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ARTICLE INFO ABSTRACT

Keywords: Till date, only three techniques namely Zinc Finger Nuclease (ZFN), Transcription-Activator Like Effector
CRISPR-Cas9 Nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9
Genome editing (CRISPR-Cas9) are available for targeted genome editing. CRISPR-Cas system is very efficient, fast, easy and
xgzi ;’I;“ cheap technique for achieving knock-out gene in the cell. CRISPR-Cas9 system refurbishes the targeted genome

editing approach into a more expedient and competent way, thus facilitating proficient genome editing through
embattled double-strand breaks in approximately any organism and cell type. The off-target effects of CRISPR
Cas system has been circumnavigated by using paired nickases. Moreover, CRISPR-Cas9 has been used effec-
tively for numerous purposes, like knock-out of a gene, regulation of endogenous gene expression, live-cell
labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The ex-
ecution of the CRISPR-Cas9 system has amplified the number of accessible scientific substitutes for studying gene
function, thus enabling generation of CRISPR-based disease models. Even though many mechanistic questions
are left behind to be answered and the system is not yet fool-proof i.e., a number of challenges are yet to be
addressed, the employment of CRISPR-Cas9-based genome engineering technologies will increase our under-
standing to disease processes and their treatment in the near future. In this review we have discussed the history
of CRISPR-Cas9, its mechanism for genome editing and its application in animal, plant and protozoan parasites.
Additionally, the pros and cons of CRISPR-Cas9 and its potential in therapeutic application have also been
detailed here.

1. Introduction

With the evolution of whole genome sequencing methodologies,
new challenges like discovery of specific gene functions and persona-
lized medicine have intrigued scientists around the globe. To overcome
these challenges, efficient and reliable tools are needed to derive in-
formation regarding the influence exerted by genotype on phenotype.
In the era of modern scientific advancement, targeted genome editing
technologies have outperformed other molecular tools in overcoming
these challenges. Since then, targeted genome editing has become one
of the most popular topics of investigation. As a result, components of
the repair system were studied extensively and nucleases were modified
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in order to create artificial systems that would bind to a specific se-
quence of DNA and bring about desired modifications precisely. The
speciality of these systems rests in the fact that it can work at the
genome level, enabling in-situ alterations, which drives the develop-
ment of a plethora of genome editing systems.

This manuscript compiles a thorough and detailed review of the
existing genome editing techniques, with an appropriate emphasis on
CRISPR-Cas9. Unlike other published reviews in this field, here we
additionally deal with other systems like plant and protozoan parasites.
We also shed light on the pros and cons of CRISPR-Cas9 and its po-
tential in therapeutic application.
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1.1. Zinc Finger Nuclease (ZFN)

The classical in-vivo gene targeting method involves normal homo-
logous recombination which is low in efficiency, time consuming and
laborious. It was overcome with the advent of ZFN (Zinc Finger
Nuclease) and TALEN (Transcription-Activator Like Effector Nucleases)
as genome editing tools, carrying the catalytic domains of the restric-
tion endonuclease Fokl, which generates a Double Strand Break (DSB)
with cohesive overhangs, which played a pivotal role in extracting gene
function information by targeted genome editing. However, with the
advancement of science, more updated and efficient gene manipulation
technique has come in the limelight namely CRISPR (Cluster Regularly
Interspaced Short Palindromic Repeats)/CRISPR associated system (Cas
system), adapted from the bacterial adaptive immune system [1]. This
advancement has made functional genomics more reliable by permit-
ting precise alteration or inhibition of gene function at ease. Such data
are of significant importance in the areas of medicine or therapeutics
[2].

Zinc Finger nucleases are synthetic DNA binding proteins having
two domains connected by a linker sequence - the first is an engineered
zinc-finger DNA binding domain responsible for sequence specificity of
a 24 bp stretch of DNA and the second is a restriction endonuclease FokI
mediated DNA cleaving domain which cleave the sequence in 5-7 bp
spacer sequence [3,4] (Fig. 1). The first domain consists of three sets of
zinc fingers where each finger is constituted of approximately 30 amino
acids linked to a single zinc atom and binds 3 bp of DNA. The cleavage
domain is non-specific. It executes its function in a dimeric form, tar-
geting the opposite strands.

1.2. Transcription activator like effector Nuclease (TALEN)

TALENs are based on highly repetitive sequences promoting
homologous recombination in vivo. Similar to ZFNs, the TALENs also
contain two domains — N-terminal transcription activator like effector
(TALE) DNA-binding domain and the C-terminal catalytic domain of
restriction endonuclease FokI (Fig. 2). The nuclease domain is asso-
ciated with the DNA binding domain by a linker sequence and the two
binding sites are separated by a 12-25 bp sequence known as spacer
sequence. Additionally, TALENSs also function in dimeric form to make a
double stranded break and the binding sites are located on opposite
strands. The DNA binding domains are composed of monomers con-
taining tandem repeats, two of which are highly variable and each of
which recognises and binds to a single nucleotide in the target se-
quence. This variability is responsible for the recognition of specific
DNA sequences and thus can be comparatively easier to engineer than
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ZFN. The target sequence of TALEN pairs is usually 30-40 bp in length.

Genome editing using ZFN and TALEN, has played an important role
in targeted gene editing. However, their use has been limited by certain
factors, which are their complexity, difficulty and expensiveness. Due to
this, researchers have been compelled to produce a simple, reliable,
efficient and an affordable approach for precise genome modification. It
has therefore resulted in the development of the gold standard genome
editing technology, the CRISPR-Cas9 system. The CRISPR-Cas9 system
involves two components, Cas9, a signature endonuclease and guide
RNA (gRNA) molecules. Table 4 shows a comparison between ZFNs,
TALENs and CRISPR-Cas9 with respect to the major properties of the
genome editing tools. In this review we bring forward the detailed
overview of CRISPR-Cas9 system in the light of basic science and ap-
plications in genome engineering.

