n) is to  

be obtained from values of 9  a lready calculated. In this explanation, 

we w ould norm ally em ploy effective ly  calculable functions previously  

studied, the con nectives of the propositional calculus, also possibly  

bounded quantifiers (unbounded quantifiers w ould not be effective), and  

descriptions of the form  The least num ber such th a t ’ . T h is vo cab u la ry  

translates into operations already treated in our theory (cf. p articu larly  

Theorem s X V I I I  and X X ) . T h e explanation as a whole w ould then  

com e under the first recursion theorem ; nam ely we could express it 

as a statem ent th a t 9 is to  satisfy  (72) for a certain F, and is to be defined  

on ly w hen the explanation leads to a value, i.e. 9 is to be the function of 

least range of definition satisfyin g (72). T h en  b y  the theorem  we can  

conclude th a t 9 is partial recursive.

Som e other operations besides those ju st noted can be handled b y  

m ethods already considered, e.g. the definition of several functions  

sim ultaneously (cf. E x a m p le  4 § 46). Still other notions we m ight em ploy  

w e w ould exp ect to be able to explain first in term s of the above vo ca b u 

lary. O ur results are form ulated so as to constitute, not on ly m ethods for 

show ing particular functions to be partial (or general) recursive, b u t  

also tools for enlarging our stock of m ethods as the need m a y appear.

T heorem X X V I I .  F or each n  >  0: G iven a n y  p a r tia l recursive func
tion  fy(z, x n), a num ber e can be found which defines ty(e, x v  . . . ,  x n)
recu rsively , i .e . such that
(74a) {«}(*,, . . . , x n) ~  x n).
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S im ila r ly , for l com pletely defined functions an d  pred ica tes  Y ,  reading  
t(p a r tia l recursive in  Y ” , t(defines recursively  from  Y ” , “ { in  p lace of 
(tp a r tia l recursive” , ((defines recu rsive ly” , “ { } ” , respectively . (The re

cursion theorem , K leene 1938 .)

P roof (for 1 =  0) .  T h e  function 4>(S*(y, y), x n) is partial

recursive (cf. Theorem  X X I I I ) .  L e t f  define it  recursively, and ta k e  

e =  S U f,  /). T h en  e defines recursively the function of n  variables obtain ed  

b y  su b stitu tin g the num ber / for th e variable y  in <J>(S* (y, y), x v  . . . ,  x n); 

i.e. e defines recursively <ĵ (S*(/, /), x lt . . x n);  i.e. e defines recursively  

ty(e, x v  . . x n), as w as to be shown.

D iscussio n . T h e theorem  can be read as sayin g th a t for a n y  partial 

recursive function ^ the equation

z{x lt . . . ,  x n) ~  ty(z, xv  . . . ,  x n)
can be solved for z. F o r the notation, cf. § 65 especially (66). I f  w e w rite  

(p(xv  . . . , x n) for the function e(xv  . . . , x n) defined recursively b y  the  

solution e of this equation, (74a) can be w ritten  

(74b) <p(xlt . . . , x n) ~  <\>{et x n).
B u t <J>(z, x v  . . . ,  x n) can be a n y p artial recursive function of 1 variables. 

T h u s the theorem  says th a t a partial recursive function 9 can be found  

whose am biguous valu e <${xv  . . . , x n) is given  from a G odel num ber  

e of itself and the num bers x v  . . . ,  x n b y  a n y  preassigned partial recursive  

function ty. T h en  9 can be used in con structing its own am biguous valu e, 

since in buildin g ty(e, x v  , . , , x n) w e can use e in parts of the form  

® * (e ,u v  . . . , u n) (briefly e(uv  . . . ,  u n)) t and <1>n(e, u v  . . . ,  u n) is 

(p(uv  . . . ,  u n). T h is can be em phasized b y  statin g  a corollary. (The version  

of the corollary for l >  0 is left to  the reader.)

Corollary. G iven a p a r tia l recursive fu n ction al F(£; z, %n),

where £ ranges over p a r tia l recursive functions of n variab les , there can be 
found a p a r tia l recursive fu n ction  9 and a Godel num ber e of 9 such that
(75) cp(xv  . . . , x n) ~ F ( < ? ; e ,x 1, . . . ,  x n).

G iven a p a r tia l recursive fu n ction a l F(£, 0X, . . . ,  0r ; z, w v  . . . ,  w r, x v . . . ,  x n), 
where £ ranges over p a r tia l recursive functions of n  variab les , an d  0lf . . . ,  0r 

over p a r tia l recursive fu n ction s of spec ified  num bers of variab les , there can  
be fou n d a p a r tia l recursive fu n ction  9 (wlf . . . ,  w ri x v  . . . ,  x n) a n d  a  Godel 
num ber e of 9 such th a t, when tlf . . . ,  tr are a n y  Godel num bers of%Xi . . . ,  0r, 

respective ly ,

(76) 9 (̂ 1, . . . , tTi x^  . . . ,  #n) F(9, 0i , • • •, 0r, 1̂, • • •, ^1, • • •, ^«)*
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P roof (for r =  0). By Theorem XXIV (a), we can find a partial 
recursive function $ of n-\~2 variables such that

F(£; z,xv  . . . ,  xn) ~  <J/(s, 2, xlf . . . ,  #w)
when s is any Godel number of Now let . . . ,  #n) ^(z, z,
xv . . . ,  #n). Then by the theorem we find a number e for (74). Writing 
<p(xl9 . . . , x n) for the function defined recursively by e, we have

. . . , x n) ~  <[>(*, %, . . xn) ~  ty(e, e, xv . . . , x n) ~  F(<p; e} xv  . .  . , x n).
D iscussion (concluded). When 9 is partial recursive uniformly in 

we may consider that 9 depends partial recursively on £ as a function; 
when <p(xlt . . . ,  xn) is a partial recursive function of xlf . . . ,  and a 
Godel number of that 9 depends partial recursively on £ as an object. 
The gain in Theorem XXVII over XXVI is that now in imposing a 
relationship expressing the ambiguous value (p(xv . . . ,  xn) partial 
recursively in terms of 9 itself and xlf . . . ,  xn> we can let 9 enter not 
only as a function but also as an object. Our conclusion then is that some 
partial recursive function 9  satisfies the relationship; but in general 
different solutions 9  will be obtained from different selections of the 
Godel number / of ^(5^(y, y), xlf . . . ,  xn) in the proof of Theorem XXVII.

Theorem XXVII does not quite include XXVI as the case 9  enters 
into the “recursion” only as a function (so that the F(£; z, xv . . . ,  xn) of 
the corollary reduces to F(£; xv . . xn)), because the method of proof of 
Theorem XXVII does not (at least without some further argument) 
show that the partial recursive solution 9 obtained is necessarily the one 
having the least range of definition. So Theorem XXVII via its corollary 
can take the place of Theorem XXVI in supporting Theses I, I*, I t (b) 
and I*t (b), but not It (a) and I*t (a).

Of course it is only after we have Church's thesis that we have the 
means of regarding every effectively calculable function as a number- 
theoretic object. That then an effectively calculable function can be 
found to satisfy any “recursion” in which it enters as an object besides 
as a function is a consequence of the thesis which proves useful in further 
developments.

E xample 2 (concluded). To treat this by Theorem XXVII instead 
of XXVI, take the x) for Theorem XXVII -  d>1{z9x) +  l:

E 'am ple#3 (concluded). Similarly taking ty(zt x) ~
F(X# ̂ (z ,  x),x'*x) — \zw[{x=0 & w=q}  V {x> 0 & w=x{x— 1 , x— 1))}].

E xample 5. Given fixed partial recursive functions Qv . . . ,  05, 
to find a partial recursive function 9  with the following properties. If
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0iW =  ?(*) =  1- If OiW =  1. ?(*) ^  02(?(O3W))- I f  01 (x)  =  2,y(x) ~  04(«9>x) where a^ r is some number which defines Xy 9 (05(.r, y)) 
recursively. Note first that if e is any Godel number of 9 , then 
9 (Gsfc, y)) ^  ®i(«, 05(%, y)). Now teacy®^, 06(*, y)) is a fixed partial 
recursive function. If g be a Godel number of it, then S\(g, ef x) is 
a Godel number of XyO^e, 05(x, y)), i.e. of Xy 9 (05(#, y)). Now the above 
three properties are imposed on 9  by the equation

<p(x) p^[{0iM =O & w— 1 }
V {0!(*)=1 & zc= 02(9(03W))} V {04(*) =  2 & tt' =  04(5'2(g, c, *))}].

This is of the form (75) for the corollary, since (using Theorems XVII, 
XVIII, XX, XXIII) the right side is of the form F(9 ; e, .r) where F(£; z , x) 
is a fixed partial recursive scheme function, and e may be any Godel 
number of 9 . For the theorem

^{z,x) OL \IW [{0XW  = 0 & w=  1}
V {0jW =  1 & ic=02(O1(r, 03(*)))} V {01(-t) =  2 & Zt' =  04(S?(g, 2, .r))}].

The problem arose as above with particular functions 6a, . . . ,  05 in Kleene 
1938 . We can generalize it by considering 0a> . . . ,  05 as unspecified 
partial recursive functions. Let tv . . . ,  t5 be any Godel numbers of them. 
If h is a Godel number of Xztcxy^^z, <b2(te*, y)), then S'l(h, e, /5, x) is a
Godel number of Xy Oa(£, 0 2(/5, xt y)), i.e. of Xy 9 (65(a*, y)). Now the 
properties are imposed on 9  by

<p(*) ~  9(/1( . . . ,  ts, x) ~  (iK'[{01(*)=0 & w= 1}
V {0X(* )= 1  &  w = 0,(?(e»(*)))} v  {01(-v) = 2  &  w = 04(S®(/«, C, tb, *))}].

By the second part of the corollary, we can find a partial recursive 
9 (ie?a, . . . ,  w5, x) and a Godel number e of 9  to satisfy (b).



Chapter XIII
C O M P U T A B L E  F U N C T I O N S

§ 67. Turing machines. Suppose th a t a person is to  com pute  

the valu e of a function for a given  set of argum ents b y  follow ing pre

assigned effective instructions. In  perform ing the com putation he will 

use a finite num ber of distin ct sym bols or tokens of some sort. H e can  

h a ve o n ly  a finite num ber of occurrences of sym bols under observation at 

one tim e. H e can also rem em ber others previously observed, b u t again  

on ly a finite num ber. T h e preassigned instructions m ust also be finite. 

A p p ly in g  the instructions to  the finite num ber of observed and rem em 

bered sym bols or tokens, he can perform  an act th a t changes the situation  

in a finite w ay, e.g. he adds or erases some occurrences of sym bols, shifts  

his observation to others, registers in his m em ory those ju st observed. 

A  succession of such acts m ust lead him  from  a sym bolic expression  

representing the argum ents to another sym bolic expression representing  

the function value.

W e now  inquire w hether it is not possible to an alyze the acts th e  

com puter can perform  into certain “ ato m ic” acts, such th a t a n y  per- 

form able act w ill be equ ivalen t to some succession of atom ic acts. T h e  

atom ic acts w ould be com binations of the follow ing: recognizing a single 

observed occurrence of a given  sym bol, erasing this occurrence, m arking  

down a single occurrence of a sym bol, displacing the point of observation  

of a given  array of sym bols to  an adjacent point, and altering the re

m em bered inform ation.

Such an analysis w as undertaken b y  Tu rin g (1936-7 , received for publi

cation 28 M a y 1936) in the form  of a definition of a kind of com puting  

m achine. A  sim ilar analysis w as proposed briefly b y  P ost (1936 , received  

for publication 7 O ctober 1936).

The' evidence th a t the analysis is com plete, i.e. th a t to an y function  

w hich is effective ly  calculable a Tu rin g m achine can be found w hich  

com putes it, w ill be review ed after we h ave becom e fam iliar w ith  the  

T u rin g m achines (§ 70).

W e begin b y  form ulatin g th e idea of a T u rin g m achine, as follows.

356
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T h e  m achine is supplied w ith  a linear tape, (potentially) infinite in b o th  

directions (say to  the left and right). T h e tap e is divid ed  into squares. 
E a ch  square is capable of being blank, or of h avin g p rin ted  upon it a n y  

one of a finite list sv  . . ., s* (j >  1) of sym bols, fixed  for a particu lar  

m achine. If  we w rite “ s0” to stand for “ b la n k ” , a given  square can thus  

h ave a n y  one of / + 1  conditions  s0, . . . ,  s,-. T h e tap e w ill be so em ployed  

th a t in a n y  “ situ ation ”  o n ly  a finite num ber ( >  0) of squares w ill be  

printed.

T h e tap e w ill pass through the m achine so th a t in a given  “ situ atio n ”  

the m achine scans  ju st one square (the scanned square). T h e sym bol on  

this square, or s0 if it is blank, w e call the scanned sym bol (even thou gh  

s0 is n o t properly a sym bol).

T h e m achine is capable of being in a n y  one of a finite list q 0, . . . ,  q*  

(k >  1) of {machine) states  (called b y  T u rin g “ m achine configurations” or 

“ w -co n figu ration s” ). W e call q0 the p a ssive  (or term inal) s ta te ; and  

q v  . . . ,  q w e  call active states. T h e list q 0, . . . ,  q* is fixed for a par

ticular m achine.

A  {tape vs. m achine) s itu a tio n  (called b y  T u rin g “ com plete con figu 

ratio n ” ) consists in a particular printing on the tap e (i.e. w hich squares 

are printed, and each w ith  w hich of the j  sym bols), a particular position  

of the tap e in the m achine (i.e. w hich square is scanned), and a particu lar  

state  (i.e. w hich of the & + 1  states the m achine is in). I f  the state is active, 

we call the situation active;  otherwise, passive .
G iven  an a ctiv e  situation, the m achine performs an {atomic) a d  (called  

a “ m o ve ” b y  Turing). T h e act perform ed is determ ined b y  the scanned  

sym bol sa and the m achine state q c in the given  situation. T h is pair  

(stt, qc) we call the configuration. (It is active  in the present case th a t q c 

is a c tiv e ; otherwise passive .)  T h e act alters the three parts of the situ ation  

to produce a resulting situation, thus. First, the scanned sym b ol sa is 

changed to  sb. (B ut a =  b is perm itted, in w hich case the “ ch an ge” is 

identical.) Second, the tap e is shifted in the m achine (or the m achine  

shifts along the tape) so th a t the square scanned in the resulting situation  

is either one square to the left of, or the sam e square as, or one square  

to  the right of, the square scanned in the given  situation. Th ird, the  

m achine state  qc is changed to q d. (B ut c =  d  is perm itted.)

N o  act is perform ed, if the given  situation is passive.

T h e m achine is used in the follow ing w ay. W e choose some a ctiv e  

situation in w hich to start the m achine. W e call this the in itia l s itu a tio n  
or in p u t.  Our notation w ill be chosen so th a t the state  in this situation  

(the in itia l state) is q v  T h e m achine th en  perform s an atom ic act. If the
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situation resulting from this act is active, the machine acts again. The 
machine continues in this manner, clicking off successive acts, as long 
and only as long as active situations result. If eventually a passive 
situation is reached, the machine is said then to stop. The situation in 
which it stops we call the terminal situation or output.

The change from the initial situation to the terminal situation (when 
there is one) may be called the operation performed by the machine.

To describe an atomic act, we use an expression of one of the three 
following forms:

%L<\d, s6^qd,

The “L”, “C”, “R ” indicate that the resulting scanned square is to the 
left of, the same as (“center”), or to the right of, respectively, the given 
scanned square.

The first part of the act (i.e. the change of s0 to sb) falls into four cases: 
when a =  0 and b >  0 , it is “prints s6” ; when a >  0 and b — 0 , “erases sa” ; 
when a, b> 0 and a ^ b t “erases s0 and prints s5” or briefly “overprints 
sb” ; when a = b, “no change”. We often describe this part of the act as 
“prints s6” without regard to the case.

To define a particular machine, we must list the symbols sv . . . ,  s;* 
and the active states qv . . . ,  qk, and for each active configuration (s0, qc) 
we must specify the atomic act to be performed. These specifications 
may be given by displaying the descriptions of the required acts in the 
form of a {machine) table with k rows for the active states and / + 1  

columns for the square conditions.
E xample 1. The following table defines a machine (“Machine 21”) 

having only one symbol and only one active state qv
Name of 
machine

Machine
state

Scanned symbol
So Sl

21 qi sxCq0 Si^qi
Suppose the symbol s2 is actually a tally mark “I”. Let us see what 
the machine does, if a tape of the following appearance is placed initially 
in the machine so that the square which we identify by writing the 
machine state qt over it is the scanned square. The conditions of all 
squares not shown will be immaterial, and will not be changed during the 
action.

q i

1 1 1
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The machine is in state qv and is scanning a square on which the symbol 
sx is printed. In this configuration, the atomic act ordered by the table 
is s1Rq1; i.e. no change is made in the condition of the scanned square, 
the machine shifts right, and again assumes state qv The resulting 
situation appears as follows.

qi

1 1 1

The next three acts lead successively to the following situations, in the 
last of which the machine stops.

<h
1 1 1

<Ji
1 1 1

q0
1 1 1 1

Machine 91 performs the following operation: It seeks the first blank 
square at or to the right of the scanned square, prints a I there, and 
stops scanning that square.

Now we define how a machine shall ‘compute' a partial number- 
theoretic function 9  of n variables (cf. § 63). The definition for an or
dinary (i.e. completely defined) number-theoretic function is obtained 
by omitting the reference to the possibility that (p(xv . . . ,  xn) may be 
undefined.

We begin by agreeing to represent the natural numbers 0, 1 , 2 , . . .  by 
the sequences of tallies I, II, III, . . . ,  respectively, the tally “I” being 
the symbol sx. There are y+ 1 tallies in the representation of the natural 
number y.

Then to represent an m-tuple yv . . . ,  y m (m ;> 1) of natural numbers 
on the tape, we print the corresponding numbers of tallies, leaving a 
single blank between each two groups of tallies and before the first and 
after the last.
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E x a m p l e  2. The triple 3,0,2 is represented thus:

We say that (the representation of) a number y (or of an w-tuple 
ylf .. ., ym) on the tape is (scanned) in  standard position , when the 
scanned square is the one bearing the last tally in the representation of 
y  (or of y m).

Now we say that a given machine $01 computes a given partial function 
9 of n variables (n > 1), if the following holds for each n-tuple %, 
of natural numbers. (For the case n =  0 , cf. Remark 1 below.) Let 
xt, . . xn be represented on the tape, with the tape blank elsewhere, i.e. 
outside of the %-f- . . .  + # n + 2 n + 1 squares required for the repre
sentation. Let $0i be started scanning the representation of xv . . . ,  xn 
in standard position. Then $01 will eventually stop with the n-\-1-tuple 
xv . . . ,  xn, x represented on the tape and scanned in standard position, 
if and only if <p(xlf .. ., xn) is defined and <p(%, . . . ,  xn) = x. (If <p(x1} . . . ,  xn) 
is undefined, $0t may fail to stop. It may stop but without an n-\-\ -tuple 
%, . . . ,  xn) x scanned in standard position.)

Example 2 (concluded). If 9 (3 , 0, 2) =  1 and $0£ computes 9 , then 
when $0t is started in the situation

qi

with all squares other than those shown blank, it must eventually stop 
in the situation

q0

where the condition of the squares other than those shown is immaterial.
Although only one symbol sx or “ I” is used in stating the arguments 

and in receiving the function value, others may be used in the progress 
of the computation. For each n > 1 , each machine (with its first symbol 
s-l serving as the tally) computes a certain partial function of n variables.

A partial function 9  is computable, if there is a machine $01 which 
computes it.



§67 TURING MACHINES 361
W e h ave not atte m p ted  here to  reproduce th e detailed  form ulation of 

T u rin g 1936 -7 , b u t o n ly  his general conception of the behavior of the  

m achines. A lth o u gh  he noted a v a rie ty  of applications of his m achines, 

he confined his detailed developm ent to  m achines for com pu tin g dual 

expansions of real num bers x  (0 <  x  <  1). T h e successive digits were to be  

printed ad infinitum  on alternate squares of a 1-w a y  infinite tape, w hile  

the intervening squares were reserved for tem porary notes serving as 

scratch w ork in the con tin uing com putation. I t  should be an easy  

exercise, after §§ 68 and 69, to  show  th a t a m achine exists w hich does 

this, if and o n ly  if the n -th  digit in the dual expansion is a com putable  

function of n . A  critique, of help to one w ho w ould stu d y  T u r in g ’s 

paper in detail, is given  in the appen dix to P o st 19 4 7 . O ur treatm en t  

here is closer in som e respects to  P ost 1936 . Post 1936  considered  

com pu tation  w ith  a 2-w a y  infinite tap e and on ly  1 sym bol.

O ur m ain o b jective n ext is to  prove the equivalence of co m p u ta b ility  

w ith  p artial recursiveness, or, w hen on ly co m p letely  defined fun c

tions are considered, w ith  general recursiveness (§§ 68, 69).

I t  is of some interest to see a t the sam e tim e w hether a 1-w a y  infinite  

tape and 1 syjnbol w ill not suffice. W e sa y  th a t a m achine 50i 1/1 com putes  
9 , if it com putes 9 su bject to the follow ing restrictions, and w e sa y  th a t  

9 is 1/1 com putable , if it is 1/1 com puted b y  some m achine 501: (i) T h e  

m achine 501 has on ly one sym b ol s*. M oreover, when 50£ has been started  

as described for a n y  w-tuple x v  . . . ,  x n, it behaves so th a t the follow ing  

((ii) —  (iv)) are the case, (ii) A  square w hich in the initial situation is to  

the left of the representation of x lt . . . ,  x n (i.e. to  the left of the b la n k  

preceding the first ta lly  of x x) w ill not be scanned in a n y  subsequent situ 

ation. H ence the com pu tation  can equ ally  w ell be perform ed on a 1-w a y  

infinite tap e (infinite to the right), (iii) If  (p(xv . . . ,  x n) is defined, then  

in the term inal situation the representation of x v  . . . ,  x n} <p(xv  . . . ,  x n) 
starts on the sam e square as did th a t of x v  . . . ,  x n in the initial situation, 

and all squares to the right of the representation of x v  . . . ,  x n, <p(xv  . . . ,  x n) 
are b lan k (also b y  (ii), those to the le ft). (iv) T h e m achine 501 e v en tu a lly  

stops, on ly  if <p(xv  . . . ,  x n) is defined.

It  w ill follow  from the results of §§ 68 and 69 th a t 1/1 co m p u ta b ility  

is equ ivalen t to  co m p u ta b ility; and hence th a t all w /s  co m p u ta b ility  

notions are equivalent, where w  is 1 or 2 according as (ii) —  (iv) are re

quired or not, and 5 is an upper bound for the num bers of sym bols different 

m achines m a y  h a ve (00, if there is no finite upper bound). (In this scale, 

our original notion of com p u ta b ility  is 2/oo com pu tability.)

O ther varian ts of 'co m p u ta b ility ’ can be form ulated, e.g. w e m igh t
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om it (iii) and (iv) w hile retaining (ii), or instead of (ii) we m ight assum e 

th a t the m achine is supplied w ith  on ly a 1-w a y  infinite tape, and require 

it to stop if a situation is reached from w hich the m achine table orders 

a m otion leftw ard from  the leftm ost square. In stead  of representing the  

num bers on the tape b y  tallies, we m ight use dual notation or decim al 

notation. It  should not be hard to show, after §§ 68 and 69, th a t each of 

these other co m p u ta b ility  notions is equivalent to ours (cf. § 70).

N o w  we exten d  our notions to  the case of com putation from l com 

p le tely  defined functions $ lt . . . ,  (briefly Y )  of m lf . .  . , m t variables, 

resp ectively. Here the idea is m odified b y  assum ing th a t a n y  valu e of 

one of the functions Y ,  if dem anded in the course of the com putation, 

w ill thereupon be supplied (cf. end § 61).

A  m achine for this purpose m a y  h ave am ong its a ctiv e  states q v  . . q*  

ones from  w hich a new  kind of act (not atom ic in character) is performed. 

L e t q c be one of these states. W hen the state is q c, and (for a certain i  
depending on c) an m r tu ple y v  . . . ,  y m. is scanned in standard position, 

the act perform ed b y  the m achine shall consist in supplyin g n ext to the  

right of this m r tuple ^1(y1, . . . ,  ymt) + 1 tallies and a blank, at the sam e 

tim e displacing b y  . . . , y m*-)+2 squares to the right all printing

w hich previously existed to the right of the scanned square, and then  

assum ing state q d (depending on c) w ith  the resulting w ^ -j-l-tu p le  

y v  . . . ,  y m., ^ i(y v  . . . ,  y mi) scanned in standard position. W h en  the state  

is q c b u t an w r tuple is not scanned in standard position, w e shall consider 

th a t the m achine performs an identical act (with resulting situation the  

sam e as the original situation). In the m achine table, corresponding  

to each such state q c, w e sp ecify  on ly  the pair i q d, as in other respects 

the act is determ ined from  th e  situation b y  the definitions ju st given  

and the functions Y .

M od ifyin g our m achine notion in this w ay, w e obtain the three n o tio n s: 

m achine from  Y ,  50? com putes  cp from  Y ,  9 is com putable from  Y .  If  (for 

fix ed  n, l , m v  . . . ,  m t) 9 is com putable from Y  b y  a m achine 9D?, the table  

for w hich is independent of Y ,  w e sa y  th a t 9 is com putable u n iform ly  from  
Y ,  or th a t the function al 9  ~  F(Y) is com putable. (The theorem s of 

§§ 68 and 69 establish uniform ity, w henever u n iform ity is assumed.)

In  defining 50? 1 /1 com putes  9 from  Y ,  and 9 is 1/1 com putable from  Y ,  

w e add the follow ing to  our form er list (i) —  (iv) of restrictions: (v) F or  

each state  qc for w hich the tab le en try  is of the form  i q d, the state  qc 

is reached o n ly w hen som e m r tuple y v  . . . ,  y m{ is scanned in standard  

position and all squares to the right of the scanned representation of 

y lf . . . ,  y mt are blank.
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W e can easily form ulate the definition of ‘co m p u ta b ility ’ from assum ed  

functions, say  from ^ (with l =  m x =  1), in an equivalent w ay, in w hich  

the m achine performs on ly acts atom ic in character, b u t is supplied w ith  

a tape h avin g a (potentially) infinite printing representing the sequence  

of the values of This printing m a y  be on a second tape, or on alternate  

squares of the one tape.

R e m a r k  1. In this chapter, outside the present rem ark and passages  

referring to it, we shall understand th a t we are dealing w ith  functions of 

n  >  1 variables. Since we h ave not provided for representing n-tuples of 

natural numbers on the tape for n =  0 , we sa y  a m achine com putes  a 

function 9 of 0 variables, if it com putes the function cp(x) of 1 variable such  

th a t <p(x) ~  9 . For an assum ed function of 0 variables, the non-identical 

act from a state q c w ith  table en try i q d is to be perform ed w hen a n y  

1-tuple x is represented on the tape. W ith  these definitions, it w ill follow, 

as soon as we h ave proved Theorem s X X V I I I — X X X  for functions of 

>  0 variables, th a t th e y  also hold for functions of 0 variables.

§  68. Computability of recursive functions. T heorem X X V I I l .  

Every p a r tia k  recursive function  9 is  1/1 com putable. E very  function  cp 
p a rtia l recursive in  l com pletely defined functions  Y  is  1/1 com putable from  W.

T h e proof, given  a t the end of this section, w ill be based on Corollary  

Theorem  X I X  § 63 (for 1 =  0  and a general recursive 9 , on Corollary  

Theorem  I X  §58). A n  in tu itive  calculation b y  Schem ata (I) —  (VI) is 

accom plished b y  repetitions of a few  sim ple operations, such as cop yin g  

a num ber previously w ritten  (at a determ inate earlier position), adding or 

subtractin g one, deciding w hether a given  num ber is 0 or not 0. W e  

shall first construct some m achines to perform  such operations as thes6.

W e begin b y  introducing some notations w hich w ill be con venient 

here, including m odifications of notations used in § 67.

A  given  square of the tape m ust now h ave one of tw o conditions s0 
and sv or blan k and printed w ith  a ta lly  “ I” , or w hite and black. In  the  

illustrations in this section, it w ill be convenient to show these tw o con

ditions as “ 0” and “ 1” , respectively.

T o  id en tify  the scanned sym bol in our illustrations, we now  u su ally  

w rite sim ply a bar over it, instead of the m achine state as in § 67. 

Som etim es a sm all num eral “ 1” or “ 2” will be w ritten  w ith  the bar to  

indicate a certain m achine state (the sam e in all occurrences of th a t  

num eral), to w hich we wish to call atten tion  w ith ou t in dicatin g at the  

m om ent w hich of q0, . . . ,  q fc it is.



In  describing an atom ic act, we now w rite “ P ” (“ prin ts” ) for ch an gin g  

0 to 1 (i.e. s0 to Sj), “ £ ” (“ erases” ) for changing 1 to  0 (i.e. sx to s0), an d  

n othing for the change sa to  s5 w hen a =  b. W e om it the “ C ” w hich w e  

used in § 67 to sign ify no change in the scanned square. W e now  w rite  

sim ply “ 0” , “ 1” , . . . ,  “ ft”  for the m achine states q 0, . . . , q fc. F o r  

exam ple, the act w ritten  “ s + q o ” in § 67 is now  w ritten  as “ P 0 ” w hen s0 

w as the scanned sym bol in itially, and as “ 0” w hen sx w as the scanned  

sym b ol in itially.

A s a further exam ple, we repeat the table for M achine 21 (E xam p le I 

§ 67), and the former illustration of the operation it perform s (showing 

now on ly  the initial and final situations).
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S tartin g from the initial situation

T 1 1 0,

M achine 51 reaches the term inal situation

1 1 1 T.
M achine 21 prints on the first b lan k square at or to  the right of the  

scanned square, and stops there.

In  our illustrations prior to “ Proof of Theorem  X X V I I I ” , none of the  

squares to  the left or right of those shown is scanned in a n y  interm ediate  

situation during the m achine action. T h u s their condition is im m aterial.

F o r each m achine con structed prior to “ Proof of Theorem  X X V I I I ” , 

w e shall state  w h a t is the leftm ost square scanned in a n y  interm ediate  

situation, in each case w hen it falls outside the in terval betw een the  

in itially  an d  term inally scanned squares inclusive. T h is inform ation  

w ill be used in concluding th a t the m achines w e bu ild  in the proof of the  

theorem  satisfy  the restriction (ii) § 67.

In  this section w e shall gen erally thin k of a sequence of y + 1  con

secutive printed squares preceded and follow ed b y  a b lan k square as 

representing the natural num ber y .  T h e sam e b lan k square m a y  be  

regarded sim ultaneously as the last square in the representation of one 

num ber and the first in the representation of another. T h is enables us 

to thin k of* a n y  printing on the (2-w a y  infinite) tap e as consisting of 

a finite succession of representations of natural num bers. More than  one 

consecutive b lan k squares (say 2 + 1  of them) betw een tw o groups of 

consecutive printed squares we call a gap  (of z  squares) b etw een  the

N am e of 

m achine

M achine

state

Scanned sym bol

0 1

2t 1 P 0
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num bers represented. T h e b lan k portion of the tap e before the first, or 

after the last, printed square we also call a gap  (of oo squares). A s  in  

§ 67, we do not thin k of m  successive representations of natural num bers on  

the tape as representing an m -tuple, unless there are no gaps betw een them .

Sim ilar rem arks a p p ly  to a 1-w a y infinite tape, provided the first 

(leftm ost) square is blank. There m a y  or m a y  not be a (finite) gap  before  

the first num ber.

N ow  consider the problem  of constructing a m achine SB to perform  the  

follow ing o p eratio n : G iven  a num ber on the tape, not the leftm ost, to  

m ove this num ber to the left so as to close the gap  (if any) betw een it 

and the preceding num ber. T h e given  num ber is to be scanned in standard  

position before and after the operation. T h e leftm ost square scanned in 

a n y situation during the action shall be the rightm ost printed square  

of the preceding num ber.

W e begin w ith  an illustration, show ing a typ ica l initial situation  

(Situation 1), some proposed interm ediate situations not necessarily  

consecutive (Situations 2 — 16), and the desired term inal situation  

(Situation 17), for one plan for m echanizing the operation. E xp lan a tio n s, 

and the tabl£ of a m achine w hich w ill perform  the operation according  

to this plan, w ill follow. T h e “ SB,” , “ 932” , " » 8” , at the right refer to  

an analysis of this m achine as a com bination of sim pler m achines, given  

afterwards.

1. 1 0 0 0 1 1 T 0

®1
2. 1 0 0 0 1 T 0 0
3. 1 0 0 0 1 1 0 0
4. 1 0 0 1 1 1 0 0
5. 1 0 0 T1 1 1 0 0 1 *6. 1 0 0 1 1 I 0 0

®1

r
7. 1 0 0 1 1 0 0 0
8. 1 0 o 1 1 0 0 0
9. 1 0 1 1 1 0 0 0

10. 1 0 l1 1 1 0 0 0 1 «11. 1 0 1 1 T 0 0 0 '

* ®1

r ^2
12. 1 0 1 1 0 0 0 0
13. 1 0 1 1 0 0 0 0
14. 1 1 1 1 0 0 0 0
15. 1 T2 1 1 0 0 0 0 } ®»16. 1 0 1 1 0 0 0 0 :1 3117. 1 0 1 1 1 0 0 0
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T h e step from Situation 1 to Situation 2 is an erasure of the scanned 1, 

and a m otion once to the left. T h en  (2 —  3) the m achine seeks the first 

b lan k square at or to the left of the scanned sq u a re; (3 —  4) it prints  

there, and goes one more square to the le f t ; (4 —  5) it recognizes (in 

this illustration) and registers th a t it is now on a blan k square, and  

goes one square to the r ig h t; (5 —  6) it goes to standard position over the  

num ber now  being scanned. A ltogeth er 1 —  6 m ove the num ber as a 

w hole one square to the left. T h en  6 —  11 repeat this operation. T h e  

sam e cycle  of steps is started again (11 —  14), b u t is concluded dif

feren tly ( 1 4 —  17) after 1 instead of 0 is discovered on the leftm ost 

square exam ined (at Situ ation  14).

T h e reader m a y  ve rify  th a t the m achine defined b y  the follow ing  

table w ill carry out the operation in this illustration, passing through  

Situations 1 —  17 and other interm ediate situations; and he m a y con

vin ce him self now  (or after the n ext discussion) th a t it will alw ays perform  

the operation described, startin g from a n y initial situation of the kind  

described. W e leave a dash “ — ” in place of the atom ic act order at those  

places in the table where the act ordered is im m aterial to us, because the  

configuration is one w hich w ill not arise in our use of the m achine, i.e. 

w hen it is started from  an in itial situation of the kind described. H ow ever  

the definition of the m achine m a y be understood to be com pleted b y  

su p p lyin g “ 0” at those places.

N am e of 

m achine

M achine

state

Scanned sym bol

0 1

93 1 — E L 2
2 P L 3 L 2
3 R4 R 5
4 L I R 4
5 — E R 6
6 P 0 R 6

In discovering this m achine, we first an alyzed the w hole operation we 

w ish it to perform  into sim pler (not necessarily atom ic) acts, and then  

further an alyzed  these into the atom ic acts to be performed b y  the  

m achine. W e can thin k of the m achine as obtained b y  connecting together  

several sim pler m achines w hich perform one or a succession of the steps in 

the prelim inary analysis. W e now introduce notations which will be 

useful in describing a m achine as a com bination of sim pler m achines.

If tw o operations are to be performed successively, and a m achine  

3£ performs the first of them , and a m achine ?) the other, then the com bined
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operation w ill be perform ed b y  the m achine we get b y  id en tifyin g the  

passive (or term inal) state  of X w ith  the first active  (or initial) state  of 

|). T h e  ou tp u t of X thus becom es the input of 9). T h e resulting m achine  

w e denote b y  “ X f T  (Then (X $ ) 3  =  X(®8).)

W e use “ Xw” for n  >  0 to m ean X . . .  X (n factors); and “ X0” for 

a m achine whose table has on ly 0 as entries, so th a t X°D and ?)3£° both  

perform  the sam e operation as ?).

W e m a y  also wish the ou tp u t of one m achine X to becom e the input  

of either a m achine |  or a m achine Q, depending on some circum stance  

arising during the action of X. W e can provide for this b y  exten d in g our 

notion of a T u rin g m achine to  allow  tw o term inal states 0̂  and 02. H ere  

such 2-term in a l m achines  w ill be used on ly as com ponents in the con

struction u ltim a tely  of m achines as defined in § 67 w ith  one term inal 

state. U pon  id en tifyin g the state 0 ± of X w ith  the initial state  of and  

the state 02 of X w ith  the in itial state of 8> w e obtain a m achine w hich

we denote b y  “ X j

W e shall now  express M achine 33 as a com bination of several m achines. 

First, w e define a m achine 93x w hich performs the operation illu strated  

b y  1 — 5 or b y  6 —  10 or b y  11 —  15; i.e. such th a t, w hen started  

scanning a num ber in standard position, it erases the scanned square, 

prints on the first b lan k square to  the left, and goes to  state  0X or 02 

scanning th a t square, according as the square n ext left of th a t is b la n k  or 

printed. T h e leftm ost square scanned during the operation is the square  

n ext left of the term in ally scanned square. T h is m achine has the follow ing  

tab le  (cf. Lines 1 — 3 of the tab le for M achine 93).

N am e of 

m achine

M achine

state

Scanned sym bol

0 1

1 —  E L 2
2 P L 3 L 2
3 R 0 1 r o 2

T h e operation illustrated b y  5 —  6 or 1 0 — 11 is perform ed b y  the  

m achine w ith  the tab le  (cf. L in e 4 of the tab le for M achine S3):

532 1 L 0  R l
T o  perform  1 5 —  16, sim ilarly w e h ave (cf. Line 5 for M achine S3):

533 1 —  ERO
T h e  operation illustrated b y  1 6 —  17 is perform ed b y  M achine SI.
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The action of Machine 93 can be described in terms of 31, 93x, 932 and 
933, thus. We first use 93x, then according as the terminal state is 0X or 02, 
we use 932 or 933. In the case that 932 is used, its output is fed back into 93x. 
In the case that 933 is used, its output is fed into 31. We express this by 
the formula

where the dots express that the output of 932 is fed back as input for 93x. 
The notation is suggested by that for repeating decimals. If the operation 
performed by 93x each time produced an output with state 0V the oper
ation performed by 93x932 would be repeated ad infinitum. This would 
actually happen if Machine 93 were started scanning the leftmost number 
on the tape in standard position; Machine 93 would then keep moving 
this number square after square to the left.

Formula (a) indicates how to construct the table for Machine 93 from 
those for 31, 93x, 932 and 933. In the table for 93x, we replace the terminal 
states 0X and 02 by the initial states for 932 and 933, respectively, re
numbering these suitably as 4 and 5; etc. (cf. the table for 93 as first given) ̂

Now let us build a machine (for each fixed m >  1) such that: 
Machine Qm, when started scanning in standard position the represen
tation of an m-tuple y lf . . . ,  y m of numbers, with all squares (or at least 
the first y 1-j~2 of them) to the right of the m-tuple blank, copies y x 
following the m-tuple without a gap, and stops scanning the copy in 
standard position. The leftmost square scanned during the action is the 
first (blank) square of the given m-tuple.

For example, from the initial situation shown next (Situation 1), Q4 
shall reach the situation shown last (Situation 16). A plan for the action 
is indicated by the intervening situations shown.

(a)
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1. 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1

f «J2. 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 7 0 0 0 J I $ 43 . 0 1 1 I 0 1 0 1 1 1 1 0 1 1 0 1 0 0 0 '
h i4 . 0 1 1 I 2 0 1 0 1 1 1 1 0 1 1 0 1 0 0 0 | s5 . 0 1 T 0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 0 :
K6. 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 7 0 0 0

K7. 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 J I 3>48. 0 1 I 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 '
I s  1 J

9. 0 1 72 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 ( 510. 0 T 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 '
l ® ‘ j11. 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 7 0 0 i h i12. 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 T 0 [ s 413. 0 T 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 '
i ® ! J

14. 0 T1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 J ( s15. 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 11 ®4 J16. 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 I 0
M achine S , according to the plan, when started scanning in standard  

position a num ber w hich is followed b y  a gap, goes right tw o squares, 

prints and stops there.

M achine ® , when started scanning in standard position a num ber  

which is not the leftm ost-on the tape, goes left to standard position on 

the n ext num ber to the left. H ence 5)m, when started scanning in standard  

position a num ber to the left of w hich at least m  num bers occur, goes left 

passing over m — 1 intervening num bers to standard position on the m -th  

num ber to the left.

M achine @, when started in standard position on a num ber, decides 

w hether th a t num ber is 0 or greater than 0, and assumes state 0X or 02 

according to w hich is the case, w ith  the num ber still scanned in standard  

position. T h e leftm ost square scanned during the operation is the square  

next left of the scanned square.

M achine fj, when started scanning a printed square, erases and goes 

left one square.

M achine © goes one num ber (& m goes m  numbers) to the right, ju st  

as %  goes one num ber (<J)m goes m  numbers) to the left.

M achine when started scanning in standard position a num ber 

w hich is not the rightm ost on the tape, fills up the gap  (if any) betw een  

th at num ber and the n ext one to the right, increasing the first num ber b y  

the num ber of squares th a t con stitu ted  the gap, and stops scanning the  

resulting num ber in standard position.
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If w e can find m achines ©, <2), (S, @, §  as described, then M achine

w ill be given  b y  the form ula

(b) 3 .  -

T h e  operation perform ed b y  is repeated, so long as the ap

plication of @ gives state 02; b u t w hen it gives 0X, the action is term inated  

b y  ^)©w.

W e giv e  tables for 3), @ and ip, leavin g those for (£, g  and © to the reader.

N am e of 

m achine

M achine

state

Scanned sym bol

0 1

1 L 2 L I

2 L 2 0

© 1 — L 2
2 R 0 1 R 0 2

$ 1 — R 2
2 P R 2 L 3

3 — E L 0
B y  several applications of w ith  suitable values of m , w e can co p y  

w ith ou t gaps a n y  perm utation (allowing repetitions) of the num bers 

represented rightm ost on the tape w ith ou t gaps betw een. F o r exam ple, 

from  the initial situation

0 1  1 1 0 1 0 1  1 1 1 0 1 I  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

the m achine $•[ ( =  (Q4)4) reaches the term inal situation

0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 T 0 0 ,
the w hole quadruple being copied; and $ 4^2 reaches

01 1 1 0 1 0 1  1 1 101 101 1 1 0 1 T 0 0 0 0 0 0 0 0 0,
the first and fourth num bers being copied.

T h e m achine defined thus

(c)
w hen started in standard position on an m -tuple y lf . . . ,  y m, w ith  all 

squares (or at least the first y 1+ . . .  Ar y mAr 2 m - \- 1) to the right blank, 

copies the w -tu p le  to  the right after leavin g a one-square gap, and stops  

scanning the co p y in standard position. T h e leftm ost square scanned  

during the' action is the first (blank) square of the given  m -tuple. For  

exam ple, from the ab o ve initial situation, reaches the term inal sit

uation

0 1 1 1 0 1 0  1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 7  0.



W e  now  w ish a m achine 2  w hich, started scanning a num ber in standard  

position, w ill erase all num bers (if any) to the left of this up to the first 

gap  encountered, and return to standard position on the num ber originally  

scanned. T h e leftm ost square scanned in the operation shall be the square  

n ext rightm ost in the group of consecutive blan k squares con stitu tin g the  

gap. F or exam ple, from the situation

0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 7  0,

M achine 2  reaches the term inal situation

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  1 T 0 .

The construction of 2  is left to the reader.

P roof of T heorem X X V I I I  for 1 =  0. T h e proof is b y  an induction  

based on Corollary Theorem  X I X  § 63. There are six cases, according  

to w hich one of the schem ata (I) —  (VI) is applied last in the given  

definition of 9 b y  these schem ata. For each case, we m ust show how  to  

construct a m achine w hich 1/1 com putes 9 .

T o  describe the initial situation in the com putation of <p(xlf . . . ,  x n) 
for a given  n-tuple x v  . .  ., x n we now w r ite :

1 . , x^f Xn,
Here each “x ” stands for * * + 1  consecutive printed squares, the com m as 

stand for blanks form ing part of the representation of the w-tuple, and  

the bar indicates th a t the representation of x n is scanned in standard  

position. U nder the definition of co m p u ta b ility  (§ 67), all other squares 

to the left and right are also blank. T h e term inal situation, w hich 9JL 

m ust reach if <p(xlf . .  .,  x„) is defined, we m a y  w rite sim ila rly:

,  Xj ,  .  .  . ,  Xnf (p(xv  .  .  . ,  #n),

T h e first com m a here and in the abbreviation  for the initial situation  

(Situation 1) refer to the same square of the tape, and here again all 

squares not indicated are blank (for (iii) § 67). W hen started from  

Situation 1 , 9D?9 shall stop even tu ally, on ly if <?(xv  . . . ,* „ )  is defined (for

(iv)). From  Situation 1 , m ay go arbitrarily far to the right, bu t m ust 

never scan a square to the left of the one represented here b y  the first 

com m a (for (ii)).

Case (I) (Schem a (I)): <p(x) =  x'. L et

Case ( I I ) : <?(xv  . . . ,  x n) =  q. L et

Case (III): <p(xlf . . . , * „ )  =  L et =  S«-/+i*

Case (I\ ). ty{x\> • • •> x tl) — • • •> • • •» %m{%i> • • *» x.n)').
B y  the hypothesis of the induction, there are m achines 9)?^, . . . ,  9Jixm,
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w hich 1/1 com pute X v  • • •, Xm> i>, respectively. T h e plan of the co m p u ta

tion  of y {x lf . . x n) is as follows. S tartin g  from  Situ ation  1, w e co p y  the  

w -tuple % , . . . ,  x n w ith  a one-square ga p  (shown b y  the double co m m a ): 

2. , x^f . • . ,  x nt , x , x nt
T h e  ga p  m arks the beginn ing of a  tem porary record, to be erased later. 

M achine perform s this cop yin g operation. M achine if started  

from  the situation , x v  . . . ,  x n, , w ill go to the situation

, x lt . . . ,  x n, Xi{xv  , provided Xi(x i< • ••>*») is defined. In

perform ing this operation, 9KXl does n ot in a n y  interm ediate situation  

scan a square to  the left of the first square in , xv  . . . ,  x„, 
H en ce if 9JiXi is started  from  Situ ation  2, th e presence of th e addition al 

p rin tin g , xv  . . . ,  x„, to  the left w ill not affect its action. So  

from  Situ atio n  2, 2RXl w ill go to  the follow ing, provided Xi(x i> • • • , * „ )  

is d e fin e d :

3. , Xi, . . ., Xn, , Xx, . . .,  Xn, Xl{x l> • • • > x n)>
N e x t  w e co p y  xv  . . . ,  xn, w ith o u t a gap, b y  M achine 3™+ 1, obtain in g:

4. , x 1, . . . , x n, , x 1, . . . ,  xn, Xiixi> . • •, xn), % , . . . ,  x„,
A p p ly in g  W y 2, if Xiix i> . . . ,  x n) is defined, w e ob tain :

5. , Xx, . . ., Xni , Xx, . . ., Xnt Xl(Xl> • ’ * > x n)> X11 • • • f x nt Xz(x l> • • •» x n)i 
C on tin u in g in  this m anner, w e e ven tu a lly  obtain  the follow ing, p rovided  

all th e  fu n ction  valu es appearing are defined:

6. > Xx, . . .,  Xn, , XXf . . ., Xnt X lix l ’ • * •» x n)> • • •  i x l> • * * i x n> %m{x l> • • • > x n)>
Xl(Xl> • • • > ^n)» • • • > Xm(x l> • • • > x n)t <MXl('*‘'l> • • • • x n)> • • • > • • •» x n))t •
B y  M achine 2  w e can  then  erase ev e ry  num ber b etw een  th e scanned  

num ber <Kxi(*i, • • - . *«), • • - , X«(*i> • • • . *«)) (non-inclusive) an d the gap  

(represented b y  the double com m a), after w hich w e can close up th e ga p  

b y  M achine 58 to  ob tain :

7. , x x, . . ., Xn, <J*(Xl(̂ 1'l> • • • ’ •*'«)> • • •> Xm(x l> • • •> Xn))> > i*C.

, xx, . . . ,  xn, <p{xx, . • ., Xn),

T h e  entire operation, w hen <p(*1( . . . , x n) is defined, is perform ed b y  the  

m achine defined th u s :

3K9 =  t„ 9 K Xl X + i ^ x 2 • • • 3 n + i ^ x m \J(m-l)(n+1) + 1 S(m-2)(n+1)+2 ’ • •

C onversely, using the p rop erty (iv) of the m achines • • •» 50?Xm an<  ̂

90^, M achine applied to Situation 1 will even tu a lly  stop, on ly if all
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o f  X l ( X l > • • • > x n) >  * • • > X m { x l > • • • t % n)f  4 K X l ( ^ l »  • • • t % n) >  • • • > X w ( % j • • • > % n) )

are defined, i.e. o n ly if y {x v  . . . ,  x n) is defined.

C a s e  (V ) : F o r n  >  1 (Schem a (Vb)), cp(0, x 2, . . . , x n) ~  ty(xl9 . . . ,  x n), 
? ( / ,  , x n) ~  x(y> 9(y> • • • * *«)> • • • > *»)• B y  the h ypothesis
of the induction, there are m achines 90?̂  and 90?x w hich 1/1 com pute  

^ and x> respectively. W e carry out a series of operations to  ob tain  the  

follow ing situation (corresponding to Situ ation  6 for Case (IV)), if the  

required function values are defined. A t  each place where a choice is 

indicated, the upper altern ative applies under the condition stated, th e  

lower oth erw ise; i.e. for a g iven  y , the lower altern ative is tak en  on the  

first y  choices, and the upper on the y  +  l-st  choice.

# y % %2> • • • t * y > X 2> • • • > x nt ty(X 2> • • • > ^ n )>

r ------ , x n), if y  =  0.

y ’ X 0, <K*2> • • • »* ») .  • • • . * » »  X(°> <K*2> • • •. *»)> *2> • • •. Xn).
_1 f X(0. <M *2> • • • • *»). * 2. • • • - Xn),  if y — 1 =  0.

V i , X(^» (̂* 2̂’ • • •, Xjijt X2, • • -, Xŷ )t X21 • • • 1

x0» x(0, <M*2> • • •>*»). %  • • • . * » ) . * 2> • • •>*»)>

0 ( x ( U x { 0 ,i>{x2 , . . . , x „ ) , X 2 , . . . , x n) , X2 , . . . , X „ ) ,  if y—2 =  0.
y “ 2 ' i 2 .........

T h en  ev eryth in g betw een the last num ber and the ga p  is erased, and  

the ga p  is closed up. T h e entire operation is perform ed b y  the m achine  

901̂  defined th u s :

Sligh t changes ad ap t the treatm en t to the case n  =  1 (Schem a (Va)).

C a s e  ( V I ) : <p(xl9 . . . , x n) ~  w [% {x l9 . , . ,  x n9 y ) = 0] (for n  ^  1; cf. 

R em ark 1 end § 67). H an dled like Case (V) (but m ore sim ply).

P r o o f  o f  T h e o r e m  X X V I I I  f o r  l >  0. W e now  h ave as an additional 

case th a t <p is one, sa y  tyit of the assum ed functions Y .  In  this case <p is 

1/1 com p u ted  from  Y  b y  the m achine 90^ h a vin g  a  single a ctiv e  state  

q x w ith  the tab le  en try  i q 0.

§ 69. Recursiveness of computable functions. In  this section the  

notations w ill be those of § 67 rather th an  § 68.

T h e o r e m  X X I X .  E very  com putable p a r tia l fu n ction  <p is  p a r tia l
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recursive. E very  p a r tia l function  9 com putable from  l com pletely defined  
functions  Y  is  p a r tia l recursive in  Y .

Proof for 1 =  0. It  is possible to  represent the tap e vs. m achine  

situations of a  given  m achine SH b y  form al expressions (as indeed w e  

shall do for another purpose in § 7 1 , where the expressions w ill be called  

“ P o st w ords” ). T h e theorem  can then be considered as an application  

of (D 2) § 6 2  (extended to  p artial functions; here E x?.+1 depends on ly  

on E xj).
If details are to be supplied, the follow ing proof is a little  more direct. 

G 5d el num bers are assigned d irectly  to  the tap e vs. m achine situations; 

and instead of giv in g G ddel num bers to  deductions or proofs (as for 

Theorem  I X  § 58 and (D l)  § 62), w e sim ply num ber the successive situ

ations reached from a g iven  situation b y  a given  m achine as the 0-th ,

1-st, . . .  , z - t h , ___T h en  if one w ill read “ fu n ction ” for “ partial fu n ction ”

and “ general recursive” for “ partial recursive” , he need not use C hapter  

X I I .  T h e proof can be shortened sligh tly  b y  using Theorem  X X V I  § 66 .

In establishin g the G odel num bering of situations, w e describe the  

condition o f the tape o n ly relative to  the scanned square, instead of 

relative to  some fixed square. T h is suffices for our purpose here, since 

absolute position on the tape does not enter into the definition of com 

p u ta b ility. (For 1 js  co m p u ta b ility, absolute position or a t least position  

relative to  the first square of the representation of x v  . . . ,  x n in the  

initial situation does m atter, b y  (ii) and (iii).)

W e begin b y  assigning a G odel num ber to the (condition of the) tap e  

to  the left of a n y  particular square. L e t the conditions of the successive

squares to the left of th a t square be sWo, su , sM2, ___Since on ly  a finite

num ber of squares are printed, all b u t a finite num ber of the subscripts  

Ui are 0 . T h e Godel num ber u  of the tap e to  the left of the square shall be  

II pf*f i.e. II pv* where t is a n y  num ber which exceeds every  i  for w hich
i i<t

Ui J=. 0. Th en  u  itself is such a num ber; so 11 =  II pf* ---■  H p {̂ K
i<u i < u

A  Godel num ber is assigned sim ilarly to represent the condition of the  

tape to the right of a given square.

If in a given  situation, the Godel num ber of the tap e to the left of the  

scanned square is n, the scanned sym bol is sa, the m achine state is q Cf 
and the Godel num ber of the tape to the right of the scanned square is 

v, then the Gddel num ber of the situation shall be 2 M*3r**5c *7r.



§ 6 9 RECURSIVENESS OF COM PUTABLE FUNCTIONS 375

E xample 1. The Godel number of the situation
q 4

S i S i S3 S i So S i

where all squares not shown are b lan k is 25l-3l-23*31 -S 4*? 20*31.

If  the G odel num ber of the situation is 2U • 3° • 5 C • 7 V, the con figu ration  is 

(sa, q c). If c >  0 , and the act w hich the m achine perform s from  this  

configuration is of the form sbL q d, the G odel num ber p («, v) of th e re

sulting situation is

[2 exp n  p ^ i ' ] . 3(w)o • 5d • [7 exp  {2 b • U p f i } ] ;
i < u  i< v

and sim ilarly if the act is s bR q d. I f  the a ct is s bC q d, then po c(w, v) is 

2u .36. 5 d .7 « E ach of these functions pac  is prim itive recursive.

N o w  p defined as follows is prim itive recursive ( # F  § 45), and has the  

p roperty th a t, if w  is the G odel num ber of an a ctiv e  (passive) situation , 

then p(w) is the G odel num ber of the n ext (same) situ ation :

pM Pa .c(M 0. Ms) if Ml =  « &  Ms =  C
(a =  0, c =  1 ,

w  otherwise.

Thence we define a prim itive recursive function 0 thu s:

f 0(^, 0) =  w,
\  Q(w, z') =  p(0(^, z)).

If w  is the G odel num ber of a n y  situation, then §(w, z) is the G odel num ber  

of the situation after the n ext z acts, if the m achine perform s at least z  
acts from  the given  situ ation ; and Q(w} z) is the G ddel num ber of th e  ter

m inal situation reached from  the given  situation, if the m achine perform s 

<  £ acts from  the given  situation.

N e x t, for each n  >  1 (cf. R em a rk 1 end § 67), we define a p rim itive  

recursive function x n w ith  the follow ing property. If the w-tuple x v  . . . ,  x n 
is scanned in standard position, the state is q c, the G odel num ber of the  

tape to +he left of the representation of x v  . . . ,  x n is u t and the G od el  

num ber of the tap e to  the right of th a t representation is v, then r n(xv  . . . ,  

x n, c} u , v) is the G odel num ber of the situation. F irst we define th u s:

^i{xv  c, u, v) =

[2 exp  { ( n  P l)-p°x i- n  p (̂ + i} y 3 l -5 H 7  e x P {2°- n  p™*}].
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T h en , for n  =  1, 2, 3, . . . :

Tn+i(*i, • • • > %n> ^n+l» G v)niXn+V G (Tnfe, • • *n-l, *n> G V))o> »)•
W h en  x v  . . x n is scanned in standard position w ith  state  q lt and  

th e tap e is b la n k  elsewhere, the G odel num ber of the situation is 

x n(xv  . . x n, 1 , 1 , 1). W h en  % , . . x n, x  is scanned in standard position  

w ith  state  q 0, th e G odel num ber of the situation is xn+1(xv  . . . ,  x n, x , 0, u, v) 
for som e u  and v ; and conversely.

N o w , if 9  is the p artial function of n  variables com puted b y  the given  

m achine 501, and x v  . . . ,  x n is a given  n-tuple, then cp(xlt . . . ,  x n) is defined, 

if and o n ly  if there exists a quadruple (z, x } u , v) of num bers such th a t  

0(Tn(*!, =  x n+i(x i> . . . , x n,x ,  0, u, v), in which case x
is the va lu e of <p{xlf . . . ,  x n). A ccord in gly,

? (* i,  • • • > *») ~

((ji[0(Tn(% , . . x ni 1, 1, 1), (t)0) =  x n+1(xlt . . . ,  x nt (t)l9 0, (t)2, (O3)])l* 

Therefore, b y  Theorem  X V I I I  § 63, 9  is partial recursive (or if 9  is 

co m p letely  defined, b y  Theorem  I I I  § 57, 9 is general recursive).

P roof for l >  0 . S a y  e.g. there is one assum ed function <[/ of one 

variab le (i.e. I =  m 1 =  1). N ow , for each c for w hich the tab le en try  

corresponding to q c is of the form  \ q d, we replace “ pfl,c(Wo> W s ) if 

(w )1= a  & (w )2= c  (a =  0 , . . . , / ) ' '  in the definition of p(w) b y  “ p c(w) 
if Q c(w )” , where Q c is the p rim itive recursive predicate and pc the function  

p rim itive recursive in ^ defined th u s :

Qc(w) =  ( £ y ) 1/< „ ,(£ :w ) u < J ^ ) r < « , C iK' = Tl(y -  C> U’ V)],

Pc(w) =  Ta(Y , + (Y ), d, U , V)  w here
y  =  v-yv<w{Eu)u<w{Ev)v<w\-w=^i{y> c> u >»)].
U  =  y-uu<J E y ) y< w (E v)v<w [w = T 1{ y , c , u , v ) ] ,  etc.

T heorem  X X X  ( =  Theorem s X X V I I I  +  X X I X ) .  The fo llow ing  
classes of p a r tia l functions are coextensive , i.e. have the sam e m em bers: 

(a) the p a r tia l recursive fu n ction s , (b) the com putable fu n ction s , (c) the 1/1 
com putable functions. S im ila r ly  w ith  l com pletely defined assum ed functions  
Y .

§  70. T u r i n g ’s  t h e s is .  T u rin g's thesis th a t every  function w hich  

w ould n a tu rally  be regarded as com putable is com putable under his 

definition, i.e. b y  one of his m achines, is equivalent to Church's thesis b y  

Theorem  X X X .  W e shall now  exam ine the part of the evidence for it
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w hich pertains to  the m achine concept, i.e. w h a t w e listed as (C) in § 62. 

W h a t w e m ust do is to  convince ourselves th a t a n y  acts a hum an com 

puter could carry out are an alyzab le into successions of atom ic acts of 

some T u rin g m achine.

" T h e  behavior of the com puter at a n y  m om ent is determ ined b y  the  

sym bols w hich he is observing, and his 'sta te  of m in d ’ a t th a t m om en t.”  

T h e num ber of sym bols w hich he can recognize is finite. " I f  w e were to  

allow an in fin ity  of sym bols, then there w ould be sym bols differing to  

an arbitrarily sm all e x te n t.” (Turing 1936-7  pp. 249— 250.) T h e  w ork  

leading from  the problem  statem en t to  the answer m ust be carried out  

in som e "sym b o l space”  (Post 1936), i.e. some system a tic arrangem ent of 

cells or boxes, each of w hich m a y  bear (an occurrence of) a sym bol. 

There is a finite bound to the num ber of occurrences of sym bols (or of  

boxes where a sym bol m a y  occur) w hich he can observe a t one m om ent. 

H e can also rem em ber sym bols previously observed, b y  altering his sta te  

of m ind. H ow ever "th e  num ber of states of m ind w hich need to be  

taken  into account is finite. . . .  If w e ad m itted  an in fin ity  of states of 

m ind, some of them  w ill be 'arbitrarily close’ and w ill be con fused.”  

(Turing 193^-7  p. 250.) B u t the com p u ter’s action m ust lead from  a qu ite  

discrete object, n am ely the sym bol array representing some n atu ral 

num ber (or n -tu p le of natural num bers) as argum ent (s), to  another such  

object, n am ely the sym b ol array representing the corresponding fu n ction  

value. T h e possible states of m ind are fixed  in ad van ce of nam in g th e  

particular argum ent (s), as w e are considering com p u tation  b y  a preas

signed m ethod, and do n ot allow  m ath em atical in ven tion  in the m idst  

of the com pu ter’s perform ance. E a c h  act he perform s m ust con stitu te a  

discrete change in the finite system  consisting of the occurrences of 

sym bols in the sym b ol space, the distribution of observed squares in this  

space, and his state  of m ind.

These lim itations on the behavior of the hum an com puter in com p u tin g  

the valu e of a num ber-theoretic function for given  argum ents, b y  follow 

ing on ly preassigned rules, are of the sam e kind as enter in th e con

struction of a T u rin g m achine. T h e tap e is the sym b ol space for th e m a

chine, and the m achine state corresponds to  the com puter’s state  of m ind.

T h e hum an com puter is less restricted in behavior than  the m achine, 

as follow s: (a) H e can observe more th an  one sym bol occurrence a t a  

tim e, (b) H e can perform  more com plicated atom ic acts than  the m achine, 

(c) H is sym b o l space need not be a one-dim ensional tape, (d) H e can  

choose som e other sym b o lic representation of the argum ents and function  

values th an  th a t used in our definition of com p u tability.
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W e shall exam ine various possibilities under (a) — • (d), and see briefly  

how  each can be reduced to an equ ivalen t in term s of Tu rin g m achines. 

W e  shall u su ally  speak as thou gh  on ly one were being reduced, b u t our 

m ethods w ould serve to reduce a n y  com bination of them  successively.

U nder (a), w e rem ark th a t e.g. 17 and 21 and 100 can each be ob

served in a single act. B u t a long sequence of sym bols can o n ly  be  

observed b y  a succession of acts. F or exam ple, we cannot tell at a glance  

w hether 157767733443477 and 157767733443477 are the sam e; “ we  

should h ave to com pare the tw o num bers figure b y  figure, possibly  

tick in g  the figures off in pencil to m ake sure of their not being counted  

tw ice .”  (Turing 1936-7 p. 251.)
If  17 and 21 and 100 are not on ly observed as units b u t m anipulated  

as though each occupies a single cell of the sym bol space, we need on ly  

redefine the sym bols so th a t each of these con stitutes a single sym bol, 

in order to reduce the com pound observation  to a sim ple observation of 

th e kind used b y  a T u rin g m achine.

In actu al com putin g w e som etim es use certain m arks (accent, check, 

m ovab le p hysical pointer, etc.), w hich m a y  be placed on a given  square  

in  addition to  an ordinary sym bol. If there are j  of the ordinary sym bols, 

and n  of these special m arks, a n y  subset of w hich m a y  be p la ced  on a  

giv en  square, the num ber of the square conditions is m erely increased  

from  7 + 1  to  ( ; + 1) • 2*.

A s another exam ple of behavior in volvin g com pound observation, 

suppose th a t the follow ing sequence of sym bols is printed,

...4 4 0 1 3 8 5 7 8 9 2 6 4 ...,

th a t the observer's atten tio n  is centered at the figure 7 near the m iddle, 

an d th a t he observes clearly  a t m ost five figures centered at this 7 ;  thus  

th e sequence of the five digits 85789 together w ith  his state of m ind  

determ ine his n ext act. Som e digits further off m a y  be v a g u e ly  observed, 

b u t w ith o u t affectin g his act. T h e act shall be of one of the kinds per

form ed b y  T u rin g m achines, w ith  each separate sym b ol occurrence (not 

groups of five) o ccu p yin g a square. F o r exam ple, if the n ext act is 0 L q d, 

th e prin tin g becom es

...4 4 0 1 3 8 5 0 8 9 2 6 4 ...,

w ith  38508 observed. Such behavior can be reduced to  T u rin g m achine  

b eh avio r as follows. S a y  th a t th e sym bols are the ten  A ra b ic digits. 

T h e  b ehavior can be considered as th a t of a generalized T u rin g m achine, 

in w hich th e configuration (determ ining the act) is (e, /, a, g, h , q c) 

w here e, /, a, g } h are the digits occu p yin g the five squares centered a t
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the scanned square. Corresponding to  each state q c of this gen eralized  

m achine, we introduce a set of 104 states q cefgh (e, /, g, h  =  0, . . . ,  9); and  

we m od ify  the table so th a t upon reaching state q c, a  series of T u rin g  

m achine acts is perform ed, consisting of inspections of the tw o a d ja ce n t  

squares on each side, leading to state q cefgh w hen the four squares in  

question are occupied b y  the respective digits e, /, g, h. N o t o n ly  th e  

states q cefgh m ust be added, b u t also some states to be assum ed during  

the action leading from  q c to q cefgh. D etails are left to the reader. N o w  

the act the generalized m achine perform ed from the con figuration  

(e, /, a, g, h, q c) shall be perform ed from the configuration (a, q cefgh). 
T h is  reduction is an illustration of the rem ark th a t one can rem em ber  

a  finite num ber of previously observed sym bols b y  h a vin g changed one’s 

state of m ind when th e y  were observed.

It  m ight be th ou gh t th a t the printing on still other squares m a y  

con stitute part of the observation, e.g. th a t on certain sp ecially  m arked  

squares (finite in number). If these squares are so located  in th e sym b ol  

space th a t the com puter can find them  and return b y  acts of the kinds  

perform ed b y  Tu rin g m achines (cf. the discussion of (c) to  follow), this  

kind of com pound observation can be reduced in  a sim ilar fashion to  the  

preceding.

U nder (b), the com puter can alter other squares besides th e scanned  

square. T h e new observed square need not be ad jacen t to  the original. 

H ow ever there is a finite bound to the co m p le xity  of the act, if it  is to  

co n stitu te a single act of the com puter. More com plicated acts w ill require  

renewed m otivatio n  b y  reference to  the observed d a ta  and th e sta te  

o f m ind at interm ediate situations betw een the g iven  and resu ltin g ones. 