1.3. CRISPR-Cas9 system

1.3.1. Evolution of the CRISPR-Cas 9 system

The chronicles for the discovery of CRISPR starts in 1987, when
Ishino et al. [5] noted the presence of a 29 nucleotide repeat in Es-
cherichia coli, which were interrupted by unrelated, non-repetitive short
sequences (spacers). These were followed by several reports of similar
sequences in other microbes. In 2000, the presence of similar repeats
was reported in most prokaryotes and was then named ‘CRISPR’ by
Ruud Jansen [6]. The significance of the spacers being derived from
foreign sources was established in 2005 [7]. Thereafter 4500 CRISPR
sequences from 67 strains representing both bacteria and archaea were
sequenced [7]. In the same year, Pourcel et al. reported that CRISPR
elements in Yersinia pestis acquire new repeats by preferential uptake of
bacteriophage DNA, followed by the discovery of the Protospacer Ad-
jacent Motif (PAM) sequences by Bolotin and others [8,9]. In 2013, it
was reported that similar to eukaryotes, prokaryotes have an adaptive
immune system and the CRISPR system is an integral part of it [10]. In
2008, the activity of CRISPR on DNA targets was established [11]. It
was reported that spacers would be transcribed into mature CRISPR
RNA (crRNAs) which can act as small guide RNAs (sgRNAs) [12]. The
spacer-guided Cas9 can cleave target DNA generating Double Strand
Breaks [13]. This was followed by the expression of Type II CRISPR in
other organisms in 2011 [14]. In the same year, it was observed that
trans-activating crRNA (tracrRNA) forms a duplex structure with crRNA
and Cas9 and is essential for Cas9 activity and thereafter Caribou
Biosciences, California started to use CRISPR technology for several
therapeutic purposes [15]. In 2012, scientists concluded that CRISPR
technology can be used in genome editing and in-vitro characterization
of DNA targeting by Cas9 was performed [16]. The system was
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Fig 1. Schematic representation of Zinc Finger Nucleases: Each ZFN comprises a Zinc Finger protein domain (orange) at the N terminus and a FokI nuclease domain
(blue) at the C-terminus. The FokI cleavage domain acts as dimer form to cleave the target sequence in 5-7 bp spacer sequence.
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Fig 2. Schematic representation of Transcription Activator Like Effector Nucleases (TALENs): Each TALEN monomer consists of a nuclear location signal (NLS), 152
amino acids deletion N-terminal, 63 amino acids from C-terminal, the TALE repeat domains, and modified Fok I nuclease domain ELD/KKR. Each TALE repeat unit
consists of 34 amino acids, in which the amino acids at positions 12 and 13 are called ‘repeat-variable di-residues’ (RVDs). The RVD determine binding specificity to
DNA bases following the code that NG, NI, HD, and NN respectively recognized thymine, adenine, cytosine and guanine.

Table 1
Development of research on CRISPR-Cas system.

Year Major advances in understanding of CRISPR/Cas system Reference
1987 Establishment of the existence of CRISPR sequences in E. coli [5]
2000 CRISPR sequence were found in all over prokaryote family [26]
2002 The CRISPR name was coined and signature Cas genes were established [6]
2005 Adaptive immunity functions of CRISPR were established with confirmation of the spacer sequence being of foreign origin. [71
2005 CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies [9]
2005 Specific RNA Processing by a CRISPR Endonuclease was shown [27]
2007 CRISPR-Cas is bacterial immune system [28]
2008 It was discovered that the mature crRNAs were obtained from mature spacers which can act as small guide RNAs [12]
2008 CRISPR activity upon DNA targets were established [11]
2010 Type II CRISPR-Cas cuts target DNA [13]
2011 It was found that tracrRNA can form duplex structure with crRNA and Cas9 [15]
2011 Type II CRISPR can be expressed in other organisms. [14]
2012 Scientists concluded that CRISPR technology can be used in genome editing. In vitro characterization of DNA targeting by Cas9 was done. [16]
2013 Genome editing by CRISPR/Cas in mammalian genome. [17]
2013 Human genome editing by CAS9 [18,19]
2014 First genome wide Cas9 screening [22-24]
2014 Knock out via CRISPR/CAS9 in human cell [20,21]
2014 CRISPR/Cas9 system was rapidly used as a principle tool for genome editing [25]

simplified with the use of sgRNA to program CRISPR specificity. This
marked the employment of CRISPR technology for the first time in
human cells for genome editing. Cas9 based genome editing in eu-
karyotic cells was first established in 2013 [17-19]. In 2014, the first
genome-wide Cas9 screening was executed by two independent groups
[20-24]. Crystal structure of Cas9 complexed with guide RNA and
target DNA was revealed [25]. Presently, CRISPR/Cas9 system is ra-
pidly developing as a principle tool for targeted genome editing all
around the globe (Table 1)

2. CRISPR-Cas locus

The CRISPR-Cas system is an adaptive immune system which pro-
vides resistance against foreign genetic elements in prokaryotes [10].
CRISPR locus has been found to be persistent in approximately 90% of
archaea and 40% of bacterial genomes. The CRISPR array consists of
several repeat sequences, interspaced by spacers. These spacers are
unique segments obtained from foreign DNA which provide sequence-
specific immunity against foreign DNA elements. A cluster of Cas genes
are generally located next to such repeat-spacer units. New spacers can

also be introduced into the CRISPR locus during infection so that it can
act as a memory during a subsequent encounter with the same invaders
[28]. The number of the repeat-spacer units can vary from just a few to
several hundred, the average number being 65. The thermophilic bac-
teria Chloroflexus sp., has been shown to contain the highest number of
repeat-spacer units (374) in one of its four CRISPR loci. The length of
repeat sequences can vary among different loci of the same genome.
Recent findings reveal that the repeat sequences range from 18-50
nucleotides (nt) whereas spacer sequences range from 17-84 nt long
[29]. There is a 20 nt long DNA target sequence or gRNA, adjacent to an
upstream 3 nt sequence called as PAM which are the component of
invading foreign element but not a part of the CRISPR locus.

3. Classification of CRISPR-Cas system

CRISPR-Cas system is classified based on phylogeny, sequence, locus
organization and contents, resulting in three major types, Type I, Type
II and Type III, among which the Type II system is mostly studied
(Fig. 3). There are six subtypes identified for the type I system (Type I-A
through Type I-F). They are defined by the presence of the signature
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Fig 3. Schematic presentation of types of CRISPR-Cas system.

protein, Cas3, with both helicase and DNase domains responsible for
degrading the target. Type II systems have been divided into two sub-
types II-A and II-B. The Type II CRISPR-Cas systems encode Casl and
Cas2, the Cas9 signature protein and sometimes a fourth protein (Csn2
or Cas4). Cas9 assists in adaptation, participates in crRNA processing
and cleaves the target DNA assisted in assemblage by crRNA and an
additional RNA called tracrRNA. While all Type I and II systems are
known to target DNA, Type III systems target DNA and/or RNA. The
Type III CRISPR-Cas systems contain the signature protein Cas10. Most
Cas proteins are designed for the Type III-A or Type III-B complexes
(otherwise also known as Csm and Cmr respectively) [30].

The Cas proteins are a highly diverse group of proteins consisting of
approximately 45 Cas gene families found with a wide range of CRISPR
subtypes. Cas 1 and Cas 2 are universal in all CRISPR loci, whereas
Cas3, Cas9 and Casl0 are specific for type I, II and III CRISPR-Cas
systems respectively. Among the CRISPR-Cas types, the type II system
has received more attention than the rest because of its ability to induce
double strand breaks in the target DNA (Fig. 4).

—1\_>L>DL>)-[L]

3.1. CRISPR Cas 9 as an adaptive immune system

The CRISPR activity requires a CRISPR locus including an array of
repeat-spacer sequences and a set of CRISPR associated genes (Cas
genes) which code for proteins essential for processing, functioning and
cleavage activity (Fig. 5). The entire defence process can be classified
into three phases:

® Acquisition or Adaptation of new spacers into CRISPR arrays
e Expression and the processing of CRISPR RNAs or crRNAs
e CRISPR interference

1. Acquisition or adaptation

The acquisition phase of CRISPR constructs the genetic memory of
the cell. In this phase, new spacers obtained from the invading plasmids
or foreign DNAs during the first encounter are incorporated into the
array of CRISPR which allows the cell to adapt against the invaders
present in the environment. Therefore, this phase is also termed as
‘Adaptation’. The information stored in the spacers can be used to act
against similar invaders on facing the second encounter. Spacer

i I
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Fig 4. Schematic representation of CRISPR locus. Spacers are shown in colored boxes and unique spacers are shown in unique colors. Repeats are shown in black
diamonds. Cluster of Cas genes (grey arrows) are located next to the repeat-spacer units or CRISPR array. A leader sequence (white box, L) is present between the

cluster of Cas genes and CRISPR array.
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Fig 5. Schematic representation of CRISPR-Cas9 immunity: Acquisition: Insertion of new spacers into the CRISPR locus. Expression: Transcription of CRISPR locus
and processing of CRISPR-RNA (crRNA). Interference: Recognition and degradation of foreign elements by crRNA-Cas9 complex.

acquisition occurs in two types. Firstly, when the invader has not been
previously encountered and secondly, when there is a pre-existing re-
cord of the invader in the CRISPR. This is divided into two steps, the
protospacer selection and the generation of spacer. It is followed by
incorporation into the array and synthesis of a new repeat sequence.
Eventually, some spacer deletion may also occur to control the size of
CRISPR array, although very little is known about that. Casl and Cas2
are the two most important proteins in spacer acquisition phase of
CRISPR. They work as a complex, where a single dimer of Cas2 binds to
two dimers of Casl to perform the activity. The presence of PAM, a
prerequisite for the discrimination between the target and CRISPR
array, is utilised in spacer acquisition [28]. It was shown that new
spacers are inserted at the leader end of the CRISPR array. The palin-
dromic sequence of many repeats provides direction and position
during spacer acquisition into the array. The mechanism of spacer ac-
quisition and sequence of the PAM motif varies among the different
types of CRISPR systems.

2. Expression of CRISPR RNA and Cas genes:

Acquisition of new spacers is followed by expression of CRISPR RNA
(crRNAs) and Cas proteins. As mentioned earlier, there are three types
of CRISPR systems, I, IT and III classified based on the set of proteins
used. The CRISPR transcription initiates in the leader region which
contains the promoter elements, binding sites for regulatory proteins
and elements important for spacer integration. A primary transcript,
pre-crRNA is generated from the CRISPR array which is further pro-
cessed into smaller units corresponding to a single spacer. Unlike other
CRISPR types, type II employs Cas9 protein for processing of the pre-
crRNA. The newly generated mature crRNA interacts with the short
tracrRNA and guide the cas9 mediated cleavage of the target DNA.

3. CRISPR interference:
Once the crRNAs are generated, they recognize the invading target

sequences through base complementarity. Following this, the crRNAs
along with Cas proteins perform the target degradation process. As

previously mentioned, the Cas 9 protein executes the same for a Type II
CRISPR system. However, there are issues regarding the discrimination
between specific and non- specific sequences followed by the occur-
rences of off-target mutations. In each type of CRISPR, the nucleases
have two different domains acting together to perform the degradation.
There is a recognition lobe for binding the tracrRNA which in turn in-
teracts with the guide RNA-target DNA hybrid, and a nuclease lobe
containing nuclease domains (HNH and RuvC) for degradation of the
two strands of the target.

3.2. CRISPR Cas9 system as a genome editing tool

In the era of genome engineering, newer and updated technique to edit
the genome is emerging day by day. CRISPR Cas9, the humble adaptive
immune system of the prokaryotes, has drawn the researcher's interest.
Consequently it has been modified to be implemented as a versatile,
adaptable and target specific genome editing tool. This modified version of
CRISPR Cas9 system employs Cas proteins guided by gRNA to cleave the
target DNA sequence. There are two different components in the CRISPR/
Cas9 system: gRNA and an endonuclease (Cas9).

3.3. Cas 9 and guide RNA

Cas 9 protein has six domains i.e. REC I, REC I, Bridge Helix, PAM
Interacting, HNH and RuvC domains. Rec I domain is responsible for
binding guide RNA. The role of the REC II domain is not yet well un-
derstood. The arginine-rich bridge helix is crucial for initiating cleavage
activity upon binding of target DNA. The PAM-Interacting domain
confers PAM specificity and is therefore responsible for initiating
binding to target DNA. The HNH and RuvC domains are nuclease do-
mains that cut single-stranded DNA. They are highly homologous to
HNH and RuvC domains found in other proteins. The Guide RNA is
comprised of a single stranded RNA (20 bases long) that forms a T-
shape comprised of one tetraloop and two or three stem loops. The
guide RNA is engineered to have a 5’ end that is complimentary to the
target DNA sequence and provides for sequence specificity to its
genome target.
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Fig 6. Cpfl, a new RNA guided nuclease: Cpfl endonuclease recognizes a T-rich
PAM bringing about cleavage at a site distal from the recognition site followed
by generating sticky ends.

3.4. Cpfl - an alternative to Cas9 endonuclease

A new RNA-guided nuclease known as Cpfl belonging to the
CRISPR system of Prevotella and Francisella has been discovered. It is
simpler than the Cas 9 endonuclease and appends the genome editing
system with newer properties (Fig. 6). Cpfl endonuclease recognizes a
T-rich PAM bringing about cleavage at a site distal from the recognition
site, this leads to the generation of sticky ends instead of blunt ones
generated by Cas 9 making them easier to handle. In addition, Cpfl
does not require a tracrRNA, which further simplifies the designing
process.

3.5. Mechanism of CRISPR-Cas

The gRNA binds with cas9 and induces conformational change and
activates the protein. Once Cas9 is activated, it searches for target DNA
by binding with a sequence that matches its PAM sequence. When Cas9
protein finds a target sequence, the protein will melt the bases im-
mediately upstream of PAM and pair with the complementary region of
gRNA. If the complementary region and the target region pair properly
then Ruv C and HNH nuclease domain will cut the target DNA. Cas9
causes DSB, which are present 3-4 nucleotides upstream of the PAM
sequence. DSBs may be repaired by two different pathways, NHEJ
(Non-homologous end joining) DNA repair pathway, which is error-
prone and produces inserts/deletions (Indels) at the DSB site that leads
to frame-shifts or premature stop codon and HDR (Homology directed
repair) pathway, that looks for the presence of a homologous DNA se-
quence and on finding one brings about homologous recombination and
it is less error prone (Fig. 7). Since Cas9 functions as a general en-
donuclease, the only thing needed is gRNA, which can be synthesized
chemically, transcribed in vitro, or cellularly expressed to provide spe-
cificity.

3.6. Limitations of the CRISPR Cas system

While experiments were being carried out to discover the complete
potential of the CRISPR-Cas system for application in genome editing, it
was reported that while the CRISPR system exhibited high specificity in
bacterial cells, when coming to mammalian cells, the system showed a
significantly high frequency of non-specific nuclease activity thus
leading to mutagenesis in regions other than their particular targets.
This arose as a major concern in the technology development process
[31]. This was a severe limitation of CRISPR-Cas9 genome editing
system. Strategies were devised to overcome this particular limitation.
One such successful strategy was the use of paired nickases.