(Indeed it can be argued th a t the Turing m achine act is already com pound; 

an d  consists p sychologically  in a printing and change in state  of m ind, 

follow ed b y  a m otion and another change of m ind. P o st 1947  does th u s  

separate the Turing act into tw o ; w e h ave not here, prim arily  because it  

saves space in the m achine tables not to  do so.)

A ll sim ple alterations of the situation, not in the T u rin g m achine form , 

w hich are readily proposed, e.g. printing after m otion instead of before, 

are easily expressed as successions of the atom ic acts of a T u rin g m achine. 

(Much more com plicated operations, w hich could h ard ly be regarded as 

single acts, h ave already been so treated in § 68.)

Turn in g to (c), com pu tin g is com m only perform ed on 2-dim ensional 

paper, and the 2-dim ensional character of the paper is som etim es used  

in elem entary arithm etic. Th eoretically, w e m ust also consider the pos

sib ility  of still other kinds of sym bol space. T h e sym b ol space m ust be
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su fficien tly  regular in structure so th a t the com puter w ill not becom e lost 

in it during the com putation.

From  a given  square or cell of the space, there w ill be a finite num ber  

m -\-1 of w ays of m ovin g to  the sam e or an ad jacen t cell, call them  

M 0, . . . ,  M m where M0 is the identical m otion. F or exam ple, in the plane  

ruled into squares, m  =  4 (no m otion, left, up, right, down), or if diagonal 

m otions are also allowed, m  =  8. T h e com puter, whose act from a g iven  

situ atio n  m ust be determ ined b y  w hich one of a finite num ber of con

figuration s is existing, could not use more. W e lose no gen erality  in  

supposing th a t there are the sam e num ber of directions of m otion from  

e v e ry  cell; in case there are fewer from  some cells, the term inus of the rest 

of the m -\-1 m otions m a y  b e defined to  be the given  cell, i.e. these as w ell  

as M q m a y  be taken  to  be identical.

T h e  num ber of cells w hich can u ltim a tely  be reached is therefore  

coun table. T h e sam e cell m a y  be reached b y  different successions o f  

m otions, e.g. in the plane, dow n and then right leads to the sam e square  

as right and then down.

W e  shall suppose th a t an enum eration w ith ou t repetitions can b e  

g iven  of all the cells, such th a t the follow ing is the case. T o  each of th e  

w a y s of m o vin g M t (i j=  0, . . . ,  m), there is a com putable fu n ction  [xt* 

such th a t, if x  is the in d ex in the enum eration of th e given  cell, then  

[Li(x) is the in dex of the cell reached b y  the m otion M {. T h is supposition  

is realized b y  a n y  readily im agined sym bol space.

U sin g this enum eration, let the cell num bered x  in the enum eration  

(x =  0, 1 , 2 ,  . . . )  correspond to the x - th  square coun tin g rightw ard from  

a certain square (called th e 0-th) on a linear tape.

U sin g m ethods from  § 68, we can set up a T u rin g m achine w hich w ill 

find th e  |xt(^)-th square, w hen started on the x - th  square, if a dis

tin gu ish in g m ark is kept on the 0-th (or — 1-st) square. T h e com p u tation  

for this purpose can be done b y  m arking squares w ith  accents, afterw ards  

erased, w ith o u t interfering w ith  the printing already on them . T h is  

enables us to reduce co m p u tation  in the given  sym bol space to com 

p u ta tio n  on the linear tap e of a T u rin g m achine.

F o r this reduction, w e did not assum e th a t from  a n y  cell ad jacen t to  

a giv en  cell one of the m otions returns us to the given  cell, i.e. th a t ev e ry  

m otion in the space has an inverse. T h is w ould be the case in a n y  or

d in ary sym b o l space. A n  exception  is represented b y  the com puter w ho  

receives a signal at intervals b y  ear.

T h e  sym b ol space m a y  consist of several disconnected subspaces, 

each h a v in g  its own scanned cell, as e.g. in the case of a com puter w ho
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sim ultan eously reads a sym b ol on a paper b y  eye, reads another in braille  

on a  tap e b y  hand, and receives a signal b y  ear. I f  there are r  such  

subspaces, w e can reconstrue the cells to  be the r-tuples con sisting  

of a cell from  each of those respective subspaces.

In  regard to  (d), we m a y  argue th a t a natural num ber y  is g iv e n  in the  

original sense ( § 6), o n ly  if some sequence of y + 1  objects, s a y  y+1 
tallies, is g iv en ; and hence th a t a procedure for com p u tin g a fu n ction  9 
from  its argum ent (s), w hen b o th  are expressed in som e other n otation , 

w ould not solve the com p u tation  problem  for 9 , unless th e com puter  

can also proceed from  the other n otation for a num ber y  to  the sequence  

of y+1 tallies, and vice  versa.

A ccord in g to  our other argum ents, T u rin g m achines could then  be  

b u ilt w hich, given  the other n otation for y  w ould su p p ly  the y-f 1 tallies, 

and vice versa. D etails can be arranged as in the definition of com p u 

tatio n  w ithin one system  of notation. T h u s for decim al n otation , th e  

first m achine started in the first of the follow ing situations w ould go  

to  the second.

q i

1 2

q<>
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

F or th e fam iliar system s of notation, such as the dual or decim al, th e  

existence of such a pair of m achines can be established.

W e h a ve been defending T u rin g ’s thesis for num ber-theoretic fu n ctio n s; 

b u t T u rin g m achines a p p ly  equ ally  w ell to  expressions in a n y  lan gu age  

h a vin g a finite list of sym bols. B y  using them  as ju st illu strated  for th e  

case of con vertin g one n otation  for a natural num ber into another, w e  

get a direct w a y  of characterizing ‘e ffe ctive ’ operations on expressions  

in such languages, as an altern a tive to  requiring a corresponding num ber- 

theoretic function under a  particu lar effective G odel num bering to  b e  

general recursive or com p u table (§ 6 1). T h e  m ethod exten d s to  lan gu ages  

h a vin g an enum erable in fin ity  of sym bols, w henever the sym bols can  

be considered e ffe ctive ly  as com posed in turn from  the sym bols of som e  

finite list; e.g. to  the form al num ber-theoretic sym bolism , b y  regarding  

the variables a , b, c , . . .  as a , a [t a Hf . . .  (§§ 16, 50).
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*§ 71. The word problem for semi-groups. Church's original 

example of a decision problem which, on the basis of his thesis, is un- 
solvable was constructed in terms of X-definability (1 9 3 6 ). The corre
sponding example given above (Theorem XII § 60) is constructed in terms 
of general recursiveness (following Kleene 1 9 3 6 , 1 9 4 3 ). Turing 1 9 3 6 -7  gave 
examples constructed in terms of computability. This can be done e.g. 
as follows. A machine -JJi is determined by its table, containing ( /+ 1)& 
entries. We can set up a Godel numbering of the tables, and thus of the 
machines. Then the function £ defined as follows is not computable: 
%(x) =  0, ii  x  is the Godel number of a machine Wtx, and the partial 
function <px of one variable which computes has 1 as value for % as 
argument, and %(x) =  1 otherwise. So by Turing's thesis (or via the 
equivalence of general recursiveness and computability, by Church's 
thesis) there is no algorithm for deciding whether any given number # 
is the Godel number of a machine which, when started scanning x  in 
standard position with the tape elsewhere blank, eventually stops 
scanning *, 1 in standard position. As another example, there is no al
gorithm for deciding whether any given machine, when started from any 
given initial situation, eventually stops. For if there were, then, given any 
number #, we could first decide whether ^ is the Godel number of a 
machine and if so whether started scanning ^ in standard position 
with the tape elsewhere blank eventually stops, and if so finally whether 
x , 1 is scanned in standard position in the terminal situation.

These first examples of decision problems proved unsolvable are 
problems arising directly in connection with one of the mathematical 
notions (X-definability, general recursiveness, or computability) originally 
identified with effectiveness by the Church-Turing thesis.

A second class of examples, a step removed from these, are the 
decision problems for certain formal systems, e.g. Theorem 33 § 61 
(also cf. § 76, Church 1 9 3 6  p. 363).

A decision problem proved unsolvable by Post 1 9 4 7  and Markov 1 9 4 7  

is of interest as constituting the first example in which an existing problem 
from outside the field of logic and foundations has been treated.

The problem which Post and Markov prove unsolvable was proposed 
by Thue 1 9 1 4 . Suppose that a finite list alt . . . ,  a-m (m > 1) of distinct 
symbols is given; let us call them letters, and the list of them the alphabet. 
A finite sequence of zero or more (occurrences of) the letters, we call a 
word (in, or formed from, that alphabet); in the language of Chapter IV 
(§ 16), a word is simply a formal expression, when a1? . . . ,  am are the 
formal symbols, except that now we always include the empty expression.
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A  word C is p a r t  of another word D , if D  is of the form U C V  where U  

and V  are words (possibly em pty).

N ow  suppose further th a t a finite list (A x, B x), . . . ,  (A n, B n) (n >  1) 

of pairs of words is given ; we call this list the d ic tio n a ry . W e sa y  th a t  

tw o words R  and S are im m ed ia te ly  equivalent (by the given  dictionary), 

if R  and S are of the respective forms U A fV  and U B tV , or of the respective  

form s U B *V  and U A tV , for som e words U  and V  and pair (A t-, B ,) 

(1 <  i  <  n ) ; in other words, if R  is transform able into S b y  replacing a  

part A i b y  its correspondent B* in the d iction ary, or inversely. W e  

call tw o words P  and Q equivalent (by the given  dictionary), if there is a 

finite sequence R 1? . . . ,  R* (/ ;> 1) of words such th a t R x is P , and R z is Q, 

and R*_x is im m ediately equivalen t to R f (t =  2, . . . , / ) .

T h u e ’s (general) problem  is to find an algorithm  for deciding, for a n y  

given  alphabet and dictionary, w hether an y tw o given  words are eq u iv

alent. T h e problem  is also know n as the w ord problem  for sem i-groups.
T heorem X X X I .  The word problem  for sem i-groups is  unsolvable; 

in  fact, there is  a p a r tim la r  alphabet and  d ic tion ary , such that there is  no  
algorithm  for decid ing whether a n y  two words (form ed from  that alphabet) 
are equivalent (by that d ic tio n a ry ) . (Post 1947, M arkov 1947.)

P roof. Our m ethod of proof w ill consist in picking an alphabet and  

a dictionary, such th at, if w e had a decision procedure for the equivalence  

of a n y  tw o words, we could thence obtain a decision procedure for the  

predicate (E'y ) T x(x, x, y ) ,  con tradicting Theorem  X I I  §6 0  (based on  

C hurch’s thesis). T h e u n so lva b ility  of T h u e ’s problem  for the case of this  

particular alphabet and d ictionary of course im plies the u n so lva b ility  of 

the general problem.

I t  is convenient now to consider the equivalence relationship betw een  

tw o words in term s of the p ossib ility  of form ally deducing the second  

word from the first b y  use of 2n  rules of inference, as follows (i =  1, . . . ,  n ) :
(a)

U A tV

U B .V ,
(b)

U B ,V

U A .V ,

where U  and V  are an y words (possibly em pty) in the alphabet a x, . . . ,  a m.

W e shall first stu d y sem i-T h u e system s  in w hich on ly the n  rules of 

inference (a) are adm itted, bu t not their inverses (b).

W e shall describe a m ethod b y  w hich, given a n y particu lar Turing  

m achine, we can set up a sem i-Thue system  such th a t the tap e vs. 

m achine situations are represented b y  words of the sem i-Thue system , 

and the atom ic acts of the m achine correspond to  applications of the  

rules (a).
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T h e alphabet of the sem i-Thue system  shall consist of s0, . . . ,  s, 

(representing the square conditions for the m achine), q 0, . . q k (rep

resenting the m achine sta tes), and an additional sym bol h ( j + k + 3  
letters altogether).

In  a given  tap e vs. m achine situation, sa y  th a t the sm allest unbroken  

piece of tap e containing all printed squares and the scanned square consists 

of r  squares (r >  1). L e t the conditions of these squares from  left to  

right be s^, . . . ,  s^. L e t the p-th. of these squares be the scanned square  

(1 <  p  <L r). L e t the m achine state be q c. T h en  the situation shall be  

represented b y  the word

• • • s^ q cS ^ +1 . . .  s ^ ,

w hich we call the P o st w ord  for it. (W hen is a w ord a P ost w ord?)

E x a m p l e  1 . T h e P ost w ord for the situation of E x a m p le  1 § 69 

is hs1s1s3s1q 4s0s1h.

T h e n  rules of inference (a) of the sem i-Thue system  shall com prise 

one or more rules corresponding to each of the ( / +  \)k  a ctive  configu

rations of the T u rin g m achine. If  the table en try  for an a ctive  con

figuration (sa, q c) is of the form  sbZ,qd w ith  b +  0, there shall be j + 2  
corresponding rules as follow s (e =  0, . . . , / ) ,

U sgs0q cV  U h s0q cV

U s eq ds6V , U h s o q ^ V ;

if the table en try is s0L q d, there shall be ( j + 2 ) 2 rules as follows

(e> / =  o , . . . , / ) ,

Us^SqqeS/V U h saq cs/V  U s esaq ch V  U h saq ch V

U s eq ds0s ,V , U h s0q ds0s ,V , U s eq dh V , U h s0q dhV .

Sim ilarly there shall be j + 2  rules, if the table en try  is of the form  s bR q d 
w ith  b +  0 ; and ( j + 2 ) 2, if of the form  s02?qd. If  the e n try  is of the form  

sbC q d, there shall be one rule, as follows,

U s aq cV

U s bq dV .

In  these n  rules the A / s  are all distinct. G iven  the P ost word for an  

a ctiv e  situation, e x a c tly  one of these n  rules (a) is applicable to it as 

prem ise, n am ely the rule or one of the rules corresponding to the con

figuration (s'a, q c) in th a t situation, and in on ly one w a y, i.e. w ith  on ly  

one choice of the U  and V . (For a rule in w hich the first sym bol of the  

A t- is h, the U  w ill alw ays be em pty.) T h e application of the rule gives as 

conclusion the P ost w ord for the situation resulting b y  the atom ic act
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of the m achine from  the given  situation. G iven  the P ost w ord for a passive  

situation, none of the n rules is applicable.

H ence a given  word Q  is deducible from  a given  P ost w ord P  in the  

sem i-Thue system , if and o n ly  if Q is the P ost w ord for a situ ation  w hich  

the T u rin g m achine w ill reach from the situation represented b y  the  

P ost word P.

T h e partial recursive function 0 • p y T ^ x , x } y)  is defined and has the  

valu e 0, if and on ly if {E y )T x(x9x 9y)  (cf. §63). B y  Theorem  X X V I I I ,  

there is a Tu rin g m achine w hich 1/1 com putes O -p y T ^ x , x , y ).  W e set up  

the sem i-Thue system  corresponding to this m achine. In  this sem i-T hu e  

system , from the Post word for the situation in w hich a num ber x  is 

scanned in standard position w ith  state q x and the tap e is b lan k elsewhere 

(i.e. the P ost w ord hsx . . .  s ^ h  w ith  x +  1 occurrences of sx), w e can  

deduce the P ost word for the situation in w hich the num ber pair x , 0 

is scanned in standard position w ith  state q 0 and the tap e b lan k else

where (i.e. the P ost word h s t . . .  s ^ s ^ h  w ith  x + 1 occurrences of sx 

preceding the s0), if and o n ly if (E yY T ^x, x, y ).  Since b y  use of Church's  

thesis there is no algorithm  for deciding w hether (£‘y ) r i (^, x , y)  (Theorem  

X I I ) , there can be no algorithm  for deciding, for a n y  tw o g iven  words  

P  and Q  in the sem i-Thue system , w hether Q  is deducible from  P , i.e. 

w hether Q  follows from  P  b y  the rules (a).

T o  establish the theorem , it  rem ains to  exten d  this result to  th e full  

T h u e system  in w hich the inverse rules (b) are adm itted. T h is is ac

com plished b y  the follow ing lem m a.

Lemma V II . For the rules (a) corresponding to a given Turing machine 
as described above: If P  is a Post word, Q  is deducible from P  by the rules
(a) and (b), and Q contains q0, then Q is deducible from P  by the rules (a) 

only.
P roof of Lemma V I I ,  b y  course-of-values induction on the length  

l  of a given  deduction of Q  from  P  b y  the rules (a) and (b). L e t th e de

duction be Rx, . . . ,  R i, where Rx is P  and R* is Q. T h e case for / =  1 

is trivial, and we now  suppose l  >  1. Since P  is a P ost word, and the  

rules (a) and (b) each preserve this property, each of Rlf . . . ,  R t is a  

Post word, and hence contains e x a c tly  one occurrence of a  q, i.e. of one 

of q0, . . . ,  qk. N o w  Rz, i.e. Q, contains q0; and b y  the choice of the rules

(a) to  correspond to the a ctive  configurations of the T u rin g m achine, 

each of the A / s  contains q c for some c ^  0. H ence R t m ust com e from  

R*_i b y  one of the rules (a). So if there are a n y  applications of the rules

(b) in the given deduction, the last w ill be in the step from  R f_x to R*
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for some t <  l. Then R *+1 comes from R* by one of the rules (a); but also 
since the rules (b) are the inverses of the rules (a), R i_1 comes from R* 
by one of the rules (a). But R t is a Post word, and to such a word at 
most one of the rules (a) is applicable and in at most one way. Hence 
R*_x and R ,+1 are the same word. Hence we can shorten the given de
duction of Q from P by omitting R*Rm . Applying the hypothesis of the 
induction to the shortened deduction of Q from P by the rules (a) and (b), 
we conclude that there is a deduction of Q from P by the rules (a) only.

It is easily seen that the word problem for semi-groups is equivalent 
via Godel numbering to a problem of the form whether (Ey)R(x, y) is true 
for given where R is general recursive. Since our proof of Theorem 
XXXI is by reducing the problem whether {EyjT^x, x,y) to the word 
problem, the word problem is of highest degree of unsolvability for 
decision problems of predicates of the form (Ey)R(x} y) (cf. end § 61 and 
Example 2 § 65).

Some further results along the same line as Theorem XXXI are 
contained in Markov’s papers 1 9 4 7 , 1 9 4 7 a, 1 9 4 7 b, 1 9 5 1 , 1 9 5 1 a, 1 9 5 1 b. 
Also cf. Hall 19 4 9  and Boone 1 9 5 1  abstract.

The definition of equivalence of two words P and Q (in symbols, 
P ~  Q) which we used above in the word problem for semi-groups can 
be expressed inductively thus, where (extremal clause) P ~  Q only 
as required by the following (direct clauses): 1 . A* ~  B* (i =  1 , . . . ,  n). 
2 . U ~  U. 3. If U — V, then V — U. 4. If U ~  V and V — W, then 
U — W. 5—6. If U — V, then Ua* — Va, and a,U — a,V (i =  1, .
Turing 1 9 5 0 * shows that the word problem for semi-groups with cancellation, 
which we obtain by adding the two following clauses, is likewise un- 
solvable: 7—8 . If Ua, ~  Vat- or a*U ~  a*V, then U ~  V (i =  1, . . m).
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Chapter X IV
THE PREDICATE CALCULUS AND AXIOM SYSTEMS

§ 72. GOdel’s completeness theorem. We resume the study of 
the predicate calculus, continuing from the point reached in § 37. Say 
that F is a predicate letter formula containing free only the distinct 
variables zlt . . . ,  zq (q ;> 0) and containing only the distinct predicate 
letters P^ . . . ,P ,  (s ^  1). An assignment of objects zx, from
some non-empty domain D as values to zx, . . . ,  z, and of logical functions 
P v  . . . ,  P„ over D as values to Px, . . . ,  P„ we say satisfies F (or is a sat
isfying assignment to zlt . . . ,  z„ Plf . . . ,  Ps for F), if under the valuation 
rules given in §§ 28, 36 and 37 F then takes the value t. As defined in 
§ 37, F is satisfiable {valid) in a non-empty domain D, if some (every) 
assignment to zlt . . . ,  z„ P1( . . . ,  P, in D satisfies F. As to the 
notation, we are now writing the logical functions “Pi{al, . . . ,  an.)”, 
"A {a, h)’’, etc., instead of . . . .  an;.)”, ”l(a, b)”, etc. as we did in
§§ 36, 37. In the case that the domain is the natural numbers, logical 
functions are simply number-theoretic predicates, when we do not 
make a distinction between propositions and truth values t or f (cf.
(b) § 45 and remarks there); and indeed we shall sometimes call them now 
predicates.

T heorem  34oC. If a predicate letter formula F is irrefutable (i.e. if 
~iF is unprovable, § 41) in the predicate calculus, then F is satisfiable in 
the domain of the natural numbers. (Godel’s completeness theorem for the 
predicate calculus, 1930.)

Modifications of Godel’s proof appeared in the 2nd (1938) edition of 
Hilbert-Ackermann 1928 and in Hilbert-Bernays 1939. Henkin 1949 gave 
a proof employing a minimum of knowledge of the deductive properties 
of the predicate calculus. We give a proof which is intermediate in this 
respect between Hilbert-Bernays’ and Henkin’s. There is also a proof by 
Rasiowa and Sikorski 1950 using algebra and topology.

P roof of T heorem 34 (preliminaries). By Theorem 19 §35, any 
predicate letter formula F is equivalent to a prenex predicate letter

3 8 9
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form ula, w hich (by the m ethod of proof) has the sam e distinct free 

variables z v  . . . ,  z g and predicate letters P v  . . . ,  P s as F . B y  Theorem  

21 § 37 and the valu ation  table for ~  § 28, or b y  paralleling the proof of 

Theorem  19 set-theoretically, the prenex form of F  is satisfied b y  a given  

assignm ent zlt . . . , z q, P v  . . . ,  P s, if and only if F  is satisfied b y  it.

For the rem ainder of the proof (including Lem m as 22 and 23), w e  

shall assum e th a t F  is prenex. For illustration, suppose th a t F  is 

¥ x 1 3 y 1 V x 2V x 33 y 2V x 4B (z1, z 2, x v  y v  x 2, x 3, y 2, x 4) where B (z v  z2, x v  y v  
x 2, x 3, y 2, x 4) contains no quantifiers and only the distinct variables  

shown (so q — 2).

Instead of speaking of the valu e which a predicate letter form ula  

A (u v  . . . ,  u P) takes when its free variables and predicate letters u v  . . . ,  u p, 

P 4, . . . ,  P s ta k e respectively the values u v  . . . ,  u p, P lf . . . ,  P s, it w ill 

usually be more convenient n otation ally  to perm it the substitution of 

num erals for the free variables of predicate letter form ulas, and then to  

speak of the valu e taken  b y  A (u 1, . . . ,  u v) (where u v  . . u P are the  

num erals for the natural num bers u lt . . . ,  u P) w hen P 4, . . . ,  P s take the  

values Pv . . . ,  Ps. (Here A(ux, . . . ,  u P) is a predicate letter form ula w ith  
num erals  in the sense obtained b y  extending the notion of ‘^-predicate  

letter form ula' § 37 to allow  all num erals and not sim ply 1, . . . ,  k (and  

variables) as terms. A predicate letter form ula w ith  num erals containing  

no variables free or bound is a proposition  letter form ula w ith  num erals.)
W e can then treat the problem  of choosing the logical functions  

Pv . . . ,  P s as a problem  of choosing a value (t or f) for each of the form ulas 

P 5(ax, . . . ,  anj) where j  =  1, . . . ,  s and a v  . . . ,  anj range over all n r  
tuples of natural numbers. L e t these form ulas be enum erated in  some 

m anner w ith ou t repetitions as Q0, Q v  Q 2, . . . .

B y  the va lu ation  rules for V  and 3, F  is satisfied b y  zv z2, Plf , . . ,  P s, 
if for each natural num ber x lf there is some natural num ber y x depending  

on x x (write it such th a t for each x 2 and x 3, there is some y 2
depending on x lt x 2, x 3 (write it “y 2{xv  x 2, #3)” ), such th a t for each #4,

(I) B ( z 1; z 2, x 1( y ^ x j ,  x 2, x 3, y 2{xv  x 2, x3), x 4)

(where<y 1(x1) is the num eral for the natural num ber yi(% ), etc.) has the value  

t. W e now ta k e z 4, z2> y ^ x ^ , y 2(xv  x 2, x3) to be 2° • 31, 2° * 32, 21 * 3Xl, 22 • 3Xl * 

5X2 • 7^3, respectively. T h u s we determ ine an infinite class F0 of proposition  

letter form ulas w ith  num erals (nam ely the form ulas (I) when x v  x 2, x3, %4 

range over all quadruples of natural numbers, and zlf z2, y ^ x ^ , y 2{xlf 
x 2, x3) are as ju st specified) such th at if P v  . . . ,  P s jo in tly  sa tis fy  these  

form ulas, i.e. g ive them  all the value t, then zv z2, Pv . . . ,  P s satisfy  F .
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W e sa y  th a t a class of form ulas is consistent in  a form al system  S , if 

the form al system  obtained b y  adjoining the form ulas of the class as 

axiom s to the postulates of 5  is sim ply consistent (§ 28), i.e. if for no 

form ula A  are b o th  A  and - i A  deducible in S  from  form ulas of the class.

T h e  proof of Theorem  34 w ill be com pleted b y  L em m as 22 and 23, 

w hich relate to a n y  prenex predicate letter form ula F  and the class 

F0 obtained from  it as illustrated.

L em m a  22oC. I f  F0 is  consisten t in  the p ro p o sitio n a l calculus, then  F  is  
sa tisfiab le  in  the dom ain  of the n a tu ra l num bers.

Proof. By the preliminaries, it will suffice to show that the formulas 
of F0 can be jointly satisfied under the valuation procedure of the prop
ositional calculus by an assignment of truth values (t or f) to each of
Go, Q v  Q 2> ___ (Our m ethod now  w ill show  this for a n y  class F0 of

form ulas consistent in the propositional calculus and list Q 0, Q v  Q 2, 

. . .  of distinct form ulas prim e for the propositional calculus including  

all com ponents of F0 prim e for the propositional calculus, § 25.)

L e t R 0 be Q 0 or - i Q 0 according as F0 b Q 0 or not F0 b Q 0 in the  

propositional calculus (where “ F0 b” m eans deducible from  form ulas  

of F0), and adjoin R 0 to F0 to obtain a new  class Fx. T h en  Fx is also consistent 

in the propositional calculus. F o r in the first case (i.e. w hen F0 b Qo 

and R 0 is Q 0), the addition of R 0 does not increase the class of the form ulas  

w hich can be deduced; and in the second case (i.e. w hen F0 b Qo and  

R 0 is “iQo), if Fx b A  and F* b ~»A for some A , then F0, - i Q 0 b A  

and F0, - i Q 0 b A , and thence b y  i - in t r o d .  and elim ., F0 b t h Q o 

b Q 0, con tradictin g the case hypothesis.

Sim ilarly for each natural num ber i,  let R i be Q i or - i  Q i according as 

Fi b Q i or JFi b Qi, and adjoin R i to Fi to obtain Fi+1; then the con

sisten cy of Fi+1 follows from  th a t of F*.

W e now  assign to Q i the va lu e t or f according as R i is Q i or R i is - iQ i.

F o r this assignm ent, not on ly  R 0, R v  R 2, . . .  b u t also the form ulas  

of F0 tak e the valu e t. F o r let H  be a form ula of F0. T h e distinct parts of 

H  prim e for the propositional calculus belong to the list Q 0, Q v  Q 2, . . . ;  

sa y  th e y  are Q i , . . . ,  Q i;. Consider the form ula H  &  R ^  &  . . .  &  R ^ ; call 

it "A". L e t i  =  l + m a x ^ ,  . . . ,  i t) \  then Fi b A , since H , R ^, . . . ,  R^  

all belong to Fi. T h e assigned values are the on ly ones for w hich R ^, 

. . . ,  R {, are all t. H ence if H  were not t for this assignm ent, then A  w ould  

be id en tica lly  false, and - i A  w ould be id en tically  true (§ 28); so b y  T h e o 

rem  10 §29  -I  A  w ould be provable in the propositional calculus, a fortiori 

Fi b ~iA, w hich w ith  Fi b A w ould con tradict the con sistency of Fi.
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L emma 23. If F is irrefutable in the predicate calculus, then  F0 is 
consistent in the propositional calculus.

P roof. N o te th a t by our choice of the num bers zv z2 and functions  

yi(xi) and y 2(*n x 2> x b) : (A) T h e num bers zx and z2, yi(% ) for x x =  0,

1, 2 , . . . ,  and y 2(%, x 2> x s) f° r x i > x 2> x z =  1 2 , . . .  are all distinct.

(B) x x <  y x(%) and % , y ^ ) ,  x 2, x 3 <  y 2(xv  x 2} x 3).
T o  show b y  reductio ad absurdum  th a t F0 is consistent, suppose th a t  

for some A, b o th  A and - i  A are deducible in the propositional calculus  

(using predicate letter form ulas w ith  numerals) from form ulas of F0. 

T h en  using w eak -i-e lim ., there is a deduction of the form ula cC7 &  

from  the sam e form ulas, i.e. from a finite set of form ulas of the form (I).

L e t " S ” , “ T” , “ 2", . . .  denote variables distinct from  each other and  

from  x 1} y lt x 2, x 3, y 2, x 4, b u t such th a t zx is z ± and z2 is z 2. B y  changing  

each num eral u where it occurs in this deduction not as a part of another  

num eral to the corresponding variable uf we obtain a deduction of 

e2f &  1  <£? in the (predicate letter) propositional calculus, a fortiori in the  

(pure) predicate calculus w ith  all variables held constant, from  a finite  

set of form ulas of the form  B (z 1, z 2, x lt x 2> x z)> x i) > an(^

thence b y  use of V-elim . (noting th a t x 4 is distinct from  the other variables  

shown), from form ulas of the form

Vx4B(z1; z2, xv y^ X j), xg, x 3, y2(x1( x 2, x 3), x4).
T h u s w riting out the distinct assum ption form ulas (say there are l of 

them ),

Vx4B(z4, z2, x\, y4(x}), x \, x \ ,  y 2{x \, x \ ,  x § ,  x4),
Vx4B(z4, z2, x{, yx(*f), x \, x \ ,  y 2{x \, x\, x \) ,  x4),

Vx4B(z4, z 2 , x\, y x(x0 .  x \, x \ ,  y 2{x\, x \ ,  x \) ,  x4) h <3 &  - i  <3.
T h e form ula contains no variables. T h e variables w hich

appear free rightm ost in the assum ption form ulas of (1) are 

y 2(x \> x l ,  x \) , . . . ,  y 2(x \, x l2, x l3). Since the l assum ption form ulas are 

distinct, i.e. x { } x{, x \  for j  =  1, . . . , /  are distin ct triples of natural 

num bers, b y  (A) these l variables are distinct from  each other as w ell as 

from  z v  z 2. B y  (B), we can choose one of them , say y 2( î> x h  * 3)* w hich is 

of greater index (i.e. com es later in the list 0, 1 ,  2, . . . )  than  a n y of 

the variables w hich appear free elsewhere in (1) (i.e. not rightm ost) 

except perhaps z x or z 2, and hence is distinct from  those variables also. 

B y  3-elim ., followed b y  a change of bound variables (*74 § 33, noting  

th a t y 2 is distinct from the other variables shown) and tw o V -elim inations
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(noting th a t x 2, x 3 are distinct from each other and the other variables  

shown),

V x 2V x 33 y 2V x 4B (z 1( z 2, x \, y ^ x l) ,  x 2, x 3, y 2, x 4),

(2) Vx4B(z1, z2, x\, yx{x\), x\, x\, y2(x\, x\, x\), x4),

Vx4B(z1, z2, x\, y1(x[), x\, x\, y2(x\, x\, x\), x4) h & -i<^.

N o  variables are varied, since the variable y2{x\, x\, x\) of th e 3-elim . 

does not occur in a n y  of the other assum ption form ulas (ef. L em m a 7b  

§24).

A gain  b y  (A) the variables y ^ x f) ,  y 2(xf, x t> x t)> • • •> y%{%i> x \> x l)  w hich  

appear free rightm ost are distinct from each other as w ell as from  

z t  and z2. B y  (B) we can choose one of them  w hich is of greater index  

than a n y  of the variables appearing free elsewhere in (2) excep t  

z x and z 2, and so m ust be distinct from  those also. T h is variable m a y  be  

y x{x X) or sa y  y 2(xf, x \, x f). If it is y ^ x f) ,  b y  3-elim ., *74  and V -elim . w e  

replace the first assum ption form ula b y  V x 13 y 1V x 2V x 33 y 2V x 4B (z1, z 2, x v  
y v  x 2, x 3, y 2, x 4), i.e. b y  F . If it is y 2(xf, x \ ,  x l) ,  we instead replace the  

second assum ption form ula b y  V x 2V x 33 y 2V x 4B (z1, z 2, x f, y t (xf), x 2, x 3, y 2, 

x 4), and if this is a duplicate of the first (i.e. if x \  =  xf)  w e om it it.

W e continue in this m anner. A fte r each use of 3-elim . (applied to a  

y  appearing rightm ost and distinct from  all the other variables shown) 

and *74, we ap p ly  V-elim . to the x 's w hich are “ u n covered” b y  the 3-elim ., 

and then om it the resulting assum ption form ula, if it is a du plicate of 

another, so th a t the y 's  w hich appear rightm ost at the n ext stage w ill 

again be distinct from  each other. E v e n tu a lly  we obtain sim ply

(3) F  h 

F rom  (3) b y  &-elim . and -i-in tro d .,

(4) h - iF ,
con tradicting the hypothesis of the lem m a th a t F  is irrefutable.

Corollary  1oC. E very  pred ica te  letter form ula  G  which is  va lid  in  the 
dom ain  of the n a tu ra l num bers is  provable in  the pred ica te  calculus {and  
hence, b y  Theorem  21 § 3 7, is  va lid  in  every n on -em pty  d o m a in ) . (A nother  

version of G odel's com pleteness theorem , 1930 .)

P roof. {G  is valid in the domain of the natural numbers} 
-> {~iG is not satisfiable in that domain} {~iG is refutable, i.e. 
“i - i G  is provable, in the predicate calculus} [by the theorem, applied
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with i G  as the F , and contraposed (cf. *14  § 26)] -> {G  is provable in 

the same} [by -i-elim].
Corollary  2c. I f  a  p r e d i c a t e  le t t e r  f o r m u l a  F is satisfiable in some 

(:n o n - e m p t y ) d o m a i n , then F i s  s a t i s f i a b l e  in the domain of the natural 
numbers. (LowenheinTs theorem , 1 9 1 5 , also called the Low enheim -

Skolem theorem.)
P r o o f . B y  contraposing Corollary 1 ; or thus: (F is satisfiable  

in some dom ain} -> { - i F  is not va lid  in th a t dom ain} ->  {—»F  is not 

provable, i.e. F is irrefutable, in the predicate calculus} [by Theorem  

21 contraposed] ->  { F  is satisfiable in the dom ain of the natural num bers} 

[by the theorem ].

Ldwenheim’s proof of his theorem , and the sim pler proof given  b y  

Skolem  1920 , em ploy the set-theoretic axiom  of choice (Zermelo 1904 , 

cf. § 13). T h e proof v ia  G od el1 s theorem  is non -con structive to a lesser 

degree. T h e non -intuitionistic step (in the present treatm ent) occurs in  

the proof of L em m a 22, where we assum e th a t Ff b Q , or Ft b Q f. 

B y  form alizing a part of their proof of G od el’s com pleteness theorem  

w hich contains the non -con structive step, H ilbert and B ern ays obtain  

a m etam ath em atical com pleteness theorem  for the predicate calculus  

(1939  pp. 252— 253), w hich w e shall form ulate as Theorem  36.

T h e o r e m  35oC. The satisfying predicates P lt . .  , , P S for  F  in  Theorem  
34 can be chosen so that Pj{av . . . ,  aUj) =  (.E x )(y )R j (a1, . . . ,  an .f x , y )  ==

(x ){E y )S j {a1> . *. ,  anj} x, y) where R j and  S j are p r im itiv e  recursive
a  =  1 .

P r o o f . In  the follow ing, ‘ 'recursive” can m ean general recursive  

(though a ctu a lly  the statem en ts hold in the m eaning p rim itive recursive); 

then b y  Corollary Theorem  I V  § 57, we can tak e R j  and S 5- in the con

clusion to be prim itive recursive.

Suppose we h ave set up a G odel num bering of the proposition letter  

form ulas w ith  num erals b y  the m ethods of §§ 52 and 56. T h en  if a and b 
are the G odel num bers of form ulas A  and B , resp ectively, th a t of A  D  B  

is p(a, b) and of - 1A  is v(a), for certain recursive functions p and v. L e t  

H (a)' =  {a  is the Godel num ber of a form ula belonging to  F0}; then H  is 

recursive. If the enum eration Q 0, Qv Q 2, . . .  w as chosen su itab ly, the  

follow ing functions w ill be recursive: x(i)  =  {the G odel num ber of Q J ,  

a i(a v  . . . ,  an/) =  {the i such th a t P ^ ,  . . ., a nf) is Q J .

B y  the definition of the satisfyin g predicates as given  in the proof
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of Lemma22, if P,(ax, . . a»y) is Qit then Pj(av . . . ,  anj) == {Rt is QJ =  
{Ft- b Qt}. Let F(i, a) =s {a is the Godel number of a formula A such that
Ft- b A}. Then
(a) P  » &rij) =  F(0Cj(̂ i, . . x(0C5(fli, . . . , #7jy))).
Now we shall investigate the predicate F(i, a).

To say that F0 h A in the propositional calculus means the same 
as that A is provable in the formal system obtained by adjoining F0 as 
axioms to the propositional calculus. Let F0(a) == {a is the Godel number 
of a provable formula of this system}. By the methods of §§51, 52 (cf. 
Dnl2), since H  is recursive, F 0(a) =  (Ey)R(a,y) with a (primitive) re
cursive R] i.e. F0(a) is expressible in the existential 1 -quantifier form of 
Theorem V  Part II § 57.

By the definition of ¥i+1 from Ft and the 3-rules, {Fi+1 h A }=  {F,-, 
Rt b A } — {F,- b R* 3  A }. T a k in g  into account the definition of R* 
by cases, we thus have
J F (0 , a) =  F 0(a),
\  F (i', a) =  [F (i, x(*)) &  F (i,  ^(x(i). «))] V [F (i,  x(*)) &  F (i,  |x(v(x(*)), «))]•

This shows that F is recursive in F 0; for applying #D  § 45, and going 
over from the predicates F  and F 0 to their representing functions <p and 
<p0, we have a "nested recursion" (§ 55),

J 9 (0, a) =  <p0(a),

1  9 (i', a) =  x(?(*. x(*)), 9 (i, |a(x (*‘), a)), 9 (*. n(v(x(*')), a))),

where x> b and v are (primitive) recursive. (In fact by the result of 
Peter 1 9 3 4  cited in § 55, F  is primitive recursive in F 0.)

By (a), P j is recursive in F ,  a,-, x; hence since oq and x are recursive, in 
F ;  and hence in F 0, which is expressible in the existential 1-quantifier 
form. Therefore, by a theorem of Post (Theorem XI § 58), Pj is ex
pressible in both the 2-quantifier forms of Theorem V, as was to be shown.

T h e o r e m  36°. The a d d itio n  to the postu la te lis t  for the pred ica te  
calculus of an u n prcvable pred ica te letter form ula  G for use as an  ax iom  
schem a w ould cause the num ber-theoretic system  as based on the pred ica te  
calculus an d  P ostu la te  G roup  B (§19) to become <*>-in con sisten t (§ 42). 
{In  fa c t, a certain  form ula w ould become refutable which expresses a true  
pro p o sitio n  of the form  (y)D (y) where D (y) is  an  effectively decidable p red 
icate.)  (Hilbert-Bernays completeness theorem, 1 9 3 9 .)

Note the partial analogy to Corollary 2 Theorem 10 §29 for the prop
ositional calculus.



396 AXIOM SYSTEM S CH. X IV

M e t h o d  o f  p r o o f . W ith o u t loss of generality, we can tak e G  to  be  

closed, so th a t q =  0 (cf. end § 32). L e t F  be a prenex form  of - i G ,  so th a t  

b y  Theorem  19 w ith  *30 and *49,

(i) b G  ~  - i  F  in the predicate calculus.

B y  (i), since G  is unprovable, so is i F ,  i.e. F  is irrefutable.

H ence b y  L em m a 23 (the proof of w hich w as finitary),

(ii) F0 is consistent in the propositional calculus.

T h e con sistency of F0 is equ ivalen t to the proposition th a t F0 b <3 &  -i<3. 

If r  be the G odel num ber of Z l  &  - i  <3, then F0 b S e n  == (E y)R (r , y )  
=  (y )R (r , y)  for the prim itive recursive R (a , y)  used in the proof of T h eo 

rem 35. L e t D (y)  == R (r, y ) .  T h en  D (y)  is p rim itive recursive, and (ii) is 

equ ivalen t to

(“ .) (y)D (y).
B y  Corollary Theorem  27 § 49, D (y)  is num eralwise expressed in th e  

num ber-theoretic form alism  b y  a form ula D (y). T h en  from  (iid),

(iii) (y)[t- D(y)]
in the num ber-theoretic form alism .

A ccord in g to L em m a 22, classically,

 ̂ {F0 is consistent in the propositional ca lcu lu s}->

{ F  is satisfied b y  certain predicates P lf . . . ,  P s}.

T h e prem ise of the im plication (iv) can be expressed in the sym bolism  

of the num ber-theoretic system  b y  the form ula V y D (y ). T h e conclusion  

can also be expressed in the num ber-theoretic sym bolism , w hen w e use  

the expressions for P v  . . . ,  P s g iven  in Theorem  35. L e t R ^ a*, . . . ,  anj, x , y )  

num eralwise express R j(a lf . . . ,  anj, x , y ).  T h en  3 x V y R i(a1, . . . ,  a^-, x , y) 

expresses P j(a lt . . . ,  an]) in the sym bolism . T h e proposition th a t F  is  

satisfied b y  P v  . . . ,  P s is then expressed b y  the form ula F *  w hich  w e  

obtain from  F  b y  su b stitu tin g  the form ulas 3 x V y R i (a1, . . . ,  aW;-, x , y)  

(/ =  1, . . . ,  s) for the respective predicate letters P i(a1, . . . ,  anj) (assum ing  

th a t the bound variables h a ve been su itab ly  chosen). T h en  the im 

plication (iv) is expressed b y  the form ula V y D (y ) D  F * .

W e now  propose th a t the inform al classical dem onstration of (iv) 

should be form alized in the classical num ber-theoretic system  as a p roof  

of this form ula, so th a t w e should then h ave

(v) b V y D (y ) D  F *
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in th a t system . B y  contraposition (*12  §26),

(vi) b “"*F* D  —iV yD (y).

From  (i) b y  substitution  (Theorem  15 § 34),

(vii) f- G *  ~  —iF * .

U sin g (vii) in (vi),

(viii) b G *  D  —iV yD (y).

In  (iii) and (viii), the " b ” refers to the unaugm ented num ber-theoretic  

form alism . N o w  if G  be added to this system  as an axiom  schem a, then  

G *  becom es an axiom  (by the new  schem a), and then (since (iii) and (viii) 

still hold) D (y) for y  =  0, 1 , 2 , . . .  and - iV y D ( y )  are provable sim ul

taneously, i.e. the augm ented system  is ^ in co n siste n t. (Thus V y D (y )  

becom es refutable, although it expresses the true proposition (y )D (y ).)
W e shall not tak e the space to carry out the form alization of a given  

inform al dem onstration called for here in the step from (iv) to (v), ju st  

as we did not for the step from  (I) to (II) in the proof of Theorem  30 § 42.

H ilbert and B ern ays 1939  (pp. 205 ff ., especially pp. 243— 252) carry  

out the form alization of the corresponding part of their proof of G o d el’s 

com pleteness theorem  in another form al system , w hence it can be in

ferred th a t 'theorem  36 holds for ours (cf. the rem arks on th a t system  

preceding E x a m p le  9 § 74).

T heorem 3 7 oC. G iven an  enum erably in fin ite  (or fin ite ) class of p red 
icate letter form ulas  F 0, F v  F 2, . . . ,  if  every conjunction  of a f in ite  num ber  
of them is  irrefu table in  the pred ica te calculus, then they are jo in tly  sa tisfiab le  
in  the dom ain  of the n a tu ra l n um bers, b y  a satisfyin g assignm ent of natural 

num bers z0, z v  z2, . . .  to the distinct variables z 0, z v  z 2, . . .  w hich occur 

free, and of predicates P 0, P lf P 2, . . .  to the distinct predicate letters  

P0, Pj, P2, . . .  w hich occur, in form ulas of the class. T h e lists z0, z v  z 2, . . .  

and P0, Px, P2, . . .  m a y  be finite or infinite. (Godel’s com pleteness  

theorem  for in fin itely  m an y form ulas, 1930 .)

P roof. F or exam ple, suppose now  th a t for some k , F k is

V x * l 3 yfclV x *2V x fc33 yfc2V x fc4B (ZeSl. Ze*,. X k l ’ Y k l ’ X k 2 ’ X lc3’ Y k 2 ’ X k i ) -  T h e n  W e 
tak e zehl, Zeki, y k l(xk l), y k2{xk l, xk2, xk3) to be 2 ° -3 e*>, 2°• 3e*2, 2 l -3 k -5 Xk\  
22 • 3k • 5Xkl • 7 Xk2 • 1 \ Xkz. T h e set F0 is to be the sum  of the sets F00, F10, F20, . . .  

form ed as w as illustrated.

Corollary 1oC. I f  for each assignm ent in  the dom ain  of the n a tu ra l 
num bers to the free variables and  predicate letters of the form ulas  G 0, G v  
G 2, . .  ., one of those form ulas takes the value  t, then some d isju n c tion  of a  
fin ite  num ber of them is  provable in  the predicate calculus.
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Corollary  2c . If  F0, F lt F 2, . . .  are jointly satisfiable in some non
em pty  dom ain  [or even if  each conjunction of a f in ite  num ber of F 0, F lf 
F 2, . . .  is  sa tis  fiable in  a respective non -em pty  dom ain  (Godel 1930)), 

then F 0, F lf F 2, . . .  are jo in tly  sa tis  fiable in  the dom ain  of the n a tu ra l 
num bers. (A generalization of Low enheim ’s theorem , Skolem  1920 .)

P roof of Corollary 2 . {E a ch  conjunction of a finite num ber of 

F0, F x, F 2, . . .  is satisfiable in a respective n on -em p ty dom ain} -> 
{the negation of each such con junction is not va lid  in every  do

m ain} ->  {each such con junction is irrefutable} (by Theorem  21 § 37)

{ F 0, F v  F 2, . . .  are jo in tly  satisfiable in the dom ain of the natural 

num bers} (by the theorem ).

T heorem 38oC. I f  the enum eration  F 0, F lt F 2, . . .  of form ulas in  
Theorem  37 is  effective (if in fin ite ), the jo in tly  sa tis fy in g  predicates Po, 
P lf P 2, . . .  can be chosen so that P j(a lf . . . ,  an?)  == (E x )(y )R j (av  . . . ,  anj) 
x , y)  =  (x )(E y )S j (a1, . . . ,  anj, x, y) where R j and  S j are p r im itiv e  recursive  
(j =  0, 1 ,2 ,  . . . ) .  T h e hypothesis th a t the enum eration F 0, F v  F 2, . . .  is 

effective can be m ade exact b y  requiring, for a suitable Gddel num bering, 

th a t the G odel num ber of F k be a general recursive function of k  (cf. 

§ 6 1 ), or b y  use of T u rin g m achines in the m anner suggested at the end  

of § 7 0 .

P roof. N ow the class aH (a)  (cf. the proof of Theorem  35) is re

cu rsively enum erable (but not necessarily recursive). H ow ever b y  takin g  

F 0(a) =  (E n )F 0(a , n) where F 0(af n) =  {a  is the G odel num ber of a 

provable form ula of the system  obtained b y  adjoining the first n  of the  

form ulas F0 as axiom s to the propositional calculus}, and using (17) § 57  

(or end § 53), w e still h a ve F 0(a) =  (E y )R (a , y)  w ith  a recursive R .

T h e significance of G odel's com pleteness theorem  and Low enheim 's  

theorem  (including the versions given  in § 73) w ill be discussed in § 75, 

w hich m a y  be read w ith o u t the starred § 74, provided the reader w ill 

accept a few  plausible statem en ts referring to  § 74. In  § 76 som ew hat 

m ore use is m ade of § 74.

If  F  is deducible from  G  in the predicate calculus w ith  a postu lated  

substitution* rule (end § 37), then  F  is va lid  in every dom ain in w hich G  is ; 

and hence interdeducible form ulas are va lid  in the sam e domains. T h e  

converse is true w hen on ly  0- and 1-place predicate variables occur, b y  

use of theory cited in § 7 6 ;  b u t not in general, b y  H asenjaeger 1950 .
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§  73. T h e  predicate calculus with equality. A  treatm ent of 

eq u a lity  may be com bined w ith  the predicate calculus b y  adding to the  

postulates the follow ing axiom  and axiom  schem a, where x  is a variable, 

A (x) is a form ula, and a and b are distinct variables free for x  in A ( x ) : 

22. a = a .  23. a = b  D  (A(a) D  A(b)).

For the pu re predicate calculus w ith  equality , ‘term ’ shall m ean variable, 

and ‘form ula’ shall h a ve the sense of equality and  predicate letter form ula, 
w hich we obtain  from ‘predicate letter form ula' (§ 31) b y  adding to the  

definition a clause w hich states th at, if s and t are term s, s = t  is a form ula. 

A n  eq u a lity  and predicate letter form ula containing no predicate letters  

other than the distinct letters P lf . . . ,  P s we call a letter form ula in  — , 

Pl >  • • • > Ps*

(A) A xio m  22 (which is *100 § 38) and a —b D  ( a = c  D  b = c )  (A xiom  

16 § 19, w hich is now an axiom  b y  A xio m  Schem a 23) w e call the open  
equ ality  axiom s for = .  T h e n  follow ing axiom s b y  Schem a 23,

a = b  ID (P(aj, . . . ,  a j _ _ j , a, a 2-̂ _̂ , . . . ,  a n) ZD P(a^, . . . ,  a 4-_̂ , b, a 4-_̂ j, . .  ., a n)) 

(i — 1, . . . , n ) ,  where P  is an n -place predicate letter arid a x, 

dii_x, a, b, a ^ j,  . . . ,  a w are some n + 1 distinct variables, we call the  

open equality  axiom s for  P. T h e closed equ ality  ax iom s  are the closures 

of the respective open eq u a lity  axiom s (with w hich th e y  are inter- 

deducible, end § 32). B y  “ E q ( = ,  P lf . . . ,  P 8) ” we denote the conjunction  

of the closed eq u a lity  axiom s for —  , P 2, . . . ,  P s.

E x a m p l e  1. If <3 takes tw o argum ents, E q ( = ,  <3) is the form ula  

y4 a [ a = a ]  & V a V b V c [a = b  ZD ( a = c  D  b = c ) ]  &
V a V b V c [a = b  D  {£ l{a ,c )  D c3 (A ,c))]'& V a V A V c[tf= A  D  (<V t(c,a) D c 3 ( c ,i) ) ] #

(B) From  the eq u a lity  axiom s for =  (Axiom s 22 and 16), we can  

deduce in the predicate calculus the reflexive (*100), sym m etric (*101) 

and tra n sitiv e  (*102) properties of equ ality, and b oth  the special re

placem ent properties (*108, *109) as in §38. From  a n y axiom  a = b  ID 
(A(a) ZD A(b)) b y  Schem a 23 w ith  A(x) not con taining a or b free (in 

particular, *108, *10 9 or an eq u a lity  axiom  for a predicate letter P) and  

*101 we can deduce a = b  ID (A ( a ) ~ A ( b ) )  (as we did in a sligh tly  different 

form at w hen we inferred * 1 1 5  and * 1 1 6  from  *108, *10 9 and *10 1).

N o w  and in § 75, w hen w e are dealing w ith  a class of eq u a lity  and  

predicate letter form ulas con taining predicate letters on ly from  a given  

list, we shall use “ Q ” to stand for some p articu lar 2-place predicate  

letter not in the list. G iven  a form ula of the class, call it “ E ” or “ E ( = ) ” ,
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b y  “ E Q”  or “ E ( Q ) ” w e shall m ean the predicate letter form ula obtained  

from  it b y  replacing sim ultaneously each part of the form  s = t  where  

s and t are term s b y  Q(s, t).

T h e  notions of ^ -id en tity  and ^ -equ ality  (§36), and of satisfiab ility  

and v a lid ity  in a given  n on -em p ty dom ain, are exten ded to  equali

t y  and predicate letter form ulas b y  providing th a t a = b  shall h ave  

t as va lu e (f as value) w hen a  and b  assume the sam e (different) 

objects from  the dom ain as their v a lu e s ; or if we h ave first su bstitu ted  

num erals, th a t a = b  h ave the valu e t or f according as a =  b or a b. 
T h u s a letter form ula F  in =  , P x, . . . ,  P s w ill be satisfied b y  z v  . . . ,  zg, 
P lf . . . ,  P s, if and on ly if F Q is satisfied b y  zv  . . . ,  z q, Q, P v  . . . ,  P s w ith  

Q(a, b) == a = b .
In GodeFs extension of his com pleteness theorem  to the predicate  

calculus w ith  eq u a lity  (1930), it is necessary to allow  the altern ative th a t  

th e dom ain be finite, since e.g. a=£b &  Vc (c= a  V c = b ) is satisfiable in  

and o n ly  in a  dom ain of tw o objects.

T heorem 39(oC). Theorem s  20 (§36), 2 1 c (§37), 34oC and  3 7oC (§72)  

an d  their corollaries hold reading “ equality  and predicate letter form u la” , 
“ predica te calculus w ith  eq u a lity” , “ sa tisfiab le  {valid , each assign 
m ent) in  the dom ain  of the n a tu ra l num bers or a {and every, or a) non
em p ty  f in ite  d o m a in ” in  place of “predicate letter form u la” , “ pred ica te  
calcu lus” , “ sa tisfiab le  {valid , each assignm ent) in  the dom ain  of the 
n a tu ra l num bers” , respectively. (The theorem s thus exten d ed  w e cite  

using a star “ * ” ; the m arks <<0” and “ c ” a p p ly  to the starred theorem  

w hen th e y  a p p ly  to the unstarred.)

P roofs. Theorem  34*. L e t F  be a letter form ula in = ,  P x, . . . ,  P ,  

w hich is irrefutable in the predicate calculus w ith  equ ality. B y  (A), 

E q ( = ,  P v  . . . ,  P s) is p rovable in the predicate calculus w ith  equ ality. 

H ence b y  *45 § 27, F &  E q ( = ,  P x, . . . ,  P s) is irrefutable in the predicate  

calculus w ith  e q u a lity, a fortiori in the predicate calculus (using e q u a lity  

an d predicate letter form ulas). T h en  b y  Theorem  15 § 3 4 , F Q & E q ( Q ,  

P lf . . . ,  P s) is irrefutable in the pure predicate calculus. H ence b y  

Theorem  34, F Q &  E q (Q , P v  . . . ,  P 3) is satisfiable in the dom ain of the  

natural num bers. T h e  proof is com pleted b y  (a) of th e follow ing lem m a.

Lemma 24°. (a) I f  F Q & E q (Q , P v  . . . ,  P s) is  sa tisfiab le  in  a given
n on -em pty  dom ain  D , then  F  is  sa tisfiab le  in  a n on -em pty  dom ain  D *  
w ith  the sam e or a lesser card in a l num ber.

(b) I f  F ^  &  E q (Q , Pfci, . . . ,  P kSk) where P *i, . . . ,  P*** are the pred ica te
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letters of F k (k =  0, 1, 2,  . .  .) are jo in tly  sa tis  ft able in  a non -em pty  dom ain  D y 
then  F 0, F x, F 2, . . . are jointly sa tisfiab le  in  a dom ain  D * w ith  0 <  D * <  D .

P roofs, (a) Suppose given  a satisfyin g assignm ent z l f  . . . ,  zQ, 
Q , P lt P s for F Q &  E q (Q , P ,, . . . ,  P s). Then Q ,P V . . . .  P s m ust 

satisfy  the follow ing form u las: (i) V aQ (a, a), (ii) ' i d i b  [Q(a, b) D  Q (b, a ) ] , 
(iii) V a V b V c M a , b) &  Q (b, c) => Q (a, c )],  (iv) V [Q (a, b) D

( P i ( a x» • • • > 3 -i-1> a > 3 -i+ l> • • • > a ny) ' ' P j ( a i> • • •> i> b ,  a i+ l> ,■ ))]
(/ =  1, . .  ., s; i =  1, . . ., n 3) .  W e see this b y  paralleling set-theoretically  

the reasoning given  proof-theoretically under ( B ) ; or b y  noting th a t the  

con junction of these form ulas is im plied b y  (in fact, is equivalen t to) 

E q (Q , P x, . .  ., P s) in the pure predicate calculus, and using Theorem  21 

§ 37 and the va lu atio n  tables for &  and 3  (or ~ ). (For proving Theorem  

34*, this step can be avoided b y  using this con junction in place of

E q ( Q . P 1, . . . , P , ) . )
From  the form of (i) —  (iii) and the valu ation  procedures for V, D  

and &, we see th a t the logical function Q(a, b) w hich fulfils them  m ust 

be reflexive, sym m etric and tran sitive. (A relation Q(a, b) w ith  these  

three properties we call an equivalence re la tion .) H ence the dom ain D  
falls into equivalence classes w ith  respect to the relation Q, i.e. m u tu a lly  

exclusive n o n -em p ty classes such th a t a n y  tw o m em bers a  and b of D  
belong to the sam e class, if and on ly if Q (a , b). T h en  since the form ulas

(iv) are satisfied, the valu e of P j(a v  . . . ,  an)  for a n y  j  (j —  1, . . ., s) is 

unchanged b y  changing a n y one of its argum ents to  another in the sam e  

equivalence class.

N o w  let us tak e the equivalence classes as a new  dom ain D *  (with

0 <  D *  <  D ) ; and define objects z*, from  D *  and logical functions

Q*, P * ,  . . P *  over 19* thu s: z*  is the equivalence class to w hich Zj 
belongs, i.e. z f  =  bQ(zj f b); and Q *(a*, 6*) (Pf{a*>  . . . , t f * y)) shall h ave  

the va lu e w hich Q(a, b) (P j (a1, . .  ., anj)) takes for a n y  a  w hich 8 a*  and  

6 8 6 *  (for a n y  a , 8 a*, . . . ,  8 4 y). T h en  z* , . . z*,  Q*, P * , . . . ,P *
sa tisfy  in 19* a n y form ula w hich z v  . . . ,  zQ, Q, P lf . .  ., P s sa tisfy  in D ;  

in particular th e y  satisfy  F Q in D *. B u t ()*(a*, 6*) == a * =  6*. H ence  

* i ,  • • •, P f ,  •. ., P *  satisfy  F  in 19*.

T heorem 40oC (— Theorem  38*). L et one of the pred ica te letters 
P 0, P x, P 2, . . .  occurring in  F 0, F x, F 2, . . . ,  sa y  P 0, be a 2-place pred ica te  
letter. I f  the enum eration  F 0, F x, F 2, . . .  is  effective {if in f in ite ), then there 
are a dom ain  D * and jo in tly  sa tis fy in g  predicates P * f P * ,  P * ,  . .  . for 
Theorem  37 *  such th a t: I f  D *  is  in f in ite , and for a su itable enum eration
S0, of i t  P * { s a, s„) =  a ’ =  b, then  P * ( s 0i, . .  s0 )



402 AXIOM SYSTEMS CH. XIV

(E x )(y )R * (a v  . . . ,  anj, x , y )  s= (x )(E y)S * (a v  . x , y ) where R f  a n d S *
are p r im itiv e  recursive (j =  1, 2, 3, . . . ) .

Proof. B y  Theorem  38, jo in tly  satisfyin g predicates Q ,  P 0, P t  for 

the form ulas Fj? &  E q (Q , P m , . . P***) (k =  0, 1 , 2 ,  . . . )  can be chosen  

w hich are expressible in b o th  the 2-quantifier forms of Theorem  V  § 57, 

and hence b y  Theorem  X I  § 58 are general recursive in 1-quantifier  

predicates.

B y  the definition of the predicates P f  in the proof of L em m a 24, 

(1) P f { S a v  . . . .  Sa„.) ss (£Ci) . . . (Ecn,) [Cj €  S 0 l  &  . . .  &  C n j  £ S a „ .  &
P j(c l> • • • > £»/)] =  (^ l)  • • • (c»y) [^ i  0  Soj &  . . .  &  Cnj £  San —> P j  (c1( . . . ,  Cn j) ] .

L e t z  be som e m em ber of s0 (which is not e m p ty ) ; then s0 — cQ(z, c). 
B y  the definition of P j ,  P 0(d, c) holds if and on ly if P * (d * , c*) where d*  
and c* are the equivalence classes to w hich d  and c, respectively, belong. 

B u t b y  h ypothesis, P * (s a, s b) ~ a ' — b. H ence if d Z s a, then c £ s a, if 

and on ly if P Q(dt c). Since no s a is em p ty, (a) (Ed) [d 8 s j .  T h u s

| c £ s 0 = Q ( z ,c ) ,
W  \  c £ s „  s  (Ed) [d Z s a & P 0(d, c)] =  (d) [ d Z s a ->  P 0(d, c)].

A p p ly in g  Theorem  V P  § 57 or X I *  § 58 to the second line, this shows 

th a t the predicate c 8 s a is general recursive in Q , P 0. In  m ore d etail: Con

sider th e  second line of (2) as of the form

H (c) eee (E d )[K (d )  &  P 0(d, c)] =  (d )[K (d )  ->  P 0(d, c)].
L e t q, k, p, h, f be function letters expressing the representing functions  

of Q , K , P 0, H ,c  8 s a, respectively. B y  Theorem  V I *  or X I * ,  H (c) is general 

recursive (uniformly) in K (d ) , P Q(d, c), i.e. there is a system  of equations  

(containing k, p, h) defining recursively (the representing function of) 

H (c) from (those of) K (d ) , P Q(d, c). B y  L em m a V I  § 65, we can introduce  

a param eter to obtain equations E  defining recursively H (c , a) from  

K ( d ,a ) ,  P Q(d ,c ) .  T h en  E  w ith  the three equations f(c, 0 ) = q ( z , c), 

k(d, a ) = f( d , a), f(c, a ') = h ( c ,  a) defines c Z s a recursively from  Q, p »  
as we see w ith  the help of induction on a.

Since Q , P 0 are in turn general recursive in 1-quantifier predicates, 

so is c 8 s a ; and hence b y  Theorem  X I ,  c C s a is expressible in b oth  

the 2-quan tifier forms.

U sin g the (E x )(y )-expressions for c Z s a and P j(c v  . . . , c n;) in the  

m iddle expression of (1), ad van cin g the quantifiers (by the inform al 

analogs of *91 and *87 § 35), and con tractin g (by (17) § 5 7 ), w e obtain  

an (E x )(y)-expression for P * (sai, . . satij) .  A n  (x )(E y)-expression is
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obtained similarly, using instead the (x)(Ey\-expression for P  (c1, . . cUj) 
and the right member of (1) (and applying *91, *96, *95 *87, *98, *97, 
(17), (18)).

We now consider also applied predicate calculi with equality, in which 
the terms and formulas are constructed using the logical symbolism of 
the predicate calculus with certain individual symbols ev . . . ,  eg, function 
symbols ilf . . . ,  fr and predicate symbols = , Px, . . . ,  Ps (but no predicate 
letters). The number-theoretic definitions of Term' and 'formula’ (§ 17) 
provide an example (with q =  1 , r =  3, s =  0). Although commonly each 
function or predicate symbol takes a number n > 1 of arguments, we 
may allow n > 0 , in which case individual symbols may be included 
among the function symbols, and proposition symbols among the pred
icate symbols. We shall write e.g. "f(s, t)” for the term constructed by 
placing terms s and t in the respective argument positions of a 2 -place 
function symbol f, even though in a given system some other manner of 
combining the symbols may be used, e.g. "f” may stand for +  and 
"f(s, t)” for s+ t.

The predicate calculus with equality is dealt with at length in Hilbert- 
Bernays 1 9 3 4  pp. 164 ff.

We shall see (Theorem 41 (b)) that in an applied predicate calculus 
with equality, Axiom Schema 23 is replaceable by a finite list of particular 
axioms without changing the provability and deducibility notions. 
The idea has already been used in setting up the number-theoretic system 
without Axiom Schema 23; in that case the particular axioms which 
replace Schema 23 did not appear as postulates except Axioms 16 and 
17, since the rest were deducible from the other number-theoretic axioms.

(C) For the applied case, we read "predicate symbol P other than =  ” 
in place of "predicate letter” in (A). The open equality axioms for an n-place 
function symbol f shall be the n formulas
a= b  D f(a2, . . a ^ ,  a, am , . . . ,  a*) =  f(alf . . ., a ^ ,  b, at-+1, .. ., a„)
(i =  1 , . . . ,« ) .  These are deducible in the predicate calculus from 
Axiom 22 and axioms by Axiom Schema 23; e.g. (with n =  2 ), 
a—-b D f(a, c)=f(b, c) is deducible by *3 and D-eliin. from 
a= b  D (f(a, c) =  f(a, c) D f(a, c)=f(b, c)), which is an axiom by Axiom 
Schema 23, and f(a, c)=f(a, c), which is deducible by substitution from 
Axiom 22. Except in the case of =  , the open equality axioms for a symbol 
are what we previously called the special replacement properties (cf. 
Theorem 23 § 38). We use "Eq( =  , P1} . . ., Pg, iv .. ., f,.)” for the con
junction of the closed equality axioms for =  , Plf . . ., Ps, fp . . ., fr.
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(D) G iven  the eq u a lity  axiom s for = ,  P x, . . P g, i v  . . . ,  fr, w e can  

use the results of (B) and the former m ethod of proof to  establish Theorem  

24 and its corollaries for the case the part r w hich is replaced does not 

stan d w ith in  the scope of a n y  predicate sym bol or letter, or function  

sym bol, other than  =  , P 1? . . . ,  P s, f lt . . . ,  fr.

(E) In  a n y  system  in w hich Theorem  24 holds under the restriction  

ju st stated, ev ery  axiom  b y  A x io m  Schem a 23 con taining o n ly  the  

predicate sym bols or letters = ,  P x, . . . , P S and the function sym bols  

i v  . . . ,  fr is provable. F or under the stipulations for the schem a, b y  

applications of Theorem  24 w hich replace b y  b  each occurrence of a in  

A(a) w hich entered b y  su bstitu tion  for x  in A (x), w e ob ta in  a = b  

b A(a) ~ A ( b )  w ith  no variables varied. T h ence b y  * 17a and D -in trod., 

b a = b  D  (A(a) D  A(b)).

Theorem 41. (a) I n  the predicate calculus w ith  eq u a lity , the reflexive
(*100), sym m etric  (*10 1), tra n sitive  (*102) an d replacem ent (Theorem  24  

a n d  corollaries) properties of equ ality  hold.
(b) T b E  in  the a p p lied  predicate calculus w ith  equ ality  having  

=  , P lf . . . ,  P 8, iv . . . ,  fr as its  predicate and  function  sym bo ls , i f  an d  only  
i f  T, E q ( = ,  P j, . . . ,  P s, fj, . . . ,  fr) b E  in  the pred ica te calculus.