Life Sciences 232 (2019) 116636

3.7. Role of paired nickase

The Cas9 enzyme could create only one DSB under the guidance of
an RNA molecule, but detailed knowledge of the structure and function
of the protein has led to the creation of many variants of the existing
form. This was essential as the enzyme was found to exhibit off-target
mutagenesis at high frequencies in mammalian cells [31]. This aspect
required special attention as its application for gene therapy was under
consideration. Therefore, a loss of function mutant in one domain of
Cas9 was constructed, (loss of RuvC and HNH domain function were
caused by D10A and H840A mutations respectively). Due to its ability
to break only one DNA strand it was named as nickase [16]. Double-
strand breaks can be introduced through the use of paired nickases for
cooperative genome engineering [18,19]. A major difference for this
approach is that, when two Cas9 nickases are used, long overhangs are
produced on each of the cleaved ends instead of blunt ends. This pro-
vides even greater control over precise gene integration and insertion.
The paired nickase system is being developed to overcome the non-
specificity of the wild type CRISPR-Cas system (Fig. 8). Since the target
length is increased, the chances of a similar sequence being present in
other regions of the genome are decreased. Since a double stranded
break would be formed only if both targets match in close proximity,
the probability of off-target DSBs is reduced. The individual nicks
generated would be repaired by the high-fidelity Base Excision Repair
mechanism thereby reducing off-target mutagenesis [32,33]. For the
paired nickase system, the target site is selected such that it contains
one PAM on each strand at a distance from each other. Thus, the
probable PAM closest to the originally cloned target site is searched for
in the complementary strand. A minimal distance of about 40-50 nu-
cleotides are kept between the two cleavage sites [32,33].

3.8. Applications of CRISPR-Cas genome editing in mammalian cells

The simplicity of the CRISPR-Cas9 system led to its establishment as
a genome-editing technology, but the driving force for its application
was mainly its necessity. With the development of knowledge about the
hereditary material, came the observation that many of the commonly
occurring, intractable diseases had their origins in the DNA code itself.
Thus, the projected goal for any DNA modifying technology had been to
correct these errors at their roots. Thereby, plasmid vectors were de-
veloped that could allow expression of the S. pyogenes Cas9 enzyme in
mammalian systems, along with generation of a single gRNA system
where a targeting sequence of about 20 nucleotides could be cloned
into a larger segment that harbours the tracrRNA [1]. Transfection of
this system into mammalian cell cultures revealed precise editing in the
genome at levels comparable to those achieved by existing ZFNs and
TALENSs [34,35].

4. Recent developments in the technology
4.1. Functional screening of genes

For elaborate understanding of the functional aspect of the genome
of any model organism, collection of genome-wide loss of function
mutants had been generated. This could not be replicated in mamma-
lian systems due to the difficulty in generation of knockouts and hence,
silencing libraries created by RNA interference (RNAi) was the only
option. This however, suffered the disadvantage of incomplete removal
of the protein and had off-target effects. Thus, the CRISPR-Cas9 tech-
nology henceforth found application in functional analysis of genes in
mammalian cells by the creation of a single gRNA library in lentiviral
vectors. Screening of such libraries was performed by positive and ne-
gative selection of loss of function mutants [20,21]. Comparison with
the existing RNA interference library revealed reduced off target effects
in addition to creation of knockouts instead of temporary knock down.
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Fig 8. Paired nickases system: Schematic representation of DNA double-stranded breaks by a pair of sgRNAs guiding Cas9 nickases. Cas9 is able to cut merely the
strand complementary to the sgRNA; a couple of sgRNA-Cas9n complexes can nick both strands at the same time. sgRNA compensate is defined as the remoteness
between the PAM-distal (50 ) ends of the guide sequence of a known sgRNA pair; positive offset involves the sgRNA complementary to the top strand (sgRNA a) to be

50 of the sgRNA complementary to the base strand that produces a 50 overhang.

4.2. Creation of cellular and animal models for diagnosis and gene therapy

The complicacies involved in the genome editing technologies be-
fore CRISPR-Cas9, was a major hurdle for them to be used for any
therapeutic purposes. CRISPR-Cas technology came as a revolution in
this field by permitting precise mimicking of various modifications of
DNA in cell and animal models that could range from single point
mutations to chromosomal translocations thereby leading to generation
of both transgenic cell lines and animal systems [36-40]. This appli-
cation has been made effective not only for diagnosis but also for

correction of erroneous insertions or deletions, thus leading to an im-
portant aspect of gene therapy [17]. Thus, diseases that had polygenic
sources could now be recreated in models with ease.