(c) T  b E  in  the pu re  pred ica te calculus w ith  eq u a lity , when  T,  E  are  
letter form ulas in  — , F lt . . . ,  P s, i f  and  only if  T , E q ( = ,  P 1# . . . ,  P s) b E  

i n  the pred ica te calculus.
P roofs, (a) B y  (A) —  (D).

(b) B y  ( A ) -  (E).

(c) Sim ilarly, if w e can first exclude the possib ility  th a t the deduction  

T  b E  requires axiom s b y  A x io m  Schem a 23 con taining other predicate  

letters P s+1, . . . ,  F s+t besides P x, . . . ,  P s. T h e  deduction V b E  is a  

deduction in the predicate calculus of E  from  T, a — a  and axiom s b y  

A x io m  Schem a 23. B y  the m ethod of R em ark 1 § 34, we can thence  

obtain  a deduction of E  from  F, a = a  and axiom s b y  A xio m  Schem a  

23 w hich contain on ly the predicate letters 'Pv  . . . ,  P s.

E xample 2. A s a fifth  exam ple for the Converse of Thesis II  § 60, 

for a prim itive recursive R ( x ,y )  (cf. E x a m p le  1 §60), let <pv  
be a p rim itive  recursive description of the representing function cp ( =  cpfc) 

of R . L e t i{, . . . ,  f fc be distinct function sym bols (to express <px, . . . ,  <pk, 
respectively). L e t the term s and form ulas of S  be constructed using the  

logical sym bolism  of the predicate calculus w ith  the individual sym bol 0, 

the function sym bols ', flf . . . ,  f*. and the predicate sym bol = .  L e t S
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h ave the postulates of the predicate calculus and as particu lar axiom s  

the equations obtained b y  tran slating the schem a applications for the  

description y lt . . . ,  cpfc (as E xam p le  1 § 44 w as tran slated  to get E x a m p le  3 

§ 54, b u t w ith  1 =  0), together w ith  the open eq u a lity  axiom s for =  , 

i v  . . . ,  f fc. L e t A (x) be the formula 3 y ffc(x, y ) = 0 .  In  S  the substitution  

rule R 1 of § 54 holds as a derived rule (by § 23), and likewise the re

placem ent rule R 2  (by Theorem  41 (a) and (b)). H ence if, for some y , 
R (x , y)  is true, i.e. <$k(x, y) =  0, then ik(x, y)=0  is provable in S , and b y

3-introd., so is A (x). Conversely, A (x) is provable in 5  on ly if (E y)R (x , y ) ,  
as w ill be shown in Theorem  52 § 79.

* §  74. Eliminability of descriptive definitions. A t  various stages  

in the inform al developm ent of a m athem atical theory additions m a y  

be m ade to the stock of concepts and notations. If the developm ent is 

form alized, at the corresponding stages new form ation rules and postulates  

are added to  a given  form al system  S 1 to obtain another S 2. T h u s the  

form ulas (provable formulas) of becom e a subset of those of S 2. T h e  

new form ation rules introduce new  form al sym bols or notations, and the  

new postulates provide for their use d ed u ctively. W e shall w rite ‘ ‘ hi”  

(“ h2” ) for the d ed u cib ility  relation in S t  (in S 2).

U nder such circum stances, we sa y  th a t the new notations or sym bols  

(with their postulates) are elim inable (from  S 2 in  S 2), if there is an ef

fective process b y  which, given  a n y form ula E  of S 2, a form ula E ' of 5 X 

can be found, such t h a t :

(I) I f  E  is  a form ula of S v  then  E '  is  E .

(II) h2 E ~ E ' .

(III) I f  T  b2 E , then  T  hi E '.

Here P  is D [,  . . if T  is D x, . . . ,  D ,. W e call (I) —  (III) the e lim i
nation  relations. (In E x a m p le  13, slight m odifications are called for in 

our form ulation of ‘ ‘elim in ab ility” .)

W hen the elim ination relations hold, then furtherm ore:

(IV) T  h2 E , i f  an d  only if  T f hi E '.

(V) I f  T, E  are form u las of S v  then  T  h2 E  i f  an d  only if  T  hi E .

P roofs. (IV) F or con versely to (III): If V' hi E ',  then a fortiori 

T ' h2 E ';  thence b y  (II), F h2 E .

(V) B y  (I) w ith  (III) or (IV).
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Thus an eliminable extension of St to obtain S2 is inessential, in that 

by (V) it gives no enlargement of the class of the original formulas which 
are provable, while by (II) any new formula is equivalent in the enlarged 
system to one of the original formulas.

E x a m p l e  1. E l im in a b il it y  o f  e x p l i c it  d e f i n i t i o n s . In studying 
our formal system, we regarded 1, < , 3!x, x2, etc. as merely ab
breviations in the presentation of the metamathematics (cf. end § 17). 
Alternatively, we could have treated them as successive additions to the 
formal symbolism. In this case, each time we should have added a 
new formation rule (if A and B are form u las, so is A ~  B; 1 is a term ; 
if s and t are terms, s e t  is a fo rm u la ; if x is a variable and A(x) is a 
form ula, 3!xA(x) is a fo rm u la ; if s is a term , s2 is a term ;  respectively), 
and a defining axiom or axiom schema
({(A ~  B) D (A D B) & (B D A)} & {(A 3  B) & (B D A) D (A ~  B)}, 
1=0', a < b  ~  3 c(c '-\-a = b ), 3!xA(x) ~  3x[A(x) & Vy(A(y) D x=y)], 
a 2= a -a , respectively, with appropriate stipulations about A, B, x, A(x), y). 
These additions are eliminable, with ' the operation previously regarded 
as unabbreviation. Generally this is the case under the following con
ditions (briefly stated). The defining axiom or schema is an equivalence 
(an equation). Then St shall be the predicate calculus (the predicate 
calculus with equality) and possibly additional particular axioms and 
axiom schemata. Theorem 14 § 33 (Theorem 24 (b) § 38) is used in proving 
(II). The two conventions for “permanent abbreviations’' end § 33 

shall apply; the first of these is used in treating the case for Rules 9 
and 1 2  in proving (III), and the second for Axiom Schemata 10 and 1 1 , 
and an additional convention can be adopted to fix which bound varables 
are used in the E' for each E. For each additional axiom schema, 
whenever A is an axiom of S2 by it, A' must be provable in S t .

E x a m p l e  2 . Let S 2 be our system of the classical predicate calculus 
with the addition of Axiom Schema 9a of Lemma 11 § 24, which by *95  

§ 35 is redundant in S2. (An axiom or axiom schema or several such are 
redu n dan t in a formal system S , if the axioms involved are all provable 
in the system left after omitting those axiom(s) or axiom schema(ta) 
as postulates.) Let S t be what remains from S2 when &, V, 3 and their 
postulates are omitted. Then the elimination relations hold, when ' is 
the replacement of &, V and 3 by the equivalents given by *60 and *61 
§ 27 and *83 § 35. (In treating the case for Axiom Schema 6 in the proof 
of (III), assume A DC, B d C, n A D B  and -iC, and deduce both B 
and -i B with the help of * 12. Then use -i -introd. and elim., and D-introd.)
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Example 3. In  our num ber-theoretic system , f- - i A  ~  A  3  1 = 0 . 

T h is enables - i  to  be elim inated, if (redundant) postulates 8 ' (or 81') and

15" are first added, where 8 ' is ((A D  1 = 0 )  3  1 = 0 )  3  A , etc. (B u t lb  

includes 7'.)

A n  elim ination theorem  can be looked upon as a new  sort of derived  

rule (§ 20) for the stu d y of the original system  S v  I t  enables us, w hen our 

purpose is to  establish the p ro v a b ility  of a form ula E  in S v  to u ndertake  

instead to prove E  in a suitable system  S 2 h avin g more m achinery th an  

S v  A lso b y  it a n y  form ula E  not of S x w hich w e prove in S 2 can be con

strued as an abbreviation  for a  provable form ula E ' of S v
A n  elim ination theorem  has as corollaries th a t the sim ple con sisten cy  

of S 2 is im plied b y  th a t of S t  (using (V), cf. § 28) and the decision problem  

for S 2 is reduced to th a t for S x (by (IV), cf. § 30, end § 61).

E xample 4. N on-eliminability of the recursive definition of •. 
T h e function sym bol • w ith  its recursion equations (A xiom s 20 and 21) 

is not elim inable from  the form alism  of C hapter IV , call th a t S 2. F or  

b y  Presburger’s result (beginning § 42) the rem aining system  S x is 

sim p ly consistent and its decision problem  is solvable. I f  • were 

elim inable, the sam e w ould be true of S 2, con trad ictin g Theorem  33 § 61.

E liminability of descriptive definitions. In  a descriptive definition, 

an o b ject / is defined as th e w  such th a t F (w )  (in sym bols, iw F (w ))f 
where F  is a predicate for w hich it is know n th a t there is a  unique w  
such th a t F (w )  (in sym bols, (E \w )F (w )). I f  w  is the on ly independent 

variable for F ,  then iw F (w )  is an in dividual /. I f  F  depends on n  other  

in d ividu al variables, w rite it ""F (x v  . . . ,  x nf w )” 9 then vwF(xv  . . . ,  x nt w) 
is a function f(x v  . . . ,  x n). W e  shall include the first case in the second b y  

considering an individual as a function of 0 variables (accordingly, w e  

ta k e "function sym b o l’ to  include "individual sym b o l’ in this section).

T h e  logic of descriptive definitions w as treated  b y  W h iteh ead  an d  

R ussell 1910  (pp. 30— 32, 66— 7 1, 173— 186 in the 2nd ed. 1925).

T h eir elim in ab ility  w as established b y  H ilbert and B ern ays 1934  pp. 

422— 457. A n o ther proof w as indicated b y  R osser 1939 . T h ese proofs 

establish the elim in ab ility  of iw as a form al operator, th e adm ission of 

w hich into a  given  form alism  introduces all the possibilities for de

scriptive definitions a t once. N o ta tio n a lly  it is sim pler to  use function  

sym bols. A  m ath em atician  developing a th eory w ill ordinarily introduce  

new  function sym bols successively as the need for them  arises. W e  shall 

establish the elim in ability of function sym bols introduced in this m anner.



408 AXIOM SYSTEMS CH. X IV

I t  suffices to  consider the introduction of one new  function sym bol at a  

tim e.

T h e o r e m  42. Let S x have the formation rules of an a p p lied  predicate  
calculus w ith  equ ality  (§ 73), an d  let the postu lates of S x be those of the 
pred ica te  calcu lus w ith  ad d itio n a l p a rticu la r ax iom s an d ax iom  schem ata  
such that the equ ality  ax iom s for the fu n ction  and  pred ica te sym bols of S x 
are provable [or let S x be s im p ly  an a p p lied  predicate calculus w ith  equ ality  
a n d  p o ssib ly  a d d itio n a l p a r ticu la r  ax iom s an d  axiom  schem ata).

L et  x 1, . . . ,  x n, w  (n >  0) be d is tin c t variables, and  F ( x 1, . . x n, w) be 
a form ula which contains free on ly x v  . . . ,  x n, w, and in  which x v  . . . ,  x n 
are free for  w. S u ppose  that
(i) 3 !w F (x I, . . . .  x n, w) 

is  provable in  Sv
L et S 2 be obtained from  S x by a d jo in in g  a new n-place function  sym bol f 

a n d  the new  axiom
(ii) F ( x 1, . . x n, f(xj, . . x n)).

Then the new  fu n ction  sym bol f and its  ax iom  are elim inable, i.e. (I) —  

(III) (and hence (IV) and (V)) hold for a certain  effective correlation  ' 

(which w ill be specified in the proof), provided  each of the a d d itio n a l 
ax iom  schem ata has the p ro p erty  th a t, i f  E  is  an  ax iom  of S 2 by i t , then  E '  

i s  provable in  S v
P roof is p rovided b y  L em m as 25 —  31. B y  Theorem  41 (b), it  is im 

m aterial w hether w e consider the logic to  be the predicate calculus or 

the predicate calculus w ith  e q u a lity, w hen w e kn ow  the eq u a lity  axiom s  

for th e function and predicate sym bols to be provable. H ence from  the  

ou tset this is im m aterial in th e case of S v  and it w ill be in the case of S 2 
as soon as w e learn (in L em m a 27) th a t the eq u a lity  axiom s for the new  

fun ction  sym bol f are p ro vab le in  S 2.
L e m m a  25. I n  the p red ica te  calculus w ith  eq u a lity , i f  u, v  an d  x  are 

d is tin c t variab les , F (v), C (v), C(u, v), A , B , A (v), B (v) and  A (x , v) are  
fo rm u la s , u is  free for  v  in  F (v) an d  C(u, v), A  an d  B  do not contain  v  free , 

a n d  F (v) does not contain  u or x  fre e :

*18 1. 3 !vF (v) b 3v[F(v) &  C(v)] ~  V v [F (v ) D  C(v)].

*18 2. 3 !v F (v), C(v) b v  3v[F(v) &  C(v)].

*18 3. 3!v F (v) b 3u[F(u) &  C (u,u)] ~  3u[F(u) &  3 v [F (v) &  C(u, v)]].

*18 4. 3!v F (v) b 3v[F(v) &  (A D  B(v))] ~  A  D  3 v [F (v) &  B (v)].

*18 5. 3 !vF (v) b 3 v [F (v ) & (A(v) 3  B)] ~  3 v [F (v) & A(v)] 3  B .
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*186. (- 3v[F(v) & A & B(v)] ~  A & 3v[F(v) & B(v)].
*187. 3!vF(v) h 3v[F(v) & (A V B(v))] ~ A V  3v[F(v) & B(v)].
*188. 3!vF(v) h 3v[F(v) & -iA(v)] ~  -i3v[F(v) & A(v)].
*189. 3!vF(v) h 3v[F(v) & VxA(x, v)] ~  Vx3v[F(v) & A(x, v)].
*190. h 3v[F(v) & 3xA(x, v)] ~  3x3v[F(v) & A(x, v)].
(Cf. David Nelson 1947 Lemma 23 pp. 347—348.)

P roofs. *181. Assume 3!vF(v), F(v)&C(v) (for 3-elim.) and F(t) 
where t is a new variable (for 3-introd.). Then using *172 §41, v = t;  
and hence by replacement, C(t). By 3 - and V-introd. and change of 
bound variables, Vv[F(v) 3  C(v)]. The variable of the V-introd. was t, 

so no variable has been varied. By 3-elim. and 3-introd.,
3v[F(v) &C(v)] 3 Vv[F(v) 3 C(v)]. For the converse, assume 3!vF(v) 
and Vv[F(v) 3 C(v)]. From 3!vF(v), we get 3vF(v). Preparatory to  

3-elim., assume F(v).
*183. 3u[F(u) & C(u, u)] h 3u[F(u) & F(u) & C(u, u)] (*37 §27)

1- 3u3v[F(u) & F(v) & C(u, v)] (*80 § 35) \- 3u[F(u) & 3y[F(v) & C(u, v)]] 
(*91). The converse can be based similarly on *79, with help from *181, 
*4 § 26 (with *69 § 32), etc.

*184. 3!vF(v) h 3v[F(v) & (A 3 B(v))] ~  Vv[F(v) 3  (A 3 B(v))]
(*181) ~  Vv[A 3 (F(v) 3 B(v))] (since using *3, h B 3  (A 3 C) ~ A  3 
(B 3 O) ~  A 3 Vv[F(v) 3 B(v)] (*95) ~A3 3v[F(v) & B(v)] (*181).

*187. 3!vF(v) h 3vF(v) b 3v[F(v) & (A V B(v))] ~  3v[(F(v) & A) 
V (F(v) & B(v))] (*35) ~  (A & 3vF(v)) V 3v[F(v) & B(v)] (*88, *91 with 
*33) ~  A V 3v[F(v) & B(v)] (*45).

*188. Use successively *181, *58b, *86.
Lemma 26. In the predicate calculus with the equality axioms for the 

function and predicate symbols of Sx only but with f admitted to the symbolism 
(a fortiori, in the predicate calculus with equality), the conjunction of (i) and
(ii) is interdeducible with
(iii) f(xx, . . . ,  x„)=w ~  F(x1( . . . ,  x„, w).
Hence (iii) is provable in S2.

P roof. From (ii) and f(xx, . ..,x„ )= w , we deduce F(x,, ..  . ,x n,w) 
by the replacement property of equality, which by (D) § 73 requires 
only the predicate calculus with the equality axioms for =  and the 
function and predicate symbols of F(xx, w). From (i), (ii) and
F(xx, . . . , x n, w), we deduce f(xx, .. .,x „ )= w  by *172. From (iii), we 
deduce (i) with the help of *171, and (ii) by substituting f(xx, . . . ,  xB) 
for w in (iii) and using Axiom 22 § 73.
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F or the rest of the proof of Theorem  42 , we shall use “ F ( x x, . . . ,  x n, w )” 

under the con ven tion w hich applies to perm anent abbreviations (cf. 

end § 33) th at, for any terms t v  . . . ,  t n, s, “ F ( t x, . . . ,  t n, s),J shall denote  

the result of su b stitu tin g t 1# . . . ,  t n, s for x 1# . , . ,  x n, w  in F ( x 1, . . . ,  x n, w) 

after a n y  legitim ate change of bound variables in F ( x 1? . .  ., x w, w) 

w hich m akes the substitution free.

Lemma 27. In the system of Lemma 26, the equality axioms for  f are 
deducible from (iii). Hence they are provable in S 2.

W ere this not so, adding on ly (ii) to the axiom s of Sx w ould not give  

effective use of f in S2 (cf. Theorem  41 (a) and (b)).
P roof. F o r exam ple, if n =  2 (and w riting a, c for x x, x 2), we can  

prove a = b  3  f(a, c ) = f( b , c) thus. Assum e a = b .  B y  replacem ent, 

F (a, c, f(b, c)) ~  F(b, c, f(b, c)). Thence using (iii), f(a, c ) = f( b , c) ~  

f(b, c ) = f( b , c); w hence (A xiom  22 and *18b), f(a, c ) = f( b , c).

Lemma 28 . L et t lf . . . ,  t n be term s, v  be a variable not occurring in  
t x, . . t n, an d  C(v) be a form ula in  which  f(tx, . . . ,  t n) is  free for  v . Then  
C (f(tx, . . t w)) ~  3 v [F ( tx, . . . ,  t w, v) &  C(v)] is  deducible from  (iii) in  
the pred ica te calculus w ith  equ ality , an d  hence is  provable in  S2.

P roof. Assum e C (f(tx, . . . ,  t n)). Su b stitu tin g in (ii) (cf. L em m a 26), 
F ( t x, . . . , t w, f(tx, . . . , t n)). N o w  use 3- and 3 -in tro d . Conversely, 

assum e (for 3-elim.) F ( t x, . . . ,  t n, v) &  C(v). U sin g (iii), f(tx, . . . ,  t tt) = v .  

B y  replacem ent in C(v), C (f(tx, . . . ,  t n)).

A  p rim e  form ula is one con taining no logical sym bol, i.e. here it is a  

predicate sym bol w ith  term s as argum ents. A  term  or form ula of Sv 
i.e. one not con taining f, w e call i-less. A  term  of the form  f(tx, . . . ,  t n) 

where tv . . . ,  t n are term s w e call an i- te rm ; and if t x, . . . ,  t n are f-less, 

w e sa y  it is a p la in  f-term . A n  occurrence of a term  in a form ula is bound  
{free), if it is (is not) w ithin the scope of some (any) quantifier V y  or 3 y  

where y  is a variable of the term .

E xample 5. L e t P  and Q  be predicate sym bols, g be a function sym bol 

d istin ct from  f , and x  and y  be distinct variables. In  the follow ing form ula, 

th e  second occurrence of an f-term  is b o u n d ; the c cher six  are free.

1. V x{P (f(y), f(g(x))) &  Q (x, x)}

D P(f(y), f(g(f(y)))) & Q(f(y). %))•

T h e  f-term s f(y) and f(g(x)) are plain, b u t f(g(f(y))) is not, as the f-term  

f(y) is nested w ithin it.
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L emma 29. There can be correlated effectively to each form ula  E  of S 2 

a  form ula  E '  of S x (called the p r in c ip a l {-less transform  of E ) in  such a  
w a y  that (I) and  (II) hold , no free variables are in troduced or rem oved , 

a n d  the operators of the pred ica te calculus are preserved , i.e . (A D  B )' 

i s  A ' D B '  ( A & B ) '  is  A ' & B ' ,  (A V B) '  is  A ' V B ' ,  ( -iA ) ' is  - i A ' ,  

(V xA (x))' is V x A '(x ) (where A '(x ) is  (A(x))') a w i (3xA (x))' is 3 x A '(x ).

P roof. T h e condition th a t the operators are preserved defines E ' 
b y  recursion on the num ber g of occurrences of logical sym bols in E , pro

vid e d  we su p p ly as basis a definition of E ' for the case E  is prim e. W e do  

this b y  induction on the num ber q of occurrences of f-term s in E , thus.

If g =  q =  0, E '  shall be E .

If g  =  0 and q >  0, select the first occurrence of a plain f-term  

in E , sa y  it is f(tx, . . . ,  t n). L e t v  be a variable w hich does not occur  

in E . L e t C(v) result from  E  b y  changing the occurrence of f(tx, . . t n) 

under consideration to v. T h en  E ' shall be 3 v [F ( t1} . . . ,  t n, v) &  C '(v)]. 

(B y  *181,  we could equ ally  w ell use V v [ F ( t 1, . . . ,  t n, v) D  C '(v)].) There  

is an am b igu ity  here regarding the choice of the bound variable v  and  

the m anner in w hich the bound variables of F ( x x, . . . ,  x rt, w) are changed  

w hen necessary to m ake the substitution  of t v  . . . ,  t n, v  for x lf . . . ,  x n, w  

free. B u t different legitim ate choices lead to congruent form ulas (§ 33). 

W e m a y  suppose some con ven tion supplied to fix  w hich one is E '  itself. 

In  our illustrations, it w ill suffice to use a n y  congruent of E '.  N o te  th a t  

C(v) is prim e and contains ju st q— 1 occurrences of f-term s.

T h e  properties of ' m entioned in the lem m a follow b y  a corre
sponding induction on g  (using Theorem  14 § 3 3  for (II)), w ith  in

du ction  on q w ithin the basis (using L em m a 28).

A  suggestive abbreviation  is to w rite “ F^1’••,’t* C (v ) ,, for 

3 v [ F ( t1, v) &  C (v )].

E xample 5 (continued). Form ula 1 is reduced to  a con gruen t of 

its principal f-less tian sform  thus.

2. V x { F ^ P ( v 2, f ( g ( x ) ) ) & Q ( x ,x ) }

=> n ; p ( v 2, % ( % » ) )  &  F v 12Q (v 12, f(y)).

3. V x {F $ t F«W P ( v 2, v 3) &  Q (x, x)}

3  Fv2F?„ p(v2. f(g(vn))) & Fv12F̂ 13Q(v12, v13).
Vx{ F ;F « P ( v2)v3)&Q(x, x)}

3  Ft u)p(v2, v3) & F^F^3Q(v12, v13).

4.
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L e t us call the prefixes F^1*-*1* “ F-qu an tifiers” . B y  *184— *19 0  

(since (i) gives us the assum ption form ulas 3!vF (v)), F -qu an tifiers can b e  

perm uted in S t  w ith  the operators of the predicate calculus and w ith  

each other (changing bound variables as necessary), subject to the  

restriction th a t F *1” •,fcw m a y  not be advan ced (leftward) over an or

d in a ry  or F -q u an tifier w hich binds a n y  variable of t v  . . . ,  t n (since for 

*18 9  and *19 0  the F (v) m ust not contain the x  free). T h is restriction as 

betw een  tw o F -qu an tifiers m eans sim ply th a t tw o F-qu an tifiers w hich  

result from  elim inating f-term s one nested w ithin the other m ust be k e p t  

a lw ays in the sam e relative order (the one corresponding to the inner 

f-term  being to the left). A s  betw een an F -  and an ordinary quantifier,, 

it  m eans th a t an F -qu an tifier resulting from the elim ination of a bou n d  

occurrence of an f-term  m a y  be advan ced leftw ard on ly  up to the right

m ost of the ordinary quantifiers w hich bound the occurrence.

M oreover b y  *18 3, ad jacen t like F-quantifiers F|j*"*,tn and F ^ - ,tw can  

be contracted.

A lso *18 2  con stitutes an introduction rule for F-quantifiers.

E xample 5 (concluded). Form ula 1 is an axiom  V x A (x ) D A (t)  

of S 2 b y  A x io m  Schem a 10, w ith  f(y) as the t ;  and we chose the sam e 

bou n d  variables in elim inating corresponding f-term s of A (x) and A (t)  

in the reduction to  Form ula 4. N ow  b y  *186, *190, *18 6  (with *33), 

*18 4  and *18 3  (with a change of bound variables), we can ad van ce th e  

three F -qu an tifiers F * u , F * m, F^ig resulting from the elim ination of th e  

three occurrences of f(y) as the t  of the schem a application to  the fron t, 

and con tract them  to one F -qu an tifier F ^ . T h is gives us the follow ing  

form ula, as an equivalen t in S x of Form ula 4 and hence of the principal 

f-less transform  of Form ula 1.

5. F ^ [ V x { F ^ F |W  P (v *  v3) &  Q (x, x)}

3  F^F*<;i>P(v2) v3) & Q(vj, Vl)].
N o w  the scope of F ^  in 5 is an axiom  of S x b y  A xio m  Schem a 10, w ith  

v t  as the t. So b y  F-introd. (*182), Form ula 5 is provable in S v  and hence  

also the principal f-less transform  of Form ula 1.

Lemma 30. I f  E  is  an  ax iom  of S 2, then \~x E '.

P roof. If  E  is an axiom  of S 2 b y  a n y  axiom  schem a of the prop

ositional calculus, then E '  is an axiom  of S x b y  the sam e schem a, since  

' preserves the operators of the calculus (Lem m a 29).

A xiom Schema 10: E  is V x A (x ) D A (t), where t  is free for x  in A (x ).
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Case 1: t  is f-less. T h en  b y  choosing the sam e bound variab les for

corresponding steps in the reductions of A (x) and A (t), w e can ob tain  

a  congruent of E '  w hich is of the form  V x B (x ) D  B (t) where t is free for 

x  in B (x). T h is is an axiom  of S t b y  A x io m  Schem a 10, w ith  the sam e t. 

H en ce hi E '.

E xample 6. L e t E  be
Vx{P(f(y), f(g(x))) & Q(x, x)} D P(f(y), f(g(t))) & Q(t, t),

w here t is f-less. T h en

V x{F ^  F ^ ' P K ,  v 2) &  Q (x, x)} Z> F ^ F ^ P K ,  v 2) &  Q (t, t)

is congruent to E ',  and is an axiom  of S t  b y  A x io m  Schem a 10.

Case 2: the general case. S a y  th a t A (x) contains k occurrences of

f-term s and l free occurrences of x , and th a t t contains m  occurrences of 

f-term s. (Illustrated w ith  k =  2, l =  3, m =  1 b y  E x a m p le  5.) T h en  A (t)  

contains k  occurrences of f-term s w hich originate from  A (x) and thus  

correspond to the f-term s of A (x), and Im others consisting of m in each  

of the l  occurrences of t w hich ta k e the place of the free occurrences of  

x  in A (x). In  the reduction of E  to a congruent of E ',  w e can use F -  

quantifiers "with the sam e bound variable in elim inating each of th e k 
pairs of corresponding f-term  occurrences from  A (x) and A (t), and F -  

quantifiers w ith  other distinct bound variables in elim inating from  A (t)  

the Im  f-term  occurrences in the t's. S a y  th a t in the elim ination, these l  
occurrences of t  becom e t * ,  . . . ,  t f  (vn , v 12, v 13 in the exam ple). Since  

none of the k  f-term  occurrences in A (t) w hich originate from  A (x) can be  

nested w ithin a n y  of the Im  w hich enter b y  the su bstitu tion  of t  for x ,  

and since the su bstitu tion  is free, the Im F -qu an tifiers used in elim inating  

the latter can be ad van ced  to the front, and in such an order th a t each  

group of l  of them  belonging to corresponding f-term  occurrences in the  

l occurrences of t are ad jacen t, after w hich each group can be con tracted. 

W e thus obtain as an equ ivalen t in S x of E '  a  form ula of the form  

(A) . . .  F®̂ 1’--’Swn[VxB(x) D B (t*)],

where t *  results from  each of t* ,  . . . ,  t f  b y  the identification of variables  

in the contraction, and is free for x  in B (x). N o w  V x B (x ) D B (t*)  is an  

axiom  of S x b y  A x io m  Schem a 10, and (A) is provable thence b y  m  
applications of F-introd. (*182).

Axiom (ii): E is F(x1, ..., xn, i ( x v  ..., xw)). Suppose w occurs free I 
tim es in F ( x 1, . . . ,  x n, w). T h en  E ' contains l  F-quantifiers. These can be  

advanced and contracted to give F^1,"*,x»F(x1, . . . , x n, v), i.e. 

lv{F(x1, . . x n) v) &  F(x1? . . x nt v)}, w hich is provable from  (i).
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Lemma 31. I f  E  is  an  im m ed ia te  consequence of F  {of F  and  G) in  S 2, 
then  E '  is  an  im m edia te  consequence of F '  {of F '  and  G') in  S 2.

F or each of R ules 2 , 9 and 12 , because ' preserves the operators, and  

does not introduce free variables (so th a t the C of R u le 9 or 12 is not 

transform ed into a form ula C ' con taining x  free).

Remark 1 . If f is not 0 or ', the induction schem a satisfies the  

proviso of the theorem  for additional axiom  schem ata, as is seen b y  the  

reasoning used for A x io m  Schem a 10 Case 1 .

E xample 7. L e t be the num ber-theoretic system  of C hapter IV .  

L e t S 2 result from  S x b y  adjoinin g the function sym bol rm (to express the  

rem ainder function) w ith  the axiom

3 q { a = b q Jr i m { a t b ) &  rm {a, b) < b )  V {b = 0 &  rm {a , b ) = a )
(cf. *  179b, c § 41). T h en  b y  the theorem  (together w ith  R em ark 1), rm  

and its axiom  are elim inable. —  L e t the notation [afb] for the quotient 

and the axiom  l r { a = b [ a /b ] - \ - r  & r < b )  V b = [ a / b ] =  0 (cf. *17 8 b , c) also 

b e adjoined. B y  successive applications of the theorem , b oth  rm and  

la jb ]  can be elim inated.

E xample 8 . L e t S x be the num ber-theoretic form al system , R (x, y) 

b e a form ula con taining free on ly x  and y , and R{x, y) be the predicate  

w hich R (x, y) expresses under the interpretation, (a) Consider the  

classical system  S v  and suppose R  is such th a t: (A) hi 3 y R (x , y). 

T h en  using *14 9  and *17 4 b , a function sym bol f introduced w ith  the  

axiom  R (x, f(x)) &  V z ( z < f(x )  D - iR ( x ,  z)), so th a t under the (classical) 

interpretation (at least) f(x) expresses the function [iyR{x, y) (beginning  

§ 57, assum ing about S ± th a t (A) im plies (lb) § 57 (with n =  1)), w ill be  

elim inable, i.e. the elim ination relations hold from the system  S 2 thus  

obtained. U sing *14 9 a  instead of *149, the sam e holds in the intuitionistic  

Sv  w hen besides (A) also: (a) hi R (x, y) V i R ( x ,  y). (b) N ow  consider 

th e classical S v  w ith ou t supposing (A). L e t R t(x , w) be R (x, w) V 

{ -i3 y R ( x , y) &  w = 0 } , and R t(x , w) be R t(x , w) &  V z ( z < w  D - i R +(x, z)). 

B y  *5 1 , hi 3 y R (x , y) V i 3 y R ( x ,  y). Thence using cases (V-elim.), 

hx 3 w R t(x , w ); and b y  *14 9  and *17 4 b : (1) hi 3 !w R t(x , w). So a

function sym bol f introduced w ith  the axiom  R t(x , f(x)) w ill alw ays  

be elim inable classically. U nder the (classical) interpretation, now f(x) 

expresses s)>R{x, y) (beginning § 62; cf. (59) §63). T h e elim in ability holds 

in the intuitionistic S v  w hen R  is such th a t (a) holds and also:

((3) hi 3 y R (x , y) V - i3 y R ( x ,  y). For ((3) enables us to dispense w ith  *5 1,  

and (a) and (($) w ith  *15 8  and R em ark 1 (b) § 29 give hi R *(x, w) V
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n R ^ (x , w), w hich enables us to use *14 9 a instead of *149. (c) L e t <p(x) be  

a n y function of w hich the representing predicate <p(x)=w  is arith m etical 

(§ 48). L e t R (x , w) be a form ula expressing <p(x)=w . T h en  the f(x) of (b) 

expresses zw [(p [x )= w ],  i.e. <p(x). T h u s in  the classica l num ber-theoretic  
system , for an y  function  (p[x) such that cp (x )= w  is  arithm etical, a form ula  
F (x , w) conta in ing  free only  x  and  w  can be found such that F ( x , a;) is  true  
under the in terpre ta tion  exactly when w  =  <p(x), an d  a new  fu n ction  sy m 
bol f expressing  9 w ith  the ax iom  F (x , f(x)) is  e lim inable. In  particular, 

such a form ula  F (x , w) can be found for an y  general recursive function  y(x )  
(by Theorem  V I I  (b) § 57); and for m a n y  functions [under classical in ter
preta tion) which are not general recursive, e.g. z y T t [x, x, y )  (cf. (b) or b e 

ginning § 62, and E x a m p le  1 § 63). (d) C onversely, if an axiom  of the form  

F (x, f(x)) characterizes f(x) as expressing a function <p(x) (i.e. if for each  

x, F (x , w )  is true under the interpretation e x a c tly  when w  =  (p[x)), 
then (p[x) =  w  is arithm etical. —  T h e situation for the intuitionistic  

system  w ill be considered further in § 82 (E xam ples 1 and 2).

F o r the n ext tw o exam ples, w e shall suppose th a t (1) —  (3) of R em ark  

1 § 49 h ave been established, either b y  form alizing § 48 directly, or b y  

borrow ing from  H ilb ert-B ern ays 1934  pp. 401— 419. T h e H ilb ert- 

B ern ays treatm ent is in a form al system  w hich (disregarding ob vio u sly  

inessential differences, including their use of predicate variables, cf. end  

§ 37) results from our classical num ber-theoretic system  b y  adding an  

operator (with appropriate postulates) w hich, applied to  a form ula  

R (x, y), gives a term  expressing the function zy R (x , y )  where R (x , y )  is 

the predicate expressed b y  R (x, y). B y  E x a m p le  8 (b), each use of this  

operator can be elim inated. A p p ly in g  the process to  the form ulas 

displayed fifth  on p. 416 and seventh on p. 419, tak in g the a and  

h(n, p(m, n f• / + 1)) to be sim ply a variable w, we are led to (a) and (p) of 

R em ark 1 § 49. This treatm ent can be ad ap ted  to the intuitionistic system . 

(H ilbert and B ern ays w rite the operator [ix ; their ex has another m eaning, 

cf. 1939  pp. 9 ff ., H ilbert 1928 .)

E xample 9. E liminability of further primitive recursive 
definitions, having those for +  and • (cf. E x a m p le  4). Suppose  

9 X, . . . ,  9 k is the prim itive recursive description of a function 9  ( =  9 *.). 

L e t S x be the num ber-theoretic system  w ith  additional function sym bols  

fx, . . . ,  f ^  (expressing 9 X, . . . ,  <pk__v  respectively), and w ith  equations  

obtained b y  tran slating the schem a applications for <pv  . . . ,  9 *.^ (as 

in § 54) adjoined as axiom s. S a y  e.g. th a t 9 com es from  <{/, x  (where <J/, x  

are from  the list <pv  . . . ,  9 *_1) b y  Schem a (Vb) §43 w ith  n  =  2 . A p p ly in g



4 1 6 AXIOM SYSTEMS CH. XIV

R em a rk  1 § 4 9 :  (1) hi P (0, x, w) ~  Q(x, w), (2) hi P (y ', x, w) ~

3 z[P (y , x ,z )  &  R ( y ,z ,x ,w ) ] ,  (3) hi 3!w P (y, x , w). W e also assum e (as h yp o 

thesis of an induction on k ) : (4) hi g(x)= w  ~  Q (x, w), (5) hi h(y, z, x ) = w  

~ R ( y ,  z, x , w) (where g, h express <{/, respectively). T h e theorem  

(w ith (3)) tells us th a t the addition of f to S x w ith  P (y, x, f(y, x)) as the  

ad d itio n al axiom  is elim inable. B u t in w ith  f added to the sym bolism , 

P (y , x , f(y, x)) is interdeducible w ith  f(0 , x ) = g ( x )  &  f(y ', x ) = h ( y ,  f(y, x), x), 

as w e easily  see (using ( 1) —  (5), and in one direction, induction on y). 

H en ce the pair of equations f(0, x ) = g ( x ) ,  f(y ', x ) = h ( y ,  f(y, x), x) m a y  be  

used instead of the form ula P (y , x , f(y, x)) as the additional axiom s, w ith  

th e  sam e results. (This pair of equations is obtained sligh tly  d ifferen tly  

in H ilb ert-B ern ays 1934  on p. 421.)

E xample 10. L e t Sx be the num ber-theoretic form alism . B y  the  

proof of Theorem  32 (a) § 59, there is a form ula P(z, x, w) such th a t, 

if e is a  G od el num ber of a general recursive function <p(x), then P (e, x, w) 

num eralw ise represents <p(x). T h en  3!w P(e, x , w) is provable for each  

n atu ral num ber M ust 3!w P(e, x , w) be p rovable? (It certain ly is for 

som e choices of 9 and e, e.g. b y  form alizing v ia  § 56 reasoning given  in 

§ 54.) B y  Theorem  31 § 52, { hi 3!w P (z, x, w)} =  (E y )R (z , y)  for som e 

p rim itive recursive R . L e t  0 be obtained from  this R  b y  Theorem  X I V  

(b) § 60. T h en  0 is p rim itive recursive, and 0(y) for y  =  0, 1 , 2 ,  . . .  is an  

enum eration of the num bers z  for w hich 3!w P (z, x , w) is provable. U n der  

th e interpretation, 3!w P (z, x , w) is true on ly w hen z  is the G odel num ber  

of a general recursive function of one variable. Suppose th a t S ± has the con

sisten cy p rop erty th a t 3!w P (z, x , w) is p rovab le on ly then. N ow  for each y, 

0(y) is the G odel num ber of a general recursive function, w hich can be  

w ritten  ®i(0(y), x) (beginning § 6 5 ); and so ®i(0(x), z) +  l is a general 

recursive fun ction  <p(x), for a n y  G 5d el num ber e of w hich 3!w P(e, x, w) 

is u n provable in S v  —  F or such an e , let S 2 be obtained from  S* b y  

ad join in g a new  function sym bol f w ith  the axiom  P (e, x, f(x)). T h en  f 

(and its  axiom ) are n ot elim inable. For, using * 1 7 4 a  and the result (3) of 

R em a rk  1 § 49 for the p rim itive recursive function U  (cf. the proof of 

Theorem  32), w e easily show  th a t P (e, x , t) hi 3!w P(e, x, w). H ence, 

using th e  new  axiom , h2 3!w P(e, x , w). If  f were elim inable, then  

3!w P(«, x , w) w ould be provable in S v  w h ich  is not the case. T h u s  

in  the num ber-theoretic sy s tem , there is  a form u la  P (x, w) conta in ing  free 
on ly  x  an d  w  such th a ty u nder a consistency a ssu m p tio n : P (x, w) num eral- 
w ise  represents a  general recursive fu n ction  9 , but a new  function  sym bol 
f {expressing  9 ) w ith  the ax iom  P (x, f(x)) is  not elim inable.
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For a given  F , f  and form ation rules (here those of S 2), w e shall m ean  

b y  a transform  of a form ula E  a n y  form ula D  such th a t E  ~  D  is 

deducible in the predicate calculus w ith  e q u a lity  from  the form ula (iii).

Remark 2. (a) T h e transform s of E  include its principal f-less

transform  E ' (by L em m a 28 and the proof of L em m a 29) and all form ulas 

obtainable thence b y  m anipulations of F -qu an tifiers based on L em m a 25  

(by L em m a 26). (b) A n y  tw o f-less transform s E 1 and E 2 of a form ula

E  of S 2, since equivalent in S 2 (by Lem m as 26 and 27), are equivalen t in S 1 
(by (V)). T h is holds for a n y  S* for Theorem  42 w ith  the g iven  form ation  

rules (w ithout the proviso for additional axiom  schem ata, since the proof 

of E 1 ~  E 2 in S 2 uses axiom s b y  these on ly of S t ), and in p articu lar when  

S j is sim p ly  the predicate calculus w ith  eq u a lity  and (i) as an axiom .

Replaceability of undefined functions by predicates. Theorem 
43. (a) L et S 2 be an a p p lied  predicate calculus w ith  equ ality  which has a
sym bol f for a fu n ction  of n  variables (n >  0); and let S t come from  S 2 
by om ittin g  f and su p p ly in g  in stead a sym bol F  for a predicate of n -\-1 
variables w ith  the axiom  3 !w F (x x, . . . ,  x n, w) [or the postu lates of S 2 
m a y be those of the pred ica te calculus w ith  the equ ality  ax iom s for the function  
and predicate sym bols of S 2> in  which case in  form ing we also om it the n  
equ a lity  axiom s for  f and su p p ly  in stead  the n -\-1 equ ality  ax iom s for  F).

F or a n y  form ula  E  of S 2, let E '  be a n y  p a rticu la r  f-less transform  of E  

{w ith  the present f and  F,  under form ation  rules a llow ing both in  the sy m 
bolism ). F or an y  form ula  E  of S v  let E °  be the form ula of S 2 obtained from  E  

by replacing sim u ltan eou sly  each p a r t of the form  F ^ ,  . . . , t w, s) where 
t lt  . . . ,  t n, s are term s by  f(tx, . . . ,  t n) = s .  T h e n :

(V ia) hi E  ~  E 0/. (VIb) h2 E  ~  E '° .

(V ila )  {T  h  E }  ->  { F  h  E '} . (V llb )  {V  h. E }  -> { T ° h2 E °}.

(b) L ik ew ise  when S 2 has a d d ition a l p a rticu la r  ax iom s  B x, 

an d axiom  schem ata  93x, . . . , 93* ,  and S 1 has as a d d ition a l p a rticu la r  
axiom s  B{,  . . . ,  B .̂ and ad d itio n a l ax iom  schem ata  2li, . . . ,  such th a t, 

i f  E  is  an  ax iom  of S 2 by  93*- (of S t by  21*), then  hi E '  ( h2 E °). (Cf. H il- 

bert-B ern ays 1934  pp. 460 ff.)

From  (V ia) —  ( V llb )  it  follows th a t:

( V illa )  { r  h2 E } se { F  hi E '} . (V U Ib ) {T  hi E }  »  {T °  h2 E °}.

Proofs. ( V illa ) .  For conversely to ( V ila ) :  If F  hi E ',  then b y  

(V llb ) , F °  h2 E '° ;  and thence b y  (VIb), V h2 E .

Proof of Theorem 43. (a) We begin w ith  the version in which
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the logic is the predicate calculus with equality. Let S3a come from S2 
by adding F to the symbolism with i(xv . . ., xw) = w  ~  F(x1, . . . ,  xn, w) as 
axiom. Regarfling this axiom as an explicit definition of F, the additions 
are eliminable with ° as the correlation, by Example 1. But by Lemma 26, 
the axiom f(x1, . . xn)= w ~ F ( x 1, . . . ,  xn, w) can be replaced in S3a 
by the pair of axioms 3!wF(x1, .. ., xn, w) and F(xx, . . . ,  xn, i ( x lt . . ., xn)) 
without changing the deducibility relationship. So the elimination 
relations hold also from the resulting system S3, i.e.:
(lb) If E is a formula of S2, E° is E.

(lib) b  E ~ E ° .  (IHb) {r b  E} {r° h  E°}.
But Theorem 42 applies to S3 (as its S2), and the result of the elimi

nation of f from S 3 is Sv Thus, using Remark 2 (b) if ' indicates some 
other than the principal f-less transform:
(la) If E is a formula of Sv E' ~  E.

(Ha) h3 E ~ E ' .  (Ilia) {F b  E} -> {Ff b  E'}.
Now (Via) — (Vllb) follow, e.g.:
(Via) By (lib) and (Ha), b  E ~ E ° ~ E ° ' .  But E ~  E°' is a 

formula of Sv Hence by (Va), hi E ~  E°'.
(Vila) {F b  {r b  E} (a fortiori) -> {Ff b  E'} (by (Ilia)).

The version with equality axioms follows by Theorem 41 (b), or can 
be treated directly thus. The equality axioms for F are provable in S3a. 
To pass to S3, we first add them as axioms, then replace (iii) by (i) 
and (ii), and finally omit the equality axioms for f (using Lemma 27).

R e m a r k  3. Any two f-less transforms E1 and E2 of E are equivalent 
in Sv by the proof. Since this equivalence is already established in 
the system Sx of (a) of the theorem, it suffices to satisfy the conditions 
of (b) for any one convenient way of choosing the transforms.

R e m a r k  4. For the version with equality axioms, and for F a  pred
icate symbol: The entire discussion beginning with Theorem 42 and 
including the definition of Transform" holds good, when, for certain 
values of i, we exclude the formation of terms f(t1? . . ., t n) and formulas 
F(tx, . . ., t n, s) with t { for any of these values of i containing f, and 
omit the equality axioms for f and F for these values of i.

R e m a r k  3. With equality axioms, in Theorem 43 (b) the additional 
postulates may make some of the n equality axioms for f redundant in 
S2. Are the corresponding equality axioms for F redundant in 5X? Sup
pose more particularly that for certain values of i there exist proofs of
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the i-th  eq u a lity  axiom s for f from  th e rem aining postulates of S 2 in  

w hich proofs no f-term s f(t1, . . . ,  t n) occur w ith  t i for a n y  of these values  

of i  containing f. T h en  the e q u a lity  axiom s for F  for these values of i  
are redundant in S v  provided th a t (b) is satisfied w hen ' m eans prin

cipal f-less transform , or a n y  other f-less transform  in the altered  

sense of R em ark 4. F or then b y  R em ark 4, using (V II) the principal 

f-less transform s of the eq u a lity  axiom s in question for f are provable  

in the altered S lt and thence the corresponding eq u a lity  axiom s for F .

E x a m p l e  11. (a) L e t S 2 be the full num ber-theoretic system  or

R obinson's (Lem m a 18b § 49). B y  (b) of the theorem , w e can replace the  

function sym b ol • b y  a predicate sym bol, in the follow ing m anner. 

S a y  the new predicate sym bol is •, w ritten preceding its three argum ents. 

W e adjoin as new axiom s

a = b  D  ( - { c ,d ,a ) Z ) -  (c, d, b )), 3!c • (a, b, c ) ;

and if we use principal -le ss  transform s, we change A xiom s 20 and 21 to  

1 b [ - (a ,  0, b) & b  = 0], 3c [• (a, b \  c) & 3d [ - (a ,  b , d ) & c = d + a ] ] ,  
respectively, b u t these m a y be sim plified to

• (a , 0, 0), 3d[ - ( a ,  b ', d + a )  & • (a, b , d)] .
T h e  other tw o eq u a lity  axiom s

a=b D (-(a, c , d ) 0 -  (b, c, d)), a=b  D (• (c, a, d)Z> • (c, b, d)) 
for • as a predicate sym bol need not be adjoined, if S 2 is the full num ber- 

theoretic system , since th e y  are in fact provable in the system  described  

(by R em ark 5 w ith  the proofs of the eq u a lity  axiom s for • as a function  

sym bol § 38); bu t if S 2 is R obinson's system , we adjoin them  in place of 

the form ulas of *106 and *10 7  as axiom s. B y  a second application  of the  

theorem  we can further replace + .  In doing so, if A x io m  18 is ch an ged to  

its  principal + -le s s  transform  or to +  (<z, 0, a), a—a w ill still be provable  

(and w ill rem ain so if 0 is replaced sim ilarly under (b) below). B y  a third  

application  we can further replace ' . I n  doing so, w e change the induction  

schem a say  to A(0) &  V x(A (x) D 3 y ['(x , y) &  A (y)]) D A (x). T h u s we  

obtain a system  5 X w ith ou t function sym bols in the ordinary sense, i.e. 

for n  >  0, related to S 2 b y  (V ia) —  (V U Ib ), where now  ' and ° denote  

successive elim inations of several sym bols, (b) If we w ish a  system  lackin g  

also individual sym bols, w e can still further replace 0 b y  an application  

w ith  n  =  0, or we can elim inate 0 before replacing ' (next exam ple).

E x a m p l e  12. U sing * 1 3 7  and A xio m  15, 0 —b  ~  V a (a '^ b )  (which is 

of the form (iii)) is provable. T h is fact can be utilized to elim inate 0 b y  

Theorem  42 after some prelim inary transform ations.
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E xample 13. E liminability of a defined sort of variables. 
Let St be the predicate calculus (say under formation rules using indi
vidual, function and predicate symbols) with additional particular axioms 
and axiom schemata. Suppose that for a certain formula M(w) containing 
free only w, the formula 3wM(w) is provable in Sv Let S 2 come from St 
by adjoining a new sort of variables a, b, c, . . . ,  admitting these in 
constructing terms and formulas and for Rules 9 and 1 2 , restricting the 
x for Axiom Schemata 10 and 11 to be a variable of the original sort, and 
adding the following three axiom schemata, where x is a variable of 
the new sort, A(x) is a formula, and t is a term free for x in A(x) and 
for w in M(w).
0. M(x). 10. M(t) D  (VxA(x) 3  A(t)). IT. M(t) D (A(t) D 3xA(x)>.
Given any formula E of S2, let El result from E by replacing each part 
of the form VxA(x) by one of the form Vx[M(x) D A(x)], and of 3xA(x) 
by 3x[M(x) & A(x)], where x is a variable of the original sort not oc
curring in A(x) or M(w); then let E t come from El by prefixing 
M(yx) & . . .  & M(ym) D where yv . . ., ym are exactly the distinct 
variables of the new sort which occur free in E (and hence in E l); and let 
E ' come from E t by substituting for ylf .. ., ym distinct variables 
yv .. ., y m of the original sort not occurring in E t (and hence not in E). 
Then (I) — (III) hold with the following modifications, provided that 
for each additional axiom schema of Slt to each axiom A of S2 by it, 
A' is provable in Sv For m >  0 , (II) becomes: E yi- y”H hl 1-*™ E'. 
In (III), if corresponding variables are to be held constant for cor
responding assumption formulas, for each y the same y should be 
substituted in E and each of T for which y is held constant (so in this 
case the operation ' is not specified for each single formula by itself). 
Before treating (II), Theorems 1, 2 and 14 can be extended appropriately 
to S2. We can use Lemma 8a § 24 to reduce (III) to the case of it with 
T empty. To treat this, write El as <<El(y1, .. ., ym)”. We can show by 
induction that, if h2 E, then M(yx), . . . ,  M(ym) hi Et (y1, . . . ,  y m) holding 
yv . . . ,  y m constant. (For Rule 2 , say e.g. Al contains only one new 
variable y, write it “Al(y)”, and Bl none. By hyp. ind., M(y) hi Al(y) 
and M(y) hi Al(y) D Bl. By Rule 2, M(y) hi BL By 3-elim. and *74, 
3wM(w) hi BL But hi 3wM(w). Hence hi BL) — Similarly intro
ducing sevefal sorts of variables successively.

§ 75. Axiom systems, Skolem’s paradox, the natural number 
sequence. Suppose we are dealing with an axiom system (§ 8) having
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as its primitive or undefined notions a set or domain D of individuals, 
certain individuals zlf . . . ,  zq from Df and certain predicates P lt . . . ,  Ps 
over D. An axiom of the system which can be expressed by a formula in 
the symbolism of the predicate calculus (i.e. the restricted or first order 
predicate calculus, cf. § 37) with individual symbols ev . . . ,  eq to express 
zl9 . . . ,  zq and predicate symbols Pr1# . . . ,  Prs to express Plt . . . ,  Ps, 
respectively, we call elementary. If each axiom is elementary, and the 
axioms are finite in number, we call the axiom system elementary or 
of first order.

Now we can always choose closed formulas to express elementary 
axioms, since under the generality interpretation any formula is syn
onymous with its closure (cf. end § 32). Moreover, since the axioms of 
an elementary system are finite in number, we can form the conjunction 
F(ex, . . . ,  eq> Prx, . . . ,  Prs) of the closed formulas expressing the axioms. 
Finally, by changing the individual symbols ev . . . ,  ea to respective 
distinct variables zlf . . . ,  zq not occurring in F(ex, . . . ,  etf, Prx, . . . ,  Pr„) 
and the predicate symbols Prx, . . . ,  Prs to distinct predicate letters 
Pj, . . . ,  Ps, we obtain a predicate letter formula F(z1, . . . ,  zQ, Px, . . . ,  Ps) 
or briefly F. A simple illustration (with q =  0 , 5 =  1) has already been 
given in § 37.

Expressing the axiom system thus by a predicate letter formula 
F helps to emphasize the standpoint of formal axiomatics (§ 8), from 
which the set D, the individuals zlt . . . ,  zq and the predicates P v . . . ,  Ps 
of the axiomatic theory are undetermined except as the axioms charac
terize them. Every predicate letter formula can be considered as express
ing an axiom system with the free variables and predicate letters oc
curring in it representing the undefined individuals and predicates.

When we interpret the logical symbols classically, and treat the 
predicates “extensionally” as simply logical functions, the notions of 
set-theoretic predicate logic (§ 37) become applicable to the discussion of 
axiomatic systems. To say that the axioms are satisfied (in the intuitive 
sense, § 8) by some non-empty system of objects (which we also ex
pressed in § 8 by saying that the axioms are ‘non-vacuous') now means 
exactly that the formula F is satisfiable (in the set-theoretic sense) in some 
non-empty domain. Predicate letter formulas which are satisfiable but 
not valid are the ones which are of interest as axiom systems. A valid 
predicate letter formula does not restrict or characterize the individuals 
and predicates expressed by its free variables and predicate letters; but 
rather expresses a law of logic applicable to all choices of those individuals 
and predicates in any non-empty domain.
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In  form al axiom atics, w ith ou t the further step of form alizing the proc

esses of logical deduction so as to obtain  a form al system  (§ 15), theorem s 

are deduced from  the axiom s on the basis of the m eanings of the logical 

sym bols. W h a t it m eans on this basis for a proposition to be a theorem  

can be expressed in set-theoretic predicate logic as follows. Consider a n y  

proposition of the axiom atic theory w hich is expressible b y  a predicate  

letter form ula in P x, . . . ,  P s. W e can alw ays choose th a t form ula to  

con tain no variables free other than  z lf . . . ,  z G, and to contain these on ly  

free. N o w  a n y such form ula B (z1, . . . ,  z G, P x, . . . ,  P s) or briefly B  ex

presses a true proposition or theorem  of the axiom atic theory, precisely  

if ev ery  assignm ent of individuals z lt . . . ,  z q from  some n on -em p ty  

dom ain D  to  z v  . . . ,  z q and of predicates P v  . . . ,  P s over D  to P 1? . . . ,  P s 

w hich satisfies F  also satisfies B . In  view  of the va lu ation  table for D  

§ 28, this is equivalen t to  sayin g th a t the form ula F  D  B  should be va lid  

in every n o n -em p ty dom ain.

N o w  suppose th a t the axiom atic theory is form alized (§ 15) b y  adoptin g  

the d ed u ctive rules of the predicate calculus as the m eans of deducing  

theorem s, under the proviso th a t the variables z v  . . . ,  z q be held c o n sta n t; 

i.e. we now  sa y  proof-theoretically th a t B  expresses a theorem , if in the  

predicate calculus F  \- B  w ith  z v  . . . ,  z Q held constant. (B y  R em arks  

1 and 2 (a) § 34, w e can then  alw ays find a deduction of B  from  F  in 

w hich no predicate letters other than  P 1? . . . ,  P s occur and z lt . . . ,  z q 
occur o n ly  free.)

B y  the D -rules, noting th a t, since F  contains no variables free excep t  

z ly . . . ,  z G, no variables are varied, this is equivalent to sayin g th a t  

h F  D  B  in the predicate calculus.

W e are now  in a position to  establish th a t the form alization of deduction  

for elem entary axio m a tic  theories b y  the predicate calculus is b o th  

correct (or consistent) and ad equ ate (or com plete), i.e. the predicate cal

culus enables o n ly  and all those form ulas to be deduced from  F  w hich  

express propositions th a t are true of a n y  system  satisfyin g the axiom s. 

For {[- F d B}  =  { F d B  is va lid  in every n on -em p ty dom ain}, 

b y  Theorem  21 § 3 7  and C orollary 1 Theorem  34 § 7 2 .

T h e question w hether the theorem s are consistent w ith  the axiom s  

(just answered affirm atively) is of course quite separate from  the question  

w hether the axiom s them selves are consistent. Prior to H ilbert's proof 

theory or m etam athem atics, proofs of consistency of an axiom atic  

system  or theory were b y  exh ibitin g a m odel for the theory (§ 14). T h e  

con sistency property proved im m ediately in this case is the satisfiab ility  

of F  in some n o n -em p ty domain.



§75 skolem’s paradox, the number sequence 423
We gave a heuristic argument in § 14 that this property implies con

sistency in the sense of non-existence of a contradiction (one theorem 
denying another) in the theory deducible from the axioms. The converse 
that from any unsatisfiable system of axioms a contradiction must 
necessarily follow by a finite number of logical steps was then by no 
means clear.

It is only with the step taken by the modern formalists of formalizing 
deduction that consistency in the sense of non-deducibility of a contra
diction becomes amenable to exact discussion. We now Have as the con
sistency property that for no formula A, both F h A and F b nA  with 
zv . . zq held constant.

By the -i-rules § 23 (since F contains only zlt . . . ,  zQ free), this property 
is equivalent to 'not (- - iF ’, i.e. to ‘F is irrefutable’. The formalist’s 
transformation of the consistency problem may thus be described (for the 
case of elementary axiom systems) as the replacement of satisfiability 
by irrefutability.

By Theorem 21 (which takes the place now of the reasoning given in 
§ 14) and Godel’s completeness theorem (Theorem 34), satisfiability 
and irrefutability are equivalent.

The purpose of the formalistic transformation in the notions of de
ducibility and consistency is to obtain notions which are finitary. 
A reduction from the non-enumerably to the enumerably infinite is 
achieved, as validity and satisfiability refer to the totality of logical 
functions, which is non-enumerable, while the proof-theoretic equivalents 
provability and irrefutability refer only to the enumerable infinity of 
formal proofs. In metamathematics, the reasoning with the notions is 
also finitary. Although the equivalence proof, as given by Godel’s com
pleteness theorem, cannot belong to metamathematics, it is significant 
for metamathematics that the set-theoretic notions are actually equiva
lent to the proof-theoretic ones when one reasons on the non-finitary 
plane to which the set-theoretic notions belong.

We see now that the decision problem for provability in the pure 
predicate calculus includes the decision problem for provability in every 
axiomatic theory having an elementary axiom system (by asking whether 
a certain predicate letter formula F D B is provable), and also the de
cision problem whether any given elementary axiom system is consistent 
(by asking whether n F  is unprovable).

Axiom systems used in mathematics often employ =  in the role of 
an ordinary or logical term which must be understood in advance 
rather than as one of the undefined predicates which the axioms charac-
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terize. T h e foregoing rem arks w ill ap p ly, if w e first su p p ly some additional 

axiom s for equ ality, form alized as E q ( = , Pr^ . . . ,  P rs) or E q (Q , P x, . . . ,  P s) ; 

or we can instead form alize the axiom s as th e y  stand b y  an eq u a lity  and  

predicate letter form ula, and deduction from the axiom s b y  the predicate  

calculus w ith  equ ality, and then use the extension of G odel's com pleteness  

theorem  to that. T h e tw o m ethods give  results w hich are equivalent v ia  

L em m a 24 (a) and Theorem  41 (c) § 73, though set-th eoretically  the former 

does not narrow the interpretations w hich satisfy  the axiom s to those in  

w hich Q is eq u a lity  b u t allows Q also to  be an equivalence relation.

E xample 1 . T h e axiom  system  L I — L 3  for linear order (end § 8) 

is expressed b y  the follow ing eq u a lity  and predicate letter form ula  

(call it “ F ( = ,  <£?)"), w ith  <3 expressing < :

V aV £ V c[< C ?M ) &  a ( b ,c )  D  & (a ,c )]  &  V * V J [ - i (<3(<i ,£) &  a = b )  &

-i ( £ l (a ,b ) &  3 l {b ,a )) & -i (a = b &  b9a))] & [ ^ { a ,b ) V a = b V  d {b ,a)].
T h e sam e axiom  system  is expressed b y  the predicate letter form ula  

E q (B , <£?) &  F(B, <C3), w ith  S  expressing =  (cf. E x a m p le  1 § 73).

Our rem arks also a p p ly  in d irectly  to  axiom  system s h avin g functions 

f lt . . . ,  fr am ong their prim itive notions, as w ith  the help of =  these  

can be replaced b y  the representing predicates of the functions, as w as  

discussed from the proof-theoretic standpoint in Theorem  43 § 74.

E lem en tary axiom  system s occur frequently in m athem atics, if w e use 

the term  'elem entary' more w id ely to  include system s w hich can be  

transform ed b y  w ell-know n devices so as to becom e elem entary in the  

sense form ulated at the beginning of the section. F or exam ple the axiom s  

for groups, and H ilb ert's axiom s for geom etry w ith  the con tin u ity axiom  

om itted, are elem entary in the w ider sense. (In the first, the group  

operation can be replaced b y  its representing predicate, using = ;  and  

in both, axiom s for =  can be supplied. A n  exam ple is w orked out in  

H ilb ert-B ern ays 1934  pp. 3— 8, 380— 381.)

T h e foregoing discussion for the case of an elem entary axiom  system  

can be paralleled for the case of an enum erable in fin ity  of elem entary  

axiom s as follows. L e t F 0, F x, F 2, . . .  be predicate letter form ulas express

ing the respective axiom s and containing free on ly the variables z0, z v  
z 2, . . .  w hich stand for the undefined individuals of the axiom atic  

theory. N o w  {B  is a "th eo rem " set-theoretically} =  {every assignm ent 

w hich satisfies all of F 0, F lf F 2, . . .  satisfies B } =  {for every assignm ent, 

one of B , n F 0, - i F 1, - i F 2, . . .  is t} =  {some disjunction of a finite  

num ber of B , - i F 0, - i F j, n F 2, . . .  is provable} (by Theorem  21 and  

Corollary 1 Theorem  37) =  {(- F  D  B  for some conjunction F  of a finite
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num ber of F 0, F v  F 2, . . . }  (using *62, *59) =  { F 0, F v  F 2, . . .  h B  

w ith  z0, z v  z 2, . . .  held con stant} =  {B  is a “ theorem " proof-theoreti- 

cally}. Sim ilarly {the axiom s are “ con sistent" set-theoretically} =  

{ F 0, F 1# F 2, . . .  are jo in tly  satisfiable} =  {every conjunction F  of a  

finite num ber of F 0, F v  F 2, . . .  is irrefutable} (by Theorem s 21 and 37) == 

{for ev ery  A , not b oth  F 0, F v  F 2, . . .  b A  and F 0, F v  F 2, . . .  b " iA ,  

w ith  z0, z v  z 2, . . .  held constant} =  {the axiom s are “ con sisten t" proof- 

theoretically}. T hus as before the set-theoretic and proof-theoretic  

notions are equivalent. B u t the former m ethod of reducing the decision  

problem s for d ed u cib ility  from  the axiom s and for con sistency of the  

axiom s to th a t for p ro va b ility  in the predicate calculus fails, since now  

there are quantifications w ith  respect to the finite conjunctions F  of 

F 0, F lt F 2, . . .  (however cf. R em ark 3 § 76).

U sin g the starred forms of Theorem s 21 and 37 (c f. Theorem  39 § 73), 

these results exten d to the case =  is used as a  logical notion, and the  

axiom s are expressed b y  e q u a lity  and predicate letter formulas.

Axiomatic set theory. T h e axiom  system s for set theory of vo n  

N eu m an n  *9 2 5 , of B ern ays 1937-48  and of G odel 1940* are elem entary  

(in the w ider sense).

A s G odel's axiom s are stated, there are three p rim itive notions, (£13 

(to be a class), (to be a set) and 8 (to belong to), besides w hich =  is 

used as a logical notion. A ll sets are classes, and no other objects are  

considered; so th a t the classes con stitu te the dom ain. T h e axiom  system  

can then be expressed b y  an eq u a lity  and predicate letter form ula  

F ( = ,  <C¥, B) where <3?(a) and B(a, b) express Wl(a) and a  8 bf resp ectively, 

or b y  a predicate letter form ula E q (C , e2f, B) &  F (C , <C5f, B) where C (a , b) 
expresses a = b .

T h is axiom  system  is extrem ely powerful. From  it w ith  appropriate  

definitions the usual classical analysis and m uch of general set th eory can  

be deduced. In  particular, the existence of an infinite set is postu lated  (by  

the axiom  of in fin ity), and also th e  existence to  a n y  set of a set w hich in

cludes the subsets of th a t set; so it is deducible v ia  C antor's theorem  

(Theorem  C § 5) th a t there exists a non-enum erably infinite set of sets.

B u t b y  L ow enheim ’s theorem  (Corollary 2 Theorem  34*, cf. Theorem  

39), if the form ula F ( = ,  <̂ 7,B )  expressing the axiom s is satisfiable a t all, 

as it appears to  be from  its presum ed interpretation b y  set theory, it  is 

satisfiable in a finite or enum erably infinite dom ain. (E xam in ation  of  

the axiom s rules out the case of a finite domain.) T h u s w e can in terpret  

the prim itive notions so th a t there are on ly enum erably m an y sets an d th e
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axiom s are all true (i.e. an enum erable m odel exists for axiom atic set 

theory, w ith  =  in its usual m eaning), even though a theorem  in the  

th eory asserts th a t there are non-enum erably m an y sets. T h is is the  

Skolem  "p a ra d o x ” (1922-3).

B y  the Skolem  extension of Low enheinTs theorem  to the case of 

jo in t satisfiab ility  of an enum erable in fin ity  of form ulas F 0, F lf F 2, . . .  

(Corollary 2 Theorem  37*), the " p a ra d o x ” applies equ ally  to axio- 

m atization s of set th eory using infin itely m an y axiom s, such as those of 

F raen kel 1922  and of Skolem  1922-3 .

L ig h t is shed on the " p a ra d o x ” b y  tw o observations. O n ly  those par

ticular subsets of a given  set are definable w ithin the axiom atic theory  

w hich can be constructed b y  operations, or separated out from  the set b y  

properties (i.e. predicates), available in the theory. T h e basic operations  

for buildin g sets (or processes for constructing predicates) provided b y  the  

axiom s are finite or at m ost enum erably infinite in num ber. T h e iteration  

of them  then giv e  the m eans for defining on ly enu m erably m an y subsets 

of a given  set. T h is explains the possibility of interpreting the axiom  

system , i.e. of satisfyin g the formula(s) expressing the axiom s, in an  

enum erable dom ain.