4.3. Transcriptional studies using fusion proteins

The inactive dCas9 protein when targeted to a particular genomic
location could inhibit the binding of the RNA polymerase, thereby
stalling transcription. It could hence function in a manner similar to
RNA interference and this application came to be known as CRISPR
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Table 2
Application of CRISPR-Cas9 system in different plants.
Species Transformation method Promoters Target Reference
(Cas9, gRNA)
Arabidopsis thaliana PEG protoplast transfection, CaMV35SPDK, AtU6 PDS3, FLS2 [49]
Leaf agroinfiltration
Nicotiana PEG-protoplast transfection Leaf CaMV35SPDK, AtU6 PDS3 [49]
benthamiana agroinfiltration
Arabidopsis thaliana Leaf agroinfiltration CaMV35S, AtU6 Co-transfected GFP [61]
Nicotiana Leaf agroinfiltration CaMV35S, AtU6 Co-transfected GFP [61]
benthamiana
Oryza sativa PEG-protoplast transfection CaMV35S, OsU6 SWEET14 [61]
Nicotiana Leaf agroinfiltration CaMV35S, AtU6 PDS [58]
benthamiana
Nicotiana Leaf agroinfiltration CaMV35S, CaMV35S PDS [62]
benthamiana
Triticum Agrotransfection of cells fromimmature CaMV35S, CaMV35S PDS, INOX [62]
Aestivum embryos
Oryza sativa PEG-protoplast transfection 2xCaMV358S, PDS, BADH2, MPK2, [59]
OsU3 0s02g23823
Triticum PEG-protoplast transfection 2xCaMV35S,TaU6 MLO [59]
Aestivum
Oryza sativa Particle bombardment of callus 2xCaMV358S, OsPDS, OsBADH2 [59]
OsU3
Oryza sativa PEG-protoplast transfection CaMV35S, OsU3 MPK5 [60]
or OsU6
Arabidopsis Agro-transformation by AtUBQ1, AtU6 Co-transfected GUUS [63]
Thaliana floral dip
Arabidopsis Agro-transformation by AtUBQ1, AtU6 TT4, CHLI1, CHL12 [63]
Thaliana floral dip
Oryza sativa Agro-transformation of OsUBQ, OsU6 OsMYB1 [63]
Callus
Arabidopsis Agro-transformation by 2xCaMV35S, BRI1, GAI, JAZ1 [571
Thaliana floral dip AtU6
Oryza sativa Agro-transformation of CaMV35S, ROCS5, SPP, YSA [571
Callus OsU6
Oryza sativa Agro-transformation of ZmUbi, OsU3 CAO1, LAZY1 [64]
Callus
Nicotiana PEG-protoplast transfection 2xCaMV358S, PDS, PDR6 [65]
benthamiana AtU6
Nicotiana tabacum Agro-transformation of 2xCaMV358S, PDS, PDR6 [65]
leaf discs AtU6
Oryza sativa PEG-protoplast transfection ZmUbi, OsU6 KO1, KOL5, CPS4,CYP99A2; CYP76M5, [66]
CYP76M6
Oryza sativa Agro-transformation of ZmUbi, OsU6 SWEET1a-1b-11-13 [66]
Callus
Triticum PEG-protoplast transfection ZmUbi,TaU6 MLO-A1 Wang et al. [22,24]
Aestivum
Zea mays PEG-protoplast transfection 2xCaMV35S, IPK [671
ZmU3
Citrus sinensis Leaf agroinfiltration CaMv358S, PDS [68]
CaMV35S
Arabidopsis Agro-transformation by CaMV35S, Co-transfected GFP ([681, [69])
Thaliana floral dip AtU6
Sorghum Agro-transformation of OsActinl, OsU6 Co-transfected DsRed ([611, [68])
Bicolor immature embryos
Arabidopsis Agro-transformation by PcUBI4-2 ADHI1, TT4, RTEL1 [70]
Thaliana floral dip
Oryza sativa Agro-transformation of 2xCaMV35S, PDS, PMS3, EPSPS, DERF1, MSH1, [71]
callus ZmU3 MYBS5, MYB1, ROCS5, SPP, YSA
Oryza sativa Agro-transformation of 2xCaMV35S, BAL [72]
callus AtU6
Solanum Hairy root transformation CaMV35S, GFP, SHR [73]1
Llycopersicum by A. rhizogenes AtU6
Solanum Agro-transformation of 2xCaMV358S, SIAGO?7, Solyc08g041770, [74]
lycopersicum cotyledons AtU6 Solyc07g021170, Solyc12g044760
Marchantia Agro-transformation of CaMV35S or ARF1 [75]
polymorpha sporelings MpEF, MpU6
Hordeum vulgare Agrobacterium mediated transformation ZmUbi, TaU6 HvPM19 [76]
Brassica oleracea Agrobacterium mediated transformation CsVMV, AtU626 BolC.GA4.a [76]
Populustomentosa Agrobacterium mediated transformation AtU3Db, AtU3d, AtU6-1 AtU6-29 PtoPDS [771
Zea mays Biolistic-mediated transformation maize U6 polymerase III LIG, ALS2MS26, MS45 [78]
promoter,
maize UBIQUITIN1 promoter
Petunia Petunia nitrate reductase (NR) [79]
Triticum Particle bombardment of TaGASR7, TaGW2, TaDEP1,TaNAC2, TaPIN1, [80]
aestivum embryos TaLOX2,

(continued on next page)
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Species Transformation method Promoters Target Reference
(Cas9, gRNA)
Apple Protoplast transformation DIPM-1, DIPM-2, DIPM-4 [81]
Grape Protoplast transformation MLO-7 [81]
Apple Agrobacterium mediated transformation 358CaMV, AtU6-1 phytoene desaturase (PDS) gene [82]
Zea mays Biolistic-mediated transformation maize U6 polymerase III ARGOS8 [83]
promoter,
maize UBIQUITIN1 promoter
Solanum lycopersicum  Agrobacterium tumefaciens-mediated CaMV 35S, AtUBQ, AtU626 SIPDS and SIPIF4 [84]
transformation
Oryza sativa Rice callus transformation OsBEIIb [85]

Interference and demonstrated lower off-target effects. This property
was efficient only in prokaryotes as the eukaryotic transcriptional ma-
chinery is more complicated and requires involvement of various
transcriptional activators and repressors for regulation. Fusion of dCas9
with repressor domains like KRAB and SID, that modify the structure of
the chromosome, permitted efficient epigenetic silencing in human and
yeast systems [41-44]. Similarly, fusion of the transcriptional activators
VP16 and p65 activation domain enabled their recruitment on com-
plimentary promoters, leading to activation of transcription and could
also help in mapping of enhancer elements.

4.4. Fluorescence imaging of genome

The understanding of epigenetic mechanisms caused a shift in im-
portance, from the DNA code to its structural organization within the
cell. Intensive research is yet being pursued in this aspect to elucidate
all the possible structural modifications that occur in the genome and
their subsequent effects in the cells. In order to identify the various
changes in chromatin states, it was essential to visualize the genetic
material in the cell. Techniques such as Fluorescence In-situ
Hybridization (FISH) were thus developed that could label DNA for
visualization. The sample preparation itself served as a major drawback
for the technique as it compromised on real time imaging. Fusion of
fluorescent molecules with the dCas9 protein was able to serve the
purpose efficiently and also allowed for live cell imaging [45]. That
included, combination with multiplexing abilities of the protein the
technique can be improved further.

4.5. Antimicrobial and antiviral applications

Drug resistance is creeping within bacterial populations due to im-
proper use of antimicrobials. It is another sector where the applications
of this system are being focused. Bacterial populations undergo con-
stant mutation as a defence mechanism required for their survival
against antibiotics. Due to the medicines being generalized in action,
and used inappropriately, the bacteria develop resistance against them
and transfer them horizontally to other populations. Recent studies
showed that delivering the CRISPR Cas system designed against the
resistance genes of bacteria, delivered by means of bacteriophages,
helped in targeting the drug resistant candidates thereby making them
sensitive, while causing no harm to the virulent populations [46,47]. In
a similar manner, sequence specific antivirals are also under con-
sideration, modifying genes involved in host-virus interaction.

4.6. Applications of CRISPR/Cas genome editing in plants

Unlike animals, targeted genome editing was not achievable in
plants for several years. Very recently natural mutations (during tissue
culture or hybridization) and induced mutations using X-rays [48] and
fast neutrons bombardment or chemical factors such as ethyl methane
sulfonate [49-51], sodium azide [52], and diepoxybutane [53] were
used to create non-targeted mutation in plant genome. Apart from the

physical factor-induced mutations, Agrobacterium T-DNA mediated
forward and reverse genetics studies was the other method of choice to
create non targeted mutation in plant genome. The only way to targeted
mutation was RNA interference (RNAi) [54]. Knockdown using RNAI,
cannot achieve permanent effect on the genome thus this method
cannot be used very efficiently for crop improvement [55,56]. Recent
discovery of targeted genome editing tools such as ZFN, TALEN and
lately CRISPR has revolutionised plant research. Conventional and
marker assistant breeding was the only way for introduction of a new
trait in the cultivated variety. The CRISPR/Cas9 system represents a
flexible approach for genome editing in plants. It provides a valuable
tool for both basic research in plant and offers opportunities for crop
improvement. In the year 2013 several reports were published dis-
cussing the first application of CRISPR/Cas9-based genome editing in
plants [36,57-60]. Thus, as CRISPR/Cas9 system can easily modify
common crop plants, it is predicted to be the way to move forward with
plant breeding programs (Table 2).