O n the other hand, to enum erate a set is to give  a 1-1 correspondence 

of the set w ith  a particular enum erable set, sa y  the set of the natural 

num bers (§ 1). A  1-1 correspondence can be considered as the set of the  

corresponding pairs.

T h u s it m a y  be possible for the subsets of a given  infinite set definable  

w ith in  the theo ry to  be enum erable from  w ith ou t the theory, an d y e t  

be non-enum erable w ith in  the theory, because no enum erating set of 

corresponding pairs is am ong the sets definable w ith in  the theory. T h e  

con struction of the enum erating set of pairs is accom plished b y  ta k in g  

into account th e structure of the axiom  system  as a whole, and this  

con struction is not possible w ith in  the theory, i.e. using on ly the operations  

p rovided b y  the axiom s.

T h e  situation is sim ilar to th a t in G odeFs incom pleteness or u n 

d ecid ab ility  theorem  (Theorem  28 § 42), where, if w e suppose the num ber- 

theoretic form al system  to  be consistent, w e can recognize th a t A P(p) 
is true b y  ta k in g  into view  the structure of th a t system  as a whole, thou gh  

w e cannot recognize the tru th  of A P(p)  b y  use on ly  of the principles of 

inference fdrm alized w ith in  th a t system , i.e. not b A P(p ).
A lth o u g h  there is this "e x p la n a tio n ” , the "p a ra d o x ” still confronts  

us w ith  the follow ing alternative. E ith er we m ust m aintain th a t the  

con cepts of an arbitrary subset of a given  set, and o f a non-enum erable
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set, are a priori concepts w hich elude characterization b y  a n y  finite or 

enu m erably infinite system  of elem entary a x io m s; or else (if we stick to  

w hat can be e x p licitly  characterized b y  elem entary axiom s, as we m a y  

w ell wish to in consequence of the set-theoretic paradoxes § 1 1 ) we m ust 

accept the set-theoretic concepts, in particular th a t of non-enum erability, 

as being relative, so th a t a set w hich is non-enum erable in a given  

axiom atizatio n  m a y becom e enum erable in another, and no absolute  

non-enum erability exists. T h is relativization  of set theory w as proposed  

by Skolem (19 2 2 -3 , 19 2 9 , 19 2 9 -30).
T h e Low enheim  theorem , since it leads to SkolenTs “ p ara d o x” , 

can be regarded as the first of the m odern incom pleteness theorem s. 

F o r further discussion, see Skolem  1938 .

Axiomatic arithmetic. P ostu late Group B  of our form al num ber- 

theoretic system  provides an exam ple of an axiom  system  for the theory  

of the natural num bers consisting of an effective ly  enum erable in fin ity  

of elem entary axiom s, i.e. the form ulas expressing the axiom s are ef

fe ctiv e ly  enum erable (cf. Theorem  38 § 72). T h e function s are of course 

replaceable b y  their representing predicates. R yll-N a rd zew sk i 19 5 2 *  

shows th a t no finite subset of these axiom s w ould suffice for the deduction  

of the sam e class of theorem s.

Another question is whether these axioms do completely characterize 
the natural number sequence. Godel’s completeness theory for the 
predicate calculus provides us with a proof of the following theorem, 
which was originally obtained in another way by Skolem (1 9 3 3 , 1 9 3 4 ; 
cf. 1938).

W e shall consider axiom s for the sequence of the natural num bers  

(call the set of them  N), using as prim itive notions the in d ividu al 0 and  

the predicate a '= b ,  i.e. in the X-notation (§ 10) \ a b a ' = b ,  and perhaps  

other prim itive notions. T h e axiom s shall be expressible b y  eq u a lity  and  

predicate letter form ulas, w ith  z expressing 0 and P 0(a, b) expressing  

a '= b .
In  discussing assignm ents to the free variables and predicate letters  

of a n y  such form ula, we let “ D ” stand for the dom ain, “ 2” for the in

d ivid u al assigned to z, and “ P 0(a, b)” for the predicate assigned to P 0(a, b). 

T h en  (D , z, PQ{a, b)) is a m ath em atical system  in the sense of § 8, con

sisting of a set or dom ain, a m em ber of the set, and a b in ary predicate  

over the set.

Theorem 44°. Any finite or effectively enumerable infinite class of 
equ ality  and predicate letter form ulas which can be jo in tly  sa tis fied  so th a t
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(D , z, P 0(a, b)) is  (N , 0 , a '— b) can also be jo in tly  sa tis fied  {w ith 0  <  D  <  H0) 
so that {D , z, P 0(a, b)) is  not isom orph ic to (N , 0, a '= b ) .

Proof. B y  h ypothesis, there is a satisfyin g assignm ent for the given 
formulas jointly in which the domain D  is N ,  z has the value 0, and 
P 0(a, b) has the value a ' = b.

L e t P x, P 2 and P 3 be other distinct predicate letters, w hich either do  

not occur in the given  form ulas, or h ave the respective valu es a + b = c ,  
a * b = c  and {% ){Ey)T%{at a, x, y)  in the given  assignm ent. W e shall ex ten d  

the giv en  class of form ulas b y  adding seven form ulas (if not alread y  

included) w hich are satisfied w hen the given  assignm ent is exten d ed  

(if necessary) b y  assigning P x, P 2 and P 3 the values ju st m entioned.

W e add four closed form ulas, sa y

(cf. E x a m p le  11 (a) § 74), w hich under the described assignm ent express  

th e recursion equations for a-\-b  and a-b as paraphrased in term s of th e  

representing predicates and a*6= c ,  together w ith  the tw o

form ulas

w hich express th a t a + b = c  and a -b = c  are representing predicates. 

Since T 2(a, b , x t y)  is prim itive recursive, b y  Corollary Theorem  I § 49  

it is arith m etical (§ 48), and so (replacing ', +  and * b y  their representing  

predicates) w e can find a letter form ula T 2(a, b, x, y) in = ,  P 0, P x, P 2 
w hich expresses it under the described assignm ent. W e then add th e  

form ula

L e t th e form ulas of the resulting (enlarged) class be F 0, F v  F 2, . . . .  

A s in the proof of L ow enheim 's theorem  (Corollary 2 Theorem  3 7 * ), 
th e h yp oth esis of Theorem  3 7 *  is sa tisfied ; and we use Theorem s 3 7 *  an d  

40 to  ob tain  another sa tisfyin g assignm ent for F 0, F x, F 2, . . .  jo in tly .  

L e t D * t z* f P * , P * f P * ,  P *  be respectively the dom ain and th e va lu es  

of z, P 0, P x, P 2, P 3 in this.

Suppose (for reductio ad absurdum ) th a t (D *, z* , P * (a * t b*)) is  

isom orphic (§ 8) to  (N , 0, a '= 6), i.e. D * is infinite and can be enum erated  

as s0, s l9 s2, / . .  so th a t z* =  s0 and P j  (sa, s b) =  a '= b .
T h en  b y  Theorem  40,

(b) V a V b 3 !c P 1( a ,b ,c ) , V a V b 3 !cP 2(a, b, c),

(C) V a (P 3(a) ~  V x 3 y T 2(a, a, x , y)).

P | ( s a) ^  (E x )(y )R * (a , x , y)
for som e p rim itive recursive R *.
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In  § 43 w e reasoned th a t w hen the variables range over the n atural 

num bers, and 0 and ' h a ve their usual m eanings, th e recursion equations  

for +  and • h ave the usual functions +  and * as their unique solution. 

Since the form ulas (a) and (b) are satisfied, th a t reasoning (with m inor  

rearrangem ents to fit the use of the representing predicates instead of 

th e  functions) applies now  to  show th a t P * ( s a, s 6, $c) == a + b = c  and  

P * ( s a, sb, s c) =  a -b— c. T h en  sim ilarly our proof of Theorem  I § 49 

shows th a t the form ula T 2(a, b, x, y) now  expresses a predicate  

T $ ( a * ,b * ,x * ,y * )  such th a t T%{$ai s b, s mt s v) =  J2(a, 6, x, y ).  H ence  

V x 3 yT *(a , a, x , y) expresses a predicate T * (a *) such th a t

(ii) T * (sa) 3  (x )(E y )T t ( a , a , x , y ) .
B y  the valu ation  rules for ~  (E xam p le 1 § 28) and ¥ , since (c) is 

satisfied,

(iii) P *{a*)  ss T *(a*).
C om bining (i) —  (iii), (Ex)(y)R% (a, x, y)  =  (x )(E y )T 2(a, a, x f y ) .  B u t b y  

Theorem  V  (16) § 5 7 , the predicate (x )(E y )T 2(a, a , x, y )  is not expressible  

in the other 2-quantifier form ; for a certain num ber g, 
(E x ) (y )R * (g ,x ,y )  ^  (x )(E y )T 2(g, g, x , y ).

B y  reductio ad absurdum , (D *, z* , P * (a * , b*)) is not isom orphic to  

(iV, 0, a'=b).
D iscussion. B y  the theorem , no finite or e ffe ctive ly  enum erable  

infin ite set of elem entary axiom s can characterize the natural num ber

sequence 0, 1 , 2,  . . . ,  a, a ' , ___A n y  such set w hich are true of the natural

num ber sequence m ust also be true under another interpretation. W e  

stated  the theorem  for the natural num ber sequence as a system  of th e  

form  (N ,  0, a '= b ) ,  b u t b y  the replaceability of a ' b y  a ! = b  it applies  

also to  the natural num ber sequence as a system  of the form  (N ,  0, '). 

In  particular, the axiom s of P ostu late G roup B  of our form al num ber- 

theoretic system  (§ 19) adm it an interpretation (using the logical sym bols  

and =  in their usual m eanings) other than  the intended one.

T h is incom pleteness of P ostu late G roup B  as a characterization of 

the natural num ber sequence is understandable w hen w e com pare  

P ean o's fifth  axiom  (the principle of m ath em atical induction, § 7) w ith  

A x io m  Schem a 13. Peano's fifth  axiom  asserts th a t  

(I) 4(0) &  (x)(A (x)  -  A (x '))  -  (x)A (x)
holds for all num ber-theoretic predicates A  (x). These predicates con stitu te  

a non-enum erable to ta lity . B u t the bundle of axiom s given  b y  A xio m  

Schem a 13 o n ly express th a t (I) holds for those predicates A  (x) w hich
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are expressible b y  form ulas A (x) of the system , i.e. on ly for enum erably  

m an y predicates. Peano's fifth  axiom  is not elem entary. W e can express 

it in the sym bolism  of the second order predicate calculus (§37), b y  using  

a gen erality  quantifier w ith  a predicate variable <C?, thus:

Vc3[<^(0) &  Vx(^{x) 3  a(x')) 3  Vx&{x)].
These ideas h ave a connection w ith  GodeFs theorem  on form ally  

undecidable propositions (Theorem  28 or 29 § 42).

One m a y  thin k of the form ula A v(p)  or A g(q) (which is true b u t un- 

pro vable, if the num ber-theoretic system  is sim ply consistent) as e x 

pressing a proposition w hich can be "p ro ve d ” from  Peano's axiom s, 

b u t only b y  m akin g use of induction w ith  some induction predicate  

A (x )  w hich is not expressible in the system  under the intended inter

pretation. (This suggestion w ill receive confirm ation later; cf. end § 7 9 ,  

noting (II) § 42.)

T h e u n p ro vab ility  of A P(p)  becom es understandable also from Skolem ’s 

result (Theorem  44), on the ground th a t A P(p ), although true of the n a t

ural num bers, is false under one of the other interpretations w hich  

satisfy  the axiom s. T h en  the u n d ecid ability  of A P(p)  in the num ber- 

theoretic form alism  appears as a phenom enon of the sam e kind as the  

im possibility of proving either E u clid 's  parallel postulate or its negation  

from  the other axiom s of geom etry ( § 8). T h e given  axiom s are not 

categorical.

Indeed conversely, as rem arked above (using Corollary 1 Theorem  37*), 

a form ula is provable, if it is true under all interpretations w hich m ake  

the axiom s true. So the know n u n p rovab ility  of A P(p)  m akes it absurd  

th a t A P(p)  should be true under all the interpretations w hich satisfy  the  

axiom s. T h u s GodeFs theorem s 28 and 3 7* afford another proof of 

Theorem  44 for the case the class of form ulas for Theorem  44 is P ostu late  

G roup B  of our form al system  (restated as equ ality  and predicate letter  

formulas). B u t (as rem arked above, using Theorem  2 1 *), if a n y  enum er

able class of eq u a lity  and predicate letter form ulas are jo in tly  satisfiable, 

the form al system  obtained b y  adjoining them  as axiom s to the predicate  

calculus w ith  eq u a lity  is (simply) consistent. So given  a n y class of 

form ulas for Theorem  44, b y  adjoining P ostulate Group B , and carrying  

out the proof of Theorem  28 in the resulting system  (or using Theorem  

X I I I  P a r t I I I  § 60), w e get Theorem  44 in general.

M ostow ski 1949  gives an interesting exam ple (suggested b y  Skolem 's  

" p a ra d o x ” ) of a proposition in axiom atic set theory, w hich he dem on

strates to be undecidable b y  show ing it to be true under one interpretation



and false under another. K reisel 1950  deals w ith  sim ilar problem s.

T h e proof of Theorem  44 w e g a v e  first, and th a t based on Theorem  28 

(or X I I I ) ,  are stated  for the case of an elem entary axiom  system  or one 

h avin g an e ffective ly  enum erable in fin ity  of elem entary axiom s. Skolem 's  

proof does not restrict the enum eration of the axiom s to be effective. 

T h e additional gen erality  is not essential, w hen we are considering the  

theorem  as an incom pleteness theorem  for form al axiom atics from  the  

standpoint th a t th e aim  of axiom atization  is to  m ake the assum ptions of 

the theory explicit.

R emark 1 . Our (first) proof of Theorem  44 can be m odified to secure 

addition al generality. Suppose now the class of the form ulas for Theorem  

44 is m erely arithm etical, in the sense th at, under a Godel num bering  

established b y  the m ethods of §§ 52 and 56, the predicate ‘x is the G odel 

num ber of a form ula of the class', call it “ C (x )” f is arithm etical. T h en  

b y  Theorem  V I I  (d) § 5 7 ,  C (x ) is expressible in one of the form s of 

Theorem  V , sa y  a ^-quantifier form. L e t B (x)  refer sim ilarly to the given  

class of form ulas extended b y  adding some finite list (as above we added  

the seven (a) —  (c)); then, how ever th a t list is chosen, B (x)  is expres

sible in thev sam e ^-quantifier form. B y  Theorem  X I V  (b) §6 0  (taking  

R (x , y)  == B (x )) t the class xB (x)  is enum erated b y  a function 0(&) re

cursive in ^-quantifier predicates (in the case of the ^-quantifier form w ith  

existen ce first, even in q— 1-quantifier predicates). B u t the proofs of 

T h eo rem s 38 and 40 hold good, w hen the hypothesis th a t the enum eration  

F 0, F x, F 2, . . .  is effective is om itted, and the conclusion is altered b y  

ch an gin g "prim itive recursive" to "prim itive recursive in 0"  where 

0(A) is the Godel num ber of F * ;  and hence (using Theorem  X I  § 58, and  

(17) and (18) § 5 7 )  if 0 is recursive in ^-quantifier predicates, w hen the  

alteration in the conclusion consists in su b stitu tin g  the q + 2 -  for the  

2-q u an tifier forms. So the proof of Theorem  44 goes through now, b y  

using a case of Theorem  V  for a q + 2- instead of a 2-quantifier form. —  

W e can still further generalize the C(x) for Theorem  44 to be arithm etical 

in the predicate M  of Theorem  V I I I  § 57, including am ong the added  

form ulas three to  express the definition of M ,  and using Theorem s I* , V * ,  

V I P ,  X I *  (with M  as the *F) instead of I, V , V I I ,  X I .  (The second proof 

of Theorem  44 can also be carried out under more general hypotheses, 

b y  using generalizations of Theorem  28 or X I I I  to "n on -con stru ctive  

logics".)

G o d el’s u n d ecidability  theorem  how ever is not restricted to the case 

th e axiom s are elem entary (Theorem  X I I I  § 60). B u t w e can characterize

§75 skolem's paradox, the number sequence 431
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the natural number sequence completely by Peano’s axioms, the fifth 
of which is non-element ary, if we grant the notion of all predicates over 
the domain. Suppose we have a consistent formal system containing 
these categorical axioms for the natural numbers. Under the conception 
of a formal system which we are entertaining, a formal system may 
have only an enumerable infinity of formal objects. So only an enumerable 
infinity of formulas can be substituted in the system for the predicate 
variable c2f of the fifth Peano axiom. Thus for deductive purposes within 
the system, just as before, (I) is available only for an enumerable infinity 
of predicates. In fact, by Godel’s theorem (Theorem XIII), there is a 
consequence of the axioms under the interpretation which is not provable, 
i.e. not deducible from the axioms by the logic formalized in the system. 
So when we have non-elementary axioms, not all formulas need be prov
able which are true under all interpretations which satisfy the axioms. 
(In our example, there is essentially just one such interpretation.) The 
incompleteness which appeared in the axiom system in the case of 
elementary axioms is transferred to the deductive apparatus, if we 
undertake to avoid it by using non-elementary axioms.

As Skolem expresses it (1 9 3 4  p. 160), " . . .  the [natural number] 
series is completely characterized, for example, by the Peano axioms, 
if one regards the notion 'set' or 'propositional function’ as something 
given in advance with an absolute meaning independent of all principles 
of generation or axioms, But if one would make the axiomatics conse
quent, so that also the reasoning with the sets or propositional functions 
is axiomatized, then, as we have seen, the unique or complete character
ization of the number series is impossible.”

This situation is discussed in Henkin 1 9 5 0 , which came to the author’s 
attention after this section was written (the first draft in 1947). Other 
papers are e.g. Mostowski 1 9 4 7 a (cf. Kemeny’s review 19 4 8 ) and Rosser 
and Wang 19 5 0  (cf. Skolem’s review 1 9 5 1 ).

§  76. T h e  d e c is io n  p r o b le m . Theorem 54. The decision  problem  
for the pu re predicate calculus {pure predicate calculus w ith  equality) is  
unsolvable, i.e . there is  no decision  procedure for determ in ing  whether a  
predicate letter form ula {an equality  and predicate letter form ula) is  provable  
in  the calculus. (Church 1 9 3 6 a, Turing 1 9 3 6 -7 .)

P roof, for the predicate calculus. We saw in § 75 that the decision 
problem for provability in any axiomatic theory having an elementary 
axiom system reduces to that for provability in the pure predicate cal-
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cuius. T h u s to prove this theorem  of Church, it  will suffice to find an  

elem entary axiom atic theory for which, on the basis of Church's thesis 

(§ 60), there can be no decision procedure.

A ccording to Theorem  33 § 6 1 ,  an exam ple of such an axiom atic  

theory is provided b y  the form al system  of Robinson described in L em m a  

18b § 49, if th a t system  is sim ply consistent. A  proof of its sim ple con

sistency, w hich the present theorem  is num bered to follow, w ill  be given  

in § 79 (Theorem  53 (a)).

W e repeat the reasoning in detail (already outlined in §75).  L e t S 2 

be the system  of Lem m a 18b w ith thirteen particular axiom s.

(A) B y  applications of Theorem  43 (see E x a m p le  11 (a) §74),  we 

find another system  5 X in w hich the function sym bols ', + ,  * are replaced  

b y  respective predicate sym bols, the num ber of the axiom s being in

creased to nineteen. B y  ( V illa ) ,  a form ula E  of S 2 is provable in S 2, if 

and on ly  if the form ula E '  of S ± is provable in S v
(B) W e can then replace the axiom s b y  their closures, w ith ou t  

changing the p ro va b ility  notion (end § 32).

(C) M oredver, b y  the &~rules, since the axiom s are finite in num ber, 

we can likew ise replace them  b y  their conjunction as a single axiom .

(D) W e can furtherm ore change the n otation to em ploy a variable z 

not occurring in the axiom (s) in place of the individual sym bol 0, w ith  the  

understanding th a t then p ro va b ility  shall m ean d ed u cib ility  from the  

axiom (s) in the predicate calculus w ith  z held constant. If C be the result 

of m akin g this change in a form ula D  of S 1 not containing z, then b y  

R em ark 2 (b) § 34, C is provable now, if and on ly if D  was provable  

before. (This treatm ent of 0 separately from the function sym bols can  

be avoided b y  using instead E x a m p le  11 (b) § 74 in (A).)

(E) W e m a y  further change the notation to em ploy predicate letters  

in place of the predicate sym bols. If B  results from a form ula C b y  this  

change of notation, then b y  trivial applications of Theorem s 15 and 16 

§ 34, B  is now  provable, if and on ly if C w as before. (In § 75 we took  

B  to contain no variables free except z, b u t th a t was done to m ake the  

set-theoretic notions ap p ly  properly, and is unnecessary now.)

(F) F in ally, b y  the D-rules, B  is provable in the last described  

system , i.e. F  h B  in the predicate calculus w ith  z held constant, where F  

is the form ula (containing on ly z free) expressing the axiom s now, if 

and on ly if F  D  B  is provable in the predicate calculus.
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T h e w hole process b y  w hich from  the form ula E  of S 2 w e find a pred

icate letter form ula F  D  B  such th a t {h  E  in S 2} == { b F  D  B  in the  

predicate calculus} is effective. (It could be represented via  G odel num ber

in g b y  a general recursive function as discussed in § 61, and it could be  

effected b y  a T u rin g m achine as at end § 70.) Therefore, if there were a  

decision procedure for p ro v a b ility  in the pure predicate calculus, there  

w ould be one for 5 2, w hich w ould consist, given  a form ula E  of S 2, in  

finding the corresponding predicate letter form ula F D B ,  and ap p lyin g  

th e procedure for the predicate calculus to the latter. B u t b y  Theorem  33, 

if S 2 is sim p ly consistent, there is no decision procedure for p ro va b ility  

in S 2.

T h e  argum ent applies also to  the predicate calculus w ith  eq u a lity,  

since b y  Theorem  41 (b) p ro v a b ility  in the system  of L em m a 18b is 

equ ivalen t to p ro v a b ility  in a system  consisting of the predicate cal

culus w ith  eq u a lity  and seven particular axiom s.

R emark 1 . T h e order in w hich the reduction steps (A) —  (F) are 

perform ed is im m aterial, so long as (B) and (C) precede (F), (A) precedes 

(B), (C) and (E), and if (D) precedes (B) the variable z is exem p ted  from  

the closure operation of (B). (Or (C) m a y  be om itted, and (F) per

form ed once for each axio m ; cf. *4  and *5 § 26.)

R emark 2 . T h e proof of Theorem  54 m a y be based on Theorem  X I I  

§ 60 instead of Theorem  33, thus. B y  the foregoing reductions (A) —  (F) 

on the system  of L em m a 18b w ith  E x a m p le  2 § 60, or b y  (the m ethod of) 

those reductions on the system  of E x a m p le  2 § 73, and using the con

sisten cy p roperty to  be established in § 79 (Theorem  53 (b) or Theorem  

52): F o r a n y  fixed  p r im itiv e  {or general) recursive pred ica te R ( x ,y ) ,  there 
is  an  effective procedure by w hich , given an y num ber x, a pred ica te  letter 
form u la  K x can be fou n d such that
(1) {E y )R {x f y)  s= {|- in  the predicate calcu lus}.

Theorem  54 then follows from  Theorem  X I I  b y  tak in g R (x , y)  =  T ±{x, x , y ) .  
T h is proof from  Theorem  X I I  w ith  E x a m p le  2 § 73 is essentially Church's  

original proof; th a t from  Theorem  33 essentially M ostow ski and T arsk i's  

(1949  abstract).

R emark 3. O ur conception of a form al system  S  im plies th a t the  

form ulas o f  S  should be e ffe ctive ly  enum erable, or adm it a G odel num ber

ing, so th a t given  a n y  form ula A  w e can effective ly  find its num ber x , 

and inversely given  a n y  num ber x  w e can effective ly  decide w hether it  

is the G odel num ber of a form ula and if so find th a t form ula Ax. T h en
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(cf. R em ark 1 (a) § 60): There is  a general recursive pred ica te R  such that 
(2) { b A x in 5 }  as (E y )R {x , y).
So the decision problem  for p ro va b ility  in a n y  system  S  is equivalen t  

to th a t for a predicate of the form  (E y)R (x , y). B y  R em ark 2, or b y  the  

(first) proof of Theorem  54 w ith  the latter part of E x a m p le  3 § 61, the  

decision problem  for the predicate calculus is of the highest degree of 

u n so lvability  for predicates of this form  (cf. preceding E x a m p le  3 § 61).  

T h u s (com bining (1) and (2)), the decision problem  for p ro va b ility  in 

a n y form al system  is reduced to th a t for the predicate calculus (either 

classical or intuitionistic). T h is generalizes our rem ark (§ 75) th a t the  

problem  for a n y  axiom atic theory w ith  an elem entary axiom  system  re

duces to  i t ; b u t of course the reductions b y  going out of the system  to a  

G odel num bering v ia  (2), and thence into the predicate calculus v ia  (1) 

are v e r y  indirect.

B y  §§ 37, 72, 73, 75, p ro va b ility  in the predicate calculus w ith  e q u a lity  

is equivalen t to v a lid ity  in every  n on -em p ty d o m a in ; so now  there is 

no decision procedure for the latter property of an e q u a lity  and predicate  

letter form ula. Trahten brot 1950  proves the analogous theorem  for v a lid ity  

in e v ery  n o n -em p ty finite dom ain.

R eductions and  special cases. B ecause so m an y p articu lar  

questions (e.g. F e rm a t’s <flast theorem ” § 13) and decision problem s 

reduce to the decision problem  for the predicate calculus, m uch w ork  

has been done on it, leading to  positive results of tw o so rts: (a) reductions  

of the general problem , and ((3) solutions of special cases. T h e results are 

often presented in a dual set-theoretic form, in w hich the problem  is to  

decide as to the satisfiab ility  of a predicate letter form ula in some non

e m p ty  dom ain (§§ 72, 75), rather than  as to its p rovab ility.

A n  early exam ple of (a) is Skolem ’s norm al form (Skolem  1920 , H il- 

b ert-B ern ays 1934  pp. 158 ff). T h e Skolem  proof-theoretic (satisfaction- 

theoretic) norm al form is a prenex form ula (Theorem  19 § 35) in w hich  

all the existential (generality) quantifiers com e first. G iven  a predicate  

letter form ula G, there can be found effective ly  a predicate letter form ula  

M (N) of this form, such th a t M is provable in the predicate calculus  

(N is satisfiable in a given  dom ain), if and o n ly  if G  is. T h u s th e  decision  

problem  for p ro va b ility  (satisfiability) for predicate letter form ulas 

gen erally is reduced to the sam e problem  for Skolem  norm al forms 

(cf. the latter part of § 61). T h e norm al form M (N) is not in general 

equ ivalen t to G, bu t M (n N ) is interdeducible w ith  G  ( -1G) in the  

predicate calculus w ith  a postulated substitution rule (§ 37). Skolem
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used his satisfaction-theoretic normal form in simplifying the proof of 
Lowenheim’s theorem and generalizing it, and Hilbert and Bernays 1 9 3 9  

employ it in proving Godel’s completeness theorem in a way which makes 
the formalization referred to in the proof of Theorem 36 § 72 reasonably 
simple.

An example of (p) is the solution of the decision problem by Lowenheim 
1 9 1 5  (simplified by Skolem 1 9 1 9 ), and independently by Behmann 1 9 2 2 , 
for the case of predicate letter formulas containing only predicate letters 
with 0 or 1 argument. Equivalently, by Remark 1 §34, the decision prob
lem is solved for the \-place predicate calculus, i.e. the calculus with 
only 0- and 1 -place predicate letters. (Cf. end § 72, Hilbert-Bernays 1 9 3 4  

pp/ 179—209.)
Reductions and special cases of the decision problem have remained 

an active field of research, since Church showed that there can be no 
general solution (Theorem 54). The literature is too extensive to be cited 
here, and the reader is referred to Church’s bibliography and the review 
sections of the Journal of Symbolic Logic (cf. the preface to the bib
liography of this book). Quite a number of the results are described 
in Hilbert-Bernays 1 9 3 4  and 1 9 3 9 . Church 1 9 5 1  discusses special cases.

A xiomatic th eo ries. We take up now a method of Tarski (19 4 9  

abstract) for investigating the decision problems for axiomatic theories. 
We shall consider theories formalized on the basis of a logical calculus, 
which may be either the predicate calculus or the predicate calculus with 
equality. (Tarski uses the latter.) We shall usually say “formal system S ” 
for uniformity with our previous terminology, where Tarski says “theory 

which emphasizes the mathematical application.
By the logical constants we shall mean the six logical symbols D, &, 

V, - 1 , V, 3, if the logical calculus is the predicate calculus; these and 
also = , if it is the predicate calculus with equality. The terms and formulas 
of a system are to be constructed using besides these logical constants 
a finite number of individual, function and predicate symbols, called the 
non-logical constants (but no predicate letters). The postulates besides 
those of the logical calculus shall be a finite or infinite set of non-logical 
axioms.

Following Tarski, we call such a system finitely axiomatizable, if the 
non-logical axioms are finite in number or all but some finite set of 
them are redundant (Example 2 § 74). We say of such systems that S2 

is an extension of S1 (or is a subsystem of S2), if each formula 
provable in Sx is provable in S2; S2 must then have all the non-logical
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constants of S v  but it may have others in addition. An extension S 2 of S 1 
is a f in ite  extension, if all but a finite number of the axioms of S2 are 
provable in S v  We say briefly that S 1 is undecidable  to mean that the 
decision problem for provability in S x is unsolvable.

Following Tarski, we say that S is essen tia lly  undecidable, if S is (simply) 
consistent, and every (simply) consistent extension of S is undecidable.

Rosser 1936 showed that systems like our number-theoretic system of 
Chapter IV (if they are consistent) have this property (cf. Theorem 33 
§61). Then the formalized systems of axiomatic set theory of von Neu
mann 1925, of Bernays 1937-48 and of Godel 1940 (if consistent) are 
examples of systems S which are both essentially undecidable (since they 
include the usual number-theory) and finitely axiomatizable. Mostowski 
and Tarski (1949 abstract) were the first to note the existence of a system 
5 which is both essentially undecidable and finitely axiomatizable, 
and also simple enough to be easily interpretable in various other theories, 
in the sense to be defined next. This provides the basis for the application 
of the method of Tarski which is given in Theorem 45 (b) and (c). A still 
simpler example of an essentially undecidable and finitely axiomatizable 
system is thatof Raphael Robinson (1950 abstract), which has thirteen non- 
logical axioms as described in Lemma 18b § 49 on the basis of the predicate 
calculus, or seven only (Axs. 14, 15, 18—21, and the formula of *137, 
or equivalently of *136) as it was described by Robinson on the basis 
of the predicate calculus with equality. Robinson states that none of 
these seven can be omitted without sacrificing the essential undecidability.

Tarski says that two systems S x and S2 are com patib le, if they have 
the same non-logical constants and a (simply) consistent common 
extension. Now consider any two systems S 1 and S 2 which in general 
do not have the same non-logical constants. First we take the case 
the logic is the predicate calculus with equality. Then S2 is consisten tly  
in terpretab le  in S v  if S t  and S 2 have a consistent common extension S3, 
in which there is provable, for each w-place predicate symbol P (function 
symbol f) of S2 which S x lacks, a formula having the form P(xx, ..., xn) ~ 
F (x lt  ..., xn) of an explicit definition of P (the form f (x v  ..., x n) =  w 
~F(xx, ...,xn, w), i.e. (iii) of Lemma 26 §74) where the variables 
shown are distinct and F(xx, ...,xw) (F(xx, ...,xn, w)) contains only 
these variables free and as non-logical constants only ones of and 
possibly additional individual symbols. For the case the logical calculus 
is the predicate calculus and S 2 has function symbols which lacks, 
furthermore S t  shall have = among its constants, and in S3 there shall 
be provable the equality axioms for the predicate and function symbols
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of S v  The situation is illustrated (rather trivially) by the S v  S2 and S3 

in the proof of Theorem 43 §74 (but either for (a), or for (b) assuming 
consistency).

T heorem 45. (a) I f  S  i s  u n d e c i d a b l e ,  t h e n  e v e r y  s y s t e m  S ± w h i c h  l a c k s

n o n e  o f  t h e  c o n s t a n t s  o f  S  e x c e p t  p o s s i b l y  i n d i v i d u a l  s y m b o l s  a n d  o f  w h i c h  

S  i s  a  f i n i t e  e x t e n s i o n  i s  u n d e c i d a b l e .

(b) I f  S  i s  e s s e n t i a l l y  u n d e c i d a b l e  a n d  f i n i t e l y  a x i o m a t i z a b l e , t h e n  e v e r y  

s y s t e m  S x w h i c h  l a c k s  n o n e  o f  t h e  c o n s t a n t s  o f  S  e x c e p t  p o s s i b l y  i n d i v i d u a l  

s y m b o l s  a n d  w h i c h  h a s  a  c o n s i s t e n t  c o m m o n  e x t e n s i o n  S z  w i t h  S  [ i n  p a r t i c u l a r  

e v e r y  s y s t e m  S 1  c o m p a t i b l e  w i t h  S )  i s  u n d e c i d a b l e .
(c) I f  S  i s  e s s e n t i a l l y  u n d e c i d a b l e  a n d  f i n i t e l y  a x i o m a t i z a b l e , t h e n  e v e r y  

s y s t e m  S t  i n  w h i c h  S  i s  c o n s i s t e n t l y  i n t e r p r e t a b l e  i s  u n d e c i d a b l e . (Tarski 
1949 abstract.)

P roofs, (a) By the reductions (B), (C), (D) applied only to the 
individual symbols of S which Sx lacks, and (F). (Tarski takes the axioms 
to be closed ab initio, and deals with the case that S x and S have the same 
constants; then (B) and (D) are not required.)

(b) Let S 2 be the system having the axioms (and constants) of both 
and S .  Then S2 is a subsystem of S3; and hence, since S3 is con

sistent, so is S2. Also S2 is an extension of S; and hence, since S is es
sentially undecidable and S2 is consistent, S2 is undecidable. But S2 

is a finite extension of S v  Now (a) applies with S2 as its S.
(c) We shall treat in detail the case S has a function symbol f as its 

only constant (except perhaps individual symbols) which S x lacks, for 
the predicate calculus as the logic. If S has more such function symbols, 
we merely iterate the application of Theorem 42 and its lemmas; and if 
S has such predicate symbols, we use Example 1 § 74 likewise. The results 
will then hold also for the predicate calculus with equality, as (by 
Theorem 41 (b)) extending the logic to that is equivalent to assuming 
that the equality axioms for all the function and predicate symbols 
are present in all the systems considered (which only makes the argument 
easier).

Let S3 be the common extension of S x and S described in the definition 
of consistent interpretability (with S as the S2).

Let- S4a be the subsystem of S 3 having as its constants those of S v  

f, and the additional individual symbols (if any) belonging to S or 
occurring in F(x1, ..., xn, w), and having as its non-logical axioms those 
of and of S, the equality axioms for the predicate and function 
symbols of S v  and (iii).
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Since S4a is a subsystem of S3 and S3 is consistent, S4a is consistent. 

Hence, since S4a is an extension of S and S is essentially undecidable, 
S 4a is undecidable.

Using Lemmas 26 and 27 and Remark 2 (a) § 74, in the list of 
non-logical axioms for S4a we can replace each one A of the non-logical 
axioms of S by its principal f-less transform A', and (iii) by (i) and 
(ii), without changing the class of the provable formulas; call the re
sulting undecidable system S4.

By Theorem 42 § 74, the function symbol f and its axiom (ii) can 
be eliminated from S 4, leaving a system S5 which (by (IV) § 74) is also 
undecidable.

But S 5 has as its constants only those of S x and possibly individual 
symbols, and S 5 is a finite extension of S v  So by (a) (with S5 as its S), 
S t  is undecidable.

R emark 4. For the conditions on S3 in the definition of consistent 
interpretability, instead of (iii) we may have provable in S3 a formula 
having the form f(xx, ..., xn)=t(xx, ..., xn) of an explicit definition of 
f, where t(xx, ..., xn) is a term containing only the variables shown and 
as non-logical constants only function symbols of Sx except possibly 
individual symbols. For then t(xx, ...,xn)=w is an F(xx, ...,xn, w).

E xample 1. By (b), since Robinson's system, call it S, is essentially 
undecidable ar i finitely axiomatizable, every formal system Sx with the 
constants (and perhaps others, e.g. 0), the provable sentences
of which express true propositions about natural numbers, is undecidable, 
if we accept the simple consistency of a common extension S3 (say that 
one which has the axioms and constants of boil Sx and 5) as guaranteed 
by the truth. To make the undecidability of such a system Sx a meta- 
mathematical result, it remains to supply a metamathematical consistency 
proof for the S3. — By (c) and Remark 4, since ' is definable explicitly 
from 1 as an individual symbol and +, the same holds for such systems 
with the constants =, +, • (at least).

Starting from Mostowski and Tarski's example of a finitely axioma
tizable and essentially undecidable system, Mostowski and Tarski (1949 

abstract), Tarski (1949a, 1949b abstracts), Julia Robinson (1949 abstract, 
1949) and Raphael Robinson (1949 abstract) obtain in rapid succession 
the undecidability of a variety of mathematical theories in the arithmetic 
of integers and rationals, rings, groups, fields, lattices and projective 
geometries.



Ch a p t e r  XV
CONSISTENCY, CLASSICAL AND INTUITIONISTIC SYSTEMS

§ 77. Gentzen’s formal system. In Example 2 § 73 we found what 
may be described as a direct way of deducing A(x) from the axioms 
of S  in the predicate calculus when ( E y ) R ( x ,  y ) . This -direct way can 
lead from the axioms to A(x) only when ( E y ) R ( x t y ) . To establish the 
consistency property, i.e. that A(x) is deducible only when ( E y ) R ( x ,  y ), 
what we must do is to show that a roundabout way of proceeding in 
the predicate calculus can lead from the axioms to A(x) only when the 
direct way does. In the formalism of recursive functions, the corresponding 
consistency problem was trivial (§ 54, Example 3 § 60), precisely because 
no other than the direct way of proceeding from the assumption formulas 
was allowed by the rules of the system. This leads us to inquire whether 
there may not be a theorem about the predicate calculus asserting that, if 
a formula is provable (or deducible from other formulas), it is provable 
(or deducible) in a certain direct fashion; in other wards, a theorem giving 
a normal form for proofs and deductions, the proofs and deductions in 
normal form being in some sense direct.

A theorem of this sort was obtained by Gentzen 1934-5*. We shall 
present it in § 78, and apply it in § 79 to obtain the consistency results 
referred to in Example 2 § 60 and Example 2 § 73 (and used in § 76), 
as well as the consistency of number theory with the restricted rule of 
induction (mentioned at the beginning of § 42). These consistency proofs 
can be given by other methods, as by Ackermann 1924-5, von Neumann 
1927 and Herbrand 1930, 1931-2. All are somewhat long. Gentzen's is 
one of the easiest to follow, as the proof of his “Hauptsatz” or normal 
form theorem (of which it mainly consists) breaks down into a list of 
cases, each of which is simple to handle. Another application of this 
theorem is given in § 80. Except incidentally, §§ 81 and 82 are independent 
of §§ 77—80.

Gentzen's normal form for proofs in the predicate calculus requires 
a different classification of the deductive steps than is given by the 
postulates of the formal system of predicate calculus of Chapter IV

4 4 0
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(§ 19). The implication symbol D has to be separated in its role of 
mediating inferences from its role as a component symbol of the formula 
being proved. In the former role it will be replaced by a new formal 
symbol (read "gives” or "entails”), to which properties will be 
assigned similar to those of the informal symbol “ b” in our former 
derived rules.

Gentzen's classification of the deductive operations is made explicit 
by setting up a new formal system of the predicate calculus. The formal 
system of propositional and predicate calculus studied previously 
(Chapters IV ff.) we call now a H ilbert-type  system , ?ud denote by H. 
Precisely, H  denotes any one or a particular one of several systems, 
according to whether we are considering propositional calculus or pred
icate calculus, in the classical or the intuitionistic version (§ 23), and 
according to the sense in which we are using ‘term' and ‘formula' (§§ 17, 
25, 31, 37, 72—76). The same respective choices will apply to the Gentzen- 
typ e  system  G \ which we introduce now and the G2, G3  and G3a later.

The transformation or deductive rules of G1 will apply to objects 
which are not formulas of the system H ,  but are built from them by an 
additional formation rule, so we use a new term ‘sequent' for these 
objects. (Gentzen says "Sequenz”, which we translate as "sequent”, 
because we have already used "sequence” for any succession of objects, 
where the German is "Folge”.) A sequent is a formal expression of the 
form Alf ..., A| -► Bj, ..., Bm where l , m ^ 0  and Av ..., A u Bx, ..., Bm 
are formulas. The part A lf . . . ,  A, is the antecedent, and Bv . . . ,  Bm 
the succedent of the sequent Ax, ..., A x -̂ B̂  ..., Bm.

When l,m  1, the sequent Alf ..., Aj->BX, ..., Bm has the same 
interpretation for G1 as the formula A± & . . .  &  A t D  Bt V . . .  V  Bm for H. 
The interpretation extends to the cases with / = 0 or m  —  0  by 
regarding Ax& ... & A t for 1  =  0 (the "empty conjunction”) as true and 
Bx V . . .  V Bmfor m — 0 (the "empty disjunction”) as false.

A formula occurs in (or belongs to) a sequent Ax, . . . ,  A t ->Blf . . . ,  Bm, 
if it is one of the l + m  occurrences of formulas A1# ..., A lf Blf ..., Bm; 
and similarly for occurrence of a formula in antecedent or succedent. 
For example, G? and G7 & B  but not S occur in the sequent G 4 , G? & S G?.
A variable (symbol, quantifier, etc.) occurs in a sequent, etc., if it occurs 
in some formula of the same.

As in Chapter V, we use Greek capitals ‘T”, "A”, "0”, "A”, etc. 
to stand for finite sequences of zero or more formulas, but now also as 
antecedent (succedent), or parts of antecedent (succedent), with sep
arating formal commas included.
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P ostulates for the formal system  G 1
Stipulatio ns: A , B , C, D  are form ulas; r ,  A, 0 , A  are finite sequences 

of zero or m ore form ulas; x  is a variab le; A (x) is a form ula; t  is a  term  

free for x  in A ( x ) ; and b  is a  variab le free for x  in  A (x) and (unless b  is x) 

not occurring free in A (x).

R estriction on variables (for tw o  of the postulates as in d icated): 

T h e  variable b  of th e p ostu late shall not occur free in its conclusion. 

(W hen the A (x) does not con tain the x  free, then A(b) is A (x) no m atter  

w h a t variab le b  is; w e agree in such a case to  choose for the an alysis  

a  b  not occurring free in the conclusion, so th a t the restriction is m et.)

T h e difference betw een the classical and intuitionistic system s G \ 
is secured b y  the in tu itio n istic restriction stated  for tw o of the postulates.

A x io m  schem a.

C - * C .

L o gical rules of inference for the propositional calculus.

Intr<eduction of in succedent. in  antecedent.

A, r->0,B A-> A, A B, r-»0
•mJ

A

r-j.©, a d b . 
r -* 0 , a r-*©, b

a d b , a, r-»A, 0 . 
A,r-»0 B,r-*©

r-»0, a &b. A&B,T->.0. A&B,r->-0.

v
r-*-©, a r~>0, b a, r-»© b, r-*©

y r-*©,AVB. r^e.AVB. A v b , r -»0.
a , r ->■ © r-*©, a

1
r - * 0 ,  “ 1 A, a , r - > © .

w ith  0  e m p ty  for 

the in tu ition istic system .

A d d itio n a l logical rules of inference 

for the predicate calculus.

In troduction  of in succedent. in an tecedent.

V
r - * 0 ,  A(b) A (t), r - * ©

r - * 0 ,  V x A (x ), V x A (x ), r - * 0 .

su b ject to the  

restriction on variables.
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1 r - * © ,  A (t) A (b ), r - * 0

r - * 0 ,  3xA (x). 3xA (x), r - * © ,

su bject to  the  

restriction on variables.

Structural rules of inference.

in succedent. in antecedent.

T h in n in g
r-»© r-*©

r-»0, c, c, r-*©.
w ith  0  e m p ty  for the  

intuitionistic system .

C o n traction
r - >  ©, c , c c ,  c ,  r - * 0

r - * 0 , c . c, r  0 .

In terchan ge
r  -*• A , C, D , 0 A , D , c, r  0
r - *  A , D ,  c, 0. A, C, D , F  —> 0 .

Cut.
A - * A , C  c , r - » 0

a , r - » A , 0 .

F or the classical system  G l,  the postulates except the tw o D -rules  

fall in to  a dual-sym m etric arrangem ent, thus. T h e rules for &  an d V  

are dual to each other, the one set being transform ed into the other b y  

th e  interchange of &  w ith  V and -*►  w ith  Sim ilarly, the V - and 3-rules 

are dual. T h e axiom  schem a, the -i-ru les, and the structural rules of the  

four kinds, are each self-dual.

T h e  rules in the left colum n w e call succedent ru le s ; and w e denote  

th em  briefly b y  & ” , " - ► - i ” , % V M, " - * 3 ” , % r ,

C ” , / ” , respectively. T h e rules in th e right colum n w e call

antecedent ru les , and denote b y  “ D -V ', “& etc.

T h e  logical rules co n stitu te introductions of a  logical sym bol, b u t  

som etim es in the succedent (left colum n), and som etim es in the an teced

ent (right colum n). T h e  form ula in w hich the logical sym b ol is introduced  

is called the p r in c ip a l fo rm u la ; and the one or tw o  form ulas show n e x 

p lic itly  in the premise(s) the side  form ula(s).

E xample 1 . T h e  upperm ost rule in th e right colum n is “ D -in tro -  

d u ction  in the an teced en t” , or “ the D -an teced en t rule” , or b riefly  

“ D  T h e  principal form ula is A  D  B , the first prem ise has A  as side  

form ula, and the second B .
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T h e  logical rules of G 1 are m ore or less sim ilar in form  to  the respective  

derived rules of Theorem  2 § 23, w ith  the undefined form al sym bol 

appearing now  in place o f th e defined m etam ath em atical sym bol 

A n  introduction  in the succedent corresponds to an in trod u ction  in  

Theorem  2, and in the an tecedent to  an elim ination in Theorem  2. 

T h e  present axiom  schem a and structural rules correspond to  general 

properties of the form er b as listed in L em m a 5 § 20.

T h e  tree form  (end § 24) is used in the construction of proofs in G 1;  

and “  b S ” , w here S is a sequent, is used to express th a t the sequent S  

is provable.

In  ex h ib itin g proofs (or parts thereof), it is tedious to show sep arately  

all the applications of the one-prem ise structural rules. W e shall adopt  

the con ven tion  th a t a double line (with or w ith ou t citation  of an other  

rule) stan ds for a sequence of zero or m ore thinnings (“ T ” ), con tractions  

(“C”) and interchanges (“ / ” ) (following the application of the other  

rule w hen another is cited).

E xample 2. F o r a n y  form ulas A , B  and C, (a) and (b) are proofs  

in G 1 in tu itio n istica lly, (c) o n ly  classically.

(a) B  B  C - * C

A  A  B  3  C, B  C ^

A A B,AD(Bd C),A->C j3-*
A, A 3  (B 3  C), A 3  B -*C 

A 3  (B 3  C), A D B ^ A D C  “*D ^

A 3 B (A D (B 3 C)) 3 (A D C) ->D_>
(A 3  B) 3  ((A 3  (B 3  C)) 3  (A 3  C)). D

(b) A-» A
A, “iA—> B

---------------------------- ►  3-iA-» A 3 B ^
-►  -iA 3 (A 3 B). ~*D

(c) A -» A 
— A, “i A 

-i-iA A 
-»■  - i - i  A 3  A.

F ro m  th e p ostu late list for Gl, w e v e rify  b y  induction :

Lemma 32a. If j- r  —* B x, . . B m in the intuitionistic system G\, 
then m — 0 or m — 1.

Lemma 32b. If b T -^B ,, . . . , B m in the intuitionistic system Gl  
without using the rule —i —>•, then m — 1.
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L em m a 32a expresses the w hole difference betw een th e in tu ition istic  

an d the classical system  G 1; b u t it is useful to  observe th a t w e needed to  
restrict on ly  tw o of the postulates for the in tuition istic system  G l  to  
secure this difference.

O ur first ob jective  is to  show  (as did Gentzen) th a t system  G 1 is eq u ivalen t  

to  our former system  H ,  in the sense th a t, for a n y  form ula E , |— > E  

in G l,  if and o n ly  if h E  in H . T h is result w ill be contained in the 
n ex t tw o theorem s for T  em p ty.

Theorem 46. I f  T  b E  in  H  w ith  a ll variables held con stan t, then  
j- T -» * E  in  G l.  W hen the g iven  dedu ction  in  H  uses the postu la tes on ly  for  
certain  of the sym bols  D , & , V, - i ,  V , 3, then the resu ltin g  proof in  G l uses 
the logical rules on ly for  D and for the sam e sym bols.

Proof, b y  course-of-values induction on th e len gth  of th e  g iven  de
duction in H  of E  from  T. Sixteen  cases arise, as follows, according to  the 
an alysis for E  in the g iven  deduction.

Case 0: E  is one of the form ulas V. T h en  the follow ing is a  proof 

in G l of r - »  E .

E - *  E  

r - > E .

T h e  other cases w ill be num bered as the respective postulates la , lb, 
2, 3, 4a, 4 b ,  5a, 5b, 6, 7, 8 or 81, 9 —  12 of H .

Case lb :  E  is an axiom  b y  A x io m  Schem a lb , i.e. E  is 

(A D B) D ((A D (B D C)) D (A D C)) for some form ulas A , B an d  C. 
W ritin g T  before the in the endsequent of E x a m p le  2 (a), and d ou b lin g  

the line over it (to represent thinnings), m akes th a t tree into a proof in  

G l of T ~ * E .

Case 2: E is an immediate consequence of two preceding formulas 
by Rule 2, i.e. for some pair of formulas A and B, E is B and the two 
preceding formulas are A and A D B. By the hypothesis of the in
duction, there are proofs in Gl of A and F-^ADB, Grafting these 
two proofs onto the following tree, we obtain a proof of T-* B.

A-*A B-*B ^
T-* A D B A D B, A -*B_ _ —_ _ —— -------L--— -- Cutr-*A a, r~*B ^— ------- - .........................— Cutr-*B.

Case 8 or 81. See Example 2 (c) or (b), respectively.



446 C O N S IS T E N C Y CH . X V

C a s e  9: E  is an im m ediate consequence of a preceding form ula

b y  R u le  9. T h en  E  is C  D  V x A (x ), and the preceding form ula is C D  A (x),  

w here C does not contain x  free. L e t I \  be the subsequence of T  com prising  

those of the form ulas T  on w hich th a t preceding form ula C  D  A (x)  

depends in th e given  deduction of E  from  T. B y  om ittin g from  the given  

d ed u ction  all form ulas below  the form ula C  D  A (x) and those ab o ve  

w hich  depend on other assum ption form ulas than r^, we obtain a de

d u ction  of C  D  A (x) from  Fv  A p p ly in g  the hypothesis of the induction  

to  this deduction, there is a proof in G l of 1 ^ — D  A (x). Since the varia

bles are held con stant in the given  deduction of C D  V xA (x) from T, 

none of th e form ulas contains free the variable x  of the application  

of R u le  9. T h is and th e fact th a t C does not contain x  free are used in  

ve rifyin g  th a t the restriction on variables is satisfied for the in 

th e  follow ing.

C - » C  A ( x ) -» A ( x )

T1- > C d A(x) C d A(x) ,C -^ A (x)
c, r t-» A (x) “  ut

C, T j —► VxA(x)

T - > C D  VxA(x).
Case 12: E  is an im m ediate consequence of a preceding form ula

b y  R u le  12. D u al to Case 9.

W e introduce the notation  to  be used in Theorem  47. L e t F  be some 

p articu lar closed form ula. S a y  th a t 0  is B lf . . . ,  B m (m >  0). T h en  let  

0 ' be B lt . . . ,  B m_1 (em pty if m  <> 1), 0 "  be B m if m  >  1 and - i  (F D  F) 

if m  =  0, “ i 0  be - i B ^  . . . ,  ~ iB m, and - i  0 '  be “ iB 1, . . . ,  (em pty

if m  ^  1).

Co ro llary  1. I f  T, -i© ' |- 0 "  in  H  w ith  all variables held constant, 

a n d  p rovided  for the in tu itio n is tic  system s that m <  1, then  f- 0  
in  G L

U se cases according as m =  1, w  =  0 or w  >  1.

Co ro llary  2. F or the classical (in tu ition istic) system s when l , m  ;> 1 

(/ ;> 1, m  =  1): I f  h A x &  . . .  &  A t D B x V . . .  V B m in  H , then  
h A 1# . . A { B lt . . B m in  G L

T heorem  47. I f  b F ->  0  in  G l, then  T, - i 0 '  f- 0 "  in  H  w ith  a ll 
variab les held constant. (In particular: I f  |- F —> E  in  G l ,  then T  j- E  

in H w ith  a ll variables held constant.)
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M oreover, for the in tu itio n is tic  {classical) system s, when the g iven  proof 
in  G \ uses the logical rules on ly for certain  of the sym bols  D, & , V, - i ,  V , 3, 

then the resu lting  deduction in  H  uses on ly the D -postu lates {the D - an d  
—i -postulates) and  the postu lates for the sam e sym bols, provided  in  case the 
sym bols include  V  but not &  the V -postu lates include A x io m  Schem a  9a  

of L em m a  11 § 24.
P roof. W e prove the first statem ent of the theorem  b y  course-of- 

values induction on the height (i.e. num ber of levels) of the given  proof 

in G \  of T —> 0 , using cases according to the postulate of G 1 applied last 

in this proof.

T h e additional details given  in the second part of the theorem  w ill 

be verified after w e h ave gone through the cases. In  all b u t the cases 

and subcases indicated b y  a single or double star, the dem onstration of 

the existence of the resulting deduction is alm ost im m ediate b y  use of 

general properties of b and, in  the case of a logical rule of G 1, an ap 

plication of the corresponding derived rule (other th an  a i - r u le )  of 

Theorem  2 § 23, or in the case of —> V  and 3 of the corresponding strong  

rule of L em m a 10 § 24. In  the cases m arked b y  a single star, w e use also  

the intuitioftistic - i  -rules ( i-in tr o d . and w eak -i-e lim . §23) and som e

tim es * 1 § 26. In  the cases m arked b y  a double star, w e further use the  

classical (strong) - i  -elim ination rule (Theorem  2). N one of the nine cases 

not m entioned below  requires either subcases or starring.

C a s e  1: the axiom  schem a. B y  general properties of h  C b C in H .

Case 2: - > D .  W e h a ve b y  the hypothesis of the induction th a t  

A , T, "i 0  b B  in H  w ith  all variables held constant, and w e m ust infer 

th a t T, 0  b A  D B  likewise. T h is we can do b y  D -in trod.

Case 3: D  Subcase 1: A  e m p ty  or 0  not em p ty. T h en  (A , 0 ) "

is 0 " .  B y  h yp. ind., A , - i A  b A  and B , T, - i 0 '  b 0 " .  Thence, using  

D -elim ., A  D B , A, T, A , - i 0 '  b 0 " .  Subcase 2 * * :  A  not e m p ty  and  

0  em p ty. B y  h yp . ind., A, - i  A  b A  and B , T b ~i (F D  F). B y  D -elim ., 

A  D  B , A, T, - . A  b - i ( F  D  F). U sin g * 1 , A  D  B , A, T, - i A  b F  D  F . 

H ence, b y  -i-in tro d . and i - e l i m . , A  D  B , A, T, i A '  b n A "  b A " .

Case 10*: - > i .  Subcase 1: 0  em p ty. From  A , T  f- - i ( F d F),  

w e infer T  b ~ iA  b y  *1 and -i-in tro d . Subcase 2: © not em p ty. From  

A , T, - i 0 '  b 0 " ,  w e infer V, i 0 ' ,  - i 0 "  b i A  b y  -i-in tro d .

Case 11 : —i Subcase 1 * :  0  em p ty. U se w eak - i  -elim . Subcase 2 * * :

0  not em p ty. U se -i-in tro d . and —i-elim .
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Case 1 2 : - * V .  B y  h yp . ind., T , - 1 © b A(b) w ith  all variables held  

constant. B y  strong V-introd., A(b) bb V x A (x ). H ence F, - i  0  b V x A (x ),  

w ith  all variables including b  held constant, since b y  the restriction on  

variables for - > V ,  F  and 0  do not contain b  free.

Case 16: a n y one-prem ise structural rule. L e t the premise be 0 ,

and the conclusion be F * 0 L  T h en  T* ( 0 +) com es from F (0) b y  

perm uting form ulas, suppressing repetitions of form ulas, or introducing  

new  form ulas. Subcase 1: 0 t  is 0 . From  F, - i 0 '  b 0 " ,  w e infer T*, 

“i  0 '  b 0 "  b y  general properties of h  Subcase 2 *: 0 t  is not 0 , and 0  is 

em p ty. B y  h yp . ind., F b —«(F  D  F). Thence b y  general properties of b, 

r t ,  - i © * ' b “ i( F  D  F). T h ence b y  *1 and w eak -i-e lim ., F^, - i 0 t '  

b 0 * " . Subcase 3 * * :  0 *  is not 0 , and © is not em pty. T h en  0 t  is not  

em p ty, and at least one of 0  and ©t consists of more than  one form ula. 

B y  h yp . ind., T , - i 0 '  b 0 " .  B y  w eak -i-e lim ., T, - i© ',  - i 0 "  b “ i ( F d F),  

i.e. T, - i 0  b i ( F d F).  T h ence b y  general properties of h  F^, - i © t  

b - i ( F  D  F), i.e. r t ,  - i 0 t ' ,  - i 0 t "  b - i ( F  D  F). T h ence b y  * 1 , -i-in tro d .  

and -i-e lim ., r t ,  - i 0 t '  b © t".

Case 17: C ut. T reated  as Case 3, except w ith ou t using D -elim .

Subcase 1: A  e m p ty  or 0  not em p ty. Subcase 2 * * :  A  not e m p ty  and  

0  em pty.

T o  v e rify  the second statem en t of the theorem , first suppose th a t  

the g iv en  proof in G l of 0  where 0  is B lt . . . ,  B m is intuitionistic  

and does not use the - i  -rules. T h en  using L em m a 32b, w e see th a t none 

of the sin gly or d o u b ly  starred cases or subcases can occur. T h e statem en t  

then follows from  the m anner of treatm ent of the unstarred cases, b y  

L em m a 11 § 24.

If  the proof does use the - i  -rules b u t is in tuitionistic, the statem ent 

perm its th e intuitionistic - i -postulates of H  to be used in the resulting  

deduction, and w e need o n ly verify, using L em m a 32a, th a t none of the  

d o u b ly  starred cases or subcases can occur.

Corollary. W hen l, m  >  \ (and hence for the in tu itio n is tic  system s , 

m  =  1): I f  b A x, . . . ,  A j  B lt . . . ,  B m in  G 1, then 
b A x &  . . .  &  A j  D B x V . . .  V B m in  H .

§ 78. Gentzen’s normal form theorem. E xample 1. T h e proof (a)

contains a cut, w hile (b) is a proof w ith ou t cu t of the sam e  

sequent.
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T h e first proof uses an unnecessarily com plicated form ula ^ x^ l{x )  in  

the antecedents of the right branch. T h is com plication is unravelled  

b y  m eans of the cut. T h e  second proof proceeds d irectly, w ith o u t in 

troducing com plications th a t are subsequently unravelled.

T h e significance of proofs w ith ou t cu t, as in a sense proofs in norm al 

form, is further em phasized b y  the subform ula prop erty (Lem m a 33a  

below).

W e define ‘subform ula’ of a given  form ula thus.

1. I f  A  is a form ula, A  is a subform ula  of A . 2 —  4. If  A  and B  are 

form ulas, the subform ulas  of A  and the subform ulas  of B  are subform ulas  
of A  D  B , A  &  B  and A  V B . 5. I f  A  is a form ula, the subform ulas  of 

A  are subform ulas  of n A .  6 —  7. If  x  is a  variable, A (x) is a form ula, 

and t  is a term  free for x  in A (x), the subform ulas  of A (t) are subform ulas  
of V x A (x ) and 3 xA (x). 8. A  form ula has on ly the subform ulas  required  

b y  1 —  7.

E xample 2. T h e subform ulas of c3f D (-i D 2) are the five  

form ulas <£? D (-i<£7 D 2), <C?, -i<£¥ D 2, ~i<C7, 2.

E xample 3. (a) T h e subform ulas of Vi>Vc(2(c) &  <Z!(t?)) are the

form ulas VbVc(B(c) &a(b)), Vc(2(c) &  <3(t)), 2(u) &  c3(t), 2(u), <3T(t)f 

for every term  t not con taining c  free and every  term  u. (b) T h e only  

subform ula of <^(c) is J7(c).

From  the postulate list for G 1, w e verify  b y  induction:
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L e m m a  33a. Each formula occurring in any sequent of a proof in G1

without a cut is  a subformula of some formula occurring in the endsequent. 
(Subform ula property.)

L e m m a  33b. Each formula occurring in the antecedent (succedent) 
of any sequent of a proof in Gl w ithout a cut or ap p lica tio n  of the D - or 
—i-rules is a sub formula of some formula occurring in the antecedent (suc
cedent) of the endsequent.

G e n tze n ’s “ H a u p tsa tz ” or norm al form  theorem  (Theorem  48 below) 

asserts th a t the cuts can alw ays be elim inated from the proof of an y  

sequent in w hich no variable b oth  occurs free and occurs bound.

T h e restriction th a t no variable occur b o th  free and bound in the end- 

sequent does not detract from the usefulness of the theorem. For when  

variables do occur both  free and bound in a given  sequent, b y  replacing  

the form ulas b y  others congruent to them  we can obtain a sequent 

satisfyin g the restriction and provable if and only if the given  one is 

provable (by Theorem  47, L em m a 15b § 33, * 18a and * 18b § 26, and Corol

la ry  1 Theorem  46). T h e restriction is necessary, as we illustrate now.

E x a m p l e  4. Consider the proof

T h e cu t cannot be elim inated. F or b y  Lem m a 33a, no sequent in a proof 

w ith o u t cu t of Vi>Vc(#(c) & < 3 f(A ))-»  c3(c) can contain the sym bols D 
and ; so the Z>- and -i-ru le s cannot be used. H ence L em m a 33b applies. 

B u t the tw o lists of subform ulas in E x a m p le  3 h ave no form ula in com 

m on, so th a t no axiom  satisfies the requirem ent of Lem m a 33b. (The  

m ethod of t h i s  exam ple w ill be developed further in § 80.)

In  provin g the norm al form  theorem , we use a form al system  G2 
obtain ed from G l b y  changing tw o of the postulates, as follows.

T h e cu t is replaced b y  the follow ing rule, called “ m ix ” . Here M is 

a form ula (the mix formula)', II, ®, 2 ,  Q  are sequences of zero or more 

form ulas such th a t b oth  O  and 2  contain M ; and and 2 M are the  

results of suppressing all occurrences of M in <1> and 2 , respectively.
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E xam ple  5. T h e following is a mix.

M ix

M ix

T h e 3 - ►  of G l (distinguished as 3 - ^ )  is replaced b y  a new  one 

( 3  - * 2), due for the classical system  to  K eton en  1944. H ere A , B , T,  0  

are as ab o ve; and 0 °  is 0  for the classical system  and e m p ty  for the  

intuitionistic.

r - » 0 ° , A  B , r - * ©  ^

A  D  B , r - *  0 . D->>2

A n y  cut can be accom plished b y  a m ix (below left), and vice  versa  

(right), w ith  the help of T C I  steps.

a a, c cfr-*©w. n-*a> s -* q
_____________________ M ix «====*============== -

A, T c —> A c , 0  n  —*  0 M, M M , S M —*  £2

_ _ _ _  n ,  <dm, q . u

Sim ilarly, a n y  3  — c an be accom plished b y  a 3  —* 2 (below), n otin g  

th a t for the in tu ition istic case A  is e m p ty  b y  L em m a 32a; and v ice  

versa (left to the reader).

A - * A , A  B,  T - * 0

A,  r - * A ,  0° ,  A  B,  A, T - * A ,  0
A  D  B  A A  0  = 5 -> 2

T h is shows th a t the tw o changes do not alter the class of the provable  

sequents, as we state w ith  additional d etails in L em m a 34.

A  proof in G l or in G2 is said to h ave the pu re  variable p ro p er ty , or 

to be a pu re  variable proo f, if no variable b oth  occurs free and occurs 

bound in the proof, and for each application of V  or 3 -*> the variable  

b of the application occurs on ly in sequents ab ove the conclusion of the  

application (where if the A (x) does not con tain the x  free, we choose 

for the an alysis a b occurring on ly  thus).

L emma 34. I f  |- T - > 0  in  G l,  then  b T - * ©  in  G 2; and conversely. 
The proof in  G2 contains a m ix , only if  the proof in  G l contains a  c u t ; 

an d conversely. E ith er proof con tains a p p lica tio n s  of exactly the sam e-nam ed  
logical rules as the other. I f  either proof has the pure variable p ro p er ty , so 
does the other. L em m as  32a— 33b {stated above for  G l and the cut) hold 
good also fo r G2 an d the m ix .
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Lemma 35. A  given  postu la te  a p p lica tio n  of G 1 or G2 rem ain s an  
a p p lica tio n  of the sam e postu la te  w hen, in  the sequent(s) of the a p p lica tio n  
{nam ely, the ax iom  in  the case of the ax iom  schem a, an d  the prem ise{s) an d  
conclusion in  the case of a rule of inference), a variable is  changed in  exactly  
its  free occurrences {or in  exactly its  bound occurrences) to another variable not 
occurring either free or bound in  the sequent{s) in  question.

L em m a 35, in the case of an application of V  or 3 depends on 

the fact th a t the b  and the x  do not need to be the sam e variable (as 

th e y  did for the corresponding rules 9 and 12 of the system  H ).
Lemma 36. A  given  postu la te  ap p lica tio n  of G 1 or G2 rem ain s an  

a p p lica tio n  of the sam e postu la te  when, in  the sequent{s) of the a p p lica tio n , 
a given  term  is  su bstitu ted  for {the free occurrences of) a given  variable, 
p rovided  in  the case of a n —►  V  or 3 that (i) the term  does not contain  the 
b of the a p p lica tio n  an d  (ii) the variable is  not the b of the a p p lica tion , 
and also p rovided  in  every case that (iii) the term  is  free for the variable in  
each form ula  of the sequent{s).

Condition (i) insures th a t the restriction on variables rem ains satisfied  

for an V  or 3

Lemma 37. G iven a proof in  G 1 or G2 of a sequent in  which no variable  
both occurs free an d  occurs bound, by changes in  free an d  bound occurrences 
of variables in  sequents of the proof {each postu late a p p lica tio n  rem ain in g  an  
a p p lica tio n  of the sam e postu la te), we can obtain a proof of the sam e sequent 
in  which proof no variable both occurs free and  occurs bound.

P roof. L e t x lf . . . ,  x n be the distinct variables w hich occur free 

in the endsequent and occur bound (elsewhere) in the proof, a n d  

a 1, . . . ,  a p be the other distin ct variables which occur b o th  free and bound  

in the proof. L e t y lf . . . ,  y n, b x, . . . ,  b P be distinct variables not occurring  

in the proof. Change x v  . . .  , x n in their bound occurrences on ly  to y v  . . . , y w, 

respectively, and ax, . . a P in their free occurences on ly to b j, . . . ,  b^. 

B y  L em m a 35, the figure rem ains a p ro o f; and b y  the h ypothesis th a t the  

endsequent contains no variable b o th  free and bound, the endsequent is 

unchanged.

Lemma 38'. G iven a proof in  G \ or G2 in  which no variable occurs 
both free and  bound, by changes o n ly  in  free occurrences of variables in  it  
{each postu la te a p p lica tio n  rem ain in g  an  a p p lica tio n  of the sam e postu late), 
we can obtain a pu re variable proof of the sam e sequent.
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Proof. Suppose that in the given  proof in Gl or G2 there are e x a c tly  

q applications of the rules V  and 3 —►  w ith  respective variables cx, . . . ,  c g
(not necessarily distinct) as the b 's of the applications. Select a n y  q 
distin ct variables d lf . . . ,  d* not occurring in the g iv e n  proof. Choose  

one of the applications w hich is upperm ost (i.e. has no other over it), 

sa y  its b  is cv  S u b stitu te  d x for cx throughout all sequents ab o ve the con

clusion of the application, b u t nowhere else. U nder th e  restriction on  

variables for V  and 3 c t  cannot occur free in the conclusion of the  

application, so using L em m a 35 all postu late applications rem ain valid .  

R ep ea t the procedure, each tim e w orking on one of the application s of

V  or 3 w hich is upperm ost am ongst those not y e t  treated, u n til 

th e b 's  of all q of the applications h a ve been changed from  c ’s to  d ’s. 

B ecause each su b stitu tion  alters on ly sequents ab ove the conclusion of 

an application  of V  or 3 — t he endsequent is unaltered.

T heorem 48. G iven a proof in  G \ {in  G2) of a sequent in  which no 
variab le  occurs both free an d  bound , another proof in  G l {in  G2) of the sam e  
sequent can be found which con tains no cut {no m ix ). T h is  proof is  a p u re  
variable proof. The on ly logical rules a p p lied  in  i t  are ones which were 
a p p lie d  in  the given  proof. (G entzen's H a u p tsa tz  or norm al form  theorem , 

I934-5-)

P roof, reducing the theorem  to a lem m a. B y  L em m as 34, 37 and 38, 

it suffices to prove the theorem  for G2  assum ing the given  proof already  

to h a ve the pure variable property. W e do so b y  induction on the num ber  

m  of m ixes in this 'given  p ro o f. If m  >  0, there m ust occur in it a m ix  

w hich has no other m ix  over it. Consider the p art of the given  proof 

w hich term inates w ith  the conclusion II, S M ®M, O  of this m ix ; call 

it  th e 'g iven  p art'. Suppose th a t w e can transform  this g iven  p art so as 

to o b ta in  another proof in G2  of II, Z M O m, Q  w ith o u t m ix ; call it the  

'resulting p a rt’ . T h en  the replacem ent of the g iven  p art b y  the resulting  

p a rt in the giv en  proof gives us a new  proof in G2 of the sam e sequent 

w ith  on ly m — 1 m ixes. Suppose further th a t the resulting p art can be  

con structed so th a t it has the pure variab le p rop erty b y  itself, and also  

contains no variable free (b o u n d ; as the b of an V  or 3 - * )  th a t did not 

so occur in the given  part. T h en  the new  proof as a w hole w ill h ave the  

pure variable property. H en ce w e can a p p ly  the hyp othesis of the in 

d u ction  to  conclude th a t there is a pure variable proof w ith  no m ix. T o  

p ro ve the theorem  it thus rem ains to establish the follow ing lem m a.

E xam ple  1 (continued). T h e  given  p art for (a) (restated w ith  a 
m ix instead of a  cut) is as follows.
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^ l ( b ) ^ a { b )  3x^(x)  - »  lx^(x)

£2(b) -*3x<Zl(x) -i3xH(x)t 3xCl(x)
<3(6), —i 3jc<C3T(jc) ->.

L e m m a  39. G iven a proof in  G2 of II, S VI 0 M, O  w ith  a m ix  as  
the fin a l s tep , and no other m ix , aw^ w ith  the pure variable p ro p er ty , a 

proof in  G2 of H , S M - >  O m, Q  caw 6c found w ith  no m ix , w ith  the pu re  
variable p ro p er ty , aw i w ith  no variable occurring free (bou n d ; as b o/ aw

—  ̂ V  or 3 - * )  which d id  not so occur in  the given proof. Ow/y logical rules 
are a p p lied  in  the resu lting  proof which are a p p lied  in  the given proof. 
(Principal lemma.)

P r o o f  o f  t h e  p r in c ip a l  l e m m a . W e define the left rank  a  of a m ix  

as the greatest num ber of sequents, located con secu tively one above  

another at the b o tto m  of a n y branch term inating w ith  the left premise of 

the m ix, w hich contain the m ix form ula M in the succedent. T h e right 
rank b is defined sim ilarly. T h e rank r  =  a + 6 . (The least possible rank  

is 2.) T h e grade g of the m ix  is the num ber (>  0) of occurrences of logical 

sym bols (D , &, V, - i , V, 3) in the m ix form ula M.

E x a m p l e  1 (concluded). T h e left rank is 1, the right rank 2, the  

rank 3, and the grade 1.

T h e lem m a is proved b y  course-of-values induction on the grade g 
of the m ix. W ith in  both  the basis and the induction step of this induction, 

a course-of-values induction is used on the rank r. W e give a treatm ent 

b y  cases, so th a t b y  draw ing upon the results of the cases the bases and  

induction steps of the inductions can all be carried through.

W e w rite the m ix to be elim inated thus,

or briefly
Si____ S 2

S3,

where M £ (S> and M S S .

T h e letters " A " ,  " B ” , “ C ” , “ D ” , T " ,  “ 0 ” , " x ” , “ A (x )” , " t ” , “ b ” w ill 

refer to the statem ents of the other postulates in question.

A . P r e l im in a r y  c a s e s .
Ca s e  la : S x has M in the antecedent, i.e. M £ II. T hen the con

clusion II, S M —> ®M, Cl of the m ix comes from its second premise S  - >  Di 

b y  T C I ,  and is hence provable w ithout m ix. The intuitionistic restriction  

on the —> T 's  can be satisfied, as the T C I  steps term inate w ith  the  

original endsequent, w hich b y  Lem m a 32a can h ave in tu ition istically  

at m ost one form ula in its succedent.
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Case  2a: the left rank is 1, and S x is b y  a structural rule. Since

M 8 $ ,  b u t not to  the succedent of the prem ise for the inference of S 1, 

the inference can on ly be a T  w ith  M as the C. T h u s the b o tto m  of the  

given  proof is as at the left below  w ith  M t  0 . W e alter this to the figure  

a t the right, to obtain a proof of the original endsequent w ith ou t m ix.

M ix

Cases lb , 2b : sim ilarly, reading " S 2” , "su cced en t” , " Q ” , " r ig h t” in  

place of " S j ” , "a n tece d en t” , " I I ” , " le ft” , respectively. T reated  sy m 

m etrically  to Cases la , 2a.

B . Other  cases . F o r each of these cases, it is part of the case h y 

pothesis th a t none of the four prelim inary cases applies.

B l :  the rank is 2 . Since Cases la , lb  are excluded, S x and S 2 m ust  

b o th  be conclusions of inferences. Since the rank is 2 and Cases 2a and 2b  

are excluded, b o th  inferences m ust be logical. M oreover, since the rank  

is o n ly  2, M m ust be the principal form ula of b o th  inferences. Therefore  

M contains a logical sym bol, and the m ix  is of grade >  1 . T h u s these  

cases can arise on ly under the induction step for the induction on grade, 

and the hypothesis of the induction on the grade is available in treatin g  

them . T h e rules used in inferring S x and S 2 can on ly  be, respectively, the  

rule introducing the outerm ost logical sym bol of M in succedent, and the  

rule introducing the sam e sym bol in antecedent. T h u s under B l  w e  

h a ve on ly the follow ing six cases.

C a s e  3: S x is b y  D , and S 2 b y  D - * ,  w ith  M as the principal

form ula A  D  B . T h en  the b o tto m  of the given  proof is as follows, where  

A d  B  t  0 , T  since the rank is on ly 2.

W e alter this to the following.

M ix
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T h e upper m ix is of grade lower than the original, so b y  the hypothesis  

of the induction on the grade, it can be elim inated, i.e. a proof w ith ou t  

m ix of its conclusion can be found. T hen the lower m ix w ill h ave no m ix  

over it, and can likewise be elim inated. T h u s we obtain a proof w ith ou t  

m ix of the original endsequent n ,  F  0 , Q.

Case  4: S x is b y  & , and S 2 b y  & w ith  M as the principal

form ula A  &  B.

Case 5: S x is b y  V, and S 2 b y  V — w ith M as the principal

form ula A  V B. Treatm en t is dual to th at of Case 4.

Case 6 : Sj is b y  - i , and S 2 b y  - » wi t h M as the principal

form ula —i A .

Case  7 : S t  is b y  ~ ^ V , and S2 b y  V — wi th M as the principal

form ula V x A (x ). W e h ave as the given  figure, where V x A (x ) t  0 , T,

In constructing the altered figure, we shall need a proof of II 0 , A (t). 

If A (x) does not contain x  free, then A(b) and A (t) are the sam e form ula, 

and we already h ave it. Suppose then th a t A (x) does contain x  free. T h en  

A (t) contains t, and so, since t is free for x  in A (x), the variables of t occur 

free in A (t). N o w  we can conclude from the pure variable property of the  

given  proof of II, T  —> 0 , Q  th a t (i) no variable of t is the b of an - >  V  

or 3 in the proof of II —> 0 , A(b) in the left branch of our figure, 

(ii) our b is not the b  of an - * V  or 3 in the same, and (iii) t  is 

free for b  in all form ulas of the sam e (since the pure variable property  

allows no variable to occur b oth  free and bound). Moreover, in vie w  

of the restriction on variables for the exhibited V, (iv) b  does not 

occur in II, 0 . Therefore, using Lem m a 36, b y  su b stitu tin g t for b  

throughout the proof of II 0 , A(b) we obtain a proof of II -*■  0 , A (t). 

W hen this proof is used in the altered figure as follows, the new  proof of 

II, T  0 , Q  thus obtained w ill h ave the pure variable property and  

w ill contain free (bound; as the b  of an V  or 3 -> ) no variable not 

previously so occurring.
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Case 8 : Sx is b y  -> 3 , and S2 b y  1 -* ,  with M as the principal

form ula Ix A (x ). D u al to Case 7.

B 2 : the rank is >  2. These cases can on ly occur in the induction step

of an induction on the rank (either w ith in  the basis, or the induction  

step, of the induction on the grade). H ence the hypothesis of the in

duction on rank is available in treatin g them .

B 2 .1: the left rank is >  2. T h en  M occurs in the succedent of a t

least one of the premises for the inference of S v
Case 9a: Sx is b y  a succedent structural rule S  w ith  M not th e C

an d not the D , or S x is b y  an antecedent structural rule S . L e t th e g iven  

figure be as shown at the left. W e alter this as shown at the right (ex

plan ation  follows).

B ecause M £ ® x (by B 2 .1), w e can tak e -*<!>! as first prem ise for 

th e new  m ix. T h en  from  the case hypothesis and th e form  of th e one- 

prem ise structural rules, we v e rify  th a t the new  S  is correct. In  th e altered  

figure, the rank of the m ix is one less than  in the original. H ence b y  th e  

hypothesis of the induction on the rank, w e can find a proof of its con

clusion, and hence of the original endsequent, w ith ou t m ix.

Case 10a: S x is b y  a succedent structural rule S w ith  M as th e C or

the D . L e t the premise be II O x. From  the form  of the succedent 

structural rules, w e ve rify  th a t then ® 1M and ®M are identical.

------------ L 5  ------------ 1---------------—  M ixH ®_____li-+ Q. n, ZM ®M, Q.
n, sM-> ®M, o.

Case 11a:  Sx is b y  a one-prem ise logical rule L .  T h e  inference b y  a n y

one of these rules w hich gives S x has the form

A v  r->e, a 2 l  
s lf r-*©, e2

where each of A ^  A 2 is either a  side form ula or e m p ty, and one of E v  S 2 

is th e principal form ula w hile the other is em p ty.
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Subcase 1 : S 2 is not M. T h en  M 8 0 , since M 8 0 , S 2. W e w rite the  

given  figure thus.

W e alter to this (explanation follows).
M ix

T h e new L  has F, S M as its T  and 0 M, Q  as its 0 . T h e conclusion of the  

new  L  is the original endsequent, except for the order of form ulas w ithin  

the succedent. T h is enables us to infer th at, if L  is V  or 3 the  

restriction on variables is satisfied for the new application, since b y  the  

pure variable property of the given  proof, the b cannot occur in the  

original endsequent. If  the given  proof is intuitionistic, then (by L em m a  

32a) 0 , A 2 consists of at m ost one form ula. B u t M S  0 ;  hence A 2 is 

em p ty. Therefore the T C I  steps preceding the new  L  require no violation  

of the intuitionistic restriction on T .  (The possibility th a t the new L  
is a  - i  v io latin g  the intuitionistic restriction is ruled out a priori, b y  

com parison of its conclusion w ith  the given  endsequent; b u t in fact L  
can n ot be — - i .) T h e new  m ix  is of rank one less than  the original.

Subcase 2: S 2 is M. T h en  E ± is em p ty, and we om it it in w riting the

g iven  figure thus.

M ix

Since S 2 is M, then A 2 is not M (and hence M 8 0 , since M 8 0 , A 2 b y  B 2 .1). 

B ecause Case lb  is excluded, M £ Q .  W e use these facts in w ritin g the  

m ixes in the altered figure thus.

M ix

M ix

F , > 0 m >
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I f  L  is V  or 3 the restriction on variables is satisfied because  

I \  E M, ©M, Q, M all occur in the given  pure variable proof elsewhere  

than  ab o ve the conclusion of the original L . (B u t L  cannot be 3 -> .)  

T h is subcase cannot occur intuition istically, since the sequent T  0 , M  

occurring in the given proof has m ore than one M in its succedent. N o w  

the upper mix in the altered figure is of rank one lower than  the original 

m ix ; so b y  the hypothesis of the induction on rank, it can be elim inated. 

T h en  the lower m ix w ill h ave no m ix over it. Since M t  Q , A 2, the left  

rank w ill be on ly 1 , while the right rank will be the sam e as in the original 

m ix. Since b y  hypothesis the left rank w as originally >  2, the rank of 

this m ix is less than th a t of the origin al; and hence b y  the h ypothesis of 

the induction on rank, it too can be elim inated.

Case 12a: S x is b y  a tw o-prem ise logical rule L ,  excep t the in-

tuition istic D  T h e inference w hich gives S x m a y  be w ritten

A n ,  ̂ ©> A -12 a 21, r —►  ©, A 22 ^

sx, r ©, s2.
T reatm en t is sim ilar to Case 1 la. B o th  premises are m ixed w ith  S —> Q  

(noting th a t M 8 0 ), prior to the L  in the altered figure.

Case 13: S x is b y  the intuitionistic D S i n c e  M S © ,  an d 0  is 

a t m ost one form ula, 0  is M. O n ly  the second prem ise B , T  -*> M is 

m ixed w ith  S O in the altered figure.

B 2 .2 . Cases 9 b — 12b. Statem en t and treatm ent sym m etric to  

Cases 9 a — 12a, excep t as follows. T h e intuitionistic verification s for 

Case 11 b are im m ediate. (Subcase 2 can arise in tuitionistically.) T h e  

treatm en t of the intuitionistic D  can be included in Case 12b b y  

w riting 0 ° in th e first p rem ise; the verification  th a t the new  D  —►  has  

an e m p ty  sequent for its 0 ° is ob tain ed  b y  observing th a t intuitionis

tica lly  the $  of the given  m ix  is sim p ly  M.

T h e follow ing application of Theorem  48 w as g iven  for th e in tu i

tionistic system  b y  Curry 1939 .

T heorem 49. I f  a form ula  E  is  provable in  the in tu itio n is tic  (<classical) 
system  H , i t  is  provable u sin g  on ly the "D-postulates {the D -  a n d -\-p o s tu la te s )  
a n d  the postu la tes for the logical sym bols occurring in  the fo rm u la , p ro v id ed  
that in  case  V  occurs but not & the V -postu lates include A x io m  Schem a  
9a of L em m a  11 § 24.

P roof. U sin g L em m a 33a, no logical rules can be applied in a proof



460 CONSISTENCY CH. XV

in G1 without cut, except rules for logical symbols occurring in the 
endsequent. The theorem follows by Theorems 46 (using the first part 
only), 48 and 47 (both parts), if no variable occurs in E both free and 
bound; otherwise, use also Remark 1 (c) §33.

Curry’s book 19 5 0  (not available during the writing of the present 
§§ 77—80) contains contributions to the theory of Gentzen-type systems, 
and a full bibliography. Curry uses the name “elimination theorem” for 
the Hauptsatz. Our name “normal form theorem” is intended to suggest 
the intent of the theorem, when it is merely explained, without giving 
details of Gentzen’s system, that the normal form is one for proofs; 
and we have kept “elimination theorem” for cases when a symbol or 
notation is being eliminated as in § 74. (But “normal form” has the similar 
disadvantage that it commonly refers to one for formulas as in §§29, 76.)

The next two sections, in which two applications of the theorem are 
presented, may be read independently of each other.

*§ 79. Consistency proofs. For Gl or G2, we call an application 
of one of the structural rules a structural inference; of one of the logical 
rules of the propositional calculus, a propositional inference; of one of 
the additional logical rules of the predicate calculus, a predicate inference.

Under special assumptions as to the form of the endsequent, a still 
further normalization of proofs can be achieved, as in the following 
“ extended Hauptsatz” given by Gentzen 19 3 4 -5  for his classical 
system. (It is closely related to Herbrand’s theorem, 1 9 3 0 .) As Gentzen 
remarked, the proof is an illustration of the possibilities for permuting 
inferences in his systems. These possibilities are discussed further in 
Curry 19 5 2  for the classical system of his 1 9 5 0 , and in Kleene 19 5 2  

for the classical and intuitionistic systems described here. For example:
T h e o r e m  50. Given a sequent containing only prenex formulas and 

in which no variable occurs both free and bound, and given a proof of this 
sequent in the classical system G\ (the intuitionistic system Gl without 
V ~>), another proof in the same system of the same sequent can be found 
which contains no cut and in which there is an (occurrence of) a sequent S 
(called the midsequent) such that no quantifiers occur in S, and the part of 
the proof from S to the endsequent consists solely of predicate and structural 
inferences. The new proof is a pure variable proof. Similarly reading “G2 ” , 
“mix” for “Gl” , “cut”, respectively.

P r o o f , reducing the theorem to a lemma. We suppose Theorem 48
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alrea d y applied, so th a t we are dealing w ith a given pure variable proof 

in  G 1 w ith ou t cut (or G2  w ith ou t m ix). B y  the subform ula property, on ly  

prenex form ulas can occur in sequents of this proof.

Consider a n y  axiom  in the given  proof containing quantifiers, say  

th a t V  com es first. W e can replace the axiom  (left) b y  the follow ing  

figure (right),

V x A (x ) - >  V x A (x ), A(b) A(b)

V x A ( x ) - » A ( b j V ^ v  

V xA (x) V xA (x),

where b  is a variable not previously occurring in the proof. T h e form ula  

A (b) of the new axiom  has one less quantifier than  the form ula Vx A( x )  

of the original axiom . Sim ilarly, if 3 comes first. B y  induction on the sum  

of the num bers of quantifiers in the form ulas of all the axiom s, we can  

thus elim inate axiom s con taining quantifiers altogether from the given  

proof (retaining its other m entioned features).

N o w  suppose, as we state in the follow ing lem m a, th a t we can rear

range the logical inferences in this proof (retaining its other features) 

so th a t each predicate inference follows all the propositional inferences. 

T h en  there w ill be (an occurrence of) a sequent Si below  w hich the proof 

contains on ly predicate and structural inferences (with no branchings, 

as the rules considered are all one premise rules) and above w hich on ly  

propositional and structural inferences. There m ay be occurrences of 

form ulas w ith  quantifiers in S x and above. H ow ever none of them  is as 

side form ula for a propositional inference, since the resulting principal 

form ula w ould not be prenex. N one of them  is as principal form ula, 

since there are no predicate inferences in this part of the proof. N one of 

them  is in an axiom , as previously arranged. H ence each postu late  

application in the part of the proof down to S x inclusive w ill rem ain  

correct, if we alter this part of the proof b y  suppressing every occurrence 

in it of a form ula containing a quantifier, except th a t some of the  

structural inferences m a y thereby becom e identical inferences (with  

prem ise and conclusion the same) and can be om itted. This alteration  

w ill replace S x b y  a sequent S containing no quantifiers, b u t from S we  

can pass to S x b y  zero or more T  and I  steps, and thence b y  the unaltered  

part of the proof using on ly predicate and structural inferences to the  

original endsequent. T hus we obtain the new proof as described in the  

theorem , w ith  S as the m idsequent.

L em m a  40. Given a pu re variable proof in  the classical system  G \ (the 
in tu itio n is tic  system  G 1 w ithout V —>) w ithout cut of a sequent con ta in in g
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only pren ex  form u las , another such proof of the sam e sequent can be fou n d  in  
which each pred ica te  inference follows every p ro position a l inference. The  
sam e sequents occur as axiom s in  the new  proof as in  the given  proof. S irn i-  
la r ly  read in g  “ G 2” , “ m ix ’* for “ G l ” , “cu t” , respectively.

P r o o f  o f  t h e  l e m m a . Consider a n y  predicate inference in the given  

proof, and coun t the num ber of propositional inferences occurring in  

the branch leading from  its conclusion dow n to  the endsequent of the  

entire proof. T h e sum of these num bers, for all the predicate inferences 

in the proof, we call the order of the proof. W e establish the lem m a b y  

induction on the order.

If  the order is not 0, there is some predicate inference such th a t a  

propositional inference occurs below  it w ith  no intervening logical 

inference.

Case 1: the predicate inference is an V , and the first propositional

inference below  it is a one-prem ise inference L . A s noted above, using the  

subform ula property, the V x A (x ) of the V cannot be the side form u

la of the inference L . H ence the given  figure is as shown at the left. Classi

ca lly  w e alter this to  the figure shown at the right.

T h e T  is to tak e care of the possibility th a t the T C I  steps in the  

given  figure include a C  w ith  V xA (x) as the C. T h e pure variable  

p rop erty of the given  proof ensures th a t the restriction on variables is 

satisfied for the —> V  in the altered figure. In tu itio n istically  ®x, ®, 0 2 

and 0 3 are all em p ty, and then w e om it the — T  in con structing the  

altered figure. T h e alteration decreases the order of the proof b y  1.

Case 2: —> V follow ed b y  a two-prem ise propositional inference  

L . C lassically the treatm en t has on ly to be changed to  show an extra  

prem ise (either left or right) ab ove the L , preceded in the altered figure  

(except w hen L  is D - ^ )  b y  a In tu itio n istically  L  can on ly be

w ith  the extra  prem ise on the left.

Cases 3 — 8 . The classical and intuitionistic treatment of the cases 
for V  —> followed b y  either a one- or a two-premise propositional
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inference is essentially sym m etric to the classical treatm ent for —> V. 
T h e four cases for - »  1  and 3 follow dually.

E x a m p l e  1 . Theorem  50 does not hold for the intuitionistic system  

G 1 w ith  V -*► . F o r consider the follow ing proof.

a { a )  - »  c3(a)  ̂ cH{b) cH{b)  ̂ 3

cH{a) 3xc3{x)
^ a ) V ^ ( b )  ^  3 x ^ (x ) .

Suppose there were another proof as described in the theorem . T h en  

the m idsequent S w ould be of the form II <D where II consists of zero 

or more occurrences of CZ(a) V CA (b) and O either is em p ty  or is <3(t) 

for some term  t, since reading upw ard from the endsequent to S, the  

T C I  steps (if any) can o n ly  suppress, duplicate or perm ute form ulas 

b u t not introduce new form ulas, and the predicate inferences (if any) 

can on ly be an 3 w hich (reading upward) changes 3*cA(x) to <3(t). 

B u t then if II or O  were em p ty, H —> O  could not be provable in G \ 
w ith ou t cut, b y  L em m as 33a and 33b used as in E x a m p le  4 § 78. So consider 

e.g. the case II —> <E> is d { a )  V CT(b) —> «C2(t). T h e term  t m a y be a  or b 
or neither. Consider e.g. the case t is a . Th en  b y  Corollary Theorem  47, 
d ( a )  V CZ{b) D  a ( a )  w ould be provable in the propositional calculus H \  
and b y  Theorem  4 § 25, so w ould be d  V B D  <£?, con tradicting Theorem  9 

§28.

T h e  c o n s is t e n c y  t h e o r e m . G entzen illustrated the use of his 

extended H au p tsatz in establishing consistency results such as had  

previously been obtained b y  Ackerm ann, von  N eum ann and H erbrand. 

B ern ays 1936  and H ilbert and B ern ays 1939  stated  a general consistency  

theorem  for axiom atic theories, w hich th e y  based on the A ckerm an n  

treatm ent. W e state such a theorem  now.

T h e theorem  can be used to infer m etam ath em atically  the consistency  

of an axiom atic theory from num ber theory, geom etry or algebra, 

w hen a m odel for the theory, i.e. more precisely for its notions and  

axiom s (§ 14), can be established con structively, i.e. in fin itary terms.

T h e theory is to be form alized as a form al system , the term s and  

form ulas of w hich are constructed using the logical sym bolism  of the  

predicate calculus H  w ith  certain individual sym bols ev  . . . ,  eQ, function  

sym bols f lt . . . ,  fr and predicate sym bols P x, . . . ,  P s. T h e system  m a y  

h ave a finite or infinite num ber of axiom s in addition to the postulates  

of the predicate calculus H .
T o  establish a con structive m odel, we m ust start w ith  a dom ain D  of
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ob jects w hich is either finite (and non-em pty) or enum erably infinite. 

W e  could ta k e D  to be the natural num bers N  in every  case, b y  selecting  

som e fixed effective enum eration of it w hen it is not already (with rep

etitions if it is finite), and thereafter dealing w ith  the ^indices in this  

enum eration in place of the original objects. B u t in practice it is con

ven ien t to deal w ith  other dom ains directly. T h e case of a  finite dom ain  

adm its a sim pler treatm en t from  Theorem  20 § 36 exten ded to include  

in dividual and function sym bols in the valu ation  procedure.

In  establishing a m odel, the n ext step is to interpret the individual, 

function and predicate sym bols in the dom ain D , i.e. to  chose objects  

ev  . . . ,  eq from D  as values of ev  . . . ,  eQt functions f v  . . . ,  fr w ith  

independent variables ranging over D  and valu es in D  as values of 

flt . . . ,  fr, and logical functions or predicates P v  . . . ,  P 8 w ith  independent 

variables ranging over D  as valu es of P 1, . . . ,  P s. For the m odel to be  

con structive, f v  . . . ,  fr m ust be effective ly  calculable functions and  

P lf . . . ,  P s effective ly  decidable predicates. W e sa y  in this case th a t  

ev  • * •» zq> f v  • • •, fr> P v  • • •» P »  is an effective in terpreta tion  of e2, . . . ,  eQ, 
fv  . . . ,  fr, P 1# . . . ,  P s in D . (W hen D  is N ,  b y  Church's thesis §§ 60, 62 

w e can exp ect f v  . . . ,  /r, P v  . . . ,  P s to  be general recursive, in w hich case 

w e h a v e  a general recursive in terpre ta tion . H ow ever the consistency  

th eory does not need to  be connected w ith  Church's thesis, since we  

m erely need to  recognize at each application of the con sistency theorem  

th a t the particular f lf . . . ,  /r, P v  . . . ,  P s w hich w e use are effective.)

G iv en  an effective interpretation, and using the 2 -valu ed  tru th  tables  

for D , &, V, - i  (§ 28), w e h ave a valu ation  procedure b y  w hich, given  

a n y  form ula A (x lt . . . ,  x n) con taining no quantifiers and on ly the distinct 

va riab les x v  . . . ,  x n, w e can, for each w-tuple x v  . . . ,  x n of objects from  

D  as valu es of x lt . . . ,  x n, effective ly  determ ine the va lu e of A ( x 2, . . . ,  x n) 

to  be t (true) or f (false). (W hen D  is N ,  b y  #  # A ,  C, D  § 45, the predicate  

A (x v  . . . , x n) w hich the form ula thus expresses is prim itive recursive  

in f v  • • • > fr* Pi*  . . . , i V )
F o r N  as the dom ain D , instead of speaking of the valu e of A ( x x, . . . ,  x n) 

w hen x v  . . . ,  x n ta k e  the natural num bers x lt . . . ,  xn as values, it is 

u su a lly  more convenient to  speak of the valu e of A ^ ,  . . . ,  x n) (where 

x v  . . . ,  x n are the num erals for the natural num bers x v  . . x n, re

sp ectively). W h en  w e do this, A(x1# . . . ,  x n) is a form ula in the sym bolism  

exten d ed  if'n ece ssa ry  to  include 0 as an in dividual sym bol and ' as a  

function sym bol, and the interpretation is exten ded to g ive  0 and ' their 

usual values. W e can suppose the original sym bols not to h ave included  

0 or ', unless in the original interpretation it receives the usual valu e.
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W e can do sim ilarly when D  is not N .  There m ust be provided a particular  

variable-less term  x  (the analog of a numeral) for each object x  of D ;  
and the sym bolism  and interpretation are extended (if necessary) to  

include these terms (consistently w ith  the original interpretation). In  

b oth  cases, we shall now sa y  sim ply “ num ber” for m em ber x  of D , 

and “ num eral” for the variable-less term  x  w hich expresses x. T h e  

extension of the sym bolism  (when necessary) is to  assist in describing the  

valu ation  process, and need not a p p ly  to the form al system  under 

consideration, except w hen we sa y  so.

In  the m odel, i.e. after selecting the dom ain and the interpretation  

of the non-logical constants, the axiom s m ust be true. A s the axiom s  

w ill (in general) contain variables, we need a more general sense of ‘tru e’ 

than  th at given b y  the va lu ation  procedure. W e shall form ulate it here 

on ly for prenex form ulas (Theorem  19 § 35). Consider first a closed  

prenex form ula, e.g. for illustration 3 y 1V x 13 y 2V x 23 y 3A ( y 1, x v  y 2, x 2, y 3) 

where A ( y x, x v  y 2, x 2, y 3) contains no quantifiers and on ly the distinct 

variables show n; call this form ula “ G ” . U nder the interpretation of 
ev  . . . ,  eqf i v  . .  ., fr, P x, . . ., P s and the usual m eanings of the qu an ti

fiers, G  is true if and only if there is a num ber y v  such th a t for each  

num ber x v  there is a num ber y 2 depending on x x (write it “ y 2(*i)” )> 

such th a t for each num ber x 2, there is a num ber y 3 depending on x x and  

x 2 (write it “ y 3(*i> x 2)” ), suc^

(I) A ( y lf X,, y . t a ) ,  Xj, y s {xv  x 2))
(where y 2(xx) is the num eral for the num ber y 2(xx), etc.) has the valu e t. 

F or m etam athem atical purposes, m oreover w e w ish the existence to  be  

understood con structively, i.e. to m ean th a t the y v  the y 2{xx) (f°r an y  

g iven  % ) and the y 3(xv  x 2) (for a n y given x lf x 2) can be found. T h is  

im plies th at y 2(xx) an<3 yz(x v  x z) are effectively  calculable functions. W e  

sa y  then th a t G  is effectively tru e , if there are a num ber y x and effective ly  

calculable functions y 2(xx) and y 3(x1, x 2) such th a t for every x x and x 2, 
(I) is t. (W hen D  is N ,  b y  C hurch’s thesis we can exp ect y 2(x i) and  

y z(x i, x 2) to  be general recursive, in which case we say that G  is general 
recursively  true.) A n  open prenex form ula shall be effectively {general 
recursively) true, if its closure is. T h e nam e verifiable  is given to a form ula  

w ith ou t quantifiers, when for each substitution of num erals for its  

variables the resulting form ula takes the value t b y  the valu ation  pro

cedure, i.e. in the present term inology, to an effective ly  true form ula  

w ith ou t quantifiers.

A c tu a lly  our requirem ent th a t y 2{x1) and y z{xv  x 2) be effective ly
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calculable o n ly em phasizes w h a t w ould in a n y  case be im plied in the  

con stru ctive use of the existen tial quantifier; an d in other respects also  

(left im plicit) th e hypothesis of the theorem  m ust be satisfied in a con

stru ctiv e  w a y  to  conclude consistency m etam ath em atically, e.g. the  

num ber y x and the description of the functions y 2(x1) and y 8(#i, x 2) niust 

be given  effectively, and the dem onstration th a t (I) is t for all x 1 and x 2 
m ust be b y  fin itary  reasoning (cf. the rem arks on the converse of Church's  

thesis § 62).

A  prenex form ula in w hich no V -qu an tifier follows an 3-quantifier we  

shall call an V 3 -prenex form ula.
T heorem 51. L et the term s and form ulas be constructed u sin g  the 

logical sym bolism  of the predicate calculus H  w ith  ev  . . . ,  eq, f lt . . . ,  fr, 
P v  . . . ,  P 8 as non-logical constants. F or a n y  given  dom ain  D  and effective  
evaluation  of these constants in  D  :

(a) I f  T  are effectively true closed prenex form u las, E  is  a closed 
V 3-pren ex  form ula, and T  b E  in  the predicate calculus H , then  E  is  
effectively true.

(b) F o r a n y  form al system  S , the postu lates of which are those of the 
pred ica te  calculus H  and ax iom s each of which is  {or is  equivalent in  H  to) 
an  effectively true prenex fo rm u la : I f  E  is  an  V 3-pren ex  form ula , and  
b E  in  S , then  E  is  effectively true. In  p articu lar: S  is  s im p ly  consistent.

P roof of (b) from (a). { b E  in S } { T  b E  in H ,  where T is 

som e finite list of non-logical axiom s of S } - >  { T 1 b E x in H ,  where 

are th e closures of the effective ly  true prenex equivalents of T , w hich  

are likew ise effective ly  true, and E j  is the closure of E }  ->  ( E x is ef

fe ctiv e ly  true} (by (a) w ith  T v  E x as its V, E ) ->  {E  is effective ly  true}. 

In  particular, 1 = 0  (in the case of the num ber-theoretic sym bolism  w ith  

th e  usual interpretation), or A  &  - i  A  where A  contains no quantifiers, is 

not e ffe ctiv e ly  true, and hence is unprovable in S. So S  is sim p ly con

sistent, b y  the second form  of the definition in § 28.

P roof of (a). If it is in the intuitionistic H  th a t F b E  is given, 

then a fortiori F  b E i n  the classical H ,  since the in tuition istic postulate  

81 is p rovable classically (§ 23).

Since T, E  are closed, all variables are held con stant in the deduction  

T  b E , and no variable occurs b oth  free and bound in the sequent 

F  —►  E . So b y  Theorem s 46 and 50 there is in the classical predicate  

calculus G 1 a proof of F —> E  w ith  the features described in Theorem  50. 

L e t h  be the level at w hich the m idsequent occurs.
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Continuing the illustration, say that T is the single formula G above 
and E is Vv1Vv23wB(v1, v2, w) where B(v1, v2, w) contains no quantifiers 
and only the distinct variables shown.

Select any pair vv v2 of numbers.
Now we shall carry out a series of acts, one to each predicate inference 

in this Gl proof, beginning with the lowest and working upward. Each 
act will consist in substituting a certain numeral (specified below) for 
every occurrence throughout the tree of each variable occurring free in 
the premise of the inference. When the act is performed on an inference 
by — or 3 the inference is of course destroyed. The given proof is 
a pure variable proof, so the b of an application of —> V or 3 —> does not 
occur below its premise. Hence by Lemma 36, at the stage (call it stage g) 
when the acts have been performed for the inferences the premises of 
which are at or below level g (< h), each of the original postulate applica
tions the premises of which are above level g will have been transformed 
into an application of the same postulate, but in the system G1 with 
the symbolism extended (if necessary) to include the numerals.

We now specify the choice of the numerals for the substitutions, at 
the same time proving by induction on g that, if g < h, then at the g-th

Vstage all sequents up to level g inclusive have the following property 
(call it P ) : the antecedents (succedents) contain only formulas of the 
forms shown in the left (right) column 

3yiVx13y2Vx23y3A(y1> x1( y2, x2, y3) V v^v^w B K , v2, w)
Vx^yaVx^yaA^,, x1( y2, x2, y3) Vv23wB(u1, v2, w)

3 y2Vx23 y3A(yi> ti. y2> x2> y3) 3wB(u1) v2, w)
Vx23 y3A(yi. ti. y 2(0 > x2> y3) B (vv v2> s)

3 y3A(yi> t,, y 2(h)> t2, y3)
A ( y i .  ^ i, y 2{ti)> t 2, y 3(^i. 2̂))

where t lf t2 and s are variable-less terms, ix and t2 are the numbers 
expressed under the given effective interpretation by tx and t2, respective
ly, and y lf y 2(̂ i)» y ^ i *  )̂> v i an<̂  v 2 are the numerals for the numbers 
Vi> VM> y$i> vi and v2 respectively, where yv y2(%) and y3(xlf x2) 
are the number and effectively calculable functions given by the hy
pothesis that G is effectively true.

B a s is : g =  1 . Only the endsequent is at or below level g, and it 
has property P.

Ind. step: g >  1 . For g > h the induction proposition holds vac
uously. For g < h by the hypothesis of the induction, as the tree figure 
now stands, the sequents below level g have property P. We distinguish
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cases according to the kind of inference w hich applies from  level g  to

level g —1.
Case 1: —> V. In  our illustration, the principal form ula m ust h a ve  

one of tw o  form s, e.g. (using th e second) \ / v 23 w B (v lf v 2, w). T h e  side 

form ula is then lw B ( i;1, b, w) where b  is the b  of the original V. W e  

su b stitu te v 2 for b  w herever it occurs, i.e. o n ly  in the side form ula of 

the prem ise (at level g) and in sequents ab ove level g. B y  this act, p rop erty  

P  is established a t level g, since the side form ula becom es 1 w B ( i;1, v 2, w) 

w hich is one of the allow ed succedent form s for p rop erty P ,  and all the  

other form ulas in the sequent are duplicates of resp ective form ulas in  

the conclusion, w hich b y  h yp . ind. were already of allow ed forms.

Case 2: V - * .  In  our illustration, th e principal form ula m ust be  

of one of tw o forms, e.g. (takin g th e second) V x g B y g A ^ , t v y 2(ti), x 2, y 3) ; 

and the side form ula is then of th e form  3 y 3A (yv t lf y 2( )̂, t* ,  y 3) where  

t *  is a term  resulting b y  previous substitutions from  the t of the original 

inference. B y  the h yp . ind., no variable occurs free in sequents below  

level g, and so o n ly  th e variables of t *  occur free in the premise. W e  

su b stitu te 0 for each of these (if any), if the dom ain D  is N , and other

wise some specified num eral, w herever th e y  occur, i.e. o n ly  in the side 

form ula (at level g) and ab o ve level g. T h e side form ula becom es  

i y g A ^ ,  t x, y 2{h)> t 2> y 3) where t 2 is the result of this su b stitu tion  on  

t* ,  and the other form ulas at level g  are unchanged and were alread y of 

allow ed form s for property P .

Case 3: —* 3 .  Sim ilar to Case 2 (with one p ossibility  for the form  

of the principal form ula in our illustration).

Case 4: 3 - > .  In  our illustration the principal form ula m a y  h a ve  

one of three form s, e.g. 3 y 2V x 23 y 3A ( y 1, t lf y 2, x 2, y 3) ; and th e side 

form ula is then  of th e form  y / x ^ y 3A ( y lf t 1# b, x 2, y 3) w ith  the original b. 

W e su b stitu te th e num eral y ^ )  for b.

Case 5: T , C  or I .  T h e  prem ise already has p rop erty P ,  because  

it contains no form ula not occurring in the conclusion; and no a ct is 

perform ed to change the situation.

T h is com pletes the specification of the acts, and the proof th a t at  

stage g ( <  A) sequents u p to level g inclusive h ave p roperty P . So at  

stage A, w hen the w hole alteration of the given  proof in the classical 

predicate calculus G \ has been com pleted, the original m idsequent, 

since it contained no quantifiers, has becom e of the form
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a (xl> ^n, y ^ v iv i  t12, y S u >  1̂2))»• • • * A(yi, t ?1, y%{tn)> t Z2» y-&{tn> 2̂))

-> 6(1?!, 1;,, Si), . . . ,  B(|?!, i?2) s j .

T h e tree figure down to the m idsequent has becom e a proof of this 
sequent in the propositional calculus G \ w ith  num erals added to the 
sym bolism . So b y  Corollary Theorem  47,

is provable in the propositional calculus H , and hence b y  Theorem  9 

§ 28 (and Theorem  4 § 25) is id en tically  true w hen its distinct prim e 

p arts are treated as distinct proposition letters for the valu ation  procedure  

of th e propositional calculus. In  particular, it takes the valu e t w hen  

w e assign to the distinct prim e parts (which contain no variables) the  

valu es t or f w hich th e y  tak e under the given  effective interpretation of 

the non -logical constants. B y  hypothesis, (I) takes the valu e t for every  

pair % , %2 of num bers. H ence b y  the valu ation  tables for &, D  and V, 

one of B ( v v  v 2> sx), . . . ,  B (i;1, v 2, s m) m ust be t. L e t the first w hich  

is be B ( v lt v 2, s0). T h e variable-less term  sa then expresses a num ber s a 

such th a t B (v { , v 2, s a) is t.

T h e  whole process b y  w hich, after choosing the num bers v lf v 2, we 

ob tain  this num ber sa is effective; so sa =  w (vv  v2), where w (v lt v 2) is 

an e ffective ly  calculable function. T h en  for every  v lf v2,

is t, i.e. E  is effective ly  true, as w as to be shown.

R emark 1. T h e ab o ve construction enables us to sa y  som ething abou t  

how  the function w (vlt v2) is related to  the functions and predicates  

f v  . . . ,  fri P lf . . P S) y 2(%)> > irrespective of the nature of the

latter. T hus, w ith  or w ith ou t the hypotheses of effectiveness in the theorem , 

w e h a v e  w hen D  is N : (a) w  is  p r im itiv e  recursive in  f lt . . . ,  fr) P lf . . . ,  P Si 
y 2> y 3. F or w e can show b y  induction on g th a t, if g <  A, at stage g  

each term  t occurring free in the tree and con tain in g e x a c tly  p  
distinct variables expresses, as v lt v 2 v a ry , a function t(vv  v 2i u lt . . . ,  u p) 
exp licit in f lt . . . ,  f rt y 2, y 3 and constants. H ence (for i  =  1, . . . ,  m ) st- 

expresses a function $*•(%, v^  exp licit in the sam e; and each prim e  

p art of B ( v lf v 2i s t)  expresses a predicate exp licit in the sam e and  

P lf . . . ,  P s, w hence using #  #  A , C, D  § 45 B ^ ,  v 2, s,-) expresses a predicate  

B i(v i, v 2) prim itive recursive in f lt . . . ,  fri P lt . . . ,  P s, y 2, y 3. T h en ce (a) 

follow s b y  ap p lyin g # F  w ith  as the and s { as the (no <pm+1 being

A (yi> ^n> y ^ i d *  î2> ^ 3(̂ 11  ̂ 1̂2)) &  * • • &  A ( y 1? t zl, y 2(̂ 11)> t Z2> y ^ n *  tft)) 
D  B(|>!, i?2, sx) V . . .  V B(|?!, i?2, s ml

(ii) v 2, w(vv v2))
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required). More specifically: (b) w is explicit in f v  . .  .,  f r, y2, y 3, ~b, •, sg, 

the represen ting fu n ction s of P lf . . . ,  P a$ an d  constants  ( #  #  1, 2, 9).

A p p l i c a t i o n s . T h e o r e m  52. F o r the p r im itiv e  recursive pred ica te  
R (x ,  y), form al system  S , an d  form ulas  A (x) (x —  0, 1 , 2 ,  . . . )  described in  
E x a m p le  2 § 73 : A (x) is  provable in  S , only if  (E y)R (x , y ).  (In fa c t: E very  
'i'i-p ren ex  form ula provable in  S  is  effectively true under the in tended  
in terpreta tion .)

P r o o f . T h e axiom s of S  are all verifiable (hence effective ly  true), 
w hen the dom ain is the natural num bers and the non-logical constants
0, ', fv  . . . ,  4 ,  =  are interpreted in the intended w a y  (which is effective),

1. e. b y  0, ', <pv  . . . , cp*,  = ,  respectively. So (b) applies. U sin g it w ith  

A (x ), i.e. 3 y ffc(x, y ) = 0 ,  as the E :  If  b A (x) in S , then A (x ) is effectively 
true under this interpretation, i.e. there is a y  for w hich f k(x , y ) = 0  is t 

(i.e. for w hich <pk{x, y)  = 0 ) ,  i.e. (E y )R (x t y ).
T heorem 53. (a) R obin son 's system  {Lem m a  18b § 49), call i t  S ,  is

s im p ly  consistent {and every 'i'i-pren ex  form ula provable in  S  is  effectively  
true), (b) I n  5 , for a g iven  p r im itiv e  recursive pred ica te R {x , y), an d  a  
form ula  R (x, y) which num eralw ise expresses i t  obtained by the m ethod  
of proof of C orollary Theorem  27  § 4 9 :  b 3 y R ( x , y) only i f  (E y )R (x t y ).
(c) I n  S , i f  the form ulas A  {a, h) and  B  {a, c) of E x a m p le  1 § 61 are obtained  
by the m ethod of proof of C orollary Theorem  2 7 , then {conversely to (52)): 

{ b  B (x)} -> {E y )W 0{x, y ).
P roof. It  will suffice to prove the theorem  for the classical systems, 

as 1 =  0 or 3 y R (x , y) or B (x) is provable in the intuitionistic system only 
if provable in the classical.

(a) E a ch  of the thirteen axiom s except * 1 3 7  (or *136) is verifiable  

under the usual (effective) interpretation. E m p lo yin g *90 § 35, we  

obtain 3 b { a = 0 V  a = b ' )  as an V 3-prenex equivalent of *13 7 . T h is is 

effective ly  true, w ith  b{a) =  a - M , since then for each natural num ber a , 

a = 0  V a = { b { a ) ) '  is t.

(b) T h e consistency theorem  does not a p p ly  im m ediately, because  

3 y R (x , y) is not an V 3-prenex form ula. H ow ever we shall show (following 

the lem m a) th a t w e can add new  axiom s to S  containing new  predicate  

sym bols, and exten d the interpretation effectively  to the latter, in such  

a w a y  th a t each of the new  axiom s is equivalent in the predicate calculus  

to an effective ly  true prenex form ula, and b S(x, y) ^  R (x, y) in the  

resulting system  S ' where S(x, y) contains no quantifiers an d expresses 

R { x ,y )  under the interpretation. T hen (b) will follow th u s:
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{I- 3 y R ( x ,y )  in S }  ->  { b 3 y R (x , y) in S ' } - > { b  3 y S (x , y) in S '}

->  (■E y)R {x , y ).
Lemma 41°. L et  A (x , y) be a form ula con ta in ing  no qu an tifiers an d  

only the d istin c t variables show n, su ppose given an  effective in terpre ta tion  
of its  non-logical constants, an d  let A  [x, y) be the predicate which i t  expresses 
under this in terpreta tion . L et  A(x) be a new  predicate letter, (a) S u p p o se  
that
(1) (Ey)A (*. y) -* (Ey)v<»(x)A (x> y)
where \j(x) is  an  effectively calculable function. L et
(2) A ( x ) ^ ( E y ) A ( x , y ) .
L et A(x) be in terpreted  by A (x) [which by ( 1) and  (2) is  effective). T h en  the 
form ula
(i) A(x) ~  3 y A (x , y)

is  equivalen t in  the predicate calculus to an  effectively true pren ex  form u la . 
S im ila r ly  w ith  “ x v  . . . ,  x n, y v  . . . ,  y m” in  p lace of “ x , y ” . (b) S im ila r ly  
w ith  u n iversa l in stead  of ex isten tia l qu an tifiers [and “ in  p lace of 
in  (1)).

Proof of Lemma 41. (a) U n ab b reviatin g  ~  in (i), an d usin g *96,

*89, *9 7 and *9 1, we obtain as an V 3-prenex equivalent

(ii) V y3z[{A (x) D  A (x , z)} &  {A (x, y) D  A(x)}].

T h is form ula is e ffe ctive ly  true w ith  z(x , y)  =  yLZz<^lx)A (x , z).
(b) Sim ilarly  using *95, *89, *98 and *91,  w e ob tain  

V y3z[{A (x) D  A (x , y)} &  {A (x, z) D  A (x)}], 

w hich is effective ly  true w ith  z(x, y ) =  [lzz<uM A (x , z).
Proof of T heorem 53 (b) (concluded). B y  the proof of C orollary  

Theorem  27 § 49 from Theorem  27, it  w ill suffice now  to  show, for the  

proof of Theorem  27, th a t S  can be extended so th a t h P ^ ,  . . . ,  x B, w) ~  

P (x 1( . . . ,  x„, w) w ith  P (x 1, . . . ,  x „, w) interpreted b y  cp(xlt  . . . ,  x n) = w .
Case (Vb). B y  h yp . ind., S  is already exten d ed  to include a predicate  

sym b ol Q (x 2, . . . , x „ ,  w) interpreted b y  ^ {xt , . . . ,  x n) = w  such th a t  

h Q ( x 2, . . . ,  x B, w) ~  Q ( x 2, . . . ,  x b , w ) , an d , R (y, z, x 2, . . . ,  x B, w) in

terpreted b y  x(y, z , x t , x n) = w  such th a t h  R (y, z, x 2, . . . .  x B, w) ~  

R (y , z, x 2, . . . ,  x „, w). W e introduce (if w e h a ve not already) a < b ,  
to  be interpreted b y  a < b ,  w ith  the axiom  a < b ~ a < b ,  i.e. a < tb  ~  
3 c ( c '+ a = £ ) ,  using c <  6 as the bound y  <, u(x1( x ,)  for L em m a 41. W e  

further exten d  S  (if w e h a ve not already) to  include a predicate sym bol
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B(c, d, i, w), to be interpreted b y  [3(c, d, i ) = w ,  such th a t \- B(c, d, i, w) 

/-^B(c, d, i, w ) ; referring to the definition of B (c, d, i, w) accom pan yin g  

*(180) § 41, this can b e done b y  several steps (left to the reader) sim ilar 

to those w e perform next. N ow  w e  introduce D(c, d, i, x 2, . . . ,  x n), in

terpreted b y  (E u )(E v)[$(c , d, i ' ) = u  &  p(c, d, i ) = v  &  %(i, v, x 2, . .  ., x n) = u ] ,  
w ith  the axiom  D(c, d, i, x 2, . . . ,  x w) ~  3u3v[B (c, d, i', u) &  B(c, d, i, v) &  

R(i, v, x 2, . . x n, u)], using the bounds u  <  (3(c, d } i') , v <  p(c, d, i) . 
N e x t w e introduce E(c, d, y , x 2, . . . ,  x n), interpreted b y

->  (Eu)(Ev)[${c, d } i ' ) = u  &  p(c, d, i) =  v &  v, x 2, . . x n) = u } ] ,  
w ith  the axiom  E(c, d, y , x 2, . . x n) ~  V i [ i < y  D  D(c, d, i, x 2, . . x n)], 

using the bound i  <  y. T h en  we introduce F  to elim inate the first 3u  

of P (y, x 2> . . . ,  x n, w), using u  <  (3(c, d } 0); and fin ally  P  to elim inate the  

3c3d, using as bounds c <  C  and d <  D  w ith C  and D  as described in  

E x a m p le  1 (A) § 57 when yj(y, x 2, . . . ,  x n) =  cp(y, x 2, . . . ,  x n). B y  Theorem  

I Case (Vb) (C) § 49, the predicate P(y, x 2, . . . ,  x n, w) assigned to interpret 

P (y, x 2, . .  x n) w) is indeed cp(y, x 2, . . x n) = w ;  and b y  the equivalences  

introduced as axiom s or already established,

h P(y, X 2, . . . ,  x n , w) ^  P (y, x 2, . . . ,  x n , w).

P roof of T heorem 53 (c). Sim ilarly, w ith  a quantifier elim ination  

of V c follow ing those for Theorem  27.

Theorem  53 (a) gives the consistency property required for the first 

proof of Theorem  54 in § 76 (and Theorem s 53 (b) and 52 for the proofs 

in R em ark 2 § 76).

T heorem 55. The form al num ber-theoretic system  of C hapter  IV ,  

under the restriction  on the in du ction  schema that in  the A(x) the x  should  
not occur free w ith in  the scope of a qu an tifier , is  s im p ly  consistent. (Acker- 

m ann 1924-5, von  N eum ann 1 9 2 7 ; cf. H ilbert and B ern ays 1939  pp. 121,  

122 and 127.)

M oreover: E very  V l-p ren ex  form ula provable in  i t  is  effectively tru e , 

and this rem ains the case u pon  ad jo in in g  to i t  R obinson's ax iom s {Lem m a  
18b) and the axiom s used in  the proof of P a r ts  (b) and  (c) of Theorem  53, 

which p a rts  a p p ly  to this system  also.
P roof, reducing the theorem  to a lem m a. It  suffices to prove the  

theorem  for the classical system . W e shall first treat the case the A (x) 

is restricted to contain no quantifier at all. T h en  L em m a 42 w ill com plete  

the proof.

Consider an axiom  b y  P ostu late 13 in this system , say its A(x) is 

A (x , xv . . . ,  x n) w ith e x a c tly  the distinct variables shown and no
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quantifiers. Let A (x , xv  . . . ,  x n) be the (primitive recursive) predicate 
expressed by A(x, x„ . . . .  x„) under the usual interpretation. Using 
*89  and *98 , the axiom is equivalent to

3y[A (0, x1( . . . ,  x„) &  (A (y, x1; . . . .  x„) D  A (y ', x v  . . . .  x n))

D A(x, x1( . . . ,  xn)].
This formula is effectively true, with
v ( x  X  X  )  =  J  °  if A ( X > •••>*«) V ^ (?* *1* • •■.*«).
y i ’ lf • "  ’ n> X WysJ-  (y, x v  . . . ,  *„) &  A  ( / ,  * „ . . . ,  x n) otherwise.

L emma 4 2 °. The class of the provable form ulas (or of those deducible  
from  given  assu m ption  form ulas) in  the system  of Theorem  55 is  not d i 
m in ish ed  by further restricting the A(x) for the in du ction  schem a to contain  
no qu an tifier at a ll.

P roof. A n y  form ula A (x) not con taining x  free w ithin the scope 

of a quantifier m ust be com posed b y  operations of the propositional 

calculus from  form ulas A v  . . . ,  A m , each of w hich contains no quantifiers  

b u t m a y  contain x, and form ulas A mi+1, . . . ,  A mrl_m2, each of w hich  

contains quantifiers b u t does not contain x  free (m v  m 2 ^  0; m  =  

m 1+ m 2 ;> l).JB y Theorem  11 §2 9  on principal d isju n ctive norm al form  

(with Theorem  3 § 25), A(x) is equivalent to a disjunction of form ulas  

A n  &  . . .  &  A im (i =  1, . . . ,  n) where each A iy is either A ?. or A ;. 

depending on i , if the first case of the norm al form  applies. F or the  

m om ent suppose m v  m 2 ^  1. W rite “ B t-(x)” for An & . . .  &  A imi, 

“ C »•” for A *,mi+1 &  . . .  &  A im, and '^ ( x ) ' '  for some refutable form ula  

w ith ou t quantifiers. T h en  using *48 and *34 § 27, A (x) is equ ivalen t to

(a) B (x) V (B x(x) &  C,) V . . .  V (B„(x) &  C n).

N ow  consider a n y  form ula of the form  (a) w ith  n  ^  0 where (as above)  

the B ’s contain no quantifiers and the C s  contain quantifiers b u t no  

free x ’s; call n  its degree. W e prove b y  induction on the degree th a t a n y  

axiom  b y  P o stu late 13 w ith  A (x) of this form  is provable using P o stu late  

13 o n ly w ith  A(x)*s containing no quantifiers.

I n d . s t e p : n  >  0. W rite (a) as

(b) D (x) V (B„(x) &  C„).

T h e axiom  under consideration is then

[D(0) V (B n(0) &  C n)] &  V x [D (x ) V (B n(x) &  C n) 3  D (x') V (B n(x') &  C n)]

(c) 3  D (x) V (B n(x) &  C n).

W e shall show th a t (c) is deducible in the predicate calculus from  the  

tw o follow ing axiom s,
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(d) [B n(0) V D(0)] &  V x [ B n(x) V D (x) 3  B»(x') V D (x')] 3  B ,(x )  V D (x),

(e) D(0) &  V x [D (x ) 3  D (x')] 3  D ( x ) ;

i.e. we are to  show : (d), (e) (c). B y  Theorem  14 § 33 w ith  *45 and

*34  § 27: C n b (c) ~  (d ); and w ith  *47 and *48: ~ iC n |- (c) ^  (e). N o  

variables are varied since C n does not contain free the variable x  of the  

quantifier V x  w ith in  w hich replacem ents are performed. So, using  

V -elim .: (d), (e), C „ V i C n |- (c); and hence using * 5 1 :  (d), (e) b (c).

B u t in (e) the A (x) is of the form  (a) w ith  degree n — \ ,  and likew ise in

(d), w hen B n(x) V B (x) is taken  as a new B(x).

W h en  m 1 =  0, the m ethod applies construing “ B t-(x)”  and “ B*(x) & ”  as 

the e m p ty  expression, w ith  the follow ing differences. Consider

(f) C n & V x [ C n D C J  D C n.

U sin g *46: C n h (c) ~  (f); and using *48: - i C n h (c) ~  (e). B u t using  

*1  § 26, *7 5  § 35, *45, and *1 again: (-■  (f).

W hen m 2 — 0, the A (x) already lacks quantifiers.

I f  the second case of the norm al form  applies, then using *53, *34  and  

*53, A (x) is equivalen t to B(x) &  - iB ( x ) .

R emark 2. In  the system s of Theorem s 52, 53 and 55, every  provable  

V 3-prenex form ula is p r im itiv e  recursively  true. F or R (x , y)  and R (x, y) 

as in Theorem  53  (b), { h 3 y R (x , y)} {there is a p rim itive recursive  

function cp such th a t (x)R (x, cp(x))}. P roofs. B y  R em ark 1 , an d our 

constructions of the functions and predicates for the effective inter

pretation and effective tru th  in Theorem s 52, 53 and 55.

E xample 2 . L e t S  be the num ber-theoretic form al system  w ith  

om itted. W h a t the adap tation  of Presburger 1930  cited  at the beginning  

of § 42 gives directly  is an effective correlation, to each closed form ula A  

of S ,  of another B , w ith  properties ( 1) —  (4) as follows. (To consider an  

open form ula, let A  be its closure.) ( 1) f- A  ^  B  in S. (2) B  is either  

true or false, under an obvious extension of the va lu ation  procedure 

(preceding Theorem  51). N o w  sa y  A  is true {false), if B  is. (This special 

definition of tru th  for closed form ulas of S  is equ ivalen t to the one called  

for under the general definition of truth  w hich w ill be taken  up at the end of 

§ 81, b y  (3).) (3) T ru th  and fa lsity  in this sense ob ey the 2-valu ed  tru th  

tables.; {3xA (x) is true} =  {E x){A(x) is true}; and {V xA (x) is true} == 

(x){A(x) is true}. (4) A ccordin g as B  is true or false, B  is provable or 

refutable in 5 . T h u s: (5) S  is sim p ly com plete, and com plete w ith  respect 

to  the interpretation (§§41,  29). (6) There is a decision procedure for the  

question w hether A  is true. (7) If S  is sim ply consistent, there is a de
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cision procedure for S , i.e. for the question w hether b A  in 5 . N o w  w e  

show : (8) If  b A  in S , then A  is true; so S  is sim ply consistent. Suppose  

b A  in S. T h en  for some finite collection T  of non-logical axiom s of S ,  

r  b A  in H . W e can use Lem m a 41 to elim inate the quantifiers from  

A  and from  the induction form ula A (x) of each induction axiom  am ong T , 

tak in g e.g. for a part 3 y A (x , y)

\j(x) =  |xy[({3yA(x, y) is false} &  y = 0 )  V A (x , y )].
W e  thus obtain T ', 0  b A ' where 0  are the form ulas (i) of L em m a 41 

w ith  3 or V  for the predicate sym bols introduced in the elim ination. 

T h en  A ' (and hence A) is true, b y  Theorem  55 (or the first part of its  

proof) for the system  w ith  0  adjoined as axiom s.

D is c u s s io n . In these applications of the consistency theorem , the  

dom ain D  is the natural num bers, the num erals are already a part of 

th e sym bolism , and the effective interpretation is the intended one. 

H ilbert and B ern ays 1939  pp. 38 —  48 give tw o applications of their  

con sistency theorem  to geom etrical axiom  system s. There certain enum er

able system s of com plex num bers are used as the dom ains D .
These consistency proofs all depend on h avin g a m odel for the axiom s, 

as did those g iv en  before the ad ven t of H ilbert's proof theory (cf. § 14). 

B u t givin g a m odel for the axiom s in in tu itive  arithm etical term s does 

n o t establish beyo n d  all doubt th a t no contradiction can arise in the  

th eo ry deduced from the axiom s, unless it can also be dem onstrated  

th a t the reasonings in the theory can be translated into in tu itive arith m et

ical reasonings in term s of the objects used in the m odel. T h is dem on

stration is w h at the present consistency theorem  (Theorem  51) adds to  

the earlier treatm ent. (Cf. B ern ays 1936  pp. 115— 116 and H ilbert- 

B ern ays 1939  p. 48.)

W e did take the deduction of the theory from  its axiom s into account 

in the discussion of consistency in the first part of § 75, b u t there w e were 

using n o n -fin itary set-theoretic m ethods.

T h e consistency theorem  depends, v ia  the extended H a u p tsa tz  (Theo

rem  50), on the H au p tsatz (Theorem  48) and the reduction of H  to  G \ 
(Theorem  46). B y  these, given  a proof of a form al theorem  in a system  

based on the predicate calculus w ith  m ath em atical axiom s, it is possible  

to  alter the system  and proof until we h ave a proof w hich contains no 

form ulas more com p licated  than  the axiom s and theorem  them selves, 

i.e. on ly subform ulas of them . In  this situation there is no excursion  

through “ id eal” statem en ts in proving a “ real” theorem  from  “ real”  

axiom s (§ 14).
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Our metamathematical consistency result of Theorem 55 for a part 

of number theory of course holds good upon extending the system 
by further effectively true prenex axioms, e.g. one could add symbols 
for further primitive recursive functions with their recursion equations. 
These were eliminable in the full system (Example 9 §74), but presum
ably are not in general in the system with the restricted induction 
schema.

One may also consider some new induction postulates, which would 
hold as derived rules in the full system, but presumably do not when 
Postulate 13 is restricted as for Theorem 55, and which are susceptible 
of like treatment under corresponding restrictions. Examples of such are 
given in Hilbert and Bernays 1 9 3 4  pp. 343 — 346, which however appear 
from Skolem 1 9 3 9  and Peter 19 4 0  to be derivable when suitable primitive 
recursive functions with their recursion equations are adjoined.

All such consistency results obtained by strictly elementary methods 
must stop short of giving the consistency of the number-theoretic 
formalism with the unrestricted induction schema, as we know from the 
famous second Godel 1 9 3 1  theorem (Theorem 30 § 42), according to which 
the consistency of that system cannot be established by methods 
formalizable in the system itself.

G e n tzen ’s con sisten cy  proof for number th e o r y . We shall now 
give a brief heuristic account of the method used by Gentzen (1 9 3 6 , 
1938) in a proof of the consistency of classical pure number theory with 
the unrestricted induction postulate.

In the proof of Gentzen's 19 3 4 -5  Hauptsatz (Theorem 48 § 78), 
we used a triple induction, consisting of an induction on the number of 
mixes, within the induction step of which (in establishing the principal 
lemma) we used an induction on the grade, within the basis and induction 
step of which we used an induction on the rank. This triple induction can 
be regarded as a single “transfinite induction”, if our system of ordinal 
numbers, hitherto consisting simply of the natural numbers, is extended 
sufficiently into the transfinite.

Beyond the natural numbers or “finite ordinals” a next number or 
“first transfinite ordinal” called co is supplied. Then new numbers 
g> + 1, c*>+2, . . .  are obtained by use of the successor operation, after the 
infinity of which still another called 200 shall follow. Repeating this 
process, after all these infinite sequences of numbers, each isomorphic to 
the natural number sequence, and starting respectively with 0 , ca, 2 co, 
still another number called co2 shall follow; and so on, thus.
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0, 1 ,2 ,  . .  . ;  w, co-j~L o )+ 2 , . . .  ; 2co, 2co-f-l, 2co-f-2, . .  . ;  . . . ;  ; 
co2, co2+ l ,  co2+ 2 ,  . . . ;  co2-fco, co2+ c o + 1, co2- fc o - f  2, . . . ;  
co2+2co, co2+ 2 c o -f-1, co2+ 2 c o + 2 , . . . ; . . . ; ;
2co2, 2co2+ l ,  2co2+ 2 ,  . . .  ; 2co2+co, 2co2+ c o + l,  2co2+ c o + 2 , . . . ;
2co2+2co, 2co2- f-2 c o -H , 2co2-j-2co-f-2, • • • • • • ^

T h is figure is intended only to suggest the m anner of generation and  

th e notations, up to a certain pcin t. T h e general theory of transfinite  

ordinals forms a part of C an tor’s abstract set theory (cf. 1897). A  set 

linearly ordered (§ 8) so th a t each n on -em p ty subset has a first elem ent is 

called well-ordered. T w o  ordered sets M  and N  are s im ila r  (M  ~  N ),  if 

th e y  can be pu t into a 1-1 correspondence preserving the order. C an tor’s 

ordinal num bers arise b y  ab stractin g from well-ordered sets w ith  respect 

to sim ilarity, in the same w a y  as his cardinals arise b y  ab stractin g from  

sets w ith  respect to equivalence (§ 3). H ow ever, while the w hole system  of 

C an to r’s transfinite ordinals requires a set-theoretic approach, the theory  

of initial segm ents (at least of not too great ones) can be handled in a 

fin itary w ay.

For exam ple, the system  of the ordinals <  co3 can be represented as the  

triples of natural num bers, in a certain ordering. L e t a =  [a, b, c) =  
ao)2+ 6o> + c be an y such triple; the last notation is the one custom ary  

in the theory of ordinal num bers <  co3. T h e order relation betw een tw o  

such triples (as ordinals <  to3) is defined thus:

04 <  a2 =  (ci1< a 2) V (a1= a 2 & b1< b 2) V (ax= a 2 &  b1= b 2 &  cx<  c2).
In  other words, the ordering of the triples (a, b, c) is alphabetical, w ith  

an infinite alphabet consisting of the natural numbers.