There are several reports of important agronomic traits, being in-
corporated in plant genome, using CRISPR-Cas9 based genome editing.
The acetolactate synthase gene of wheat was modified to obtain
chlorosulfuron (herbicide) resistant wheat. This was achieved by
changing a single amino acid residue through CRISPR-Cas [78]. Also,
CRISPR-Cas9 guided targeted insertion of phosphinotricin acetyl
transferase gene into maize was achieved which in turn conferred re-
sistance to natural herbicide Bialaphos [86]. Due to the hexaploid
nature, creating mutation in bread wheat is a big challenge. Simulta-
neous mutation of three homoalleles in hexaploid bread wheat using
CRISPR-Cas9 system confers heritable resistance to powdery mildew, a
trait not found in natural populations [24]. In a nutshell, several eco-
nomically important traits have been incorporated into various crop
plants. Such traits include yield level, nutritional value, stress tolerance,
pest and herbicide resistance. Plant species such as rice, wheat, maize,
tomato apple, model legumes Lotus, Medicago etc. have all been suc-
cessfully transformed.

4.7. Obstacles in CRISPR-Cas9 technology application in plants

The biggest obstacle in the field of CRISPR-Cas9 modified plants is
that they are considered genetically modified organisms (GMOs), which
are strictly regulated in some countries. Two approaches have been
described with potential to bypass this problem, that involves delivery
of a mixture of Cas9-encoding mRNA and gRNAs or pre-assembled ri-
bonucleoprotein complexes [87]. However, the transient mutation by
this approach is less efficient. Further developments of the existing
procedures are needed to modify plants with CRISPR-Cas9, in order to
have them not being classified as GMO.

Another problem is the off-target effect of CRISPR-Cas9 system it-
self. Till date, only limited large scale data are available to predict that
an off-target effect of CRISPR-Cas9 in plant is low. Nonetheless,
CRISPR-Cas9 is the most promising tool which can be used to in-
corporate heritable traits in plants. It is probably the easiest method
that leads towards high yield production of various crops, to meet the
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demands of a fast growing world population.

5. Application of CRISPR-Cas system in genome engineering of
parasites

In many parts of the world, parasitic diseases are posing a serious
threat to both human and animal health. Advances in sequencing and
understanding of the genomes of parasites like Plasmodium sp.,
Trypanosoma sp., Leishmania sp. etc. have played an important role in
the science of parasitology [88,89]. Understanding the relationship
between a parasite and its host through genome sequence information
had led towards development of new diagnostic methods for parasitic
diseases and also helped in the development of vaccines and anti-
parasitic agents. Significant advancements have been made in genome
editing of parasites like Leishmania, Trypanosoma cruzi and Toxoplasma
gondii as well as their vectors.

Leishmania sp.

Genetic manipulation of Leishmania sp was a problematic task till
the development of CRISPR/Cas9 system. Application of CRISPR/Cas9
system in Leishmania sp. has taken place with the expression of Cas9
endonuclease under the control of DHFR-TS promoter and the U6
snRNA promoter and terminator were used to produce the sgRNA and
subsequently generated the null mutants of paraflagellar rod-2 locus
and the precision of the system was validated by the absence of off-
target mutations in the genome [90]. Similarly, in a more recent study,
Zhang et al. used a strong RNA polymerase I promoter and ribozymes to
develop both single- and dual-gRNA expression vectors, and generated
loss-of-function insertion and deletion mutations. Green fluorescence
protein (GFP) sequence was introduced into the L. donovani genome
[91]. Zhang et al. in one of their recent research, targeted the Milte-
fosine transporter gene by Co-CRISPR strategy (developed by using a
gRNA and Cas9 co-expression vector) and conducted serial transfec-
tions of an oligonucleotide donor in Leishmania sp. Their aim was to
accelerate the characterization of Leishmania genes for new drug and
vaccine development. They successfully used CRISPR genome editing to
delete A2 multigene family and induced targeted chromosomal trans-
location in Leishmania sp. They reported that this CRISPR system could
also be used to generate specific chromosomal translocations and those
studies will provide a great help in the study of Leishmania gene ex-
pression [92].

5.1. Plasmodium sp

Non-homologous end joining (NHEJ) does not occur in Plasmodium
spp, thus making it impossible to perform genome editing using tem-
plate independent approach. Thus with Cas9 we need to use a homo-
logous template to enable homology directed repair [92,93]. Though
genetic engineering is the major goal to be achieved using this system,
the use of Cas9 as transcriptional enhancer/blocker has also been de-
monstrated using a catalytically dead version of cas9, dCas9, lacking
the endonuclease activity [41,42]. Streptococcus pyogenes Cas9 en-
donuclease and sgRNA produced using T7 RNA polymerase, was used to
efficiently edit portions of the P. falciparum genome [94]. In another
study in P. yoelii, DNA double-strand breaks in a specific locus was
produced by Cas9. Genes with knockout efficiency up to 50 and 100%
and allele replacement up to 22-45% were achieved using CRISPR/
Cas9 system, with subsequent repair through homologous recombina-
tion, generating replaced genes of parasites at multiple nucleotides
[94,95]. CRISPR/Cas9 mediated editing of pfmdrl ratifies that point
mutation in pfmdrl causes enhanced resistance to ACT-451840 in fifth
stage gametocytes [96].

5.2. Toxoplasma gondii

Among the many zoonotic parasitic diseases, toxoplasmosis is one of
the most important. It is caused by an obligate intracellular protozoan
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T. gondii, which is capable of infecting all warm-blooded animals in-
cluding humans. It is estimated that one-third of the world's population
is chronically infected with T. gondii [97]. The strategies to prevent or
cure T. gondii infection are very limited [98]. The ability to genetically
manipulate the genome of T. gondii can be of great help to the ad-
vancement towards developing effective vaccination strategies and
better therapeutics. The predominant NHEJ repair pathway of T. gondii
are carried out by two master molecules Ku80 and Ligase IV DNA, so
AKUB80 and ALigase IV DNA mutants would have enhanced efficiency to
carry out the competitive HDR. Sidik et al. [99] generated non-selection
knockouts of T. gondii using the RNA-guided Cas9 endonuclease to in-
troduce point mutations and epitope tags into the parasite genome.
They confirmed that AKU80 mutants are more susceptible to genetic
edition than wild-type T. gondii due to the lack of NHEJ machinery for
double-strand breaks repair. Later on, they conducted a genome-wide
genetic assessment exploiting the CRISPR/Cas9 system to ratify the role
of every single gene in human fibroblasts infection and successfully
identified several novel and unique genes, responsible for the infection
and also identified an invasion factor called claudin-like apicomplex, a
microneme protein (CLAMP) [100]. Zheng et al. tried a knockout
method that takes advantage of the CRISPR/Cas9 system to evaluate
the potential of leucine aminopeptidase from T. gondii as a drug target.
They chose a Cas9 target site in the gene encoding T. gondii leucine
aminopeptidase and then constructed a knockout vector containing
Cas9 and the single guide RNA. Phenotypic analysis was done and it
revealed that knock-out of T. gondii leucine aminopeptidase resulted in
inhibition of invasion. Both the growth and invasion capacity of
knockout parasites were restored by complementation with substituted
allele of T. gondii leucine aminopeptidase. T. gondii leucine amino-
peptidase knockout in experiments with mouse demonstrated that it
reduced the pathogenicity of T. gondii to some extent [101-103].
TgUAP56, a component of mRNA export machinery, was studied in T.
Gondii, according to the functional genomic approach with CRISPR/
Cas9 as an editing tool [104]. This system may be applied to disrupt
selected genes by ddCas9 (fusion of ddFKBP with Cas9) to monitor
mRNA export factors. Researchers exploited CRISPR- Cas9 system to
perform a genetic screening and established that a given parameter
participated in mRNA exportation in T. gondii. The results showed that,
like TgUAP56, TgRRM_1330 protein led to the aggregation of mRNA in
the nucleus.