N ow  the triple ordinary induction on num ber of m ixes a, grade b and  

rank c can be considered as a single transfinite induction w ith  (a , b, c) 
— ao>2+bu>-\-c  as the induction num ber, thus. In  a transfinite in d u ction  

up to co3, to prove th a t all ordinals <  co3 h ave a property, one shows 

th at, for a n y  ordinal a <  co3, if all ordinals (3 <  a h ave the property, 

then a has the property also. W e are using the more com pact statem en t, 

in w hich basis and induction step are com bined (cf. *16 2 b  § 40 for th is  

form  of the statem ent of ordinary induction). T h e case a =  0, for w hich  

the set of the p’s is em p ty, can be treated separately as the basis, if one 

wishes. T h e induction is of the course-of-values typ e, where now w henever  

a >  co, there are an infinitude of preceding p’s. For the G en tzen H au p tsatz, 

the reasoning is th at, if the theorem  is true for all proofs w ith  induction  

num ber (a, b, c) =  p <  oc ( <  co3), it is true for a proof w ith  (a, b, c) =  a.
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The induction number a =  (a, bt c) now well-orders the cases of the 
theorem in an order in which they are being proved, just as the natural 
number used as induction number does in an ordinary induction.

Conversely, using the definition of ordinals <  c*>3 as triples (a, b, c), 
every transfinite induction up to c*>3 can be accomplished by ordinary 
inductions.

One can define in a finitary manner somewhat higher ordinals. Clearly 
we can go up to cow for any finite n. After all these ordinals as next we 
take eventually co^; and so on.

Gentzen’s discovery is that the Godel obstacle to proving the con
sistency of number theory can be overcome by using transfinite in
duction up to a sufficiently great ordinal. His transfinite induction is 
up to the ordinal called s0 by Cantor, which is the first ordinal greater
than all the ordinals in the infinite sequence co, ___It figures
in Cantor's theory as the least of the solutions (called e-numbers) for \  of 
the equation =  £.

Gentzen works with systems of his type with sequents, but they have 
H ilb e rt-typ e  equivalents. In  the 1938  version of his con sistency proof, 

the simple consistency of the system is identified with the unprovability 
of the sequent For from any sequent can be deduced by thinnings, 
while conversely from ->A & -iA  and the provable sequent A&~iA—* 
one can infer by a cut. He begins by correlating to each proof in 
his system an ordinal number <  e0. Taking the induction in the form of 
an infinite descent (cf. *163 § 40), he shows that, given any proof of the 
sequent another proof of with a lesser ordinal can be found. So 
his system (and hence ours) is simply consistent.

In the 1936* version, his sequents each have exactly one succedent 
formula. He shows, by transfinite induction on the ordinal (<e0) °f a 
proof, that a certain kind of reduction can be carried out on any provable 
sequent. It is absurd that this reduction should be performable on 
-*•1 = 0 . The performability of this reduction is offered as a finitary 
meaning which can be attributed to the ideal statements of classical 
number theory (§ 14).

Ackermann 1940 uses transfinite induction up to e0 to carry through 
a proof of the consistency of elementary number theory in another 
manner using Hilbert’s e-symbol (originally proposed by Hilbert, and 
carried by Ackermann in 1924-5 as far as showing the consistency 
with the restricted induction schema).

Just as transfinite induction up to 003 can be reduced to ordinary in
duction, so can induction up to e0, as is done formally by Hilbert
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an d  B ern ays 1939  pp. 360 ff. B u t there is the difference th at in reducing  

th e  latter a predicate is used as the induction predicate (the A (x)  of (I) 

§ 75, or the P (n )  of § 7) into w hich there enters e x p licitly  a predicate Q 
defined b y  an induction sim ilar in nature to th a t defining M  in Theorem  

V I I I  § 57 and hence p robably not arithm etical (§ 48) or eq u ivalen tly  not 

“ elem en tary” (Theorem  V I I  § 57). It  can in fact be an ticipated from the  

second G o d el theorem  (Theorem  30) th a t transfinite induction up  

to  £q cannot be reduced to ordinary induction w ithin the system , since 

the reasonings used in G en tzen's consistency proof other than this trans

finite induction are of sorts th a t are form alizable in the system  (whence 

in particular no form ula of the system  can satisfy  the equivalences  

defining Q). In his last paper 1943 , G entzen proves the non -reducibility  

of induction up to  e0 directly, instead of indirectly from G o d el’s theorem  

w ith  his consistency proof.

T h e original proposals of the form alists to m ake classical m athem atics  

secure b y  a consistency proof (§§ 14, 15) did not contem plate th a t such  

a m ethod as transfinite induction up to s0 w ould h ave to be used. T o  

w h a t e x ten t the G entzen proof can be accepted as securing classical 

num ber theory in the sense of th a t problem  form ulation is in the present 

state of affairs a m atter for individual judgem ent, depending on how  ready  

one is to accept induction up to e0 as a finitary m ethod. (Cf. end § 81.)

G en tzen in 1938a speculates th a t the use of transfinite induction up  

to  some ordinal greater than  s0 m a y  enable the consistency of analysis  

to be proved. B y  a result of Schiitte 1 9 5 1 , stronger forms of induction  

are obtainable thus; in fact for an y ordinal a, induction up to the least 

C antor s-num ber greater than a cannot be reduced to induction up to a  

(but induction up to a n y interm ediate ordinal can be).

§ 80. Decision procedure, intuitionistic unprovability. G iven  

the conclusion B  of an inference b y  the m odus ponens rule (Rule 2) of 

the form al system  H , we cannot determ ine the premises A  and A  3  B , 

because the A  w ill be unknown. Sim ilarly, given  the conclusion  

A , T  A , 0  of a cu t in G l,  and the analysis of the conclusion specifying  

how  its antecedent is separated into the A  and the F and its succedent 

into the A  and the 0 , we cannot determ ine the premises A  A , C and  

C, T  0 , because the C w ill be unknown.

H ow ever, for each of the rules of the propositional calculus G l except  

the cu t (or of G2 except the m ix), given the conclusion of an inference 

b y  the rule and the analysis of the conclusion, the premise(s) for the  

inference are ascertainable. U sing this fact w ith  G en tzen ’s norm al form
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theorem (Theorem 48), we shall obtain a decision procedure for the prop
ositional calculus, which unlike the truth-table procedure (§§ 28—30, 
Theorem 12) works also for the intuitionistic system as well as for the 
classical.

The steps in the procedure will consist in listing the choices of the 
premise(s) for the inference of a given conclusion. In doing this, it is 
tedious to have to distinguish all the ways of applying the structural 
rules TCI, Therefore, for use in our version of Gentzen's decision proce
dure, we shall introduce a new Gentzen-type system G3t in which the 
structural alterations TCI are not counted as separate inferences. We 
define G3 for the predicate calculus also, although it is only for the 
propositional calculus that we shall have a decision procedure.

In order in G3 to dispense with the TCI rules, we must construe the 
postulates of G3 to apply irrespective of the order and number of repeti
tions of formulas in the antecedents, and classically in the succedents. 
In other words, for G3 any postulate application shall remain an 
application of the same postulate when any sequent is replaced by a 
sequent ‘cognate* to it in the following sense: Two sequents T -^ 0  
and r ' - > 0 ' are cognate, if exactly the same formulas occur in T 
(in 0 ) as in V  (in 0 '), provided intuitionistically that © and 0 ' neither 
consist of more than one occurrence of a formula and are hence the same.

E xample 1 . The sequents C, Cl, 2  & d , 2 and 2 & d ,  d ,  C-* 2, 2 
are cognate classically, but the latter sequent is not employed intu
itionistically.

For the classical system G3, the postulate list differs from the list given 
for G2 thus. The axiom schema is replaced by

C, T -* 0 , C.
There are no structural rules of inference; and each logical rule of 
inference is modified by retaining the principal formula in the premise(s). 
For example, —► -1 , 3  ►  V and -i —̂ become:
A, T 0, -i A A 3 B, T 0, A and B, A 3 B, T 0
T - * 0 ,-iA . A 3 B ,T - > 0 .

r - * 0 ,  AVB, A or r - * 0 ,  A V B ,B  - iA, T -* 0 ,A
^ 0 ,  AVB. -i A, r  0 .

(For 3 — both premises are to be used; for V, written now combining 
the two rules into one statement, one or the other.)

For the intuitionistic G3 the postulate list is as follows.
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P ostulates for  the intu ition istic  formal system  G 3 
A xiom  schema.

C, T C.

R ules of inference for the propositional calculus.

A , r-*B 
r - >  A 3 B .

A d B , T - > A  and B , A  3  B , T 0

a db, r~>0.
r  ->  A  and T B  

r - * A & B .

T - > A  or r-»B 
r - > A V B .

A , A  & B , r  0  or B , A  &  B , T  -*• © 

A  &  B , r - > 0 .

A , A  V B , T 0  and B , A  V B , T - ^ 0  

A  V B , T - » .0 .

a , r - >

r - > - i A .

-iA, r-*A
- i A ,  T - * - © ,

w ith 0  em p ty or 
consisting of one formula.

Additional rules of inference for the predicate calculus.

r -» A(b)
r  -*►  V xA (x), 

subject to the 
restriction on variables.

r-»A(t)
r - > i x A ( x ) .

A(t), V xA (x), r - * 0  

V xA (x), r - i © 7

A (b ),3 x A (x ), r - ^ e  

3xA (x), T - *  0 , 

subject to the 
restriction on variables.

W e also define classical and intuitionistic system s G3a. These differ 
from the system s G3 in that we perm it arbitrary omissions of form ulas 
in the antecedent and succedent of the premise (s) for an inference b y  
an y  one of the rules.

The system  G3 is designed to m inim ize the number of choices of prem 
ise^) for a given conclusion, when we are attem pting to exhaust the 
possibilities for proving a given endsequent, especially in showing the 
endsequent to be unprovable. W hen the endsequent is provable, the 
use of G3a usually permits shortening the sequents used in the proof.
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A  proof in G3 is i r r e d u n d a n t , if it contains no pair of cogn ate sequents 

one occurring above the other in the sam e branch.

T heorem 56. (a) I f  b T  —> 0  i n  G3a { a  f o r t i o r i  i f  b T  0  i n  G3),

t h e n  |- T  0  i n  G 2  ( o r  G l), u s i n g  e x a c t l y  t h e  s a m e - n a m e d  l o g i c a l  r u l e s  

a s  i n  t h e  g i v e n  p r o o f  i n  G3a a n d  n o  m i x  { o r  c u t ) .

(b) C o n v e r s e l y , i f  b T —> 0  i n  G 2  { o r  G l), a n d  n o  v a r i a b l e  o c c u r s  b o t h  

f r e e  a n d  b o u n d  i n  0 , t h e n  b T  Q  i n  G 3  { a  f o r t i o r i  i n  G3a), u s i n g  

o n l y  r u l e s  t h e  s a m e - n a m e d  a s  l o g i c a l  r u l e s  u s e d  i n  t h e  g i v e n  p r o o f  i n  G 2  

{ o r  G 1). L e m m a s  32a— 33b { s t a t e d  a b o v e  f o r  G l a n d  t h e  c u t ,  a n d  f o r  G 2  a n d  

t h e  m i x )  h o l d  a l s o  f o r  G3 { a n d  G3a).

(c) A  f o r m u l a  E  c o n t a i n i n g  n o  v a r i a b l e  b o t h  f r e e  a n d  b o u n d  i s  p r o v a b l e  

i n  H ,  i f  a n d  o n l y  i f  t h e r e  i s  a n  i r r e d u n d a n t  p r o o f  i n  G 3  o f  t h e  s e q u e n t  —> E .

(d) A  d e c i s i o n  p r o c e d u r e  { o r  a l g o r i t h m )  f o r  d e t e r m i n i n g  w h e t h e r  o r  n o t  a  

p r o p o s i t i o n  l e t t e r  f o r m u l a  E  i s  p r o v a b l e  i n  t h e  p r o p o s i t i o n a l  c a l c u l u s  H  i s  

a f f o r d e d  b y  t h e  p r o c e s s  o f  a t t e m p t i n g  t o  c o n s t r u c t  a n  i r r e d u n d a n t  p r o o f  o f

E  i n  G3. A c c o r d i n g  a s  s u c h  a  p r o o f  i s  f o u n d  o r  i s  d e t e r m i n e d  n o t  t o  e x i s t , 
E  i s  p r o v a b l e  i n  H  o r  i s  n o t  p r o v a b l e  i n  H .

P roofs, (a) A n  axiom  of G3a is provable by T I  steps from  an axiom  

of G2. G iven  a n y inference in G3a, b y  T C I  steps we can bring its premises 

to  the standard form shown in the postulate list for G3. T h en  the cor

responding rule of G2 applies, w ith  the given  conclusion or a conclusion  

w hich leads to it b y  T C I  steps.

E xam ple  2. T h e inference in the intuitionistic G3a shown at the  

left is then accom plished in G2 as shown at the right.

3 ,3 - *  GT _  3 ,3 -+ C 22, -1<3 _Tc7 _hla a
—itv?, —\^ i, “B —> 2

B ,-I  Z I - + C .
(b) B y  Theorem  48 (and L em m a 34), we can take the given  proof 

to  be in G2 w ith ou t m ix. A n  axiom  of G2 is an axiom  of G 3; and we ea sily  

ve rify  th a t a n y  inference in G2 w ith ou t m ix can be perform ed (by one 

or more* steps) in the system  obtained from G3 b y  adding the six T C I  

rules. H ence it w ill suffice to show th a t these additions to G3 do not 

increase its class of provable sequents. For this purpose, w e first show b y  

induction th at, if b T 0  in G3, then b T - >  0 , C in G3, provided  

in tu ition istically  th a t 0  is em p ty, i.e. we establish th a t T  holds as a
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derived  rule for G3. In  this induction, the restriction on variables for an  

—> V  or 3 -*►  is m et b y  first using L em m a 35 (which holds for G3 as w ell 

as for G1 and G2) to  change the b in its free occurrences in the given  

proof of the old prem ise to  a  new  variable not occurring free in C. T h e  

rule r - >  is handled sim ilarly; and C , C  — / , I  im m ediately  

b y  th e  con ven tion under w hich the rules of G3  are used.

(c) B y  (a), (b) and Theorem s 46 and 47, E  is provable in H t if and  

o n ly  if there is a proof of E  in G3. B u t given  a n y  proof of E  in 

G3, w e can find an irredundant one, as we show b y  induction on the  

num ber of pairs of cogn ate sequents one above the other in the sam e  

branch. G iven  such a pair, the lower sequent of the pair and the in

terven in g sequents, together w ith  all branches con tribu ting to  either, 

can be suppressed.

Proof of (d) is postponed until after the follow ing exam ple illustratin g  

the decision procedure.

E xample 3. (a) Is < 3 V n p r o v a b l e  in the in tu ition istic prop

ositional calculus H I  B y  (c), it is if and on ly if there is an irredundant 

proof of - »  <̂ ? V - i e3f in the intuitionistic G3. W e atte m p t to  find such a  

proof thus. T h e sequent —*  V -i< 3 , as we see b y  inspection, is not an

axiom  of G3. T h e on ly  rule of inference of G3 applicable w ith  —►  c3 V 

as conclusion is V. In tu itio n istically  the inference of — 

b y  this rule can h ave as premise only <3? or N either is an axiom ,

the first —►  <*2f can be the conclusion of no inference in G3, w hile the second  

—►  cC? can o n ly  com e b y  —> - i  from the premise or a prem ise

such as <£?, cogn ate to H ow ever since tw o cognate sequents

are interchangible for proofs in G3, it suffices to consider c77 —>. T h is  

sequent is not an axiom , and no inference of G3 is possible w ith  it as 

conclusion. T h e entire construction is shown below  in the figure, on three  

lines or levels num bered upw ard from the given endsequent 

B riefly, we a p p ly  the rules of G3 upw ard from conclusion to  premises, 

in all possible w ays not distinguishing betw een cogn ate sequents.

3. e T - *

2. —> or —> —i c7
1 c~j y  -T cY

In this construction, we h ave exhausted all the possibilities for finding  

a proof of —> V -ic^f in the intuitionistic Go, without  finding one.

H ence < £ ?V -ic3  is not provable in the intuitionistic //.
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(b) W e  already kn ow  th a t <C7 V -1 «2f is provable in the classical 

propositional calculus H  (*51 § 27). H ow ever it  is of interest to  see 

how  the decision procedure leads us to  a proof of 1 in the

classical system  G3, w hence if w e follow ed out the proofs of Theorem  56  

(a), Theorem  47, and of results in C hapter V on which th e la tter depends, 

w e should be led to  one of V - i  <£7 in the classical H . A t  Line 2, the  

form ula J7 V - i  J? is now  retained in the succeedent (owing to  the d if

ference betw een th e classical and intutionistic V rule of G3). T h is gives  

us more possibilities a t L in e 3. T h e (t2 ”  written there signifies th a t the  

sequent listed below  it a t L in e 2 is one of the possible premises at L in e 3 

(by —*  V). A s  w e are seeking an irredundant proof, w e need consider 

further o n ly  the new  prem ise <̂ 7 V - i  cSf, <3f, - i  <̂ 7 or <C7 cC? V - i  <̂ 7, 

- i  <£7. T h e  construction is show n below  up to Line 4.

4. 3 o ro ^ ^ e ^ V -1 ^ ^ - le 7  3orc^-*e7V-ie^,eT,-ieT 3 or a  V -1 cC7, a ,  -1 a
3. 2 or —► cT V —i <C7, <C7, 2or-»e7 V n  c~7, eT, —1<̂  or cv? —> d7 V —i cT, <C7
2. cT V -1 c~7, cC7 or —►  eT V —i cC7, —i <v?
1. —̂ cC7 V —i <v7.

A t  Line 4, three of our series of choices h ave ended ab o ve in an a x io m ; i.e. w e  

h a ve discovered proofs of <C? V - i  <3 in G3. S a y  using the left choice at  

L in e 2 (and the new  choices ab o ve th a t) , w e h ave in particular the follow ing  

proof in G3  (left). T h e  sequents of this can be sim plified in G3a (right).

4. ^ ^ a v - i c 3 ,  a , - . c 2 r _^ 4. <37-* <37 —y ^
3. c3 V ic C 7 , cC?, - i c 7 3. ^  3?,-n<37

■ > V
2. —> cv7 V ” i <v7, <v7 _  ̂ \/

2. - *  <37 V-i<37,
> V1. ^ < 3 ?  V - i  J?. 1. - + a v - u 37.

In  term s of G2  (or G l)  the la tter becom es:

etc.

3. <C7 V - i e 2 ,
------------------------- !---------------*  V

2.
-------------------------------------—^ G

1. —> tv7 V *ni <v7.

(c) W e already know  th a t - i - i  (<3f V - i  c3) is provable in tu ition istically  

in H  ( * 5 la). A  proof of -v-i(<C7 V -i<£7) in G3a follows which is dis

covered b y  use of the decision procedure. In term s of G2, the contraction  

w hich we could not perform  in (a), because of the intuitionistic restriction  

to not more than  one form ula in the succedent, is possible now  as it is 

perform ed in the antecedent.
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7. <C7-».<3r

6. “ _̂v

5. <3, -« (<3 V “ I <3) - *  "1 ” >

4. “i (e? V «3) -^n<3
3. “1 (<£f V “I e?) —̂  e? V “1 e3f

1. —►  —i- i  (<£f V - i  o3).

P roof of T heorem  56 (d). I t  is clear th a t the procedure, as il

lu strated  in E x a m p le  3, can b e com pleted u p  to  a n y  desired level, n otin g  

th e follow ing fact. G iven  a n y  sequent T  —* 0  com posed of proposition  

letter form ulas, to  each choice from  T  or from  0  of a  form ula con tain in g  

a logical sym b ol to  serve as the principal form ula, there are e x a c tly  one 

or tw o  incognate choices of premise(s) for th e inference of T  0  in G3.

I t  rem ains to  prove th a t the w hole procedure m ust term inate. B y  th e  

subform ula prop erty of G3, every  sequent in a proof of E  in G3  m ust  

be com posed of subform ulas of E . B u t a proposition letter form ula E  has  

on ly a finite class of su b form u las; and from  these there are o n ly  a fin ite  

num ber k  of w a y s of choosing form ulas to  occur in an tecedent an d to  

occur in succedent, i.e. a t m ost k  incognate sequents can b e w ritten  dow n  

form ed of subform ulas of E . Therefore an irredundant proof of —> E  

cannot exist h avin g m ore th an  k  le v e ls ; so w e can exh au st the possibilities  

for finding such a proof b y  com pletin g the procedure u p  to  (at m ost) 

the &-th level.

E xample 4. Is - i - i  { p lx V <C?2) 3, V - i- i <£?2 p rovab le in the

in tuition istic propositional calculus? W e start out as follows.

3. - 1-1 (c%1 V <C?2) —> -1  (e?xV e?2) Or- 1-1 (e ^ V c ^ y  —►  “ H  Or —1—1 (c ^  V <£?2) —* - | - 1  <£?2
2 . - 1-1 (c f̂j V <v?2) —̂  - 1-1 V - 1-1 <v?2

1 . —> —1—1 (<*3̂  V C?2) 3  - 1-1 V —1—1 c3f2.

W ith o u t carryin g this procedure further, w e can now  answer the question  

in th e n egative. F or w e can q u ick ly  ve rify  b y  2 -valu ed  tru th  tab le m ethods  

th a t none of the sequents a t Line 3 is provable. T h u s the first of them  

- i - i  (<£l x V <C?2) - *  - i  (<3  ̂ V <C?2) is o n ly  provable in G3  and hence (Theorem  

56 (a)) in G 1 , if - i - i  (<3  ̂ V <C?2) 3  - i  (<C?X V <C?2) is provable in H  (Corollary  

Theorem  47). B u t  - i - i  (<ZAX V <C72) 3  - i  V <C?2) is not provable in H , since 

it  assum es th e v a lu e f w hen <̂ ?x, <C?2 ta k e  th e va lu es t, t (Theorem  9 § 28).



4 8 6 CONSISTENCY CH. XV

T heorem 57. (a) I n  the in tu itio n isiic  proposition a l calculus H , for
an y  form ulas  A  an d  B : h A V B ,  only if  b A  or h B . (Godel 1932 .)

(b) E ach of the num bered results  *14 , *15 , *49, *5 1, *52, *5 5 — *62, 

which were established in  C hapter  V I  only for the classical p ro position a l 
calculus, does actually  fa il to hold for the in tu itio n istic  proposition a l cal
culus {and likew ise  the converse of each im p lica tion  am ong  *49a— *62a).

P roofs. P art (a) is im m ediate from the form of V in G3. F or (b) 

we can show b y  the decision procedure th a t each form ula in question  

is unprovable when A  and B  are sim ple proposition letters d  and S , 

as w e h ave already done for *51 in E xam p le  3 (a). (For *51 the un p rov

a b ility  also follows from P art (a) w ith  Theorem  9.) H ow ever for the  

others it is more expeditious to take ad van tage of deductions in the  

intuitionistic propositional calculus. F or exam ple, if *49 held, b y  R em ark  

1 § 27 so w ould *5 1, con tradicting our result for *5 1. T h e others we  

consider in their num erical order.

*14 . Suppose - i A d B  h “ ^B D  A  did hold in the intuitionistic  

propositional calculus for all form ulas A  and B . T h en  in particular w e  

w ould h ave d '  "D ~ \ d  |- —1 —1 D  d ,  whence using *1 w e w ould

get f- m < 3  D d ,  con tradicting our result for *49.

*56. (Cf. *56a.) If  h n ( n A & n B )  D A V B  in tu ition istically for

all A  and B , then in particular |- -1 (-1 d  &  -1 d ) D d W  d , whence  

b y  *37 and *38 again b “ i “ i d  D  d . A  fortiori b y  & -elim ., n ot  

b A V B ~ - i ( - iA & - iB)  in tuition istically for all A  and B.

*62. (Cf. *62a.) If  b “ i ( A & B ) D - i A V - i B  in tuition istically for

all A  and B , then in particular b ( d l  &  “ * <̂ 0 3  ~i d  V -v -i  d f w hence  

b y  *50, b - i d V - \ - \ d .  B y  (a) of the theorem , then either - \ d  or  
b - ^ - \ d ,  con tradicting Theorem  9.

R emark 1 . L ikew ise the theorem s and corollaries of C hapter V I  

m arked w ith  0 as being established on ly classically can (with one e x 

ception) be inferred b y  the present m ethods to fail in tuitionistically. 

T h u s Theorem  8 w ould give *49; its corollary w ould give  *55 from *54 ;  

Theorem  11 w ould give the equivalence of -1 —i d  to one of d  V —1 d ,

d , - \ d  and d  & - i d ] etc. E xc eptio n: Theorem  12 is ob viou sly false

for the in tuitionistic propositional calculus in the sense th a t the in

dicated procedure does not apply. T h a t no other truth  table procedure 

w ith fin itely  m an y values applies was shown b y  Godel 1932 . There does 

exist a decision procedure of another kind (Theorem  56 (d)).
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P redicate calculus. B y  Theorem 54 § 76, there is no decision pro
cedure for the predicate calculus. (At w hat point does the proof of 
Theorem  56 (d) fail, when w e attem pt to apply it to the predicate cal
culus ? Contrast E xam ples 2 and 3 (a) § 78.) A lthough Theorem  56 (c) 
thus does not afford a decision procedure in the case of the predicate 
calculus, nevertheless it is useful in investigating p rovability  in the pred
icate calculus. G iven a predicate letter form ula E , b y  attem pting to  
find an irredundant proof in G3 of E , we m ay actually  find one, or 
we m ay discover some feature of the situation w hich shows th at there 
cannot be any.

T heorem 58. I n  the in tu itio n is tic  pred ica te calculus H:
(a) “ i“ i Vx(c3f(x) V is  unprovable. (H eyting 1930a; K leene 1945

w ith Nelson 1947.)

(b) (i) Vx(<£? V S{x))  3  V VxS(x) is  unprovable,
(ii) i “i{Vx(<v7 V B(x)) 3  V VxS(x)} is  provable , but
(iii) V 2(x)) 3  *%(y) V VxS(x)} is  u n provable.

(c) I n  each table of C orollary Theorem  17 § 35, when  A(x) is  the s im p le  
predica te letter C l{x), the im p lica tio n  {and hence the equivalence) of a  form u la  
above a lin e  by {to) one below the lin e  is  unprovable, an d  likew ise  the double 
negation of that im p lica tio n  {and hence, b y  *25, of that equivalence) when a  
double lin e  separates the form ulas. (H eyting 1946.)

(d) E ach of the num bered resu lts  *83— *85, *92, *97— *99 {Theorem  17), 
which were established in  C hapter  V I I  only for the c lassical pred ica te cal
culus, does fa il to hold. Of them , *83, *92 an d  *97 hold, but *84, *85, *98 
an d  *99 fa il  to hold , when double negation is  a p p lied  to the form ula.

P roofs, (a) W e attem pt to construct an irredundant proof of 
—►  "i-iVx(cH (x) V -i<3f(x)) in the intuitionistic system  G3 as follows. 
F or abbreviation, we let “ B ”  stand for Vx(e^?(x)V-\ d { x ) )  a t certain 
places. From  Line 3 to 4, either n B  or B  can be the principal form ula 
of the inference. If - i B  (using -1  - * ) ,  the premise is w hat is already ob
tained at 3 (the original B  disappearing as the 0  and a new occurrence 
of it  appearing as the side, formula). For the definition of w hat constitutes 
a proof of a given sequent in G3, all variables not occurring in the sequent 
are on a par; hence at Line 4 it suffices to list the premise for the V  
w ith  the particular variable b v  Then sim ilarly at Line 8 we choose 
another particular variable b 2, which m ust be distinct from  bx to satisfy  
th e restriction on variables for the V ; etc.
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* 1 1 . - . B ,  Z U fo ,  Z U fo  B

10. 7  7 o r - . B ,  c

9. 7 or - i B ,  c ^ )  ^ ( b 2) or - i B ,  Z i f a )  - +  ~ y ^ ( b 2)
8. 7 or - i  B , -►  cZ {b 2) V - i  a ( b 2)

*7. - i B ,  < 0 7^ )- * B

6. 3 3 or —iB , —►

5. 3 or —i B — or n B - » - i 31(b^)
4. 3 o r - i B - ^ a ^ V - i ^ , )

*3. - i B - * > B

2. - i B  -*•

1. —>• —i—i B.

From  the portion of the structure shown, the general p attern  is clear. 

W e  fail to h ave an axiom  in the first new  sequent - i B ,  31 (,bx) —> 31 (b2) 
of L in e 9 because b x and b 2 are distinct variables; sim ilarly in the first 

new  sequent - t B ,  31 (brf, 3 l ( b 2) —*  31 (bz) of Line 13; and so on. A ll other  

sequents occurring are even more ob viou sly not axiom s. N o te  the form  

of Lines 3, 7, 11, . . . ;  at Line 3 + 4 ^  for n  =  0, 1 , 2 ,  . . .  w e h a ve closed  

out all the possibilities for finding an irredundant proof of —*  - i - i B  

other than b y  finding one of i B ,  31{b^)t . . . ,  31(bn) B  w ith  distinct 

variables b lf . . . ,  b n. T h u s the search for an irredundant proof of - i - i B  

in 6 3  w ill never term inate successfully, b u t w ill on ly lead us upw ard  

through an infinite regression of increasingly com plicated sequents. 

Otherw ise expressed, w e establish th a t there is an irredundant proof 

of - i - i B  in G 3 , on ly if there is a shorter one of - i B  B , a  still shorter 

one of - i B ,  31 (b^  B , a still shorter one again of - i B ,  3 } (b x) t 3 t ( b 2) B ,  

ad infinitum . Since it is absurd th a t there should exist an infinite suc

cession of successively shorter proofs starting w ith  a first proof, we  

conclude th a t there is no proof of - » - i- i B  in the in tuitionistic system  

G 3; and hence b y  Theorem  56 (c), none of - n B  in the intuitionistic  

predicate calculus H .
(b) (i) W e atte m p t to construct a proof in G3, w ith  the first step  

u n iq u ely determ ined thus:

2 . V*(<07 V »(*)) -►  C2  V VxB(x)

1. Vx(<07 V S(x)) VxS(x).

From  the form of the sequent at Line 2, and of the rules of G3, w e see



§ 8 0 DECISION PROCEDURE, UNPROVABILITY 489

th at in a n y  sequent above the b ottom  one o n ly  form ulas of the four  

form s Vjc(c^f V B {x)), 3 1 V B(t) (t a term , i.e. for the pure predicate ca l

culus, a variable), 31  and B(t) can occur in the an tecedent, and o n ly  a  

form ula of one of the four form s 3 1 V yi x <B {x)t <31, VxB(x) and B(b) (b a  

variable) as the succedent. T h e on ly chances for such a sequent to  be an  

axiom  are for it to  h ave the form  311 T  -►  31  or the form  B(t), T - *  B(b) 

w here t is b. W hen ever the tw o-prem ise rule V —  ̂ is applied, the tree w e  

are con structing w ill branch. T h e other rules w hich there is a possibility  

of ap p lyin g after the first step are the one-prem ise rules V  V and

—►  V. In  order to  h ave found a proof, for some succession of choices, 

e v e r y  branch m ust be term inated above in an axiom . W e shall now  

show  th at, no m atter w h at succession of steps has been perform ed, an 

axio m  w ill not h ave been reached along one of the branches. F or this  

purpose, w e define the designated branch  (along w hich w e are to  show  

th a t an axiom  cannot be reached) b y  specifying w hich prem ise belongs  

to  it a t each V thus. L e t the principal form ula for the V b e  3 1 V B (t). 

I f  the form ula of the succedent contains 31  as w hole or part, the prem ise  

in the designated branch (or designated prem ise)  shall be the one w ith  

B(t) as the side form ula; otherwise the one w ith  31  as the side form ula. 

N o w  consider the follow ing p ro p erty  P  of a sequent, n am ely th a t (1) <£? 

does not occur as one of the antecedent form ulas, if the succedent form ula  

contains 31  as whole or part, and (2) for every  variable b, B(b) does not 

occur as one of the antecedent form ulas, if B(b) (for the sam e b) is the  

succedent form ula. N either kind of axiom  described above has prop erty  

P .  H ence, to  prove th a t an axiom  cannot be reached along the designated  

branch, it suffices to show th a t every  sequent in the designated branch  

has property P .  T h is w e do b y  induction. For, first, the sequents at Lines  

1 and 2 h ave p roperty P . Thereafter, as we shall v e rify  n ext, each in

ference w ill preserve p roperty P  along the designated branch, i.e. if th e  

conclusion of the inference has p roperty P , so does the premise, or in  

the case of an V - >  the designated premise. T o  ve rify  this, w e m ust  

exam ine four cases, according to  the form  of the principal form ula of the  

inference. Case  1: V x (3 1  V B(x)) in the antecedent. P ro p erty  P  is o b vio u sly  

preserved, since the side form ula introduced into the an tecedent b y  the

V  ^  is of the form  3 1 V B(t) and the succedent is unchanged. Case 2: 
3 1 V B(t) in the antecedent. If  the succedent contains 31  as whole or part, 

th e  introduction of B(t) as side form ula for the designated prem ise of the

V —►  preserves p roperty P . If  the succedent does not con tain 31  as w hole  

or p art, the introduction of 31  as side form ula for the designated prem ise 

preserves property P . Case 3: 3 1 V yi x eB{x) as the succedent. Since th e
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conclusion has property P , the form ula does not occur am ong the  

an tecedent form ulas, b y  (1). T h en  the introduction of either or 

V xB(r) into the succedent as the side form ula of the —►  V preserves 

property P . Case 4: VxB(x) as the succedent. B y  the restriction on  

variables for the V, the variable b  of the side form ula B(b) m ust be a  

variab le not occurring in the antecedent, w hich assures th a t (2) for prop

e r ty  P  rem ains satisfied.

(ii) N o w  consider instead - i- i{Vjc(<£? V B(x))  3  V 'ix B {x )} \  call 

it  “ - v - i C ” . W e m a y  now  h a ve in antecedents of sequents ab o ve the  

b o tto m  line also the form ula - i C ,  as succedent also C. T h e induction for 

p rop erty P  fails in the case for - i C  in the antecedent, as the - i can  

introduce C as the succedent after has previously been introduced  

into the antecedent, leading to a violation of (1). B y  follow ing out this  

loophole in the previous dem onstration of u n p rovab ility, we are led  

to  the follow ing proof of - >  - n { V ^ ( d f V S ( x ) )  D  £ 1 W x B(x )}, w hich  

w e state in G3a. T h e designated branch, w hich except b y  using i C  

as the principal form ula for an - i  we w ould be unable to term inate in 

an  axiom , is the left one.

(iii) I f  w e now  change th e form ula to  

—i —1 V j y { V  B(#)) 3  <C?(y) V yix B {x ) } i the loophole is closed. F or  

th e <3 obtained in the antecedent before the - i becom es c3(c) for some 

variab le c. T h en  the <C? obtain ed in the succedent after - i —*  follow ed now  

b y  V  w ith  respect to y  w ill becom e <5f(d) where d is a variable distinct  

from  c  b y  the restriction on variables for the —*■  V. T h e  reader m a y  w ork  

o u t the m odifications in the dem onstration given  in (i) to  establish the  

u n p ro va b ility  rigorously.
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(c) F or a given  table, consider form ulas A , B , C, D, where B  is A 
or below  A , C  is im m ediately  below  B  and separated from  it b y  a line, 

a n d  D is C  or below  C. U sin g * 2 , if f- A  3  B  an d |- C 3  D, b u t not 

h C OB ,  then not |- D o A . Sim ilarly, using *24 and *49a, if b A  3  B  

an d  |- C 3  D, b u t not b —i- 1 (C 3  B ), then not f- - i- i (D 3  A) and  

n o t b D 3  A . H ence it suffices to treat the upw ard im plications b etw een  

th e  six pairs of form ulas im m ediately separated b y  a line, under double  

negatio n  w hen th e line is double.

Ib  3  la , l i b  3  I la . I f  either were provable, b y  su b stitu tin g Z l  for 

Z l(x )  (Theorem  15 § 34) and using *7 5  or *76, or b y  using Theorem  22 

§ 3 7  for k  =  1 , —i—i 3  Z l  w ould be provable. H ence not b Ib  3  l a

an d not b H b  3  H a .

- 1- 1(10! 3  Ib). L e t “ B (x )”  ab b reviate Z l{x)  V - i  Z l(x ). B y  * 5 1 a  and  

V -in trod., b V x - i - iB ( x ) .  H ence V x - i - i B ( x )  3 -i- iV x B ( x )  b t i  V xB (x). 

T h en ce b y  3 -in tro d . an d contraposition tw ice (*13, *12 ), 

b —i—i{ V x —i - i B ( x ) 3  —i—iV xB (x)} 3  —i—iV xB (x). T h u s if 

—i - i { V x - i- iB(x) 3  - i - iV x B ( x ) }  were provable, - i- iVxB(x) w ould be. 

B u t b y  (a), not b T " i  V x B ( x ) ; hence not b - i“ i{ V x _i-iB (x )  3  

- i - iV x B ( x ) } ;  and hence b y  the substitution  rule (Theorem  15) not 

b —»—i { V x - i —i<^7(x)3 —i-»V xo?(x)}, i.e. not b “ i“ i (Ict 3  Ib).

—i—i (IIIc  3  I I I b 2). E a s ily  reduces to  - 1- 1(10! 3  Ib).

H e ! 3  l i b .  B y  E x a m p le  3 § 37 and E x a m p le  4 this section.

I l l b !  3  I l i a .  E a s ily  reduces to  I l c j  3  l i b .

(d) *83— *85, *92. Included under (b) and (c) (with *25, *92a.)

*9 7. W e show {Z l  3  3 x 2 (x)) 3  3x(<C? 3  2(x)) unprovable, sim ilarly

to  I l c i  3  l i b .  (A fter ap p lyin g Theorem  22 w ith  k  =  2, w e obtain  a t  

L in e 3: { Z l  3  2 X V 2 2 Z l  and 2 i  V 2 2, Z l  3  2 X V S2 - >  {Z l  3  2 X) V  

{Z l  3  2 2)} or Z l  3  2 X V 2 2- >  Z l  3  2 X or Z l  3  2 X V 2 2 - >  Z1 3  2 2. In  

treatin g the first alternative, it  suffices of course to  show  th a t th e first 

prem ise Z l  3  2 X V 2 2 ->• Z l  of the tw o is unprovable.) W e prove  

- i- i { (Z l  3  3 x 2 (x)) 3  3x {Z l  3  2(x))}, sim ilarly to (b) (ii). (In Lines 4 —  9, 

use successively 3, 3 , 3  3 —>.) Cf. *97a.

*98. S u b stitu tin g Z l & - i  Z f  for 2  in -i-i{(Vx<C7(x) 3  2 ) 3  3x(<C7(x) 3  2)}  

an d  using *50  an d *44, w e get - i - i  (IIIc  3  I lia ) .

* 99 . R educes to  *98 (cf. the first m ethod for Ib  3  la).

H e y tin g  (1930a p. 65) infers the u n p ro vab ility  of the form ula of T h eo 

rem  58 (a) and of Ic i 3  Ib  from  the interpretation of the in tu ition istic  

predicate calculus in term s of B rouw er’s theory of sets (end § 13).
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The proof of Theorem 58 (a) by Kleene 1945 and Nelson 1947 is from 
results to be taken up in § 82.

The present treatment of (a) and (b) was reported in Kleene 1948; 
and some like applications of Gentzen's theorem are in Curry 1950 

(already in press in 1948). de Iongh 1948 uses the method in establishing 
an intuitionistic classification of those formulas formed from < ^ ( x , y , z )  
by quantifying x ,  y ,  and z and possibly applying negation which are 
classically equivalent to V#3jVzê (ar, y ,  z), analogous to each of the four 
tables of Hey ting 1946 for one quantifier (Corollary Theorem 17 §35 
and Theorem 58 (c)). He takes this sequence of quantifiers for illustration, 
because of its role in formulating the notion of convergence of a sequence 
to a limit (cf. § 35 (i) or (ii), omitting the x s ) .

Mostowski 1948 demonstrates the unprovability of -v~i(Ic1 D lb), 
and (b) (i), by an interpretation of the intuitionistic predicate calculus in 
terms of "complete Brouwerian” lattices. Henkin 1950a extends Mos- 
towski’s results to obtain an algebraic characterization of quantifiers 
both for intuitionistic and for classical logic.

§ 81. Reductions of classical to intuitionistic systems. For the
rest of this chapter, we use the Hilbert-type systems H . When T  is a 
sequence of zero or more formulas, nT, t -i T, r° , etc. shall be the result 
of applying -1, -1-1, 0 (as defined below), etc., respectively, to each of the 
formulas of T .

The main result of the first part of this section is given in several 
versions, though its significance can be seen from one. The reader desiring 
a simplified treatment may accordingly select: Theorem 59 and Proofs, 
Definition and Discussion of °, Theorem 60 (a) for 0 only and (c), Lemma 
43a and Proof, Proof of Theorem 60 (c), Corollary 2 (omitting the other 
material up to that point).

T h e o r e m  59. (al) I f  T  b E i n  t h e  c l a s s i c a l  p r o p o s i t i o n a l  c a l c u l u s , 
t h e n  —1—1 r \- —i—1E i n  t h e  i n t u i t i o n i s t i c  p r o p o s i t i o n a l  c a l c u l u s . (a2) I f  

-1 T, A b "i E i n  t h e  c l a s s i c a l  p r o p o s i t i o n a l  c a l c u l u s , t h e n  “i T, nnA b “iE 
i n  t h e  i n t u i t i o n i s t i c  p r o p o s i t i o n a l  c a l c u l u s . (Glivenko 1929.)

(b) L i k e w i s e  f o r  t h e  p r e d i c a t e  c a l c u l u s  w i t h  R u l e  9 o m i t t e d , an d  f o r  the 
f o r m a l  n u m b e r - t h e o r e t i c  s y s t e m  w i t h  R u l e  9  o m i t t e d .

P r o o f s . ' (al) By induction on the length of the given classical de
duction r b E (i.e. the deduction of E from V  which ‘T b E” asserts 
to exist, cf. § 22), using the following observations. If E is an axiom of the 
classical propositional calculus by any axiom schema except 8, then E
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is also an axiom intuitionistically, and by *49a §27, b t iE in the 
intuitionistic system. If E is an axiom by the classical Axiom Schema 8, 
then by *5lb, again |- -v-iE intuitionistically. Moreover, corresponding 
to Rule 2, -i-iA, -i-i (A 3 B) b “i~«B intuitionistically, using *2 3  § 26. 

(a2) From (al) using *49b.
(b) Because the additional axiom schemata and particular axioms 

belong to the intuitionistic as well as to the classical system, we need 
only add a treatment of the additional rale of inference 12. Using *23, 
Rule 12 and *49a: (i) -r-i(A(x) DC) b "viA(x) 3 -t-iC bx 3x -thA(x) 
3 -v-iC b ~i~i(3x - i- iA(x) 3 —»—»C). Using *49a, *70 § 32 and
*49a: (ii) b t »(3xA(x) 3 3x t -iA(x)). By *5lb: (iii) b -v-i(-r-iC 3 C). 
Combining (ii), (i) and ( i i i )  by *24, -r-i(A(x) 3 C) bx ■“i“ i(3xA (x) 3 C).

Example 1. By (al), each of the numbered results which were 
established in Chapter VI only for the classical propositional calculus 
(see Theorem 57 (b)) holds intuitionistically under double negation 
(applied in *14 and *15 to both formulas).

E xample 2. That *97 holds intuitionistically under double negation 
(which we proved by another method for Theorem 58 (d)) now follows 
from (b) and Theorem 49 § 78.

Corollary (to (a2)). I f  E is  a p roposition  letter form ula con ta in in g  
no logical sym bols except &  an d  - i , an d  b E in  the classical p ro p o sitio n a l  
calcu lus, then  b E in  the in tu itio n is tic  p ro p o sitio n a l calcu lus. (Godel 
I932-3-)

P roof. Consider E as a conjunction of n  formulas (n  ;> 1) each 
of which is not a conjunction, and is therefore either a proposition letter 
or begins with the symbol -i. By &-elim., each of these n  components is 
provable classically. But no proposition letter is provable (by Theorem 9 
§ 28). So each component is a negation, and by Glivenko’s theorem ((a2)) 
is also provable intuitionistically. Hence by &-introd., so is E.

D efinitio n  of °. For the rest of this section, the formulas T, the 
formula E, etc., shall be proposition letter formulas, predicate letter 
formulas, or number-theoretic formulas, according as we are considering 
propositional calculus, predicate calculus, or formal number theory. 
By a p r im e  p a r t  of a formula, we mean a (consecutive) part which is 
a prime formula, i.e. one containing no logical symbol.

For any formula E, we define E° by the following recursion. 1. If P is 
a prime formula, P° is P. 2 — 5. If A and B are formulas, (A 3 B)° is 
A° 3B°, (A & B)° is A° & B°, (AVB)° is -i(-iA° & -iB°), and (-1A)0
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is - 1A 0. 6 —  7. If  x  is a  variable, and A (x) is a form ula, (V xA (x))° is 

V x A °(x )  (where A °(x) is (A(x))°), and (3xA (x))° is - i V x n A ° ( x ) .

B riefly, E °  com es from  E  b y  replacing (or “ tran slatin g” ) each part o f  

E  of the form  shown below  in the first line b y  the respective expression  

shown in the second.

A D B  A & B  A V B  l A  V x A (x ) 3xA ( x )

“  “ - i ( “i A  &  - iB )  “ “ - i V x - i A ( x )

E xample 3. Let A(x) and B  be prime (and B  not contain x free).
If E  is [V xA (x) 3  B] 3  3x[A (x) 3  B] (cf. *98), then

E °  is [V xA (x) 3  B] 3  n V x - i  [A(x) 3  B ].

D is c u s s io n  o f  °. In  the n ext theorem  it is shown th a t the classical 

system s can be defined w ithin the intuitionistic. In  particular, for the  

num ber-theoretic system , if h E  classically, then \- E °  intuitionisti- 

cally. T h e converse holds o b viou sly (since h E ^ E °  classically), as do  

the converses for Theorem  59 and the other parts of Theorem  60. So a  

form ula E  is provable in the classical system , if and on ly if the correlated  

form ula E °  is provable in the intuitionistic system . W e can thin k of E °  

as resulting from E  b y  changing the logical sym bols 3, & , V, - i ,  V, 3 

to 3°, & °, V°, - i ° ,  V °, 3°, respectively, where “ A  3° B ” is an abbreviation  

for A  3 B , “ A V ° B ” for n ( i A & n B ) ,  etc. T h e sense in which the  

classical form ulas are thus “ tran slated” into intuitionistic ones can be  

em phasized b y  using different logical sym bols (say 3 C, <£c, Vc, - i c, V c, 3C) 

for the classical system  (upper row in the ab ove translation table).

D e f i n i t i o n  o f  ', e t c . F or the propositional and predicate calculi, 

w e use other correlations. L e t E '  be obtained from  E  like E °  except th a t  

A  3 B  is translated as - i ( A & - iB). L e t E * be obtained from E  b y  re

placing each prim e part P  b y  - v - i P ;  and E t  likewise except th a t P  is 

replaced b y  n n P  on ly where it is alone (i.e. w hen E  itself is P), or im 

m ed iately  w ithin the scope of an &  or an V, or is the second part of the  

scope of an 3 ;  and E *  like E t  except w ithout the replacem ents in the  

second part of the scope of 3.

E xample 3 (concluded).
E ' is -r { -i [V xA (x) &  n B ]  &  - r i V x  - i - i  [A(x) & i B ] } ,

E°t is [ V x - i - iA ( x )  3  - i- i B] 3  n V x n [ n n A ( x )  3  - n B ] ,

E ° t  is [Vx - 1- 1A(x) 3  -v -i  B] 3  - i V x  - i  [A(x) 3  n - i B ] ,  and

E * '  is i { - i [ V x  - i - i  A(x) &  - iB ]  &  - i - i V x  - i - i  [A(xj &  —iB ] }.
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F o r the propositional calculus, there can be no inverse theorem , giv in g  

a sim ilar reduction of the intuitionistic to the classical system , in w hich  

the intuitionistic propositional connectives are defined ex p licitly  from  

the classical. F or th a t w ould give a truth  table decision procedure for the' 
intuitionistic propositional calculus, con trad ictin g Godel 1932 .

T heorem 60. (a) F or a n y  form ula  E , in  the p roposition a l calcu lus,
predicate calculus, or num ber-theoretic form al system , b E  ^  E °  ~  E ' ^  

E ° t  ^  E ° t  ^  E * '  classica lly  (by *56, *83, *58, *49).

(bl) F or the p ro p o sitio n a l calculus, if  |- E  classica lly , then  b E '  

in tu itio n is tica lly . (b2) F or the num ber-theoretic form al system , if  Y  b E  

c lassica lly , then  T ' b E ' in tu itio n is tica lly .  (Godel 1932-3 .)

(c) F or the num ber-theoretic form al system , if  Y  b E  classica lly , then  
r °  b E °  in tu itio n is tica lly .  (Gentzen 1936  p. 532 and Bernays.)

(d) F or the p ro p o sitio n a l calculus, predicate calculus, or num ber-theoretic  
form al system , if  Y  b E  classica lly , then  r ° t  b E ° f  (also Y ° t  b E ° t  

a n d  T * '  b E * ')  in tu itio n istica lly .
P roofs, (bl) U sin g (a), if b E  classically, then b E ' classically. 

B u t E ' contains as operators on ly &  and —1. T h u s (bl) follow s from  

C orollary Theorem  59. (Conversely, Corollary Theorem  59 is im plied b y  

(bi).)

W e shall prove (c) after the first lem m a, and then infer (b2).

L emma 43a. F or the num ber-theoretic form al system , if  F  contains no  
logical sym bols except D , & , - 1 , V  {in particu lar, i f  F  is  E °  for some form ula  
E ), then  b ~ i~ iF  D  F  [and hence b —*—*F  ^  F) in tu itio n is tica lly .  (After  

G odel 1932-3 .)

P roof of Lemma 43a, b y  induction on the num ber of (occurrences of) 

logical sym bols in F .

B a s is : F  is of the form s = t  where s and t are terms. B y  *15 8  § 40, 

b s = t  V - i s = t ,  w hence b y  *49c, b m s = t  D s = t .

I n d . ste p . Case  1 : F  is A  D  B . B y  h yp . in d .: (i) b ""i~*B D  B . B y  

*6 0 g ,h : (ii) - i - i ( A D B )  b A D n n B .  From  (ii) and (i) b y  chain

inference (*2), -1-1 (A D B) b A  D B , and b y  D -introd., 

b -1-1 (A D B) D (A D B). Case  2 : F  is A  & B. B y  h yp . ind., 

b m A  3  A  and b " n B D B .  U se *25 . Case  3 : F  /s i A .  B y  

*49b. Case  4: F  is V x A (x ). U se h yp . ind., *69 and b lb  D  Ic x from  

C orollary Theorem  17.
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P roof of T heorem 60 (c). B y  induction on the length  of the given  

classical deduction F  b E , w ith  cases as follows.

Case 1 : E  is one of the particular axiom s 14 — 21, or an axiom  b y  

a n y  schem a excep t 11. T h en  E °  is E , or is an axiom  b y  the sam e schem a, 

or is deducible in the classical propositional calculus (using *56 w ith  

Theorem  6 § 26) from  an axiom  b y  the sam e schem a* so E °  is provable  

in the system  of the classical propositional calculus w ith  the other axiom s  

and axiom  schem ata added. (For exam ple, if E  is an axiom  A  D (B D A) 

b y  Schem a la, then E °  is A °  3  (B ° 3  A °), w hich is an axiom  b y  the same 

schem a. If E  is an axiom  A  D A V B  b y  Schem a 5a, then E °  is 

A ° D n ( - i A ° &  - iB ° ) ,  w hich is deducible from A °  D A ° V B ° b y  *56 and  

Theorem  6, since the part to  be replaced does not stand w ithin the scope  

of a quantifier.) H ence b y  Theorem  59 (b), b “ i~"*E° in the in tuition istic  

num ber-theoretic s y s te m ; and hence b y  L em m a 43a, b E °  in the same. 

Case 2 : A x io m  Schem a 11. T h en  E  is A (t) 3  3xA (x), and E °  is 

A °(t) 3  - l V x - i A ° ( x ) ,  w hich is provable in tu ition istically  b y  con tra

position (*13) from  the axiom  V x ~ iA °(x )  3  n A ° ( t) .

Case  3 : R u le 2 . W e m ust show th a t A °, (A 3  B )° b B ° in tu 

itionistically. B u t (A 3  B )° is A 0 3  B °. Case  4: R u le 9. Sim ilarly. 

Case 5 : R u le 12. W ith  the help of *12 and L em m a 43a.

P roof of T heorem 60 (b2). B y  Lem m a 43a w ith  *58f § 2 7, a n y  p art  

of r ° ,  E °  of the form A  3  B  is equivalent to - i ( A & - i B).

L e m m a  43b. F or the p roposition a l or predicate calculus, i f  F  contains  
no logical sym bols except 3 ,  &, - i ,  V  {in p a rticu la r , i f  F  is  E °  for som e  
form ula  E ), then  b - i - i F t  3  F t  {and hence b ~ v"iF t ^  F t) in tu itio n is ti
cally.

P roof of Lemma 43b. Sim ilarly to L em m a 43a, using in the basis 

*49b instead of * 1 58 and *49c.

P roof of Theorem 60 (d). F or the num ber-theoretic system  and °t, 

from  (c) b y  L em m a 43a. For the propositional or predicate calculus and °t, 

from  L em m a 43b in the sam e m anner as (c) from  L em m a 43a. (U sing  

L em m a 43a or 43b, *58e and *49b, the result can be m odified to  

r ° t  h E ° t ;  using also *58f, to T * ' b E * \ )

R emark L  T o show th a t Theorem  59 does not hold for the predicate  

calculus w ithout the exclusion of R ule 9, and th a t Theorem  60 (b) does 

not hold for the predicate calculus, consider as an exam ple V x n n « 3 ( x )  3  
-i-iV x c ^ (x ). C all this form ula “ E ” . Then b E  classically, b u t in tu -
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ition istically neither b E  nor b " i “^E (Corollary Theorem  17 § 35 and  

Theorem  58 (c)), and m oreover not b E ',  as from E ' b y  *49b and *58b  

we can deduce E  intuitionistically. T h e exam ple D  ZT shows th a t

Theorem  60 (c) does not hold for the propositional or predicate ca lcu lu s; 

and the exam ple —i—i b ZT th a t Corollary Theorem  59 and Theorem

60 (bl) do not hold w ith  assum ption form ulas T. A n  exam ple to show  

th a t Theorem  59 does not hold for the num ber-theoretic system  w ith ou t  

the exclusion of R u le 9 w ill h ave to w ait until the n ext section (Theorem  

63 (iii)), as we h ave y e t no m ethod of dem onstrating an exam ple of a  

classically provable bu t intuitionistically unprovable num ber-theoretic  

formula.

Corollary  1 (to (c)). F or the num ber-theoretic form al system , if  T, E  

contain  no logical sym bols except D , &, - i ,  V, and  T b E  classically , then  
T  b E  in tu itio n is tica lly . (to (d) for °t). L ikew ise  for the p ro p o sitio n a l 
or predicate calculus, provided  also that F, E  contain no letter unnegated  
other than as antecedent of an im plica tion .

Corollary 2 (to (b2), (c) or (d)). The classical num ber-theoretic form al 
system  is  s im p ly  consistent, if  the in tu itio n istic  is.

P roof of Corollary  2 . If 1 = 0  were provable in the classical 
system, it would also be in the intuitionistic.

D iscussion . G odel rem arks, “ T h e theorem  [60 (b2), or now (c)] . . .  

shows th a t the intuitionistic arithm etic and num ber theory is only  

ap p aren tly  narrower than  the classical; in fact [it] includes the entire  

classical [number theory], m erely w ith  a som ewhat differing inter

p reta tio n /' H e y  ting adds, “ H ow ever for the intuitionists this inter

pretation is the essential th in g /' (1934* p. 18.)

de Iongh says, “ In our significist opinion the m ost im portant ad va n ta ge  

of intuitionistic m athem atics is, th a t it distinguishes in every instance  

betw een directly and in d irectly  proved propositions and analyses the  

m ath em atical concepts into sequences of concepts w ith  different degree 

of in directn ess/’ (1948 , p. 746.)

va n  D a n tzig  1947  proposes to in vestigate how  m uch further the de

velopm ent of classical m athem atics can be carried w ithin the in tu 

itionistic, in the m anner ju st shown to be possible for all of the usual 

elem entary num ber theory. For this purpose, the classical form ulas E  

are translated into classical equivalents F  which are stable  in tuition isti

cally, i.e. such that b “i~ iF  ^  F (cf. Lem m a 43a). van D an tzig  suggests  

th a t it m ay be possible to interpret practically the whole of classical 

m athem atics w ithin this stable part of the intuitionistic system .
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For the consistency problem, the present results can be regarded as 
showing that the intuitionistic number theory is equally in need of a 
metamathematical consistency proof with the classical, or, if one accepts 
the consistency of the intuitionistic system on the basis of its inter
pretation, as securing the consistency of the classical system.

Some formalists point out that the methods of intuitionistic elementary 
number theory go beyond what they consider as finitary (cf. Hilbert- 
Bemays 1934 p. 43 and Bernays 1935). It is said that the intuitionistic 
use of negations of complicated formulas, and of implications having in 
the antecedent a complicated formula (e.g. a generality formula, or 
another implication) involves the general logical notion of what is an 
intuitionistic proof. It is by such use of negation and implication that 
Brouwer and his followers are enabled to go much further in the de
velopment of a constructivistic mathematics than Brouwer’s forerunner 
Kronecker.

The intuitionists do not attempt to give an exact description of their 
notion of a proof in general, and they say that in principle no such de
scription is possible.

The intuitionists’ use of negation and implication must then be under
stood as only requiring us to recognize, e.g., that a particular given 
proof is intuitionistically acceptable, or (when they prove a statement of 
the form ( A  B )  -> C )  that if one should produce an intuitionistically 
acceptable deduction of one statement B  from another A ,  then on the 
basis of it one could by a given method surely construct an intuitionisti
cally acceptable proof of a third C.

An attempt is made by Bernays 1938 to defend the Gentzen transfinite 
induction up to t Q (end § 79), as constituting less of an extension of the 
narrower finitary standpoint than the whole body of intuitionistic 
methods in number theory.

de Iongh 1948 touches briefly upon current discussions regarding 
intuitionism and related trends (particularly s i g n i f i e s , represented by 
Mannoury 1909, 1925, 1934).

Now let us examine the way in which Corollary 2 Theorem 60 gives 
a consistency proof for classical elementary number theory from the 
intuitionistic standpoint. The second part of this proof is a tacit or 
explicit verification that the intuitionistic formal system for number 
theory is correct intuitionistically.

Since the proof of Corollary 2 Theorem 60 is entirely elementary, by 
Godel’s theorem on consistency proofs (Theorem 30 § 42) the second 
part cannot be.



§81 REDUCTIONS TO INTUITIONISTIC SYSTEMS 4 9 9

It  is interesting to note th at, ju st as in the case of G en tzen ’s 

consistency proof using transfinite induction up to s0, the present con

sistency proof can be an alyzed  as depending for its sole non-elem entary  

step on the use of a predicate defined b y  an induction w ith  quantifiers  

of b oth  sorts entering in the induction step, nam ely (here) the truth  

predicate for num ber-theoretic formulas. W e shall define this predicate  

next.

U nder the usual interpretation of the sym bols 0, *, of the variables

as natural num ber variables, and of the operations of building term s 

frcm  them  as corresponding to inform al operations of explicit definition, 

a n y  term  t(x 1, . .  ., x n) containing only the distinct variables x 1? . . . ,  x n 

expresses a prim itive recursive function t(x 1, . . ., x n ) , or for n  =  0  

a num ber t . U nder the usual interpretation of — , then every prim e 

form ula P (x 1, . . ., x n) containing on ly x v  . . . ,  x n expresses a prim itive  

recursive predicate P (x 1} . .  ., x n ) , or for n  =  0 a proposition P .  For  

a n y  closed prime form ula P, the truth  or falsity  of P  is determ ined (and 

e ffe ctive ly  decidable) in our theory of prim itive recursive functions, 

so we shall not elaborate upon this part of the truth  definition. (Indeed, 

th a t theory w ould carry us som ew hat fu rth e r; cf. E xa m p le  4 below.)
V

(A) From  this as basis, we define "true’ as applied to a n y closed  

num ber-fheoretic form ula E , b y  induction on the num ber of (occurrences 

of) logical sym bols in E . In  this definition, of course “ if” m eans “ if and  

on ly i f ” , as is com m on in definitions.

1 . A  closed prim e form ula P  is t r u e , if P , i.e. if P  is a true proposition  

in the theory of recursive functions.

For Clauses 2 —  5, A  and B  are a n y  closed formulas.

2. A  &  B  is t r u e , if A  is t r u e  and B  is t r u e .

3. A  V B  is t r u e , if A  is t r u e  or B  is t r u e .

4. A  D B  is t r u e , if A  is t r u e  im plies B  is t r u e  (i.e. when A  is t r u e  

on ly if B  is t r u e ) .

5. -i  A  is t r u e , if A  is not t r u e .

For Clauses 6 and 7, x  is a variable, and A (x) is a form ula containing  

on ly x  free. (Then when x  is a natural num ber, x is the corresponding  

num eral, §41. )

6 . 3xA (x) is t r u e , if, for some natural num ber A (x) is t r u e .

7. V x A (x ) is t r u e , if, for every natural num ber x , A (x) is t r u e .
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(B) A  num ber-theoretic form ula A ( y 1, . . . ,  y m) con taining free o n ly  

th e d istin ct variables y v  . . . ,  y m is tru e , if, for each w -tu p le  y v  . . . ,  y m 
of n atu ral num bers, A ( y lf . . . ,  y m) is true. (W e need not stipu late here 

th a t y lt  . . . ,  y m all occur free in A ( y 1, . . . ,  y m) or the order of occurrence, 

since if a  form ula is true for a n y  one choice of the list y lt . . . ,  y m, it is 

true for e v ery  other.)

E xample 4. W h ether a form ula E  w ith ou t variables is true or false  

(i.e. not true) can be decided using the 2-valu ed  tru th  tab les; and a n y  

form ula A ( x 1# . . . ,  x n) w ith o u t quantifiers and ju st x v  . . . ,  x n as variables  

expresses a prim itive recursive predicate A  ( % , . . . ,  x n) such th a t  

A (x v  . . . ,  x n) S3 { A ( x x, . . . ,  x n) is true}. (Cf. before Theorem  51 § 79.) 

B y  (A), (C) and (D) § 4 1: I n  the num ber-theoretic form al system  every true  
form u la  w ithout variables is  provable , an d  every form u la  A ( x x, . . . ,  x n) 

w ithout qu an tifiers num eralw ise expresses the predicate A  (xv  . . . ,  x n) 
which i t  expresses un der the in terpreta tion .

U sin g this definition, w e can establish the follow ing theorem , in m uch  

the sam e m anner as Theorem  21 § 3 7 , w hich corresponds to it for the  

predicate calculus.

T heorem  61. (a)N I f  T f- E  in  the in tu itio n is tic  form al system  of num ber  
theory, an d  the form ulas Y are true, then  E  is  true. (b)c S im ila r ly  in  the 
classical form al system  of num ber theory.

T h e on ly  difference in the proofs of P arts (a) and (b) is th a t for (b) 

we need to  use classical m ethods in the treatm ent of an axiom  b y  the  

classical A x io m  Schem a 8. W e label P art (a) w ith  to indicate th at,  

although the reasoning is intuitionistic, non-elem entary m ethods are 

used; and P art (b) w ith  to indicate th a t non -intuitionistic classical 

m ethods are em ployed (cf. § 3 7).

Since A  and - iA  cannot both  be true, Theorem  61 (a) (for Y  em pty)  

im plies the sim ple con sistency of the intuitionistic num ber theory, and  

thence b y  Corollary 2 Theorem  60 of the classical num ber theory, as an  

“ N” result. T h e gain b y  Theorem  60 is th a t w e do not h ave to call the  

latter a <<c” result, as w e w ould in inferring it d irectly  from  Theorem  

61 (b).

E xample 5. (a) A n  V i-p re n e x  form u la , if  true, is  general recursively
true  (§ 79). F or exam ple, if V v 3 w 03w 1C(v, w 0, w x), where C (v, w 0, w x) con

tains no quantifiers and on ly the distinct variables shown, is true then  

{v){C (v , w 0(v), w t (v)) is t) w hen w ^v) =  (\lwC {v, (w)0, (w )1))i , w hich is 

general recursive using # 1 9  §45 and Theorem  I I I  §5 7. (b)N or c H ence
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b y  Theorem  61 (a) or (b): I n  the num ber-theoretic form al system , every p ro v 
able V l-p re n e x  form ula is  general recursively true. (Cf. R em ark 2 § 79.)

U nder our G odel num bering of the form ulas, the predicate *A is tru e1 
becom es a num ber-theoretic predicate T(a), the values of w hich can be  

given  as propositions con structed from  prim itive recursive predicates  

b y  the operations of the propositional calculus and quantifiers, the  

num ber of the latter used being unbounded. W e see from  Theorem  30 

th a t this predicate T (a)  cannot be expressed, and its essential properties  

proved, in the system , as then w e could form alize the ab ove con sisten cy  

proof in the system . (Cf. H ilb ert-B ern ays 1939  pp. 329— 340.)

In  fact, each of the predicates (E x )T 1(a, a, x), (x )(E y )T 2(a, a , x , y ) ,  
(E x )(y )(E z)T z(a} a, x , y t z), . . .  (cf. Theorem  V  P art II  (b) § 57} is e x 

pressible in the form T (^(a))  w ith  a prim itive recursive as can be seen 

b y  Corollary Theorem  I § 49 (by w hich the form ulas given  b y  Corollary  

Theorem  27 to num eralwise express the predicates T ly T 2, T Z) . . .  express 

th em  also under the interpretation) w ith  E xam p le  2 § 52. Therefore  

b y  Theorem s V I I  (d) and V , T(a) is not arithm etical.

T ru th  definitions for form al system s were originally in vestigated  b y  

T a rsk i (1932 , 1̂933). H e established th at, if an (effective) form al system  

including the usual num ber theory is consistent, it m ust be im possible  

to express the predicate T (a)  for the system  b y  a form ula T(a) so th a t  

T («) ~  A 0 is provable in the system  w henever a  is the G odel num ber of 

a closed form ula A a. F or then the reasoning of the Epim en ides paradox  

( § 1 1 ) could be carried out in the system . (For m ore detail, see H ilbert  

and B ern ays 1939  pp. 254— 269.)

T h e  notions of tru th  for form ulas in tu ition istically  and classically  

should differ. T h e above definition of tru th  how ever is phrased alike for 

the tw o, and a n y  difference in the notions has to be m ade in our reading  

of the words used in the definition. In § 82, we shall g ive another tru th  

definition, w ith  a theorem  for it corresponding to Theorem  61, w hich  

w ill a p p ly  selectively  to  the intuitionistic system . T h e first results, like  

Theorem  61 (a), w ill be in tuitionistic though non-elem entary  

b u t th e y  lead to results w hich are m etam ath em atical in the narrower 

sense.

§  82. R e c u r s iv e  r e a liz a b ili t y .  O ur problem  is to express the  

interpretation of the intuitionistic num ber theory in a w a y  w hich m akes  

exp licit some feature in w hich it differs from  the classical.

T h e m eaning of an existen tial statem en t <<(E x )A (x )>' for the in tu -  

itio n ists has been explained b y  sayin g th a t it constitutes an incom plete
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com m unication of a  statem en t givin g an x  such th a t A (x )  (H ilbert- 

B ern ays 1934  p. 32). B u t “ A (x )” itself m a y  in turn b e an incom plete  

com m unication. A ccord in gly  let us sa y  th a t tt(E x )A (x y > is an incom plete  

com m unication, w hich is com pleted b y  givin g an x  such th a t A (x )  to 

gether w ith  the further inform ation required to com plete the com 

m unication “ A (x )” for th a t x.
T h e idea can be exten d ed  to  the other logical operations. F or exam ple, 

w e can regard a gen erality statem ent “ {x)A (x)"  in tu ition istically  as an  

incom plete com m unication, w hich is com pleted b y  giv in g  an effective  

general m ethod for finding, to  a n y  x, the inform ation w hich com pletes  

th e  com m unication ttA{x)t$ for th a t x.
Sim ilarly, an im plication “A  ->  B "  can be regarded as an incom plete  

com m unication, w hich is com pleted b y  g ivin g an effective general 

m ethod for obtaining the inform ation which com pletes w henever  

th a t w hich com pletes “A ” is given.

N egation  can be reduced to  im plication (cf. E x a m p le  3 § 74).

N o w  effective general m ethods are recursive ones, w hen it is a natural 

num ber th a t is being given  (§§ 60, 62, 63). M oreover, b y  the device of 

G odel num bering, inform ation can be given  b y  a num ber.

Com bining these ideas, w e shall define a p roperty of a num ber- 

theoretic form ula w hich w ill am ount to the form ula's being true under  

the interpretation suggested. H ow ever, instead of sayin g 'true', w e shall 

sa y  '(recursively) realizable', to distinguish the property defined below  

from  'tru th ' as defined b y  using direct translations of the form al logical 

sym bols b y  corresponding inform al words (end §81).

T h e interpretation of a term  t( x x, . . . ,  x n) containing on ly x v  . . . ,  x n 

free b y  a prim itive recursive function t(x v  . . . ,  x n), or for n  =  0 b y  a  

num ber t , and the interpretation of a prim e form ula P (x x, . . . ,  x n) b y  

a prim itive recursive predicate P (x v  . . . ,  x n), or for n  =  0 b y  a prop

osition P  (end §81) ,  do not differ in tuition istically from  classically. 

W e build upon this in settin g up the definition of 'realizab ility' w hich  

interprets the logical operators intuitionistically as applied to num ber- 

theoretic formulas.

First we define the circum stances under w hich a natural num ber e 
'(recursively) realizes' (or is a 'realization num ber' of) a closed num ber- 

theoretic form ula E , b y  induction on the num ber of (occurrences of) 

logical sym bols in E .

(A) 1 . e realizes  a closed prim e form ula P, if e =  0 and P  is true

(in other words, if e =  0  and P ).
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For Clauses 2 —  5, A  and B  are a n y  closed form ulas.

2. e realizes  A  &  B , if e — 2a*36 where a realizes  A  and b realizes  B .

3. e rea lizes  A  V B , if e =  2°*3a where a realizes  A , or e =  2 1*35 where  

b rea lizes  B.

4. e realizes  A  3  B , if e is the G odel num ber of a partial recursive  

function <p of one variable such th at, w henever a realizes  A , then <p(a) 

realizes  B.

5. e realizes  t A, if e realizes  A  3 1= 0 .

F o r Clauses 6 and 7, x  is a variable, and A (x) a form ula containing  

free on ly x.

6 . e realizes  3xA (x), if e =  2**3a where a realizes  A (x).

7. £ realizes  V x A (x ), if e is the G odel num ber of a general recursive  

function cp of one variable such th a t, for every  x, <p(x) realizes  A (x ).

N o w  we define '(recursive) realizability' for a n y  num ber-theoretic  

form ula, thus.

(B) A  form ula A  containing no free variables is realizab le , if there  

exists a num ber p  w hich realizes A . A  form ula A ty ^  . . . ,  y m) con taining  

free on ly the distinct variables y x, . . . ,  y m (m  >  0) is realizable, if there  

exists a  general recursive function 9  of m  variables (called a rea liza tion  
fu n ction  for A ; y „  . . . .  y m)) such th a t, for ev e ry  y 1( . . . ,  y m, cp(y1, . . . .  y m) 
realizes A ( y x, . . . , y m). (U sing § 4 4 , if a  g iven  form ula is realizable  

for one choice of the y v  . . . ,  y w, it is for every  other.)

T h e  handling of the free variables in the present definition of real

iza b ility  differs from  th a t in K leene 194 5 . I t  sim plifies the proof of the  

first theorem  (Theorem  62), after w hich the equivalence of the tw o  

definitions w ill follow (by Corollary 1).

T h e ab o ve definition of realizab ility  refers on ly to our notion of num ber- 

theoretic form ula, i.e. to  the form ation rules of our form al system .

A  m odified notion of realizability, referring to the postu late list of the  

system , and to assum ption form ulas T  if desired, is obtained b y  altering  

three clauses, as follows. Clause 3: replace “ a realizes  A ” b y  “ a realizes  
A  and T  f- A " , and “ b rea lizes  B ” b y  “ b realizes  B  and T  b B ” . 

Clause 4: replace “ a realizes  A "  b y  “ a realizes A  and V b A " .  Clause 6 : 

replace “ a realizes  A ( x ) ” b y  “ a realizes  A (x ) and T  b A ( x ) '\  F o r 'real

izes' ['realizable'] in this m odified sense w e sa y  rea lizes-(T  b) [realizable-
( r  K>].
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Theorem 62n . (a) If T  b E in the intuitionistic number-theoretic 
formal system, and the formulas T are realizable, then E is realizable. 
(David N elson 1947 Part I.)

(b) S im ila r ly  reading  “ rea lizable-(T  b)” in  p lace of “ realizab le” .
Lemma 44n. If x is a variable, A(x) is a formula without free variables 

other than x, and t is a term without variables which hence expresses a number 
t, then e realizes A(t) if and only if e realizes A(t).

P roof of Lemma 44. If A(x) is prime, then whether A(t) is true is 
equivalent to whether A(t) is true. Hence by Clause 1, the lemma holds 
for a prime A(x). The lemma for any other A(x) follows from this basis 
by induction on the number of logical symbols in A(x), with cases cor
responding to the other clauses in the definition of ‘realizes'.

Lemma 45n . If E is a closed formula, then e realizes E if and only 
if e realizes the result of replacing each part of E of the form -1 A where A is 
a formula Jy A 3 1 = 0.

Lemmas 44 and 45 also hold reading ‘T b” or “e realizes-(r \ - ) ”  in 
place of “e realizes”, when b refers to the intuitionistic number-theoretic 
system, and T are any formulas. (For Lemma 44 we then use (A) § 41 
with Theorem 24 (b) § 38.)

P roof of Theorem 62. We state the proof for (a), and (optionally) 
the reader, by taking slight extra care, can verify that the additional 
conditions are met for (b). The proof is by induction on the length of the 
given deduction T b E, with cases corresponding to the postulates of 
our formal system.

First we consider axiom s. If A(yv  ..., ym) is an axiom containing as 
its only free variables y t , . . . ,  y m, then by (B) to establish its realiz
ability we must give a general recursive function <?(yv  . . . ,  y m) such that, 
for every m-tuple of natural numbers yv  . . . ,  y m, the number 
9( y l t  . ..,yw) realizes A( y v  . . . , y m ) . However, for each of the axiom 
schemata of the propositional calculus, we shall be able to find a number 
which realizes A( y x , ..., y m ) for any axiom A(yx, ..., y m) by the schema. 
It will suffice to give this number (which realizes the closed axioms by the 
schema), because when free variables y lf ..., ym are present, we can take 
as 9( y i , ..., y m) the constant function of m  variables with this number 
as value (§ 44). Similarly for the particular number-theoretic axioms, 
we shall merely give a number which realizes the result of any sub
stitution of numerals for the free variables of the axiom. Similarly for 
Axiom Schema 13, we can give a realization number, as a general re
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cursive function of x, which depends only on the numeral x substituted 
for x; and for each of Axiom Schemata 10 and 11 one can be given, as 
a general recursive function of x v . . . ,  x n, which depends only on the
t and on the numerals xx........ x n substituted for its variables xlf . . . ,  x„.
Then when the y1( . . ym include other variables, the <p{yx, . . . ,  y m) 
can be obtained by expanding that function into a function of the 
required additional variables by use of identity functions (§ 44).

For each of the axiom schemata and particular axioms (§§ 19, 23), 
we shall express our realization number or function using the notations of 
§ 65. The proof that it is a realization number or function, and the 
necessary verifications of recursiveness, are left to the reader in cases not 
discussed in detail.

la. In accordance with the preliminary remarks, consider an axiom 
A D (B D A) by this schema containing no free variables. We show 
that AaAba, i.e. AaAb U\(a, b) (§44), realizes A 3  (B 3  A). For let 
a realize A; by Clause 4, we must show that {AaA6 a}(a), i.e. Ab a (by 
(71) § 65), realizes B 3  A. To show this, let b realize B; we must show that 
{A6 a}(b), i.e. a, realizes A. But a does realize A, by hypothesis.

lb. (A 3 B ) 3  ((A 3  (B 3  C)) 3  (A 3  C)) is realized by 
ApAqAa {q(a)}(p(a)). For let p realize A 3 B ;  we must show that 
{ApAqAa{q(a)}(p(a))}(p), i.e. AqAa{q(a)}(p(a)), realizes (A 3  (B 3  C))3 
(A 3  C). To show this, let q realize A 3  (B 3  C); we must show that 
Aa {q{a)}(p{a)) realizes A 3  C. To show this, let a realize A; we must 
show that {q(a)}(p(a)) realizes C. Now by hypothesis, p realizes A 3  B 
and a realizes A; hence p(a) realizes B. Moreover q realizes A 3  (B 3  C), 
and a realizes A; so q(a) realizes B 3  C. But now q(a) realizes B 3  C, 
and p(a) realizes B; hence {q(a)}(p(a)) realizes C, as was to be shown.

3. A 3  (B 3  A & B). AaAb 2°-36.
4a. A & B 3  A. Ac (c)0 (cf. #19 § 45). 4b. A & B 3  B. Ac {c)v
5a. A 3  A V B. A a 2°-3°. 5b. B 3  A V B. A b 21-36.
6 . (A 3  C) 3  ((B 3  C) 3  (A V B 3  C)).

ApAqAr x(P> <?. P) where
X{p, q, r) ~  [M r )i)  if.(r)0 =  ° .  ?(M i) if Wo =  >]> using Theorem  X X  (c). 
Suppose p  realizes A d C  , q  realizes B d C,  and r  realizes A  V B ; we  

m ust show  th a t x{P> <1> r ) realizes G. Case l :  r =  2°*3a where a  realizes A .  

T h en  (r)0 =  0 and (r )x =  a. Since p  realizes A d C  and (r)x realizes A , 

p ( ( r ) j) realizes C. B u t (r)0 =  0; so (and because p ( ( r ) i) is defined) 

l(fi> r ) =  p { {r ) i), and so it realizes C, as w as to be shown. Case 2: 

r =  21*36 w here h realizes B . Sim ilarly.
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7. (A 3  B) 3  ((A 3  - i B )  3  - i  A). U sing Lem m a 45, the num ber  

w hich realizes the closed axiom s b y  A xio m  Schem a lb  (in particular  

those w ith  1 = 0  as th e C) realizes those b y  this schem a.

81. - i  A 3  (A  3  B). 0. F or if p  realizes - i A ,  then b y  Clause 5, p  
realizes A  3  1 = 0 . B u t then  no num ber a  can realize A , since p(a)  w ould  

realize the false closed prim e form ula 1 = 0 ,  con tradictin g Clause 1. T h u s  

vacu o u sly, if p  realizes n A  and a  realizes A , then {0(p)}{a)  realizes B .

(The reader m a y  find it in stru ctive to  ve rify  th a t there is no apparent  

w a y  to treat the classical A x io m  Schem a 8.)

10. Let the t for the axiom contain exactly the distinct variables 
Xp . . . , x B {n ^  0); denote it as "t(xlf . . . ,  xn)”, and let t(xlt , . . ,  x n) 
be the primitive recursive function (or for n =  0, the number) which 
it expresses. By the preliminary remarks, we suppose the axiom contains 
free only x1? . . ., xn; if none of x v  . . ., x n is x, let it be VxA(x, x l f  

. • X„) D A(t(x„ . . x„), Xj, . . x„). Since t(x1, . . x„) is free for x 
in A(x, xlf . . . ,  xn), the result of substituting numerals x v . . . , x n 
for (the free occurrences of) x v . . . ,  xn in the axiom is VxA(x, x v  . . . ,  x n) 
3  A (t(x lf . . . ,  x n), x v . . . ,  x n). We shall show that the number 
A p p(t(xv  . . . ,  x n))t which as x v  . . . ,  x n vary is a general (in fact, primi
tive) recursive function of x v  . . . ,  x n, realizes this formula. By Clause 4, 
for this purpose we must show that, if p realizes VxA(x, x v . . . ,  x n), 
then p(t(xv . . . ,  x n)) realizes A(t(xx, . . . ,  x„), x^ . . . ,  x n). But, if p  
realizes VxA(x, x lf . . . , x n), then by Clause 7, p{t(xv  . . . , x n)) realizes 
A(t, x v . . . ,  x n) where t =  t(xv  . . . ,  x n); and hence by Lemma 44, 
p { t ( x v  . . ., x n ) ) also realizes A(t(xlf . . . ,  x n), x l9 . . . ,  x n). — If say is x, 
the axiom is Vx1A(x1, . . . ,  xn) 3  A(t(x1? . . ., x j ,  x2, . . x j ,  etc.

11. A(t(xx, . . . ,  xn), x l f  . . . ,  xn) 3  3xA(x, x v  . . . ,  xn).
Aa 2tlxi'->x»]-3a.

13. A(0) & Vx(A(x) 3  A(x')) 3  A(x). We treat the case that the 
A(x) contains free only x, as the preliminary remarks will then take care 
of the general case. Let a partial recursive function p(x, a)  be defined by a 
primitive recursion thus,

r  p ( 0 ,  a) =  (a)0,

X p ( * ' > « )  -  { { ( « ) i K * ) } ( p ( * .  « ) ) •

Now we show’that for every x  the number Aa p(x,  a), which is a primitive 
recursive function of x,  realizes A(0) & Vx(A(x) 3  A(x')) ^  A(x). To 
do so (Clause 4), we prove by induction on x  that, if a realizes 
A(0) & Vx(A(x) D A(x')), then p(x,  a) realizes A(x). B asis. If a realizes
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A(0) &  V x(A (x) D A ( x /)), then b y  Clause 2, p(0, a) [ =  (a)0] realizes A(0). 

I n d . s t e p . Sim ilarly ( a ) x realizes V x(A (x) D  A (x')), and hence (Clause 7) 

{(a )i}(x )  realizes A (x) D A (x '). B u t b y  h yp. ind., p(x, a) realizes A(x). 
H ence (Clause 4), p (x \ a) [ =  {{(^)i}{x )}{p ix > a ))] realizes A (x ').

14. A fte r substitution of num erals, w e h ave from  this axiom  

a '= b ' D a=b. This form ula is realized b y  A f t  0. F or suppose ft realizes 

a '=b '. W e m ust show th a t then 0 realizes a=b. Since a '= b ' is prim e, it 
is o n ly realizable if it is true, i.e. if a ’ =  V . T h en  a =  b, so a=b  is also 

true, and 0 realizes it.

Sim ilarly, for the other particular axiom s, after su b stitu tin g num erals, 

w e h ave realization num bers as follows.

15, 18 —  2 1 : 0. 16: Aft A  q  0. 17: A f t  0.

R u l e s  o f  i n f e r e n c e . 2. W e take a d va n ta ge of the rem ark accom pa

n yin g the definition of realizability  to  regard the form ulas as each de

pendent on all of the variables occurring free in a n y  of them . Thus w e  

w rite the rule

A(yi, • •., y„) A(y1, . . . ,  ym) 3 B(y1, . ■ ., ym)
B ( y 1) . . . , y m).

By hypothesis of the induction, the premises A(y1( . . . ,  ym) and 
A(yi, . . . ,  vm) 3 B(y1, . . . ,  ym) are realizable, i.e. there are general 
recursive functions a and <J>, such that, for every w-tuple of natural 
numbers y lt . . . .  y„, A (yv . . . ,  y m) is realized by the number a(y1, . . . ,  y m) 
and A(y1; 3 B(y,, . . . , y m) by the number <J>{yv . . . .  y m).
Then the number {^(y1( . . . ,  ym)}(a(y1, . . . ,  y m)) realizes B(yx, . . . . y m). 
Moreover, {ty(yv  . . . ,  ym)}(a(y1, . . . ,  y m)) is obviously a partial recursive 
function of yx, . . . ,  y m. But its value is a realization number for every 
Vx> ■ • Vm, so it must be defined for every y1( . . . ,  y m; thus it is general 
recursive. Thus the conclusion B(y1( . . . .  ym) is realizable.

9- C (y x, . . y m) 3  A ( x , y 1, . . . , y m)

C(yi, . . . ,  ym) 3  VxA(x, y1( . . . ,  ym).
By the hypothesis of the induction and the definition of realizability, 
there is a general recursive function ^ such that, for every x ,y v  . . . ,  y m, 

Vi, ■ ■ ■ . Vm) realizes C ^ ,  . . . ,  y m) 3 A(x, y v  . . . ,  y m). We shall 
prove that, for every yv  . . . , y m, AcAx{^{x, yv . . . ,  y m)}(c) realizes 
C(yi, . . . ,  y m) 3 VxA(x, y 1: . . . ,  y m). This will give the realizability of 
the conclusion, since Ac Ax {${x,yv  . . . ,  y-m)}{c) is a primitive recursive, a 
fortiori general recursive, function of yv  . . . ,  y m. Accordingly suppose that
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c realizes C(yv . . y m) ; we must show that Ax {<\>(x, yv  . . . ,  y m)}(c) 
realizes VxA(x, y lt . . . ,  y m). To do this, we must show that, for every x, 
{<K*> Vi> • • •> ym)}(c) realizes A(x ,y v  . .  . , y m). But since c realizes 
C(yi, .. •, y m), and by hyp. ind. <]/(*. ylt . . . .  y n) realizes C(ylt . . . , y m) 3  
A(x, y v  . . . .  y m), {<j/(*, yv  . . . .  ym)}(c) does realize A(x, y v  . . . .  y m). 
(Note how this treatment would break down, if the C contained x free, 
call it “C(x, y v  . . . ,  ym)” . Then, we would have to assume that c realizes 
C(x ,y v  . . . , y m) for some x, and we could conclude only that 
{ty(x>yv realizes A(x ,y v  . for that x, whereas we
would need to conclude it for every x.)
12. A(x, yx, . . . ,  yTO) => C(ylt .. ■ , y m)

3xA(x, ylf , . . , y j 3  C(yx, . . . .  y m).
Similarly, using Ap {̂ ((̂ >)0> yv  .. • ,y m)}((P) 1) as realization function for 
the conclusion, given that ^ is for the premise.

The theorem includes the simple consistency of the intuitionistic 
formal system of number theory (by using (a) with T empty and 1 =  0  

as the E), as does Theorem 61 (a). The additional interest in Theorem 
62 in this connection stems from the different condition on new axioms 
T under which it is shown that the simple consistency is preserved (as 
we shall discuss further following Theorem 63).

Corollary 1 n. If y v  . . . ,  ym are distinct variables, and A ( y v  . . . ,  ym) 
is a formula, then A ( y v  . . . ,  y m) is realizable, if and only if 
vyi • • • v ymA(y„ . . .  i Ym) ^  realizable.

For A(yj........ ym) and Vyx . . .  VymA(ylt . . . ,  ym) are interdeducible
in the intuitionistic formal system.

This corollary (applied to the case y1, . . . ,  ym are the free variables 
of the given formula in order of first free occurrence) gives the equivalence 
of the present version of the definition of realizability (Kleene 1948) 

to that of Kleene 1945.

Corollary 2n . (a) If T are realizable formulas, A(x1( . . . ,  xn, y) is a
formula containing free only the distinct variables x^ . . . ,  xn, y, and 
r  I- 3yA(x1, . . . ,  xn, y) in the intuitionistic number-theoretic formal 
system, Then there is a general recursive function y  =  <p(xv  such
that, for every xv . . . , x n, A(x1( . . . ,  xn, y) (where y =  <p(*1( . . . ,  *„)) 
is realizable.

(b) Similarly reading in place of "realizable" any one of the following 
combinations of properties: (i) ”realizable-(T |-) and deducible from T” ,
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(ii) “ rea lizab le -(T  b)> deducible from  F , an d  tru e” , (ill) “r e a liza b le -^  |-), 

deducible from  T , an d  rea lizab le” , (iv) " rea lizab le- ( r  \-), deducible from  T ,  

tru e  an d  rea lizab le ''.

P roofs, (a) B y  (a) of th e theorem  w ith  (B) an d  (A) 6 of th e  definitions, 

(b) (i) U sin g instead (b) of th e theorem , (ii) U sin g further T h eorem  61 (a) 

to  infer th a t A ( x 1# . . . ,  x n, y )  is true, (iii) U sin g further (a) of th e  theorem  

to  infer th a t A ( x 1# . . x n, y )  is realizable.

R e a liza b ility  is intended as an intuitionistic interpretation of a  form ula; 

an d  to  sa y  in tu itio n istically  th a t A ( x v  . . . ,  x n, y )  is realizable should  

im p ly  its being in tu ition istically  true, i.e. th a t th e proposition  

A (x lt . . . ,  x n, y )  co n stitu tin g its intuitionistic m eaning holds. T h e  form ula  

3 y A ( x 1, . . . ,  x n, y) asserts the existence, for every  x l9 . . . ,  x n, of a  y  
depending on x 1$ . . . ,  x n, such th a t A (x v  . . . ,  x n, y ) ;  or in other w ords, 

th e existence of a  function y  =  <p(xv  . . . ,  x n) such th a t, for e v e ry  

x v  . . . , * n, A (x lf . . . ,  x n, <p(xv  B y  (a) of th e corollary for T

e m p ty, th a t form ula can be p roved in the in tuition istic form al system , 

o n ly  w hen there exists such a <p w hich is general recursive. In  brief, 

o n ly  num ber-theoretic functions w hich are general recursive can  b e  

proved to  exist intuition istically. (W e are here considering the assertion  

of the existence of a function valu e <p(xv  . . . ,  x n) for all n -tu p les  

x v  . . . ,  x n of argum ents, so this is not in conflict w ith  our use in tu 

itio n istically  of partial recursive functions.)

T h is result as inferred from  (a) depends on acceptin g the thesis th a t  

the realizab ility  of A ( x x, . . . ,  x n, y )  im plies its truth. H ow ever b y  

using (b) for T  e m p ty  (in w hich case, since w e h a ve no h yp othesis on  

r  to satisfy, w e m a y  ta k e the strongest form  (iv) in the conclusion, i.e. 

th a t A ( x 1# . . . , x n, y )  is realizable-(|-), provable, true and realizable), 

w e obtain  the sam e result indepen dently of th a t thesis.

T h e  presence of the T  in the corollary shows th a t the result w ill hold  

good upon enlarging the form al system  b y  a n y  suitable axiom s F . I f  

the thesis th a t realizab ility  im plies tru th, in tu ition istically, is accep ted , 

these need o n ly be realizable. O therw ise th e y  should be re a liz a b le -(r  b) 

an d true (deducibility from  F  holds a u to m atically  in th e h yp o th esis  on T).

T h e result provides a connection betw een B rouw er's logic as form alized  

b y  H e y tin g  and Church's thesis (§ 62) th a t on ly general recursive fun ction s  

are effective ly  calculable. B o th  developm ents arose from  a  con stru ctivistic  

stan d p o in t, b u t were p reviously unrelated in their details.

T h e form ula 3 y A (x 1# . . . ,  x n, y) does not assert th e uniqueness of



510 CONSISTENCY CH. XV

the function y = (p(xlf . . . ,  xn) such that A(xv . . xnt <p(%, . . . ,  xn)); 
for this we need 3!yA(x1, . . . ,  xn, y) (§ 41).

Classically, given the existence of some function 9 such that, for all 
xt , . . . , x n, A(xv  . . xn, cp(xlt . . . ,  #n)), the least number principle 
provides formally a method of describing a particular one (*149 § 40, 
*174b § 41). While we do not have the least number principle intuition- 
istically, we do know by Corollary 2 that, whenever a particular intu
itionistic proof of a formula of the form 3yA(x1? . . . ,  xn, y) is given, we 
can on the basis of that proof describe informally a particular genera] 
recursive function <p(xv . . . ,  xn) such that, for all xv . . xn, A (xv . . . ,  *n, 
?(*!> ••••*»))•

E xam ple  1. (Cf. Example 8 (c) § 74.) Let be the intuitionistic 
number-theoretic system. Let A(x, y) be a formula containing free only 
x and y. Suppose that for each the formula A(x, y ) is true for exactly 
one y. Then when (to obtain S2) we introduce f with the axiom A(x, f(x)), 
the axiom characterizes f as expressing a certain function 9 under the 
interpretation. By 3-introd. from the new axiom, f-2 3yA(x, y). Now 
suppose f with the axiom A(x, f(x)) is eliminable. Then ^  3yA(x, y). 
Then by Theorem 62 Corollary 2 (b) (ii) with F empty, there is a general 
recursive function y = ^x(x) such that, for each #, A(x, y) is true. But then 
9X =  9. Thus in the intuitionistic number-theoretic system, a new function 
symbol f (expressing a function 9) introduced with an axiom of the form 
A(x, f(x)), where A(x, y) contains free only x and y, and A(x,y) is true 
exactly when y =  y(x)t is eliminable only when 9 is general recursive.

E xam ple  2. Let A(x, y) be any formula, containing free only x and y, 
such that hi 3yA(x, y). Then as in Example 1, there is a general re
cursive function y =  ^(x)  such that, for each xt A(x, y) is true. The 
demonstration of this (consisting mainly in the proof of Theorem 62 (b)) 
is constructive; given a proof of 3yA(x, y) (or the Godel number of such 
a proof), we can find a system E of equations defining a recursively 
(or a Godel number of 9^. Also it is effectively decidable whether a 
number a is the Godel number of a proof of a formula of the form 
3yA(x, y) where A contains free only x and y (Case  1), or not (Case  2). Let

a Godel number of 9^ in Case 1,
Ax x (i.e. a Godel number of U\), in Case 2,

where ambiguity as to which Godel number of which 9X (or which Godel 
number of U{) is chosen is removed by suitable conventions. Then 0(a) 
is effectively calculable. So by Church's thesis we may expect that 0(a)
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is general recursive. (In fact, it is easy to prove that 0(a) is primitive 
recursive, after establishing: (1) There is a primitive recursive function
£(a) such that, if a is the Godel number of a proof in the intuitionistic number- 
theoretic system, then %(a) is a Godel number of a realization-(}-) function 
<p(yi, •••Jm ) for the endformula A(yx, . . ym), where y lf . . y m are the 
free variables of the endformula in order of occurrence in our list of the 
variables.) Let <p(x) =  {0(x)}(x)-|-L Then y(x) is general recursive. Now 
let A(x, y) be a formula such that A(x, y) is true exactly when y — cp(x) 
(e.g. one which numeralwise represents 9 , cf. Theorem 32 (a) §59). If 
we now take this formula as the A(x, y) of Example 1 , we are led to a 
contradiction by supposing that f with the axiom A(x, f(x)) is eliminable. 
Thus: (2) There is a general recursive function 9 such that, in the intu
itionistic number-theoretic system, a new function symbol f expressing 9 with 
an axiom of the form A(x, f(x)), where A(x, y) contains free only x and y, 
and A(x, y) is true exactly when y — 9 (3;), is not eliminable (and 3yA(x, y) 
is not provable for any such A(x, y)).

T h e o r e m  63n. For suitably chosen formulas A(x), B(x) and C(x, y). 
the following classically provable formulas are unrealizable and hence 
(by Theorem 62 (a)) improvable in the intuitionistic formal system of 
number theory. (Specifically, let A(x, z) numeralwise express the predicate 
Tt(x, x, z) of § 57, using Corollary Theorem 27 § 49. Let A(x) be 3zA(x, z), 
B(x) be A(x) V iA (x ) and C(x, y) be y ~ l  V (A(x) & y = 0).)
(i) A(x)VnA(x).
(ii) Vx(A(x) V-iA(x)) (the closure of (i)).
(iii) -rnVx(A(x) V -1 A(x)) (the double negation of (ii)).
( iv )  V x  - n B ( x )  D  - i - i V x B ( x ).
(v) nn{V x  n n B (x ) D -i-iVxB(x)} (the double negation of (iv)).
(vi) 3yC(x, y) D 3y[C(x, y) & Vz(z<y D -iC(x, z))] (cf. *149 § 40).
(vii) 3y[y< w  & C(x, y) & Vz(z<y D -iC(x, z))] V Vy[y<w  D iC (x , y)] 

(cf. *148).
Also the closure, and the double negation of the closure, of (vi) and of (vii). 
((i) — (v): Kleene 1945  with Nelson 1 9 4 7 .)

L e m m a  46n . (a) I f  A is realizable, and B is unrealizable, then A d B
is unrealizable. Hence: I f  A is realizable, then n A  is unrealizable, (b) I f  
A is closed and unrealizable, then A D B and (hence) - 1 A are realizable, and 
(by (a)) “ in A  is unrealizable.
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P roof of L emma 46. (a) By Theorem 62 (a) or the case for Rule 2
in its proof, if A and A 3  B are realizable, so is B. (b) For a closed B, 
any number, e.g. 0, realizes A 3  B, since vacuously, whenever a realizes 
A (i.e. never), 0(a) realizes B.

L emma 47n. If P(xx, . . . ,  xw) numeralwise expresses a general re
cursive predicate P(xv  . . . ,  xn) in the intuitionistic formal system of number 
theory, then, for every xv  . . . ,  xn, P(xlt . . . ,  x n) is realizable if and only if 
P(xv . . . , x n).

P r o o f  o f  L e m m a  47. If P(xlt . . . ,  xn), then by § 41 (i), 1- P(xx, . . . ,  x n), 
and hence by Theorem 62 (a), P(xx, . . . ,  x n) is realizable. Conversely, 
suppose P(x1, . . . ,  xn) is realizable. Because P{xv . . . ,  xn) is a general 
recursive predicate, we have (constructively) that, for the given 
xt , . . . ,x n, either P{xlf . . . f xn) or P{xlt . . . , x n). In the latter case, 
however, by §41 (ii), h ^ P (x 1, . . . , x n), and hence by Theorem 62 
(a), -iP(x1, . . . ,  x n) is realizable, which by Lemma 46 (a) contradicts 
our supposition that P(x1, . . . ,  x n) is realizable.

P roof o f  T h e o r e m  63. (i) Suppose (i), i.e. 3zA(x, z) V -i3zA(x, z),
were realizable. Let <p(x) be a realization function for it; and set 
p(x) =  (<p(x))0. Then p(x) is general recursive, and takes only the values 
0 and 1 (by (B) and (A) 3 of the definitions). Consider any fixed x. Case  1 : 
p{x) =  0. Then (<p(x))x realizes 3zA(x, z); and hence (<p(x))1>;l realizes A(x, z) 
where z =  (<p(x))1>0, in which case by Lemma 47, Tx{x, x, z). Thus 
(Ez)Tx(x, x, z). Case  2: p(x) =  1. Then (<p(x))1 realizes -i3zA(x, z), i.e. 
(<p(*))i realizes 3zA(x, z) 3  1=0. We shall show that then (Ez)Tx(x, x, z). 
For if there were a z such that Tx(x, x, z), by Lemma 47 A(x, z) would be 
realizable; say k realizes it. Then 2z-3k would realize 3zA(x, z); and 
{(?(*))i}(2**3*) would realize 1= 0, which is impossible. The two cases 
show that the general recursive function p(x) is the representing function 
of (Ez)Tx(x, x, z). But {Ez)Tx{x, x, z) is non-recursive ((15) Theorem 
V § 57); hence no such general recursive p{x) can exist. By reductio ad 
absurdum, therefore (i) is unrealizable.

(ii), (iii). By V-elim. (i) is deducible intuitionistically from (ii), so 
by Theorem 62 (a) also (ii) is unrealizable; and by Lemma 46 (b) so is
(iii), since (ii) is closed.

(iv) Since (iii) can be deduced from (iv), using *5la § 27 and V-introd.
(vi) We show as follows that (i) is deducible from (vi). From 1 =  1 

(which is provable) by V- and 3-introd., 3yC(x, y). Using this, from (vi) by 
3-elim., 3y[C(x, y) & Vz(z<y 3  -iC(x, z))]. Preparatory to &- and
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3-elim., assume C(x, y), i.e.
0) y =  1 V (A(x) & y=0)
and Vz(z<y D -iC(x, z)), i.e.
(2) Vz(z<y D -*{z= 1 V (A(x) & z=0)})
We use proof by cases from (1) to deduce (i) with the help of (2). 
Case 1: assume y = l .  For reductio ad absurdum, assume further 
A(x). From this and 0=0, by &- and V-introd., 0=1 V (A(x) &0=0). 
But also from y =  1 by *135b, 0< y ; and thence from (2) by V-elim. 
(with 0 as the t) and D-elim., -i{0= l V (A(x) & 0=0)}. Hence by re
ductio ad absurdum, -iA(x). By V-introd., A(x) V-iA(x), which is (i) and 
does not contain free the variable y of our proposed 3-elim. Case 2: assume 
A (x)& y=0. By &-elim. and V-introd., A(x)V-iA(x). (This deduction 
is related to the intuitive reasoning of Example 6 § 64.)

(vii) From (vii) we can deduce (vi), as in the proof of *149 from *148.
Theorem 63 (i) — (v) imply that <3 V -i cC? is unprovable in the intu- 

itionistic propositional calculus, and Vx{^{x) V -i <£?(*)),
“■ v~iVx(<£?(x)V-i<C?(̂ )), V.r-r-!<3(.r) D - \—C4x£Z{x) and

D -i-iV *^*)} in the intuitionistic predicate calculus, 
as we already knew from Theorem 57 (b) and Theorem 58 (a) and (c). 
The present proofs are less elementary than those based on Gentzen’s 
normal form theorem, but contribute insight into the working of the 
intuitionistic logic as an instrument for number-theoretic reasoning. 
We succeed in showing A V -iA  unprovable in intuitionistic number 
theory only in the presence of a free variable x.

Corollary (to (ii))N. The formula m~\Vx(A(x) V-iA(x)) {although the 
negation of a classically provable formula) is realizable.

By (ii) and Lemma 46 (b).
The formula Vx(A(x) V nA(x)) is classically provable, and hence under 

classical interpretations true. But it is unrealizable. So if realizability 
is accepted as a necessary condition for intuitionistic truth, it is untrue 
intuitionistically, and therefore unprovable not only in the present 
intuitionistic formal system, but by any intuitionistic methods whatsoever.

This incidentally implies that our classical formal system reinforced 
by an intuitionistic proof of simple consistency cannot serve as an in
strument of intuitionistic proof, as suggested in § 14, except of formulas 
belonging to a very restricted class (including those of the forms B(x) 
and VxB(x) end § 42, but not the present formula Vx(A(x) V-iA(x))).



514 CONSISTENCY CH. XV

T h e negation -iV x (A (x )  V n A ( x ) )  of th a t form ula is classically untrue, 

b u t (by the corollary) realizable, and hence in tu ition istically  true, if w e  

accep t realizab ility  (intuitionistically established) as sufficient for in tu 

it ionistic truth.

So the p ossibility  appears of asserting the form ula -iV x ( A ( x )  V -iA (x ))  

in tu ition istically. T h u s w e should obtain an extension of the in tu ition istic  

num ber theory, w hich has p reviously been treated as a subsystem  of the  

classical, so th a t the in tuition istic and classical num ber theories diverge, 

w ith " ! V x(A (x) V - i  A(x)) holding in the in tuitionistic a n d V x (A (x ) V -iA (x ))  

in the classical.

Such divergences are fam iliar to  m athem aticians from  the exam ple of 

E u clid e an  and non -E u clidean  geom etries, and other exam ples, b u t are 

a new  phenom enon in arithm etic. T h e first exam ple com es b y  adjoining  

A „(p ) or - i A v(p)  to  the num ber-theoretic form alism , cf. end §§ 42 and 75.

N o t on ly is the form ula -iV x (A (x )  V -iA (x ))  itself realizable, b u t b y  

Theorem  62 (a) (taking it as the T), w hen w e add it to  the present in tu 

ition istic form al system , on ly realizable form ulas becom e provable in the  

enlarged system . So then every  provable form ula w ill be true under the  

re alizab ility  interpretation. In  particular, the strengthened intuitionistic  

system  is thus shown b y  interpretation to be sim p ly consistent.

A  fuller discussion is given  in K leene 194 5 , where th e proposed ad

ju n ction s to the unstrengthened intuitionistic form al system  of num ber 

th eo ry 5 , to  ob tain  a strengthened intuitionistic system  S '  d iverging  

from  the classical S c, are in the form  of an identification of tru th  w ith  

realizability.

R efinem ents of the results w hich we are basin g here on interpretation  

are obtained b y  N elson 1947  P arts I I — I V  (with K leene 1945). Because  

th e y  all in vo lve the con sistency of the num ber-theoretic form alism , no 

com p letely  elem entary treatm en t can be expected. B u t the non-elem en- 

tariness is m inim ized in the results based on this further w ork of N elson  

to  the full ex ten t th a t the results are proved in elem entary m etam ath e

m atics under the hypothesis of the sim ple consistency of 5 . In particular, 

b y  these results w ith  those of G odel 1932-3  (cf. Corollary 2 Theorem  60), 

it is dem onstrated m eta m a th em atically  th a t b oth  S ' and S c are sim p ly  

consistent if S  is. (Nelson takes as his S  not our intuitionistic form al 

system  b u t one obtained, apart from an inessential difference in the  

e q u a lity  postulates, b y  adjoining to ours some additional function  

sym bols w ith  their defining equations. These equations fit our schem ata  

(I) —  (V) § 43 or closely sim ilar schem ata, except th a t also a certain  

schem a of course-of-values recursion is allowed. U sing N elson’s (i) —  (iv)
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p. 332, to each application of that schema a pair of equations having the 
same form with f, g, h, t* replaced by f', g', h ', t[ is provable without the 
application; so the course-of-values recursion schema is eliminable. Then 
by Example 9 § 74 with the remarks preceding it, the additional function 
symbols are eliminable.)

Nelson 19 4 9  introduces a notion of 'P-realizability', using Which one 
can set up a number-theoretic system diverging from both the strength
ened intuitionistic and the classical.

Gene Rose 19 5 2  investigates realizability in relation to the intu
itionistic propositional calculus.

Kleene 1 9 5 0 a plans the use of recursive functions in interpreting 
intuitionistic set theory.

E xample 3. (a) The operators  D , - i ,  &, V a p p lied  to closed form ulas
A  and  B  obey the strong 3-valued truth tables (§ 64, restated w ith  the present 

sym bols), when  t, f, u are read as ‘rea liza b le \ ‘unrealizab le’ y ‘unknow n {or 
value im m a teria l) ’, resp ec tive ly ; i.e. the tables then give on ly correct 

inform ation about the realizab ility  or unrealizability of A  D  B , -1 A , 

A  &  B , A  V B , w hen entered from  such inform ation about A  and B . P roof. 
Consider D. i f  B  is realizable, then b y  *11 § 2 6  w ith  Theorem  62 (a), 

so is A  D B , corresponding to the three t's in Colum n 1 of the table for D. 
If  A  is unrealizable, then b y  L em m a 46 (b), A  D B  is realizable, corre

sponding to  the three t's  in R o w  2. If  A  is realizable and B is  unrealizable, 

then b y  L em m a 46 (a), A  D B  is unrealizable, corresponding to the f in 

R o w  1 Colum n 2. T h e table for -1 is sim ply the f colum n of th at for D ; 

and &  and V are easily treated, (b) A  form ula w ithout variables is  realizable , 

i f  and only if  i t  is  true. Its  realizability (and truth) or unrealizability  

(and falsity) is thus effective ly  decidable b y  the valu ation  procedure  

furnished b y  the usual interpretation of 0, =  and the classical

2-valu ed  tru th  tables for D, - 1, &, V (cf. § 79 before Theorem  51).  

P roof b y  using E x a m p le  4 § 81, or th u s : F or closed prim e form ulas, tru th  

and realizability agree, and can be decided. In  buildin g thence com posite  

form ulas b y  the operations of the propositional calculus, w e alw ays  

rem ain w ithin the first tw o rows and colum ns of the 3-valu ed tables, 

(c) W e call a num ber e an 'Revaluation num ber  of a closed form ula E , if 

either e =  2°*3Cl (then ex =  (e)x) and ex realizes E , or e =  2 1*3° and E  is 

unrealizable. F or open form ulas, R -valuation  function  is defined in an alogy  

to  'realization function'. A  form ida  C (z1? . . . , z w) conta in ing  no q u an ti
fiers and only the d istin c t variables z v  . .  ., z m (m >  0) has a p r im itiv e  
recursive R -va lu a tion  function  y (zv  . . . , z m). P roof (o m ittin g“zv  . . . ,  z m”
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to save space). Case  1 : C is a prime formula P. Then P expresses a prim
itive recursive predicate P, with representing function <p. Let y =  2?-3°. 
Case  2: C is A 3  B, where by hyp. ind. there are primitive recursive 
R-valuation functions a and {3 for A and B, respectively. Let

Y =

2°-[3 exp A a (p)J if (|3)0 =  0, 
20,3° if («)0 =  (P)0= l .21-3° otherwise.

Case 3: -iA. Take (3 =  21-3° in Case 2. Case 4: A & B. Let 
f 2°-[3 exp 2 ^ -3 < N  if (a)0 =  ([3)0 =  0,

* |  21-3° otherwise.
Case 5: A V B. Similarly, (d) A firenex formula is realizable, if and only 
if it is general recursively true. (Cf. Remark 2 § 79 and Example 5 § 81.) 
P roof. Consider again the formula G used as illustration in § 79. Let 
a(y1; xv  y t , xt , y3) be a primitive recursive R-valuation function for 
A(y„ Xj, y2, x2, y3). Then if G is recursively true, it is realized by

21'1-[3 exp A% 2Viixl)-[3 exp Ax2 2?*ix'-Xi)-3 exp 
(«CVi. xv y 2{ x i), x2, y3(xv  *2)))J].

Conversely, if g realizes G, then G is recursively true with y1 == (g)0, 
yt(xi) =  ({(?)iH*i))o and y3(xv x2) =  ({({fe)i}(^i))1}W )0 as the required 
number and general recursive functions.

E xample 4. Under the thesis that (x)(Ei)B(xf i ) holds intuition- 
istically only if there is a general recursive a such that (x)B(x, ol(x)) (cf. 
above, or Kleene 1943 p. 69 Thesis III), we show that
(a) (y)(Ei)i<aA(i, (y)f) -  (Ei)i<a(y)A(i, y)
does not hold intuitionistically for all A (cf. (20) § 57). Using (51) § 61,

(x)(y)(Ei)i<2Wi{x, (y)().
Thence if we had (a) intuitionistically, we would get (x){Ei)i<2{y)Wi(x, y) 
intuitionistically; whence by the thesis, for some recursive a talcing 
values < 2 ,  (*)(y)Wa(x)(*, y ) ; whence (x)(Ey)Wa{x)(x, y); whence for 
each x,
(b) (Ey)W0( x ,y ) ^ a ( x ) = 1, (Ey)W1(x, y) -> *(x)=0.
But we carl take a(%)= 1 as the R0(x, y) and <x(x)=0 as the R^x, y) of 
(57) and (58) §61. Then either a(/) =  1 or a (/) =  0. If a (/) =  1, then 
(Ey)R0(f, y), whence it follows as in § 61 that (Ey)W1(f, y), contradicting 
(b). Similarly, if «(/) =  0.
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rections (and an index by subjects) in vol. 3 (1938) no. 4, pp. 178-212, are intended 
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In  the original prin ting of this book (1952), eleven works were cited which had 
not yet appeared. Now these eleven bibliographical items have been com pleted or 
corrected, bu t no new items have been added.

517



518 BIBLIOQRAPHY

A c k e r m a n n , W i l h e l m
19 2 4 -5 . Begrundung des “ terHum non datur” m ittels der Hilbertschen Theorie der 

W iderspruchsfreiheit. Mathematische Annalen, vol. 93, pp. 1-36.
19 2 8 . Z um  Hilbertschen A ufbau der reellen Zahlen. Ibid., vol. 99, pp. 118-133.
19 4 0 . Z u r W iderspruchsfreiheit der Zahlentheorie. Ibid., vol. 117, pp. 162-194.
See Hilbert and Ackermann.

B e h m a n n , H e i n r i c h
1 9 2 2 . Beitrdge zur Algebra der Logik , insbesondere zum  Entscheidungsproblem . 

Ibid., vol. 86, pp. 163-229.
B e r e c z k i , I l o n a

19 4 9  unpublished. Results reported to the author in a letter from Kalmar dated 
November 17, 1949. The author obtained (A) — (C) of Example 1 § 57 after 
receiving this letter; (D) was (in substance) mentioned (orally) to the author 
by Kalmar on August 18, 1948.

1952. Nem elemi rekurziv fuggveny letezese {Existenz einer nichtelementaren rekur- 
siven Funktion) . Comptes rendus du Prem ier Congres des Math. Hongrois 
27 aout-2 sept. 1950, B udapest 1952, pp. 409-417. Cf. P eter 1951 pp. 61-67.

B e r n a y s , P a u l
1935. S ur te platonism e dans les mathdmatiques. L’Enseignement mathematique, 

vol. 34, pp. 52-69.
1 9 3 5 a. Hilberts Untersuchungen uber die Grundlagen der A rithm etik. David 

Hilbert Gesammelte Abhandlungen, vol. 3, Berlin (Springer), pp. 196-216.
1 9 3 6 . Logical calculus. Notes on lectures at the Institute for Advanced Study 

1935-6, prepared with the assistance of F. A. Ficken. Mimeographed. Inst, 
for Adv. Study, Princeton, N.J., 1936, 125 pp.

1 9 3 7 -4 8 . A  system of axiom atic set theory. The journal of symbolic logic, vol. 2 
(1937), pp. 65-77, vol. 6 (1941), pp. 1-17, vol. 7 (1942), pp. 65-89 and 133-145, 
vol. 8 (1943), pp. 89-106, vol. 13 (1948), pp. 65-79.

1 9 3 8 . Sur les questions mithodologiques actuelles de la thiorie hilbertienne de la  
dim onstration. Les entretiens de Zurich sur les fondements et la methode des 
sciences mathematiques, 6 -9  D6cembre 1 9 3 8 , Exposes et discussions, published 
by F. Gonseth, Zurich (Leemann) 1941, pp. 144-152. Discussion on pp. 153-161.

See Hilbert and Bernays.
B e r n s t e i n , F e l i x

18 9 8 . See p. 104 of Borel 18 9 8 .
B e r r y , G. G.

19 0 6 . See p. 645 of Russell 19 0 6 .
B l a c k , M a x

1 9 3 3 . The nature of mathematics. A critical survey. London (Kegan Paul, Trench, 
Trubner) and New York (Harcourt, Brace), xiv-j-219 pp. Reprinted London 
( Routledge and Kegan Paul) and New York (The Humanities Press) 1950.



BIBLIOGRAPHY 519
B o o l e , G e o r g e

1 8 4 7 . The mathematical analysis of logic, being an essay toward a calculus of 
deductive reasoning. Cambridge (Macmillan, Barclay & Macmillan) and London 
(George Bell), 82 pp. Reprinted Oxford (Basil Blackwell) and New York (Phil
osophical Library, Inc.) 1948.

1 8 5 4 . An investigation of the laws of thought, on which are founded the mathe
matical theories of logic and probabilities. London (Walton and Maberly), 
v -h iv +  424 pp. Reprinted as vol. 2 of George Boole’s collected works, edited 
by Ph. E. B. Jourdain, Chicago & London 1916. Reprinted New York (Dover 
Publications) 1951.

B o o n e , W i l l i a m  W .
1 9 5 1 . abstract. A n  extension of a  result of Post. The journal of symbolic logic,

vol. 16, pp. 237-238.
1 9 5 2 . Review of Turing 1 9 5 0 . Ibid., vol. 17, pp. 74-76.

B o r e l , £ m i l e
18 9 8 . Lemons sur la theorie des fonctions. Paris (Gauthier-Villars).

B r o u w e r , L . E. J .
19 0 8 . De onbetrouwbaarheid der logische principes (The untrustworthiness of the 

principles of logic). Tijdschrift voor wijsbegeerte, vol. 2, pp. 152-158. Reprinted 
in Wiskunde, waarheid, werkelijkheid, by L. E. J. Brouwer, Groningen (P. 
Noordhoff) 1919, 12 pp.

1 9 2 3 . Uber die Bedeutung des Satzes vom ausgeschlossenen D ritten in  der M athe- 
m atik, insbesondere in  der Funktionentheorie. Journal fur die reine und ange- 
wandte Mathematik, vol. 154 (1925), pp. 1-7. Original in Dutch 1923.

1 9 2 8 . Intuitionistische Betrachtungen uber den F orm alism us. Sitzungsberichte der 
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische 
Klasse, 1928, pp. 48-52. Also Koninklijke Nederlandsche Akademie van Weten- 
schappen, Proceedings of the section of sciences, vol. 31, pp. 374-379.

B u r a l i - F o r t i , C e s a r e
1 8 9 7 . Una questione su i num eri transfin iti. Rendiconti del Circolo Matematico 

di Palermo, vol. 11, pp. 154-164. See also ibid., p. 260. Concerning Cantor’s 
discoveries of the Burali-Forti and Cantor paradoxes, see Fraenkel 1 9 3 2 , p. 470.

C a n t o r , G e o r g
1 8 7 4 . Uber eine Eigenschaft des Inbegriffes alter reellen algebraischen Zahlen. 

Journal fur die reine und angewandte Mathematik, vol. 77, p. 258-262. Reprint
ed in Georg Cantor Gesammelte Abhandlungen, Berlin (Springer) 1932, pp. 115- 
118.

1 8 9 5 -7 . Beitrdge zur Begrundung der transfiniten Mengenlehre. Mathematische 
Annalen, vol. 46 (1895), pp. 481-512, and vol. 49 (1897), pp. 207-246. Reprinted 
in Georg Cantor Gesammelte Abhandlungen, pp. 282-351. English translation by 
Ph. E. B. Jourdain entitled Contributions to the founding of the theory of 
transfinite numbers, Chicago and London (Open Court) 1915, ix +  211 pp.



520 BIBLIOGRAPHY
C a r n a p , R u d o l f

i 93 i -2 . D ie logizistische Grundlegung der M athem atik. Erkenntnis, vol. 2, pp. 
91-105.

1 9 3 4 . The logical syntax of language. New York (Harcourt, Brace) and London 
(Kegan Paul, Trench, Trubner) 1937, xvi+352 pp. Tr. by Amethe Smeaton 
from the German original 1934, with additions.

C h u r c h , A l o n z o
1 9 3 2 . A set of postulates for the foundation of logic. Annals of mathematics, 

second series, vol. 33, pp. 346-366.
1 9 3 3 . A set of postulates for the foundation of logic (second paper). Ibid., vol. 34, 

pp. 839-864.
1 9 3 5 * A proof of freedom from contradiction. Proceedings of the National Academy 

of Sciences, vol. 2 1 , pp. 275-281.
1 9 3 6 . A n  unsolvable problem of elementary number theory. American journal of 

mathematics, vol. 58, pp. 345-363.
19 3 6a. A note on the Entscheidungsproblem . The journal of symbolic logic, 

vol. 1, pp. 40-41. Correction, ibid., pp. 101-102.
19 3 8 . The constructive second number class. Bulletin of the American Mathe

matical Society, vol. 44, pp. 224-232.
1 9 4 1 . The calculi of lambda-conversion. Annals of Mathematics studies, no. 6 . 

Lithoprinted. Princeton University Press, Princeton, N.J., ii+ 77  pp. Second 
printing 1951, ii+ 82  pp.

1 9 5 1 . Special cases of the decision problem . Revue philosophique de Louvain, 
vol. 49, pp. 203-221. A correction, ibid., vol. 50 (1952), pp. 270-272.

1 9 5 6 . Introduction to mathematical logic. Princeton University Press, Prince
ton, N.J., vol. I (1956) x +  376 pp.,A vol. II was projected.

See Church and Kleene, Church and Quine.
C h u r c h , A l o n z o  a n d  K l e e n e , S. C .

1 9 3 6 . Form al definitions in  the theory of ordinal numbers. Fundamenta mathe- 
maticae, vol. 28, pp. 1 1 -2 1 .

C h u r c h , A l o n z o  and Q u i n e , W. V.
1 9 5 2 . Some theorems on definability and decidability. The journal of symbolic 

logic, vol. 17, pp. 179-187.
C u r r y , H a s k e i l  B.

1 9 2 9 . A n  analysis of logical substitution. American journal of mathematics, 
vol. 51, pp. 363-384.

19 3 0 . Grundlagen der kombinatorischen Logik. Ibid., vol. 52, pp. 509-536, 789-834.
1 9 3 2 . Some additions to the theory of combinators. Ibid., vol. 54, pp. 551-558.
1 9 3 9 * A  note on the reduction of Gentzen’s calculus L J . Bulletin of the American

Mathematical Society, vol. 45, pp. 288-293.
19 4 8-9 . A  sim plification of the theory of combinators. Synthese, vol. 7, pp. 391-399.



BIBLIOGRAPHY 521

1950. A theory of formal deducibility. Notre Dame mathematical lectures, no. 6, 
University of Notre Dame, Notre Dame, Ind., ix+126 pp.

1952. T he p e rm u ta b ility  o f ru les in  the c la ss ica l in fe ren tia l ca lcu lu s. The journal of 
symbolic logic, vol. 17, pp. 245-248.

D a n t z i g , D .  v a n
1947. O n the p r in c ip le s  of in tu itio n is tic  a n d  a ffirm a tive  m ath em atics. Koninklijke 

Nederlandsche Akademie van Wetenschappen, Proceedings of the section of 
sciences, vol. 50, pp. 918-929, 1092-1103; also Indagationes mathematicae, vol.
9, pp. 429-440, 506-517.

1948. S ig n if ie s , a n d  i ts  re la tion  to sem io tics. Library of the Tenth International 
Congress of Philosophy (Amsterdam, Aug. z i - 18, 1948), vol. 2 Philosophical 
essays, Amsterdam (Yeen) 1948, pp. 176-189.

D a v i s , M a r t i n
1950 abstract. R ela tiv e ly  recu rsive fu n ction s a n d  the ex tended  K leen e  h iera rch y. 

Proceedings of the International Congress of Mathematicians (Cambridge, 
Mass., U.S.A., Aug. 30-Sept. 6, 1950), 1952, vol. 1, p. 723.

D e d e k i n d , R i c h a r d
1872. Stetigkeit und irrationale Zahlen. Braunschweig (5th ed. 1927). Also in 

Dedekind Gesammelte mathematische Werke, vol. I l l ,  Braunschweig (Vieweg 
& Sohn)*, 1932, pp. 315-334. Eng. tr. by Wooster Woodruff Beman entitled C on 
tin u ity  a n d  irra tio n a l nu m bers, pp. 1-24 of Essays on the theory of numbers, 
Chicago (Open Court) 1901, 115 pp.

1888. Was sind und was sollen die Zahlen? Braunschweig (6th  ed. 1930). Also in 
Werke, vol. I l l ,  pp. 335-391. Eng. tr. by Beman, T he n a tu re  a n d  m ea n in g  of
numbers, loc. cit., pp. 29-115.

D e  M o r g a n , A u g u s t u s
1847. Formal logic: or, the calculus of inference, necessary and probable. Lon

don, xvi+336 pp. Reprinted Chicago and London 1926 (ed. by A. E. Taylor). 
1864. O n the sy llog ism , no. I V ,  a n d  on the logic of re la tio n s  (read 23 April 1860). 

Transactions of the Cambridge Philosophical Society, vol. 10, pp. 331-358.
D i x o n , A. C.

1906. O n “ w ell-ordered” aggregates. Proceedings of the London Mathematical 
Society, ser. 2, vol. 4, pp. 18-20. Cf. ibid., pp. 317-319.

E i n s t e i n , A l b e r t
1944. R em a rk s on B ertra n d  R u sse ll's  theory of know ledge. The philosophy of 

Bertrand Russell, ed. by Paul Arthur Schilpp, Northwestern University, 
Evanston and Chicago, pp. 277-291. (German with Eng. tr. by Schilpp.)

F e y s , R o b e r t
1937-8. L es logiques nouvelles des m o d a litis . Revue n£oscolastique de philosophie, 

vol. 40 (1937), pp. 517-553, vol. 41 (1938), pp. 217-252.



522 BIBLIOGRAPHY
1965. Modal logics. Ed. w ith some complements by Joseph Dopp, Louvain 

(E. Nauwelaerts) and Paris (Gauthier-Villars), xiv +  219 pp. This is the ou t
come of a plan for a jo in t work by Feys and J. C. C. McKinsey.

F i n s l e r , P a u l
1926. Formale Beweise und die Entscheidbarkeit. Mathematische Zeitschrift, vol. 

25, pp. 676-682.
F r a e n k e l , A d o l f

1922. D er Begriff “defin it” und die Unabhdngigkeit des Auswahlaxiom s. Sit- 
zungsberichte der Preussische Akademie der Wissenschaften, Physikalisch- 
mathematische Klasse, 1922, pp. 253-257.

1925. Untersuchungen iiber die Grundlagen der Mengenlehre. Mathematische 
Zeitschrift, vol. 22, pp. 250-273.

1928. Einleitung in die Mengenlehre, 3rd ed., Berlin (Springer) 1928, xiii+424 pp. 
Reprinted New York (Dover Publications) 1946.

1932. D as Leben Georg Cantors. Georg Cantor Gesammelte Abhandlungen mathe- 
matischen und philosophischen Inhalts, ed. by Ernst Zermelo, Berlin (Springer), 
pp. 452-483.

1953. Abstract set theory. Studies in logic and the foundations of m athem atics, 
Am sterdam  (North-H olland Pub. Co.), xii -f 479 pp.

F r e g e , G o t t l o b
1879. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des 

reinen Denkens. Halle (Nebert), viii+88 pp.
1884. Die Grundlagen der Arithmetik, eine logisch-mathematische Unter- 

suchung fiber den Begriff der Zahl. Breslau, x ix + 1 1 9  pp. Reprinted Breslau 
(M. & H. Marcus) 1934. Eng. tr. by J. L. Austin (with German original): 
The foundations of arithmetic. A logico-mathematical enquiry into the concept 
of number. Oxford (Basil Blackwell) and New York (Philosophical Library) 
1950, (xii-j-XI + 119) X 2 pages.

1893. Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet. Jena (H. Pohle), 
vol. 1, xxxii+254 pp.

1903. Ibid., vol. 2, x v +265 pp. Eng. tr. of Sections 86-137 by Max Black entitled 
Frege against the form alists in The philosophical review, vol. 59 (1950), pp. 77-93, 
202-219, 332-345.

G e n t z e n , G e r h a r d
3:934-5. Untersuchungen iiber das logische Schliessen. Mathematische Zeitschrift, 

vol. 39, pp. 176r210, 405-431. Apart from minor differences in the notion of 
•formula, and for the Hilbert-type systems in the precise selection of the postu
lates, our classical “formal system H ” for predicate calculus (cf. § 77) is Gent- 
zen's “ Kalkiil L H K ” , our intuitionistic “H ” is his “L H J ” , our classical “G l” 
his “L K ” , and our intuitionistic “G l” his “L J ” .

1936. D ie W iderspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 
vol. 112, pp. 493-565. He uses 1, 2, 3, . . .  where we use 0, 1, 2, . . . .



BIBLIOGRAPHY 523

1 9 3 8 . D ie gegenwdrtige Lage in  der mathematischen Grundlagenforschung. For- 
schungen zur Logik und zur Gmndlegung der exakten Wissenschaften, new
series, no 4, Leipzig (Hirzel), pp. 5-18.

19 3 8 a. Neue Fas sung des Widerspruchsfreiheitsbeweises fur die reine Zahlenthe- 
orie. Ibid., pp. 19-44.

1 9 4 3 . Beweisbarkeit und Unbeweisbarkeit von Anfangsfalien der transfiniten  
Induktion in  der reinen Zahlentheorie. Math. Ann., vol. 119 no. 1, pp. 140-161.

G l i v e n k o , V .
1 9 2 9 . Sur quelques points de la logique de M . Brouwer. Acad6mie Royale de 

Belgique, Bulletins de la classe des sciences, ser. 5, vol. 15, pp. 183-188.

G o d e l , K u r t
19 3 0 . D ie V ollstandigkeit der Axiom e des logischen Funktionenkalkills. Monats- 

hefte fur Mathematik und Physik, vol. 37, pp. 349-360.
1 9 3 1 . Vber formal unenhcheidbare Sdtze der P rin c ip ia  M athem atica und ver- 

wandter Systeme I . Ibid., vol. 38, pp. 173-198.
1 9 3 1 -2 . Vber Vollstandigkeit und W iderspruchsfreiheit. Ergebnisse eines mathe

matischen Kolloquiums, Heft 3 (for 1930-1, pub. 1932), pp. 12-13. This paper 
lists results without proofs.

19 3 1- 2a. Remarks contributed to a D iskussion zur Grundlegung der M athem atik. 
Erkenntnis, vol. 2 , pp. 147-148.

1 9 3 2 . Z um  intuitionistischen Aussagenkalkul. Akademie der Wissenschaften in 
Wien, Mathematisch-naturwissenschaftliche Klasse, Anzeiger, vol. 69 (1932), 
pp. 65-66. Reprinted in Ergebnisse eines mathematischen Kolloquiums, Heft 4 
(for 1931-2, pub. 1933), p. 40.

1 9 3 2 - 3 . Z u r intuitionistischen Arithm etik und Zahlentheorie. Ergebnisse eines 
math. Koll., Heft 4 (for 1931-2, pub. 1933), pp. 34-38.

1 9 3 4 . On undecidable propositions of formal mathematical systems. Notes by S. 
C. Kleene and Barkley Rosser on lectures at the Institute for Advanced Study, 
1934. Mimeographed, Princeton, N.J., 30 pp.

1 9 3 6 . Vber die Lange von Beweisen. Ergebnisse eines math. Koll., Heft 7 (for 
1934-5, pub. 1936, with note added in press), pp. 23-24.

1 9 3 8 . The consistency of the axiom of choice and of the generalized continuum - 
hypothesis. Proceedings of the National Academy of Sciences, vol. 24, pp. 556- 
557. A full-length treatment is given in 19 4 0 .

1939- Consistency-proof for the generalized continuum-hypothesis. Ibid., vol. 25, 
pp. 220-224.

19 4 0 . The consistency of the axiom of choice and of the generalized continuum- 
hypothesis with the axioms of set theory. Lectures delivered at the Institute for 
Advanced Study 1938-9; notes by George W. Brown. Annals of Mathe
matics studies, no. 3. Lithoprinted. Princeton University Press, Princeton 1940, 
66 pp. (In Axiom 4 insert “(u)M after “(3z)’\  Also cf. Example 13 § 74 above.) 
Second printing 1951, v +  69 pp.



524 BIBLIOGRAPHY

1944. Russell's mathematical logic. The philosophy of Bertrand Russell, ed. by 
Paul Arthur Schilpp, Northwestern University, Evanston and Chicago, pp. 
123-153.

1947. W hat is Cantor's continuum problem  ? American mathematical monthly, 
vol. 54, pp. 515-525.

G o n s e t h , F e r d i n a n d
1933. L a vdritd mathematique et la rdalitd. U  Enseignement mathematique, vol. 31

(for 1932, pub. 1933), pp. 96-114.
Also: A propos d'un catalogue paradoxical. Rdponse de M . Gonseth d M . W in ants. 
Ibid., pp. 269-271.

H a l l , M a r s h a l l , J r .
1949. The word problem for semigroups with two generators. The journal of sym

bolic logic, vol. 14, pp. 115-118.

H a s e n j a e g e r , G i s b e r t
1 9 5 0 . Vber eine A r t von Unvollstandigkeit des Prddikatenkalkuls der ersten Stufe, 

Ibid., vol. 15, pp. 273-276.
H a u s d o r f f , F e l i x

1 9 1 4 . Grundziige der Mengenlehre. Leipzig (Viet), viii+476 pp. Reprinted New 
York (Chelsea) 1949.

1 9 2 7 . Mengenlehre. Goschens Lehrbucherei, 1 Gruppe Band 7, Berlin and 
Leipzig (Gruyter), a 2nd revised ed. of 1 9 14  (but less complete in some respects), 
285 pp. 3rd ed., 1935, 307 pp. Reprinted New York (Dover Publications) 1944.

H e n k i n , L e o n
1949. The completeness of the first-order functional calculus. The journal of sym

bolic logic, vol. 14, pp. 159-166.
1 9 5 0 . Completeness in  the theory of types. Ibid., vol. 15, pp. 81-91.
19 5 0 a. A n  algebraic characterization of quantifiers. Fundamenta mathematicae, 

vol. 37, pp. 63-74.
H e r b r a n d , J a c q u e s

1928. S u r la thdorie de la ddmonstration. Comptes rendus hebdomadaires des 
stances de l’Academie des Sciences (Paris), vol. 186, pp. 1274-1276.

1930. Recherches sur la theorie de la demonstration. Travaux de la Soci6t6 des 
Sciences et des Lettres de Varsovie, Classe III sciences math£matiques et 
physiques, no. 33, 128 pp.

19 3 1-2 . S u r la non-contradiction de Varithmdtique. Journal fur die reine und 
angewandte Mathematik, vol. 166, pp. 1-8.

H e r m e s , H a n s
1 9 3 8 . Sem iotik. E ine Theorie der Zeichengestalten als Grundlage fur XJnter- 

suchungen von form alisierten Sprachen. Forschungen zur Logik und zur Grund- 
legung der exakten Wissenschaften, n.s., no. 5, Leipzig (Hirzel), 22 pp.



BIBLIOGRAPHY 5 2 5

H e y t i n g , A r e n d
1930. D ie formalen Regeln der intuitionistischen Logik. Sitzungsberichte der 

Preussischen Akademie der Wissenschaften, Physikaliseh-mathematische 
Klasse, 1930, pp. 42-56.

1930a. D ie formalen Regeln der intuitionistischen M athem atik. Ibid., pp. 57-71, 
158-169.

1931-2. D ie intuitionistische Grundlegung der M athem atik. Erkenntnis, vol. 2, 
pp. 106-115.

1934. Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Er-
gebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, no. 4, Berlin (Springer), 
pp. iv +  73. Erratum : The theorem of Godel 1932-3 does not hold for the 
predicate calculus quite as stated by Heyting on p. 18. Cf. Remark 1 § 81 above. 