5.3. Trypanosoma cruzi

Trypanosoma cruzi, the causative agent of Chagas' disease, is a pro-
tozoan parasite that infects both humans and animals. T. cruzi is the
least understood protozoan, responsible for infection-induced heart
disease, due to their complex genetics. Absences of efficient biomole-
cular tools for genome engineering have hindered the investigation of
this organism which was overcome with the CRISPR-Cas9, as it was
working efficiently in the T. Cruzi genome. Peng et al. [105] have tar-
geted a-tubulin and histidine ammonia lyase (HAL) genes, and effica-
ciously suppressed the genes. Later on, multiplexing capacity of
CRISPR-Cas9 was demonstrated by producing high-capacity repeat
knockouts to decrease expression of the (-galactofuranosyl glycosyl-
transferase family of enzymes, by targeting the known members of the
gene family with as few as three rounds of transfection [106].

5.4. Trichomonas vaginalis

Trichomonas vaginalis is the causal organism of Trichomoniasis. It is
one of the major sexually transmitted disease worldwide [107]. It
causes increase in the vaginal pH and toxication leading to epithelial
breaks and inflammation [108]. Deciphering the pathogenicity and
gene function of Trichomonas by CRISPR-Cas9 associated reverse ge-
netics approach was way too problematic due to the increase in Cas9
toxicity upon in vivo gene expression [105] and the low transfection
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efficiency in this organism [109]. The barriers in gene editing using the
CRISPR/Cas9 system was overcome by the application of nucleofection
resulting in 20-fold transfection efficiency and regulation of the FKBP-
DD and Shield-1 expression, as lowering the level of Shield-1 expression
resulted in the elevated stabilisation of FKBP-Cas9. Researchers re-
cently reported the application of this methodology of CRISPR-Cas9
introduction in Trichomonas vaginalis to knockout ferredoxin-1 and mif
genes. In this manner, molecular methods for T. vaginalis genome en-
gineering can be used to shed light on gene function pathogenesis of
this parasite [110,111].
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5.5. Cryptosporidium sp

Cryptosporidium sp. is one of the important pathogen causing diar-
rhoea after Rotavirus [112,113]. There is no effective vaccine against
this parasite due to their deficient number of genes (~3950 genes).
Recently the researchers have optimised the transfection of C. parvum
sporozoites in HCT-8 cells in tissue culture. The advent of CRISPR/Cas9
technology has allowed detection of genes, responsible for neomycin
resistance. C. parvum CRISPR/Cas9 system were constructed with Cas9
gene, flanked by parasite regulatory sequences, and the luciferase gene
was deactivated. Restoration of luciferase activity took place when
specific guide was co-transfected in C. parvum sporozoites.

In a recent study of C. parvum, the authors described methods for
adaptation of the CRISPR/Cas9 system for genome editing to C. parvum.
As the NHEJ pathway is absent in this parasite, they developed a 1-
vector strategy for expression of sgRNA and Cas9 nuclease driven by C.
parvum U6 RNA promoter and parasite regulatory sequences, and then
co-transfected it with a DNA donor for homologous recombination. To
test the system, they used a DNA template to repair the sequence of an
inactive nanoluciferase (dead Nluc), thus restoring the open reading
frame and the function of the reporter [114] (Table 3).

5.6. Challenges in therapeutic application of CRISPR/Cas9 system in
animal model

While CRISPR-Cas9 has shown immense potential in targeted
genome editing, it is still a long way from being applied therapeutically.
While generation of “knock-out cells” using CRISPR-Cas9 technology
has become routine practice in modern cellular biology, it is mainly
restricted to in vitro models. Applications of CRISPR-Cas9 have been
done in mice model; however its efficacy is low and is prone to com-
plications [39,40,121]. Apart from its off-target effect, the delivery of
CRISPR-Cas9 is a big challenge that remains to be overcome. The var-
ious strategies that have been employed to deliver gene editing plasmid
constructs can be mainly categorised as viral and non-viral delivery
methods. In vivo therapeutic approaches (involving injection or oral
mediated entry into subject for genome editing) utilize mostly viral
delivery methods. Ex vivo approach (isolating the target cells, mod-
ifying them and putting them back in the host organism) utilises both
viral and non-viral delivery methods. Previous gene editing technolo-
gies were non-specific in nature. Clinical trials with this non-specific
approach resulted in disaster with off target genotoxicity [148;
122-124]). Some of these therapies resulted in patients suffering from
cancer due to off target gene insertion near tumour promoting genes.

Current CRISPR-Cas9 technology is promising in this aspect of re-
duced off-target effect. However, another problem that plagues this
technology is its transporter. The vehicle used for such in vivo ap-
proaches is quite often viral mediated. Different types of viral mediated
vectors are currently being used. Adeno-associated virus (AAV) (Carroll
et al. [125], Platt et al. [126], Hung et al. [127]), Adenovirus (Voets
et al. [128], Maddalo et al. [129]) and Lentivirus (Shalem et al. [20,21],
[22-24]) are some such transporters. Each vector mentioned here has
its own advantage along with severe disadvantages. The next step for
their successful initiation into clinical trials would require overcoming
these disadvantages. Both Adenovirus and Lentivirus have better gene

disputed localization, the mitochondrial calcium uniporter (TcMCU), and the inositol-1,4,5- trisphosphate receptor (TcIP3R)

Flagellar calcium binding protein(TcFCaBP), the vacuolar proton pyrophosphatase (TcVP1), two proteins of undefined or
Paraflagellar rod-2 locus

LdMT(M381T) responsible for miltefosine resistance

kahrp gene, integrated GFP reporter gene, orcl
Ferredoxin-1 and mif genes. Tv HMP23

Kharp gene, eba-175

PfMDR1, pFatp4
Alpha tubulin, hstidine ammonia lyase

KU80, ALigase IV DNA, CLAMP
Paraflagellar rod protein land 2, gp72

Leucine aminopeptidase

Uprt, ROP18 locus
TgUAP56
Thymidine kinase

Target

Gene knockout, C-terminal tagging and insertion of

point mutations
Gene knockout

Gene knockout
Gene disruption (single, multi), exogenous gene

swapping
Gene knockout and C-terminal tagging

Gene knockout and knockin
Replacement of a gene tandem
Gene knockout and knockin

Gene knockout and knockin
Gene knockout

Gene tagging

Purpose
P. falciparum  Gene knockout, C-terminal tagging

P. falciparum  Gene knockout
P. falciparum  Gene knockout

Organism
T. gondi

T. gondi

T. gondi

T. gondi

C. parvum
L. donovani
T. vaginalis

T. cruzi
T. cruzi
T. cruzi
L. major

CRISPR-Cas study in protozoal system.
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Table 4
Comparison between ZFN, TALEN and CRISPR-Cas.
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Properties ZFN

Component involved in sequence recognition
Targeting efficacy
Cost effectiveness

Protein-DNA
Less specific and efficient
Very expensive

Off target mutagenesis Variable
Designing parameter Protein
Viral delivery Easy

TALENs CRISPR/Cas 9
Protein-DNA RNA-DNA
Moderately specific and efficient Highly specificity and efficiency
Expensive Cheap
Low Moderate
Protein RNA
Moderate Moderate

delivery efficiency but Adenovirus has been shown to induce im-
munogenic responses against both viral transporter and Cas9 (Voets
et al. [128]; Maddalo et al. [129]). Adenovirus based delivery used in
clinical trials resulted in severe immunological response, in case of one
patient resulting in death ([130]; Christopher A. 2018). Furthermore,
genetic targeting, though precise in its approach, induced some off
target effects and undesired downstream mRNA splicing events
[20-24]. In AAV, immunological response and off-target effects are
quite reduced. However, the delivery efficiency is quite low in case of
AAV. In vivo approaches using non-viral methods have also been done
and they have shown some therapeutic promise. One such method is
liposome/lipid nanoparticle mediated transfer of Cas9 and guide RNA
along with homology arm containing DNA. However, they have certain
disadvantages as well; chief among them is the transportation mode
being vulnerable for cargo degradation ([131,[149]). Due to this de-
gradation it results in a lower efficacy. Nanoparticle mediated entry of
CRISPR-Cas9 vectors have also been developed and have been shown to
be effective. However there is also a non-specific inflammatory re-
sponse [132,133].

Ex vivo approach employs a wide variety of techniques ranging from
microinjection, electroporation, hydrodynamic delivery and cell
permeable peptides. Microinjection and electroporation techniques
have been used extensively to produce knockout organism by mod-
ifying zygotes of these organism [39,40,134,135]. While above men-
tioned techniques have yielded success there are also certain limitations
associated with them. Microinjection is a difficult and time consuming
technique while electroporation cannot be applied to all types of cell
[134,136]. Cell permeable peptides (CPP) are also utilised but are
limited to only in vitro use [137,138]. Genome editing is a rapidly
growing technology which is at the threshold of being transferred from
bench-to-bedside, thus reflecting its potential as an innovative genetic
manipulation tool. CRISPR-Cas9 technology is promising and would
require further developments to make it highly specific for editing a
genome to reduce the risk of undesired mutagenesis. Also the delivery
vehicle should allow for safe and efficient transport to the target. An all-
purpose delivery method has yet to emerge which will successfully
overcome both of these problems.

5.7. Genome editing in mitochondria

Maternally inherited mitochondrial DNA (mtDNA) consist of several
dozens of genes for proteins, tRNAs and rRNAs which are responsible
for metabolic, bioenergetic and homoeostatic process. The targeted
genome editing in mitochondria (mt) is challenging task and more
complicated compare to nuclear DNA editing. Scientists have tried to
successfully edit Mt genome using the gene editing techniques like re-
combinant Restriction enzymes, ZFNs, TALEN and CRISPR-Cas9. Each
technique has its success and limitation [139]. Mammalian Mt lacks
efficient double strand break repair mechanism (NHEJ or HR), hence
introduction of double strand break leads to degradation of mtDNA.
Bacterial Restriction enzymes modified by an N terminal Mitochondrial
targeting sequence (MTS) to direct its transport to the mitochondria
was used to manipulate mtDNA heteroplasmy [140,141]. But the suc-
cess of restriction enzymes to manipulate the Mt DNA is very limited.
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This is due to the lack of sequence information regarding target sites
present in WT or mutant DNAs. Also, since each endonuclease can cut a
specific sequence, the presence of such sequences near target sites limits
its application.

To overcome the limitations of REs for targeted mitochondrial
genome editing ZFN & TALENs were used. In 2008, first attempt was
made to use conventional pair of hetrodimeric ZFNs to target point
mutation in mt, 8993T > G, but unfortunately it failed. Alternative ap-
proach was made designing a single-chain ZFN with two Fokl en-
donuclease domains joined by 35aa linkers, that recognizes mt DNA
target sequence of 12bps. This was effective but raised some concern
regarding toxicity [142]. More success was achieved after adding MTS-
epitope tag-MES at the end terminal of ZFN which resulted in reduction
in mt DNAs and a shift towards WT mtDNA [143]. Despite promise,
there are limitations of ZFN usage for targeting mt DNA. Due to the
short size of the mt genome, it is unable to work on all target sites due
to insufficient Zinc Finger module.

Scientist have designed mitochondrialy targeted TALENs (mito-
TALENS) to cleave the specific sequences in mt-DNA. Mito TALENSs ef-
fectively reduced the level of targeted pathogenic mt DNAs in the cell
lines and cybrid cells [144,145]. Mito TALENs employing gain of T or
gain of C design principals have the capacity to revert many clinically
relevant mt-DNA point mutations [145]. Mito TALEN was also used
successfully to prevent the transmission of pathogenic mt-DNA in man.
Potentially TALENs may be more effective than ZFNs but their bulky
size limit their use; even though shorter repeat sequences and optimized
mitochondrial targeting by comparing efficiencies of various MTSs
could not provide full success.

To use the CRISPR-Cas9 system to manipulate the mitochondrial
genome, gRNA would need to be imported inside mitochondria. But,
there is conflicting opinion as to whether RNA can be imported into
mammalian mitochondria. In 2015, Yunjong Lee [146] published a
report claiming the use of CRISPR-Cas9 to shift mtDNA heteroplasmy in
mammalian cells. However these data are controversial and other
contradictory report has been published [147]. As the effective import
into the mitochondria is a debatable issue it would not be incorrect to
conclude the genome editing of Mt DNA may be beyond the reach of
CRISPR-Cas9 system.

5.8. Conclusion and future directions

The CRISPR-Cas9 system has undergone one of the fastest devel-
opments in the field of research in recent times. From being established
as a bacterial adaptive immune system to its being improved into the
most efficient and simple-to-design genome editing tool. Observed to be
functional in prokaryotic, mammalian and plant systems, CRISPR-Cas9
system has shown the potential to have wide applications ranging from
medication using gene therapy to crop improvement. Its contribution in
studying the functional parameters at DNA and protein levels has been
enormous. It has further accelerated research in its own domain by
allowing easy modifications at the DNA level. On-going research is
focussed on extracting all possible information using this technology.
The system serves as yet another that nature holds some of the simplest
solutions to some of the most complicated problems.
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