1946. On weakened quantification. Jour, symbolic logic, vol. 11, pp. 119-121.
H i l b e r t , D a v i d

1899. Grundlagen der Geometrie. 7th ed. (1930), Leipzig and Berlin (Teubner), 
vii+326 pp. Eng. tr. by E. J. Townsend, The foundations of geometry, Chicago 
(Open Court) 1902, iv-f 143 pp.

1900. Vber den Zahlbegriff. Jahresbericht der Deutschen Mathematiker-Vereini- 
gung vol. 8, pp. 180-184. Reprinted with an omission in Grundlagen der Geo
metrie, 7th ed., Leipzig and Berlin (Teubner) 1930, pp. 241-246.

1904. Vber die Grundlagen der Logik und der A rithm etik. Verhandlungen des 
Dritten Intemationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 1.3. 
August 1904, Leipzig 1905, pp. 174-185. Reprinted, loc. cit., pp. 247-261.

1918. Axiom atisches Denken. Mathematische Annalen, vol. 78, pp. 405-415. 
Reprinted in David Hilbert Gesammelte Abhandlungen, vol. 3, Berlin (Sprin
ger) 1935, pp. 146-156.

1926. Vber das Unendliche. Math. Ann., vol. 95, pp. 161-190. Reprinted in ab
breviated form in Jahresb. Deutschen Math.-Verein., vol. 36 (1927), pp. 201-215. 
Also with some revisions in Grundlagen der Geometrie, 7th  ed., 1930, pp. 262-288. 

1928. D ie Grundlagen der M athem atik. Abhandlungen aus dem Mathematischen 
Seminar der Hamburgischen Universitat, vol. 6, pp. 65-85. Reprinted with 
abridgements in Grundlagen der Geometrie, 7th ed., pp. 289-312.

See Hilbert and Ackermann, Hilbert and Bernays.
H i l b e r t , D a v i d  a n d  A c k e r m a n n , W i l h e l m

1928. Grundzuge der theoretischen Logik. Berlin (Springer), viii-f 120 pp. 2nd ed. 
1938, viii-f 133 pp. Reprinted New York (Dover Publications) 1946. 3rd ed. 
Berlin, Gottingen, Heidelberg (Springer) 1949, viii-f 155 pp. Eng. tr. of the 
2nd ed. by L. M. Hammond, G. G. Leckie and F. Steinhardt, ed. with notes by 
R. E. Luce, Principles of mathematical logic, New York (Chelsea Pub. Co.) 
1950, xii-f 172 pp.

H i l b e r t , D a v i d  a n d  B e r n a y s , P a u l
1934. Grundlagen der Mathematik, vol. 1, Berlin (Springer), x ii-f471 pp. 

Reprinted Ann Arbor, Mich. (J. W. Edwards) 1944.



526 BIBLIOGRAPHY

1 9 3 9 . Ibid., vol. 2, Berlin (Springer), xii-f498 pp. Reprinted Ann Arbor, Mich. 
(Edwards) 1944.

I o n g h , J o h a n  J. d e
19 4 8 . Restricted forms of in tu ition istic mathematics. Proceedings of the Tenth 

International Congress of Philosophy (Amsterdam, Aug. n - 1 8 , 1 9 4 8 ), Am
sterdam (North-Holland Pub. Co.) 1949, pp. 744-748 (fasc. 2).

J a n k o w s k i , S t a n i s l a w
1 9 3 4 . On the rules of suppositions in formal logic. Studia logica, no, 1, Warsaw, 

32 pp.
1 9 3 6 . Recherches sur le systim e de la logique intuitioniste. Actes du Congr£s 

International de Philosophic Scientifique, VI Philosophic des mathematiques,
Actuality scientifiques et industrielles 393, Paris (Hermann & Cie.), pp. 58-61. 
Jankowski does not give his proofs in detail; a reconstruction of the proofs is in 
Gene Rose 19 52  Part I.

K a l m A r , L A s z l 6
1:9 3 4-5 . Vber die A xiom atisierbarkeit des Aussagenkalkiils. Acta scientiarum 

mathematicarum (Szeged), vol. 7, pp. 222-243.
1 9 4 3 . Egyszeru pdlda eldonthetetlen aritm etikai probUm dra (E in einfaches B eispiel 

fu r ein unentscheidbares arithmetisches Problem ). Matematikai es fizikai lapok, 
vol. 50, pp. 1-23. Hungarian with German abstract. Kalmar takes, as his basis

z zfor elementary functions, the variables, 1, + , *, | a—b |, [afb], E , II , but
y=w  y —w

remarks that then * and [afb] are redundant. (Cf. Example 1 § 57 above.)
19 4 8 . On unsolvable mathematical problem s. Proceedings of the Tenth Inter

national Congress of Philosophy (Amsterdam, Aug. 1 1 - 18 , 19 4 8 ), Amsterdam 
(North-Holland Pub. Co.) 1949, pp. 756-758 (fasc. 2). Preprints 1948, pp. 534- 
536.

1 9 5 0 . E ine einfache K onstruktion unentscheidbarer Satze in  formalen System en.
Methodos, vol. 2, pp. 220-226; Eng. tr. by Ernst \ .  Glasersfeld, pp. 227-231. 

19 5 0 a. Another proof of the Godel-Rosser incom pletability theorem. Acta scien
tiarum mathematicarum (Szeged), vol. 12 , pp. 38-43.

K e m e n y , J o h n  G.
19 4 8 . Review of M ostowski 19 4 7a. Jour, symbolic logic, vol. 13, pp. 46-48. 

K e t o n e n , O i v a
19 4 4 . Untersuchungen zum  Prddikatenkalkul. Annales Academiae Scientiarum 

Fennicae, ser. A, I. Mathematica-physica 23, Helsinki, 71 pp.
K l e e n e , S t e p h e n  C.

1 9 3 4 . Proof by cases in  formal logic. Ann. of math., 2  s., vol. 35, pp. 529-544. 
Relative to § 20 above, cf. p. 534. The use of “ |-” to express derivability by the 
rules of inference originated with Rosser; the modification to make |- relative 
also to the axioms, with the author.



BIBLIOGRAPHY 527

1935. A  t h e o r y  of po s i t i v e  inte g e r s  i n  f o r m a l  logic. Amer. jour, math., vol. 57, 
pp. 153-173, 219-244.

1936. G e n e r a l  r e c u r s i v e  f u n c t i o n s  of n a t u r a l  n u m b e r s .  Math. Ann., vol. 112, pp. 727- 
742. For an erratum  and a simplification, cf. Jour, symbolic logic, vol. 3 p. 152, 
vol. 2 p. 38 and vol. 4 top p. iv  a t end.

1936a. X-defi n a b i l i t y  a n d  r e c u r s i v e n e s s .  Duke m athem atical journal, vol. 2, 
pp. 340-353.

1936b. A  n o t e  o n  r e c u r s i v e  f u n c t i o n s .  Bull. Amer. Math. Soc., vol. 42, pp. 544-546.
1938. O n  n o t a t i o n  for o r d i n a l  n u m b e r s .  Jour, symbolic logic, vol. 3, pp. 150-155.
1943. R e c u r s i v e  p r e d i c a t e s  a n d  q uantifiers.  Transactions of the Am erican M athe

m atical Society, vol. 53, pp. 41-73. Omit § 15, because the proof of Theorem 1 
of 1944 contains an error. — Footnote (21) cites only a function which is partial 
bu t not potentially recursive, though the tex t m entions predicates also. (This 
oversight was brought to the au tho r’s a tten tion  by J. C. E. Dekker, March 18, 
1952.) For such a predicate, cf. Exam ple 6 § 63 above.

1944. O n  the f o r m s  of the p r e d i c a t e s  i n  the t h e o r y  of c o n s t r u c t i v e  o r d i n a l s .  Amer. 
jour, math., vol. 66, pp. 41-58. The stars should be om itted from (4) and (11) 
p. 43 (cf. *86  and *95 above). — The trea tm ent of the exam ple P ( a )  in 8 is not 
complete. For (18) is not simply another way of writing the inductive def
inition of ‘a is provable’, bu t can have other solutions for P ( a )  besides P(a) =  
{ a  is provable) (e.g. P ( a )  =  { a  is a formula}). However for any solution of (18), 
{ a  is provable) -> P ( a ) ; and it is easily shown from (22) th a t for the particular 
solution P ( a )  == ( E x ) R ( a ,  x), P ( a ) -> { a  is provable). — Similarly for all ap
plications of the technique in which the particular solution contains only an 
existential quantifier (cf. end § 53). B ut in the application to  a  8 Q in 14, where 
there is also a generality quantifier, the trea tm en t cannot be com pleted in this 
m anner; and so Theorem 1 and the first half of Theorem  2 are not established. 
The author plans to discuss the situation  in a second paper under the same title.

1945. O n  the i n t e r p r e t a t i o n  of intuitionistic n u m b e r  theory.  Jour, sym bolic logic, 
vol. 10, pp. 109-124.

1948. O n  the intuitionistic logic. Proceedings of the Tenth International Congress 
of Philosophy (Amsterdam, Aug. 1 1 - 18, 1948), Am sterdam  (North-Holland 
Pub. Co.) 1949, pp. 741-743 (fasc. 2). P reprints 1948, pp. 185-187.

1930. A  s y m m e t r i c  f o r m  of G o d e V s  t h e o r e m .  Koninklijke Nederlandsche Akademie 
van W etenschappen, Proceedings of the section of sciences, vol. 53, pp. 800-802; 
also Indagationes m athem aticae, vol. 12, pp. 244-246.

1950a. R e c u r s i v e  f u n c t i o n s  a n d  intuitionistic m a t h e m a t i c s .  Proceedings of the 
International Congress of M athem aticians (Cambridge, Mass., U .S.A ., Aug. 30 - 
Sept. 6, 1950), 1952, vol. 1, pp. 679-685.

1952. P e r m u t a b i l i t y  of i n f e r e n c e s  i n  G e n t z e n ' s  calculi L K  a n d  L J .  Memoirs 
of the American M athematical Society, no. 10, pp. 1-26.

See Church and Kleene.
K r e i s e l , G.

1950. N o t e  o n  a r i t h m e t i c  m o d e l s  fo r  c o n s i s t e n t  f o r m u l a e  of the p r e d i c a t e  c a lculus. 

Fundam enta m athem aticae, vol. 37, pp. 265-285.



5 2 8 BIBLIOGRAPHY

K u z n e c o v , A. V.
1950. O prim itivno  rdkursivnyh funkci&h bol'Sogo razmaha (On primitive recursive 

functions of large oscillation). Doklady Akademii Nauk SSSR, n.s., vol. 71, 
pp. 233-236.

L a n g f o r d , C o o p e r  H a r o l d
1927. On inductive relations. Bull. Amer. Math. Soc., vol. 33, pp. 599-607.
See Lewis and Langford.

L e w i s , C l a r e n c e  I r v i n g
1912. Im plication  and the algebra of logic. Mind, n.s., vol. 21, pp. 522-531.
1917. The issues concerning m aterial im plication. The journal of philosophy, 

psychology and scientific method, vol. 14, pp. 350-356.
See Lewis and Langford.

L e w i s , C l a r e n c e  I r v i n g  a n d  L a n g f o r d , C o o p e r  H a r o l d
1932. Symbolic logic. New York arid London (The Century Co.), xi-j-506 pp. 

Reprinted New York (Dover Publications) 1951.

L o w e n h e i m , L e o p o l d
1915. fiber M oglichkeiten im  Relativkalkiil. Math. Ann., vol. 76, pp. 447-470.

L u k a s i e w i c z , J a n
1920. O logice trdjw artoiciow ej (On three-valued logic). Ruch filozoficzny (Lw6w), 

vol. 5, pp. 169-171.
1925. D im onstration de la com patibilitd des axiom s de la thdorie de la ddduction. 

Annales de la Soci6t6 Polonaise de Mathematique, vol. 3 (for 1924, pub. 1925), 
p. 149.

See Lukasiewicz and Tarski.

L u k a s i e w i c z , J a n  a n d  T a r s k i , A l f r e d
1930. Untersuchungen uber den Aussagenkalkul. Comptes rendus des seances de 

la Societe des Sciences et des Lettres de Varsovie, Classe III, vol. 23, pp. 30-50.

M a c L a n e , S a u n d e r s
1934. Abgekiirzte Beweise im Logikkalkul. Dissertation Gottingen. 61 pp.

M a n n o u r y , G e r r i t
1909. .  Methodologisches und Philosophisches zur Elementar-Mathematik. Haar

lem (P. Visser), viii+276 pp.
1925. Mathesis en mystiek. Amsterdam. French translation: Les deux poles de 

I'esprit. Paris, 1933.
1934. signifischen Grundlagen der M athem atik. Erkenntnis, vol. 4, pp. 288- 

309, 317-345.



BIBLIOGRAPHY 529
M a r k o v , A. A.

1947. N dvozm oinosf ndkotoryh algorifmov v tdorii associativnyh sistdm. Doklady 
Akademii Nauk SSSR, n.s., vol. 55, pp. 587-590. Eng. tr. On the im possib ility  of 
certain algorithms in  the theory of associative systems. Comptes rendus (Doklady) 
de TAcademic des Science? de l’URSS, n.s., vol. 55, pp. 583-586.

1947a. O ndkotoryh ndrazrdUmyh probldmah kasau llihsd  m atric (On some un- 
solvable problems concerning matrices). Doklady Akademii Nauk SSSR, n.s., 
vol. 57, pp. 539-542.

1947b. N dvozm ohiost' ndkotoryh algorifmov v tdorii associativnyh sistdm I I  (Im
possibility of certain algorithms in the theory of associative systems II). Ibid., 
vol. 58, pp. 353-356.

1947c. O prddstavlenii rdkursivnyh funkcij (On the representation of recursive 
functions). Ibid., pp. 1891-1892.

1949.. 0  prddstavldnii rdkursivnyh funkcij (On the representation of recursive 
functions). Izv6stiy4 Akademii Nauk SSSR, ser. mat., vol. 13, pp. 417-424. 
Eng. tr., On the representation of recursive functions, Amer. Math. Soc., trans
lation no. 54, lithoprinted, New York 1951, 13 pp.

1951. Ndvozm oinosi' ndkotoryh algoritmov v tdorii associativnyh sistdm  (Impos
sibility of certain algorithms in the theory of associative systems). Doklady 
Akademii Nauk SSSR, n.s., vol. 77, pp. 19-20.

1951a. Ndvozm otnost' algorifmov raspoznavanid ndkotoryh svojstv associativnyh  
sistdm  (Impossibility of algorithms for distinguishing certain properties of 
associative systems). Ibid., pp. 953-956.

1951b. Ob odnoj ndrazrdSimoj probldmd, kasaulcdjsd m atric (An unsolvable problem 
concerning matrices). Ibid., vol. 78, pp. 1089-1092.

M c K i n s e y , J. C. C.
1939. Proof of the independence of the prim itive symbols of H ey ting* s calculus of 

propositions. Jour, symbolic logic, vol. 4, pp. 155-158.
See McKinsey and Tarski.

M c K i n s e y , J. C. C. a n d  T a r s k i , A l f r e d
1948. Some theorems about the sentential calculi of Lew is and H ey ting. Ibid., vol. 

13, pp. 1-15.
M o s t o w s k i , A n d r z e j

1947. On definable sets of positive integers. Fundamenta mathematicae, vol. 34,
pp. 81-112.

1947a. On absolute properties of relations. Jour, symbolic logic, vol. 12, pp. 33-42.
1948. Proofs of non-deducibility in  in tu ition istic functional calculus. Ibid., vol. 13, 

pp. 204-207.
1948a. On a set of integers not definable by means of one-quantifier predicates. 

Annales de la Societe Polonaise de Mathematique, vol. 21, pp, 114-119.
1949. A n  undecidable arithm etical statement. Fund, math., vol. 36, pp. 143-164.
1951. A classification of logical systems. Studia philosophica, vol. 4, pp. 237-274.
K leen e



530 BIBLIOGRAPHY
1 9 5 2 . Sentences undecidable in formalized arithmetic. An exposition of the 

theory of Kurt Godel. Studies in logic and the foundations of m athem atics, 
A m sterdam  (North-H olland Pub. Co., v iii-f 117 pp.

1952a. Models of axiomatic systems. Fund. Math., vol. 39, pp. 133-158. Cf. Ryll- 
Nardzewski 1952.

See Mostowski and Tarski.
M o s t o w s k i , A n d r z e j  a n d  T a r s k i , A l f r e d

1949 abstract. Undecidability in the arithmetic of integers and in the theory of rings. 
Jour, symbolic logic, vol. 14, p. 76.

N e l s o n , D a v i d
1 9 4 7 . Recursive functions and intuitionistic number theory. Trans. Amer. Math. 

Soc., vol. 61, pp. 307-368.
1949. Constructive falsity. Jour, symbolic logic, vol. 14, pp. 16-26.

N e u m a n n , J o h n  v o n
1 9 2 5 . Eine Axiomatisierung der Mengenlehre. Journal fur die reine und ange- 

wandte Mathematik, vol. 154, pp. 219-240. Berichtigung, ibid., vol. 155 (1926),
p. 128.

1927 . Zur Hilbertschen Beweistheorie. Math. Zeit., vol. 26, pp. 1-46.
1928. Die Axiomatisierung der Mengenlehre. Ibid., vol. 27, pp. 669-752.
1 9 3 1 -2. Die formalistische Grundlegung der Mathematik. Erkenntnis, vol. 2,

pp. 116-121.
1947. The mathematician. The works of the mind, ed. by R obert B. Heywood,

Chicago (U. of Chicago Press), pp. 180-196.
P a s c h , M o r it z

1882. Vorlesungen liber neuere Geometrie. Leipzig (Teubner), iv-f-201 pp. 
R eprinted in Vorlesungen iiber neuere Geometrie by M. Pasch and Max Dehn, 
Berlin (Springer) 1926, viii-f 275 pp.

P e a n o , G i u s e p p e
1889. Arithmetices principia, nova methodo exposita.Turin (Bocca), xv i-f  20 pp. 
1891. Sul concetto di numero. Rivista di m atem atica, vol. 1, pp. 87-102, 256-267. 

Peano form ulates his axioms for the positive integers. (In fact, some writers 
call these the “natural num bers” .)

1894- 1908. Form ulaire de mathematiques. Introduction and five volumes. Turin. 
E dited by Peano and w ritten by him in collaboration with Rodolfo Bettazzi, 
Cesare Burali-Forti, F. Castellano, Gino Fano, Francesco Giudice, Giovanni 
Vailati, Giulio Vivanti.

P e i r c e , C h a r l e s  S a n d e r s
1867. On an improvement in Boole’s calculus of logic (presented 12 March 1867). 

Proceedings of the American Academy of Arts and Sciences, vol. 7 (1865-8), 
pp. 250-261. Reprinted in Collected papers of Charles Sanders Peirce, ed. by



BIBLIOGRAPHY 531

Charles H artshorne & Paul Weiss, Cambridge, Mass. (H arvard U niversity  
Press), vol. 3 (1933), pp. 3-15.

18 8 0 . On the algebra of logic. Chapter I . — Syllogistic. Chapter I I . — The logic 
of non-relative terms. Chapter I I I .  — The logic of relatives. Amer. jour, math., 
vol. 3, pp. 15-57. Reprinted w ith corrections in Collected papers, vol. 3, pp.
104-157.

P e t e r , R 6 z s a
1934. Vber den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion. 

Math. Ann., vol. 110, pp. 612-632.
1935. K onstruktion nichtrekursiver Funktionen. Ibid., vol. I l l ,  pp. 42-60.
1935a. A rekurziv fuggvdnyek elmdletdhez (Zur Theorie der rekursiven Funktionen).

H ungarian w ith full Germ an abstract. Matematikai 6s fizikai lapok, vol. 42, 
pp. 25-49.

1936. Vber die mehrfache Rekursion. Math. Ann., vol. 113, pp. 489-527.
1940. Review of Skolem 1939. Jour, sym bolic Logic, vol. 5, pp. 34-35.
1950. Zusamm enhang der mehrfachen und transfiniten Rekursionen. Ibid., vol. 15, 

pp. 248-272.
1951. Rekursive Funktionen. Akaddmiai K iad6 (Akademischer Verlag) Budapest, 

206 pp.
P o i n c a r e , H e n r i

1900. D u role de Vintuition et de la logique en mathematiques. Compte rendu du 
Deuxieme Congres International des Mathematiciens, tenu a Paris du 6 au 12 
aout 1900, Paris (Gauthier-Villars) 1902, pp. 115-130.

1902. La science et l’hypothese. Paris, 284 pp. Translated by G. Bruce Halstead 
as pp. 27-197 of The foundations of science by H. Poincar6, New York (The 
Science Press) 1913; reprinted 1929.

1905-6. Les mathematiques et la logique. Revue de metaphysique et de morale, 
vol. 13 (1905), pp. 815-835, vol. 14 (1906), pp. 17-34, 294-317. R eprinted in 
1908 w ith substantial alterations and additions.

1908. Science et methode, Paris, 311 pp. Translated by H alstead as pp. 359-546 
of The foundations of science, New York 1913, reprinted 1929.

P o s t , E m il  L.
1921. Introduction to a general theory of elementary propositions. Amer. jour, 

math., vol. 43, pp. 163-185.
1936. Finite combinatory processes— formulation 1. Jour, symbolic logic, vol. 1, 

pp. 103-105.
1943. Form al reductions of the general combinatorial decision problem. Amer. 

jour, math., vol. 65, pp. 197-215.
1944. Recursively enumerable sets of positive integers and their decision problems. 

Bull. Amer. Math. Soc., vol. 50, pp. 284-316.
1946. A variant of a recursively unsolvable problem. Ibid., vol. 52, pp. 264-268. 
1946a. Note on a conjecture of Skolem. Jour, symbolic logic, vol. 11, pp. 73-74.



532 BIBLIOGRAPHY

1 9 4 7 . Recursive unsolvability of a problem of Thue. Ibid., vol. 12, pp. 1-11.
194 8  abstract. Degrees of recursive unsolvability. Preliminary report. Bull. Amer. 

Math. Soc. vol. 54, pp. 641-642.
P r a n t l , C a r l

1 8 5 5 . Geschichte der Logik im Abendlande, vol. 1 , Leipzig (S. Hirzel), xii-f734 
pp. (O t h e r  v o l u m e s  1861, 1867, 1870.) Reprinted 1927.

P r e s b u r g e r , M .
19 3 0 . Vber die Vollstandigkeit eines gewissen System s der A rithmetik ganzer Zahlen, 

in  welchem die A ddition  als einzige Operation hervortritt. Sprawozdanie z I Kon- 
gresu Matematykdw Kraj6w Sfowia&skich (Comptes-rendus du I Congr&s des 
MatMmaticiens des Pays Slaves), Warszawa 1 9 2 9 , Warsaw 1930, pp. 92-101, 
395.

Q u i n e , W i l l a r d  V a n  O r m a n
19 4 0 . Mathematical logic. New York (Norton), xiii+348 pp. See Rosser 1942  

and Quine 1 9 4 1 , concerning the fact that the Burali-Forti paradox arises in 
the system of this book (although Cantor’s paradox apparently is avoided), 
as was discovered by Rosser and by Roger C. Lyndon. Revised ed., 
Harvard University Press, 1951, xii-f-346 pp.

1 9 4 1 . Element and number. Jour, symbolic logic, vol. 6 , pp. 135-149.
See Church and Quine.

R a m s e y , F. P.
1 9 2 6 . The foundations of mathematics. Proc. London Math. Soc., ser. 2, vol. 25, 

pp. 338-384. Reprinted as pp. 1-61 in The foundations of mathematics and 
other logical essays by F. P. Ramsey, ed. by R. B. Braithwaite, London (Kegan 
Paul, Trench, Trubner) and New York (Harcourt, Brace) 1931. The latter re
printed London (Routledge and Kegan Paul) and New York (Humanities 
Press) 1950.

R a s i o w a , H. a n d  S i k o r s k i , R .
1 9 5 0 . A proof of the completeness theorem of Gddel. Fund, math., vol. 37, pp. 193- 

200. For a simplification by Tarski, cf. Jour, symbolic logic., vol. 17, p. 72.
R i c h a r d , J u l e s

1 9 0 5 . Les principes des mathematiques et le probUme des ensembles. Revue ge
nerate des sciences pures et appliquees, vol. 16, pp. 541-543. Also in Acta 
mathematica, vol. 30 (1906), pp. 295-296.

R o b i n s o n , J u l i a
19 4 9  abstract. U ndecidability in  the arithmetic of integers and rationals and in  the 

theory of fields. Jour, symbolic logic, vol. 14, p. 77.
1 9 4 9 . D efinability and decision problems in  arithmetic. Ibid., pp. 98-114. For § 48 

above, her treatment for the positive integers can be adapted to the natural 
numbers.

19 5 0 . General recursive functions. Proceedings of the American Mathematical 
Society, vol. 1 , pp. 703-718.



BIBLIOGRAPHY 533

R o b i n s o n , R a p h a e l  M.
1947. P rim itive recursive functions. Bull. Amer. Math. Soc., vol. 53, pp. 925-942.
1948. Recursion and double recursion. Ibid., vol. 54, pp. 987-993.
1949 abstract. Undecidable rings. Ibid., vol. 55, p. 1050.
1950 abstract. A n  essentially undecidable axiom  system . Proceedings of the In

ternational Congress of Mathematicians (Cambridge, Mass., U.S.A., Aug. 
30-Sept. 6, 1950), 1952, vol. 1, pp. 729-730. Robinson's system is simpler than one 
we were using previously (since Mostowski and Tarski 1949 abstract) in §§41, 
49 and 76 for the same purpose.

R o s e , G e n e  F.
1952. Jankowski’s truth-tables and realizability. Doctoral dissertation, The 

University of Wisconsin.
R o s s e r , B a r k l e y  (Rosser, J. B.; Rosser, J. Barkley)

1935. A  mathematical logic without variables. Ann. math., 2 s., vol. 36, pp. 127-150 
and Duke math, jour., vol. 1, pp. 328-355. Relative to § 20 above, cf. p. 130, 
p. 329, and the note accompanying Kleene 1934.

1936. Extensions of some theorems of Gddel and Church. Jour, symbolic logic, 
vol. 1, pp. 87-91.

1936a. Review of Gddel 1936. Ibid., vol. 1, p. 116.
1939. Bn the consistency of Quine's “N ew  foundations for mathematical logic". 

Ibid., vol. 4, pp. 15-24.
1942. The B urali-F orti paradox. Ibid., vol. 7, pp. 1-17.
1942a. N ew  sets of postulates for combinatory logics. Ibid., pp. 18-27. For a cor

rection, cf. Curry 1948-9.
See Rosser a n d  Turquette, Rosser and Wang.

R o s s e r , J .  B. a n d  T u r q u e t t e , A . R .
1945. A xiom  schemes for m -valued propositional calculi. Jour, symbolic logic, 

vol. 10, pp. 61-82. Cf. 1950.
1 9 4 8 -5 1 . A xiom  schemes for m-valued functional calculi of first order. P a rt I . 

D efinition of axiom schemes and proof of p lau sib ility . Ibid., vol. 13 (1948), pp. 
177-192. P a rt I I .  Deductive completeness. Ibid , vol. 16 (1951), pp. 22-34.

1949. A  note on the deductive completeness of m -valued propositional calculi. Ibid., 
vol. 14, pp. 219-225.

1952. Many-valued logics. Studies in logic and the foundations of mathematics,
Am sterdam  (North-H olland Pub. Co.), v ii-f 124 pp.

R o s s e r , J .  B a r k l e y  a n d  W a n g , H a o
1950. Non-standard models for formal logics. Jour, symbolic logic, vol. 15, pp. 

113-129.
R u s s e l l , B e r t r a n d  (Russell, B. A. W.)

1902. On finite and infinite cardinal numbers (Section III  of A. X. W hitehead’s 
O11 cardinal numbers). Amer. jour, math., vol. 24, pp. 378-383.



534 BIBLIOGRAPHY

1902-3 . The Russell paradox appears in Frege 1903, in a postscript (dated by 
Frege October 1902), pp. 253-265. Concerning Zermelo’s independent discovery 
of this paradox, see Zermelo 1908a p. 119 and H ilbert 1926 p. 169.

1906. Les paradoxes de la logique. Revue de metaphysique et de morale, vol. 14, 
pp. 627-650.

1908. Mathematical logic as based on the theory types. Amer. jour, math., vol. 30,
pp. 222-262.

1910 . La theorie des types logiques. Rev. metaph. mor., vol. 18, pp. 263-301.
1 9 1 9 . Introduction to mathematical philosophy. London (G. Allen and Unwin) 

and New York (Macmillan), v iii-f 208 pp.. 2nd ed. 1920.
See W hitehead and Russell.

R u s t o w , A l e x a n d e r
1910. Der Liigner, Theorie, Geschichte und Auflosung. Leipzig (Teubner), 

v - f  147 pp.
R y l l - N a r d z e w s k i , C z e s l a w

1952. The role of the axiom of induction in elementary arithmetic. Fund. Math., 
vol. 39, pp. 239-263. Subsequently Mostowski obtained further results, 1952a.

S c h m i d t , A r n o l d
1938. Uber deduktive Theorien mit mehreren Sorten von Grunddingen. Math. Ann., 

vol. 115, pp. 485-506.
SCHONFINKEL, MOSES

1 9 2 4 . Uber die Bausteine der mathematischen Logik. Math. Ann., vol. 92, pp. 
305-316.

S c h r o d e r , E r n s t
1877 . Der Operationskreis des Logikkalkuls. Leipzig, v -f  37 pp.
18 9 0 -1 9 0 5 . Vorlesungen liber die Algebra der Logik (exakte Logik). Vol. 1,

Leipzig (Teubner) 1890, x ii-f 717 pp. Vol. 2 p art 1, Leipzig 1891, x iii+ 400  pp. 
Vol. 3 Algebra und Logik der Relative p a rt 1, Leipzig 1895, viii-f 649 pp. Vol. 2 
p art 2 appeared posthumously, ed. by  Eugen Muller, Leipzig 1905, xx ix -f 205 
pp. Abriss der Algebra der Logik, ed. by Muller, p a rt 1 Elementarlehre Leipzig 
and Berlin 1909, v -f  50 pp., p a rt 2 Aussagentheorie, Funktionen, Gleichungen 
und Ungleichungen, Leipzig and Berlin 1910, v i+ 5 1 -f  159 pp.

S c h u t t e , K u r t
1951 . Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie. 

Math. Ann., vol. 122, pp. 369-389.
S h e f f e r , H. M .

1913 . A set of five independent postulates for Boolean algebras, with application to 
logical constants. Trans. Amer. Math. Soc., vol. 14, pp. 481-488. According to  
Quine 1940 p. 49, the definability of &, V and -1 in term s of one operator was 
known to C. S. Peirce in 1880. (Cf. § 30 above.)



BIBLIOGRAPHY 535
S k o l e m , T h o r a l f

1919 . Untersuchungen iiber die Axiom e des Klassenkalkuls und uber Produk- 
tations- und Summationsprobleme, welche gewisse K lassen von A ussagen be- 
treffen. Skrifter utgit av Videnskapsselskapet i Kristiania, I. Matematisk-natur- 
videnskabelig klasse 1919, no. 3, 37 pp.

1920. Logisch-kombinatorische U ntersuchungen iiber die Erfullbarkeit oder Beweis- 
barkeit mathematischer Satze nebst einem Theoreme uber dichte Mengen. Ibid., 
1920, no. 4, 36 pp.

1922-3. Einige B enter kungen zur axiomatischen Begriindung der Mengenlehre. 
Wissenschaftliche Vortrage gehalten auf dem Fiinften Kongress der Skandi- 
navischen Mathematiker in Helsingfors vom 4. bis 7 . Juli 1922, Helsingfors 
1923, pp. 217-232.

1923. Begriindung der elementaren Arithm etik durch die rekurrierende Denkweise 
ohne Anwendung scheinbarer V eranderlichen m il unendlichem Ausdehnungs- 
bereich. Skrifter utgit av Videnskapsselskapet i Kristiania, I. Matematisk- 
naturvidenskabelig klasse 1923, no. 6, 38 pp.

1929. Uber einige Grundlagenfragen der M athem atik. Skrifter utgitt av Det Norske 
Videnskaps-Akademi i Oslo, I. Matematisk-naturvidenskapelig klasse 1929, 
no. 4, 49 pp.

1929- 30. Uber die Grundlagendiskussionen in  der M athem atik. Den Syvende 
Skandinaviske Matematikerkongress i Oslo 19-22 August 1929, Oslo (Broggers) 
1930, pp. 3-21.

1930-  1 . Uber einige Satzfunktionen in der Arithm etik. Skrifter utgitt av Det 
Norske Videnskaps-Akademi i Oslo, I. Matematisk-naturvidenskapelig klasse 
1930, no. 7, 28 pp. (1931).

1933. Uber die Unmoglichkeit einer vollstdndigen Charakterisierung der Zahlen- 
reihe mittels eines endlichen Axiom ensystem s. Norsk matematisk forenings 
skrifter, ser. 2, no. 10, pp. 73-82.

1934. Uber die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder 
abzahlbar unendlich vieler Aussagen m it ausschliesslich Zahlenvariablen. Fund, 
math., vol. 23, pp. 150-161.

1936-7 . Uber die Zuruckfuhrbarkeit einiger durch Rekursionen definierten Re- 
lationen auf ‘<arithmetische,>. Acta litterarum ac scientiarum Regiae Universita- 
tis Hungaricae Franscisco-Iosephinae, Sectio scientiarum mathematicarum
(Szeged), vol. 8, pp. 73-88.

1938. Sur la portee du theoreme de Lowenheim-Skolem. Les entretiens de Zurich 
sur les fondements et la methode des sciences mathematiques, 6-9 Decembre 
1938, Exposes et discussions, pub. by  F. Gonseth, Zurich (Leemann) 1941, 
pp. 25-47. Discussion on pp. 47-52.

1939. Eine Bemerkung iiber die Induktionsschem ata in  der rekursiven Zahlen- 
theorie. Monatshefte Math. Phys., vol. 48, pp. 268-276.

1944. Some remarks on recursive arithmetic. Det Kongelige Norske Videns- 
kabers Selskab, Forhandlinger, vol. 17, pp. 103-106. This is the second of a 
series of four notes, the others of which appear in the same volume, pp. 89-92, 
pp. 107-109, pp. 126-129.

1951 . Review of Rosser and W ang 1950. Jour. Symbolic logic, vol. 16, pp. 145-146.



536 BIBLIOGRAPHY

T a r s k i , A l f r e d
1930. Uber einige fundamentalen Begriffe der M etam athem atik . Comptes rendus 

des seances de la Societe des Sciences et des Lettres de Varsovie, Classe I II , vol. 
23, pp. 22-29.

1932. Der W ahrheitsbegriff in  den Sprachen der deduktiven D iszip linen . Akademie 
der Wissenschaften in Wien, Mathematisch-naturwissenschaftliche Klasse, 
Anzeiger, vol. 69, pp. 23-25. A prospectus for 1933.

1933. Der W ahrheitsbegriff in  den formalisierten- Sprachen. Studia philosophica, 
vol. 1 (1936), pp. 261-405 (offprints dated 1935). Tr. by L. B laustein from the 
Polish original 1933, w ith a postscript added.

1933a. Einige Betrachtungen uber die Begriffe der a-W iderspruchsfreiheit und der 
<0- V oil standi gkeit. Monatshefte Math. Phys., vol. 40, pp. 97-112.

1949 abstract. On essential undecidability . Jour, symbolic logic, vol. 14, pp. 75-76. 
1949a abstract. U ndecidability of group theory. Ibid., pp. 76-77.
1949b abstract. Undecidability of the theories of lattices and projective geometries. 

Ibid., pp. 77-78.
See Lukasiewicz and Tarski, Me Kinsey and Tarski, Mostowski and Tarski.

T h u e , A x e l
1914 . Problems uber Verdnderungen von Zeichenreihen nach gegebenen Regeln. 

Skrifter utgit av Videnskapsselskapet i Kristiania, I. Matematisk-naturvidens- 
kabelig klasse 1914 , no. 10, 34 pp.

T r a h t e n b r o t , B. A.
1950. NdvozmoZnost' algorifma did problim y razriU m osti na kon iln yh  klassah 

(Im possibility of an algorithm  for the decision problen in finite classes). 
Doklady Akademii Nauk SSSR, n.s., vol. 70, pp. 569-572.

T u r i n g , A l a n  M a t h i s o n
1936-7 . On computable numbers, with an application to the Entscheidungsproblem. 

Proc. London Math. Soc., ser. 2, vol. 42 (1936-7), pp. 230-265. A correction, 
ibid., vol. 43 (1937), pp. 544-546.

1 9 3 7 . Com putability and X-definability. Jour, symbolic logic, vol. 2, pp. 153-163. 
1 9 3 9 . System s of logic based on ordinals. Proc. London Math. Soc., ser. 2, vol. 45,

pp. 161-228.
1 9 5 0 . The word problem in  semi-groups with cancellation. Ann. of m ath., 2 s., vol. 

52, pp. 491-505. Some points in the proof require clarification, which can be 
given, as pointed out by Boone 1952.

V a n d i v e r , H. S.
1 9 4 6 . Fermat*s last theorem. I ts  history and the nature of the known results con* ' 

cerning it. Amer. math, monthly, vol. 53, pp. 555-578.
V e b l e n , O s w a l d

19 0 4 . A system  of axiom s for geometry. Trans. Amer. Math. Soc., vol. 5, pp. 343-384. 
See Veblen and Bussey.



BIBLIOGRAPHY 537

V e b l e n , O s w a l d  a n d  B u s s e y , W. H .
1 9 0 6 . F inite projective geometries. Ibid., vol. 7, pp. 241-259.

W a j s b e r g , M o r d e c h a j
1 9 3 8 . Untersuchungen uber den Aussagenkalkul von A . H eyting. WiadomoSci 

matematyczne, vol. 46, pp. 45-101.
W a n g , H a o

1 9 5 2 . Logic of m any-sorted theories. Jour, symbolic logic, vol. 17, pp. 105-116.
1 9 5 3 . Certain predicates defined by induction schemata. Ibid., vol. 18, pp. 49-59.
See Rosser and Wang.

W e y l , H e r m a n n
1 9 1 8 . Das Kontinuum. Kritische Untersuchungen iiber die Grundlagen der 

Analysis. Leipzig (Gruyter), iv+84 pp. Reprinted 1932.
1 9 1 9 . D er circuius vitiosus in  der heutigen Begriindung der A n alysis. Jahres- 

bericht der Deutschen Mathematiker-Vereinigung, vol. 28, pp. 85-92.
1 9 2 6 . Die heutige Erkenntnislage in der Mathematik. Sonderdrucke des Sympo- 

sion, Erlangen (im Weldkreis-Verlag), Heft 3 (1926), 32 pp. Also in Symposion 
(Berlin), vol. 1 (1925-7), pp. 1-32.

1 9 2 8 . Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag iiber die 
Grundlagen der M athem atik. Abhandlungen aus dem Mathematischen Seminar 
der Hamburgischen Universitat, vol. 6 , pp. 86-88 .

1 9 3 1 , Die Stufen des Unendlichen. Jena (Fischer), 19 pp.
1 9 4 4 . D avid H ilbert and his mathematical work. Bull. Amer. Math. Soc., vol. 50, 

pp. 612-654.
1 9 4 6 . M athem atics and logic. A brief survey serving as a preface to a review of “ The 

Philosophy of Bertrand R u ssell” . Amer. math, monthly, vol. 53, pp. 2-13.
1 9 4 9 . Philosophy of mathematics and natural science. Princeton, N.J. (Princeton 

University Press), x + 3 1 1 pp. Revised and augmented Eng. ed., based on a tr. 
by Olaf Helmer from the German original 1926.

W h i t e h e a d , A l f r e d  N o r t h  a n d  R u s s e l l , B e r t r a n d
1 9 1 0 -1 3 . Principia mathematica. Vol. 1 1910, x v + 6 6 6  pp. (2nd ed. 1925). Vol. 

2 1912, xxiv+772 pp. (2nd ed. 1927). Vol. 3 1913, x +  491 pp. (2nd ed. 1927). 
Cambridge, England (University Press).

Y o u n g , J o h n  W e s l e y
1 9 1 1 . Lectures on fundamental concepts of algebra and geometry. New York 

(Macmillan), vii-f-247 pp.
Z e r m e l o , E r n s t

1 9 0 4 . B ew eis, dass jede M enge wohlgeordnet werden kann. Math. Ann., vol. 59, 
pp. 514-516- Also cf. 19 0 8a.

190 8a. N euer Beweis fiir die M oglichkeit einer Wohlordnung. Ibid., vol. 65, pp. 
107-128.

1 9 0 8 . Untersuchungen uber die Grundlagen der Mengenlehre I . Ibid., pp. 261-281.



SYMBOLS AND NOTATIONS
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R ecursive  functions a n d  informal num ber  theory
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460, cf. Gentzen. 
em pty: conjunction etc. 441; expression 

70, 78, 382; range 226; set 9. 
endformula etc. 87, 107, 264. 
entity 247, 251, 259, 276. 
enumerable set 3, 427, cf. enumeration,

recursively.
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enumeration 4, 426; effective 398; — 
theorem  281, 341. 

Epimenides' paradox 39, 42, 45, 205, 501. 
equality (notions) 9, 13, 20, 127, 172, 

247, 328, (formal logic) 183, 197, 399, 
409, 418, 424, (recursiveness) 227, 
329; axioms for 399, 403, 424; — 

and predicate letter formula 399. 
equation 264, 277; system of —’s 264,

276, 277.
equivalence (notions) 9, 113, 225, 320, 

328, 334, 383, 386, 401, 406, (formal 
logic) 114, 116, 151, 161, (recursive
ness) 228, 329, 337; — classes 9, 
401; — relation 401, 424; — theorem

11.
erasure (Turing machine) 358. 
essential undecidability 437.
Eubulides’ paradox 39, cf. Epimenides. 
Euclid 27, 53, 60, 136, 191; —’s theorem 

on primes 191, 230, 286; cf. geometry, 
excluded middle, law of the (informal) 

47, 52, 57, 175, 196, 281, 296, 318, 
333, 394, (formal) 119, 120, 134, 190, 

191, 192, 483, 487, 511, 513. 
exclusive: disjunction 138; predicates, 

relations 1 1, 229.
exhaustive: predicates, relations 1 1 . 
existence 49, 70, 225, 501, 509; unique 

199, 225, 408; cf. introduction, pred
icate calculus, quantifiers, 

existential: quantifier 73; cf. actual, 
formal axiomatics. 

explicit: definition 220, 406; occurrence
etc. 156, 160.

exponents 222, 230. 
exportation 113.
extension (function) 324, 338, (system) 

89, 94, 130, 310, 405, 428, 436, 514. 
external inconsistency 2 1 2 . 
extremal clause 20, 259.
falsity 125, 127, 500, cf. truth. 
Fermat's “last theorem” 47, 50, 138,

435.
Feys, R. 141. 
fields 439.
finitary methods 63, 479, 498.

finite: axiomatizability 436, cf. 427; 
cardinal 12, 44; domain 168, 178, 400, 
435, 464; extension 437; sequence 5, 

70; set 12, 14; cf. finitary. 
Finsler, P. 212. 
f-less transform 411, 417, 419. 
formal axiomatics 28, 41, 53, 60, 421. 
formal calculation 194, 241, 262, 295,

322.
formal deduction 87.
formal expression 70.
formal implication 138.
formal induction 181, cf. induction.
formal inference 83.
formal mathematics 53, 62.
formal objects 62, 64, 70, 85, 249, 251,

265.
formal proof 65, 83, 85, 249, 254, 299. 
formal symbols 69, 249, 265. 
formal system (concept) 62, 69, 246, 265, 

299, 306, 323, 422, 434, 436, (examples) 
cf. eliminability, Gentzen, number 
theory, predicate calculus, proposi
tional calculus; — for a number- 
theoretic predicate (Thesis II and 
converse) 301, 304, 323, 404; cf.

formalism, formalization, 
formal theorem 83, 85. 
formal theory 62, 65. 
formalism 43, 46, 59, 204, 479; a — cf. 

formal system; number-theoretic, cf. 
number theory; — of recursive

functions 263, 276. 
formalization 53, 59, 69, 210, 245, 298, 

396, 422; cf. formal system, for
malism.

formation rules 72. 
formula 61, 72, 137, 248, 252, 441. 
F-quantifier 412. 
fraction 4, 56, cf. decimal, dual. 
Fraenkel, A. 16, 40, 45, 426, 517. 
free: 76, 253; for 79, 253; substitution 

80, 156; at substitution positions 79; 
term 79, 253, 410; variable 76, 148,

161.
Frege, G. 9, 43, 44, 61, 88, 250. 
f-term 410.
function: 32, (notation) 33, 34; as a —
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354; letter 263, 266, 276, 277; symbol 

70, 263, 403, 407, 417, 464.
functional 234, 275, 326, 362.
fundamental: inductive definition 258;

theorem of arithmetic 230.
Galileo’s “paradox” 3, 14, 46.
gap (Turing machine) 364.
Gauss, C. F. 26, 30, 48, 52, 56, 230.
general properties of f- 89, 104, 444.
general recursive: class 307; function

274, cf. recursive function; functional
275, interpretation 464, predicate 276, 
cf. recursive predicate; scheme 275;

set 307; tru th  465, 500, 516.
generality 49, 69, 225, 502; — inter

pretation 149; — quantifier 73; cf. 
introduction, predicate calculus, quan

tifiers.
generalized arithmetic 246, 259, 276,

290.
genetic method 26, 53.
Gentzen, Gl  37, 69, 89, 100, 141, 225, 

440, 445, 453, 460, 463, 476, 478, 479, 
480, 495; — s consistency proof for 
number theory 476, 498, 499; —'s 
Hauptsatz (normal form or elimi
nation theorem) 440, 450, 453, 460, 
475, 476, 479, 492, 513, extended 
460, 463, 475; — type systems 441, 
460, 478, Gl 442, G2 450, G3 480,

G3a 481.
geometry (analytic, Cartesian) 17, 54, 

(Euclidean, non-Euclidean) 17, 27, 40, 
41, 54, 55, 430, 514, (foundations) 28, 

60, 475, (projective) 55, 439.
given function letter 266.
Glivenko, V. 492.
Godel, K. 16, 41, 46, 141, 204, 211, 212, 

213, 221, 225, 227, 239, 240, 241, 246, 
274, 317, 320, 321, 326, 389, 393, 397, 
398, 400, 425, 437, 486, 493, 495, 497, 
514; —’s p-function 240, 243; —’s 
completeness theorem 389, 393, 394, 
397, 400, 422, 423, 427, 430, 436; —'s 
(incompleteness, undecidability) the
orem 204, 207, 211, 258, 274, 287, 304, 
308, 426, 430, 431, 514, generalized

form of 302, 308, 430, 431, Rosser’s 
form of 208, 308, symmetric form of 
(and W v  W t ) 308, 309, 316, 332, 470, 
516; — numbering 206, 246, 254, 276, 
281, 288, 290, 296, 300, 313, 322, 381, 
386, 394, 398, 431, 434, 501, 502, 510, 
cf. recursive functions, Turing, —’s 
reduction of classical to intuitionistic 
systems 211, 493, 495, 497, 514; —’s 
second theorem (on consistency 
proofs) 210, 305, 476, 478, 479, 498,

501.
Gonseth’s paradox 38. 
group 29, 439; semi- 382, 386.
Hall, M. 386.
Hasenjaeger, G. 398.
Hausdorff, F. 16. 
height 107.
Henkin, L. 389, 432, 492.
Herbrand, J. 98, 154, 179, 274, 326, 440,

460, 463.
Hermes, H. 246.
Heyting, A. 51, 52, 57, 140, 166, 487, 

491, 492, 497, 509, 517. 
Hilbert, D. 26, 28, 43, 53, 55, 57, 58, 

61, 63, 136, 271, 318, 415, 424, 478; 
— Ackermann cf. Ackermann; — Ber- 
nays cf. Bernays; — type system 441. 

hypothesis of the induction 22.
ideal: elements 55; statements (Hilbert) 

55, 213, 475, 513.
idempotent laws 118. 
identical: act, schema etc. 267, 362, 380, 

461; equation, tru th  etc. 127, 149,
172.

identity, cf. equality; — function 220;
principal of 113. 

imaginary (complex) numbers 56, 475. 
immediate: consequence 83, 254, 277;

dependent 220. 
implication (interpretation) 51, 69, 138, 

141, 225, 498, 502, (formal logic) 69, 
113, 118, 124, 154, 167, cf. intro
duction, propositional connectives, 

tru th  tables.
importation 113.
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impredicable (paradox) 38. 
impredicative definition 42, 44. 
improper subset 10 . 
inclusive disjunction 138. 
incompletely defined function 326. 
incompleteness (results) 207, 208, 213, 

274, 302, 309, 416, 427, 430, 511, cf.
CodeEs theorem, 

inconsistency, cf. consistency, 
indefinite description 347. 
independent variable 32. 
index in an enumeration 4. 
indirect proofs 49, 52, 497. 
individual 29, 44, 145, 180; — symbols 

70, 162, 403, 407, 419, 421, 464;
— variables 145. 

induction 21, 44, 46, 93, 181, 193, 247, 
259, 274, 427, 429, 432, 476, 498;
— axiom 20, 429, 432; — cases 186; 
definition by 217, 287, cf. recursion;
— number 22, 478; — postulate (or 
schema) 181, restricted 204, 472, 
generalized 476; — predicate (or 
proposition) 22, 430, 479; — rule

181; — step 2 2 ; — variable 2 2 . 
inductive definition 20, 258, 306. 
inequalities 118, 187, 197, 225, 229. 
inference 83; rules of 60, 83. 
infinite: cardinal 13; descent 193, 478;

sequence 7, 8, 17; set 13, 14. 
infinity, axiom of 46, 425; points at 

56; problem of 46; cf. actual, po
tential.

informal: 41, 62, 64, 69, 85, 181; 
axiomatics 28, 41, 53; induction 181; 
mathematics 62, 69; presentation 181;

symbolism 225; theory 65. 
initial: function 219; state etc. 357; 367. 
input (Turing machine) 367. 
integer 3, 4, 56, 439, 530, 532. 
interchange 121, (Gentzen) 443, 444; — 

of premises 113. 
interdeducible formulas 151, 154, 398,

435.
interpretation 57, 64, 69, 125, 130, 138, 

143, 175, 194, 212, 303, 421, 430, 478, 
499, 501; — of variables 146, 149, 227. 

intersection of sets 10 , 16.

introduction and elimination of logical
symbols 98, 102, 106, 147, 148, (Gent
zen) 442, 451, 480; strong 105; weak 
negation elimination 1 0 1 ; cf. varia

tion.
intuitionism 43, 46, 53, 56, 59, 63, 318, 

497, 513, cf. intuitionistic. 
intuitionistic: informal logic, mathema

tics, meanings 48, 281, 291, 318, 333, 
336, 497,501, 516; formal logic, formal 
systems 51, 101, 114, 119, 120, 140, 
163, 165, 190, 192, 194, 414, 442, 444, 
479, 486, 487, 492, 504; — set theory 

52, 491, 515.
intuitive, cf. informal, intuitionism. 
inverse laws 186.
Iongh, J. J. de 492, 497, 498. 
irrational numbers 17, 31, 56. 
irredundant proof 482. 
irreflexiveness 188. 
irrefutable formula 389, 423. 
isomorphic systems 25.
Jankowski, S. 98, 141. 
juxtaposition 71.
Kalmar, L. 135, 285, 286, 287, 518. 
Kemeny, J. G. 432. 
k -equality 172, 400.
/e-fold recursion 273.
£-identity 172, 178, 400.
Kleene, S. C. 88, 135, 261, 274, 275, 

279, 281, 282, 284, 286, 287, 288, 293, 
302, 304, 306, 307, 312, 320, 322, 324, 
325, 326, 335, 337, 350, 353, 355, 382, 
460, 487, 492, 503, 508, 511, 514, 515,

516.
Klein, F. 54.
£-predicate calculus 177.
£-proposition letter formula 177.
&-recursive function 273.
Kreisel, G. 431.
Kronecker, L. 19, 46, 320 (8*), 498. 
^-transform 177, 178.
Kuznecov, A. V. 289.
lambda-definability 320, 382.
Langford, C. H. 45, 141, 335.
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language 61, 69, 249, 265. 
lattices 439, 492.
least num ber: operator (s) 317, 324, 

414, (p) 225, 228, 279, 289, 295, 323, 
327, 329, 330, 347, 350, 414; principle 

189, 200, 511.
least upper bound 31, 43.
Leibnitz, G. W. v. 43, 61.
letter: formula in =  , P v  . . .  P s 399;

ra-tuple 132; in a semi-group 382. 
Lewis, C. I. 138, 141, 335. 
liar, the (paradox) 39, cf. Epimenides. 
limit 32, 348. 
linear order 29.
Liouville, J. 7.
Lobatchevsky, N. I. 28, 54. 
logic 46, 51, 60, 69, 80, cf. formal 

system, formalization, predicate cal
culus, set-theoretic, 

logical: constant 436; function 169, 389; 
notion 28, 60; operator 73; rules 442;

symbol 69.
logicism 43, 59, 180. 
logistic method 61, cf. logicism. 
Lowenheim, L. 136, 394, 427, 436; —’s 

(or the — Skolem) theorem 394, 398, 
400, 425, 426, 427, 428, 436. 

Lukasiewicz, J. 140, 335. 
lying Cretan, the 39, cf. Epimenides. 
Lyndon, R. C. 532.
machine cf. Turing.
MacLane, S. 154. 
major premise 264.
Mannoury, G. 38, 498.
Markov, A. A. 289, 382, 386. 
material: axiomatics 28, 41, 53; im

plication 138. 
mathematical: induction cf. induction;

logic cf. formal system. 
McKinsey, J. C. C. 141, 522. 
meaning (classical mathematics) 57, 478, 

(functional notation) 33, 227 (logical 
symbolism) 225, cf. interpretation, 

member of a set 9.
memory (Turing machine) 356, 366, 379. 
Meray, C. 30. 
meta- 63.

metamathematical: letters, symbols,
variables 62, 70, 140, 250, 265; def
initions, functions, predicates, re
cursion 72, 80, 251, 258, 276, 290; 
induction, proofs, theorems 85, i81. 

metamathematics 55, 59, 62, 63, 69, 80, 
85, 175, 176, 423; arithmetization of 
246, 276, 290, 396; cf. formal system,

formalism.
metatheory 62, 65.
midsequent 460.
minor premise 264.
mix 450, 453; — formula 450.
modal logic 141.
model 25, 53, 422, 463, 475.
modus ponens 98.
Mostowski, A. 284, 287, 293, 297, 304, 

321, 430, 432, 437, 439, 492, 534. 
motion (Turing) 357, 358, 379, 380. 
multiplication cf. product, 
mutually exclusive relations 11.
name 71, 250, 265.
name form: 142, 146; interpretation 

146, 227; occurrence 157; prime — 
161; — replacement 161; variables 

142, 143, 146.
n-ary relation 144.
natural number 3, 12, 19, 44, 48, 51, 

217, 427, 432, 530, cf. number theo-
ry.

negation (interpretation) 51, 69, 138, 
225, 498, 502, (formal logic) 69, 101, 
113, 118, 121, 166, 407, cf. introduc
tion, intuitionistic, propositional con

nectives, tru th  tables. 
Nelson, D. 211, 223, 409, 487, 492, 504,

511, 514, 515.
nested recursion 271.
Neumann, J. von 9, 40, 53, 57, 140, 204, 

425, 437, 440, 463, 472. 
non-arithmetical predicates 287, 292,

315, 479, 501. 
non-constructive : logics 321, 431; proofs

49, 52.
non-enumerable sets 6, 16, 175, 423, 425. 
non-Euclidean geometry cf. geometry, 
non-intuitionistic methods 48, 51.
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non-recursive : functions 324; predicates 
283, 310, 316, 332, 382. 

normal form, conjunctive etc. 134, 136;
— for proofs (Gentzen) 440, 453, 460;
— for recursive functions 288, 292,

330; Skolem 435; cf. prenex. 
normal systems (Post) 320. 
notions 28. 
n -tuple 5, 17, 33.
number 3, 6, 9; 12, 14, 16, 19, 29, 56,

476.
number theory 29, 51; formal 69, 82, 97, 

98, 181, 241, 252, 258, 295, 305, 310, 
314, 395, 406, 407, 414, 419, 427, 
492, 495, 501; — with restricted in
duction schema 204, 472, 476; without 
• 204, 407, 474; cf. analytic, Robin

son’s system.
number variable 70, 263. 
number-theoretic: formula 108; function 

7, 17, 33, 38, 198, 217, 414, 509; 
predicate 226, 389; cf. number theory, 

numeral 177, 195, 252, 254, 255, 263, 
278; generalized 465. 

numeralwise: decidable formula 196, 
297; expressible predicate 195, 200, 
206, 244, 296, 298; representable 

function 200, 243, 295, 298. 
n-valued logic 140, 179, (for n  =  3)

332, 335, 515.
object 24, 144; function as an 354;

— language 63; system of —’s 24;
— theory 62, 65; — variable 144; cf.

formal objects.
observation (Turing) 356, 378, 381. 
occurrence 70, 155, 441. 
omega-completeness 212. 
omega-consistency 207, 212, 304. 
one-place predicate calculus 398, 436. 
one-to-one correspondence 3, 9, 426. 
open formula 151. 
operation 32, ,358. 
operator, formal 73; logical 73. 
order 29, (cardinals) 10, (natural num

bers) 13, 21, 187, (reals) 31; first, 
second, higher 180, 421; within a

type 44.

ordinals 16, 476; constructive 325. 
ordinary notions 28, 60. 
oscillation, function of large 289. 
output (Turing machine) 358, 367.
pairing of parentheses 23, 73. 
paradoxes 36, 40, 42, 45, cf. Epimenides, 

Galileo, Richard, Skolem, Zeno, 
parameters 34, 150; — in recursion 218,

235, 342, 344. 
parentheses 23, 70, 73, 250. 
partial function 325, 332, 341, 351. 
partial order 29, 106. 
partial predicate 327. 
partial recursive: function 326, cf. re

cursive function; functional 326; pred
icate 328; scheme 326.

Pasch, M. 61.
passive: state etc. 357, 367.
Paul (the apostle) 39.
Peano, G. 20, 43, 61; —’s axioms 20, 

26, 186, 429, 432, (generalized) 247, 
cf. induction.

Peirce, C. S. 61, 534.
Peter, R. 223, 231, 271, 272, 273, 395,

476
plain f-term 410.
Poincare, H. 30, 42, 46. 
point set 9, 18.
Poncelet, J. V. 55. 
positive integer 3, 530, 532.
Post, E. 135, 140, 284, 289, 293, 301, 

306, 307, 315, 320, 321, 343, 346, 356, 
361, 379, 382; —’s theorem 293, 395, 

402; — word 384. 
postulates 26; — of a formal system 80; 

lists of 82, 442, 481; respective 99,
106, 459.

postulational method 26, cf. axiomatic, 
potential: infinity 48, 62, 70, 357, 363;

recursiveness 324, 331, 332. 
Prantl, C. 39.
predecessor 223; generalized 247. 
predicate 143, 144, 226. 
predicate calculus 82, 97, 98, 142, 389, 

432, 435, 440, 480, 487, 492, 495, 513; 
— with equality 399, 408, 417, 424, 
432; higher etc. 179, 213, 321, 430,



INDEX 547
432; — interpreted in a finite domain 
168, 178, 400, 435, 464; one-place 398, 
436; — with postulated substitution 
179, 398, 435; subsystems of 106, 
154, 459; cf. quantifiers, set-theoretic, 

predicate inference 460. 
predicate interpretation 146, 227. 
predicate le tter: 142, 179; formula 143, 

equality and 399, 400, in 156, k- 177, 
with numerals 390; propositional cal
culus 109; interpretation of —s 145, 

168, 174, 421.
predicate logic cf. set-theoretic, 
predicate symbol 70, 403, 421, 464. 
predicate variable 179, 180, 398, 435. 
premise 83, 264.
prenex: form, formula 167, 285, 389, 

435, 465, 466, 500, 516. 
Presburger, M. 204, 407, 474. 
prime : formula etc. 111, 112, 161, 201, 

410, 493; number etc. 191, 230, 239,
286.

primitive notions 28, 60. 
primitive recursion 218, 221. 
primitive recursive : derivation 224; de

scription 220; function 219, 223, 228, 
234; predicate 227, 235; scheme 234, 

238; tru th  474. 
principal: branch 267; disjunctive

normal form etc. 134; equation 267; 
f-less transform 411, 417, 419; formula 

443; function letter 266. 
printing (Turing machine) 357, 358. 
procedure cf. decision, valuation, 
product (natural numbers) 186, 201, 

204, 222, 239, 285, 407, 439, 526, (sets) 
10, 16; finite 224, 285; logical 179. 

projective geometry 55, 439. 
proof (formal) 65, 83, 85, 137, 249, 254, 

444, (informal) 85; — schema 84; 
— theory 55, cf. metamathematics;

— thread 107. 
proper : pairing 23; subset 10. 
property 44, 144.
proposition letter 108, 139, 177; — 

formula 108, in 109, k- 177, with 
numerals 390.

proposition variable 139.

propositional calculus 82, 90, 98, 108, 
190, 406, 442, 479, 486, 492, 504, 513; 
— with postulated substitution 139;

subsystems of 106, 154, 459. 
propositional connectives 73, 226, 334, 

(recursiveness) 226, 228, 237, 329, 
337; cf. propositional calculus, tru th

tables.
propositional function 144, 226. 
propositional inference 460. 
provable formula 81, 83, 137, 258, 261, 

299, 301, 302, 304, 306, 423, 435. 
pure: number theory 30; predicate 

calculus 143, with equality 399; prop
ositional calculus 109; variable proof

etc. 451.
Pythagoras 31, 47, 60.
quantifiers 73, 76, 151, 162, 165, 177; 

contraction of 285; F- 412; cf. bound
ed, introduction, predicate calculus, 

recursive predicates. 
Quine, W. V. 46, 241, 250, 265. 
quotation marks 250, 265. 
quotient 188, 202, 223, 285, 414, 526.
Ramsey, F. P. 45.
range 32; — of definition 326, 331. 
rank (logical operators) 74.
Rasiowa, H. 389. 
rational numbers 4, 29, 31, 439. 
rea l: functions 18; numbers 6, 17, 30, 

43, 52, 361; statements (Hilbert) 55, 
213, 475, 513.

realizability 503; P- 515. 
realization: function 503; number 502. 
reckonable function 295, 298, 320, 321,

322, 323.
recursion 217, 221, 231, 232, 233, 237, 

252, 258, 260, 270, 276, 351, (arithme
tical equivalents) 241, (elementary 
equivalents) 286; — theorem 352, 
first 348, 354, 374; cf. recursive

function.
recursive class 307.
recursive functions 219, 234, 273, 274, 

320, 324, 326; applications of 217, 
258, 298, 308, 313, 314, 325, 382, 395,
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427, 432, 437, 502; — defined re
cursively by a system of equations 
266, 275, 326, by a number {Godel 
numbers of) 289, 292, 319, 330, 337, 
340, 352, 354, 416, 510; formalism 
of 263, 276; normal form of 288, 
292, 330; — in the number-theoretic 
formalism (including eliminability 
theory) 243, 295, 407, 415, 471, 515;
— of zero variables 223, 238, 274;

cf. Church's thesis, 
recursive functional 234, 275, 326. 
recursive predicates 227, 235, 276, 328; 

applications of cf. recursive functions;
— under quantification 281, 292, 337. 

recursive realizability cf. realizability, 
recursive scheme 234, 275, 326. 
recursive set 307.
recursively enumerable set 306, 311, 320,

343, 346, 398. 
reducibility, axiom of 44; — of the 

decision problem 314, 435, 436; 1-1 
343; cf. degree, 

reductio ad absurdum 15, 86, 99. 
redundant: axioms, postulates 406. 
reflexive laws 9, 114, 183, 399, 404. 
refutable formula 194. 
regular table 334. 
relation 144.
relative recursiveness 223, 227, 234, 235, 

275, 289, 298, 326, cf. recursive 
function, uniformity; 

relatively prime numbers 239. 
remainder 188, 202, 223, 239, 414. 
replaceability of function symbols by 

predicate symbols 417, 419, 424. 
replacement 115, 151, 161, 184; — in all 

occurrences 109, 115, 117; — in the 
formalism of recursive functions 264, 
274, 277; lemmas for 116, 152, 185;
— property of equality 185, 399, 404, 
of equivalence 117, 152, 161, cf. 154; 
special — properties 183; — theorem

116, 151, 184. 
representation: of a system 25; on a Tur

ing machine tape 359, 364, 377, 381. 
representing: function 8, 227; predicate

199, 293, 318.

residues 25, 27, cf. remainder, 
resolvable predicate 295, 296, 298, 305,

321.
restricted: induction schema 204, 472, 

476; predicate calculus 180. 
restriction on variables 442. 
resulting deduction 94.
Richard's paradox 38, 42, 45, 341. 
Robinson, J. 241, 320, 439.
Robinson, R. M. 197, 223, 272, 297, 437, 

439; —*s system 197, 204, 244, 296, 
305, 310, 315, 321, 419, 433, 437, 

439, 470, 472.
Rose, G. F. 515, 526.
Ross, J. D. 204.
Rosser, J. B. 88, 140, 179, 208, 282, 

307, 308, 312, 320, 321, 407, 432, 437,
526.

Russell, B. 9, 37, 38, 42, 43, 44, 45, 46, 
61, 407; —*s paradox 37, 40, 42, 45. 

Rustow, A. 39.
Ryll-Nardzewski, C. 427.
satisfiability 172, 174, 389, 400, 423, 

435; joint 390. 
satisfying assignment 389. 
scanned: square, symbol 357, 360. 
schema, axiom etc. 81, 84, 87, 140, 234;

recursive 219, 234, 267, 275, 279, 326. 
Schmidt, A. 179.
Schonfinkel, M. 34, 321.
Schroder, E. 61, 123, 136.
Schiitte, K. 479. 
scope 73, 88, 150.
sequence 5, 7, 16, 19,32, 70; — form 106. 
sequent 441.
set 1, 9, 40; — theory 1, 9, 16, 40, 477, 

axiomatic 40, 45, 425, intuitionistic 
52, 491, 515, relativization of 427. 

set-theoretic predicate logic 175, 389,
400, 421, 435. 

several-sorted predicate calculus 179,
2̂0.

Sheffer stroke 139. 
side formula 443. 
signifies 498.
Sikorski, R. 389. 
similar sets 477.
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simple: completeness 194, 304, 309; 
consistency 124, 297, 304, 309, 314,

cf. 391.
simultaneous: induction 193; recursion 

233, 252, 272; satisfiability 390. 
situation (Turing machine) 357.
Skolem, T. 40, 41, 273, 287, 394, 398, 

426, 427, 431, 432, 435, 436, 476; 
—'s normal form 435; —'s paradox

426.
square (Turing machine) 357, 380. 
standard position 360. 
state (Turing machine) 357, 362, 377. 
strict implication 141, cf. 138. 
strong: introduction etc. 105; senses, 

tables, etc. 334, 336. 
structural: inference 460; rules 443, 444,

480.
subformula 449; — property 450. 
subset 9, 426; set of —'s 8, 15, 425, 426. 
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