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Abstract

We model contagions and cascades of failures among organizations linked through

a network of financial interdependencies. We identify how the network propagates dis-

continuous changes in asset values triggered by failures (e.g., bankruptcies, defaults,

and other insolvencies) and use that to study the consequences of integration (each

organization becoming more dependent on its counterparties) and diversification (each

organization interacting with a larger number of counterparties). Integration and di-

versification have different, nonmonotonic effects on the extent of cascades. Initial

increases in diversification connect the network which permits cascades to propagate

further, but eventually, more diversification makes contagion between any pair of orga-

nizations less likely as they become less dependent on each other. Integration also faces

tradeoffs: increased dependence on other organizations versus less sensitivity to own

investments. Finally, we illustrate some aspects of the model with data on European

debt cross-holdings.
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1 Introduction

Globalization brings with it increased financial interdependencies among many kinds of orga-

nizations – governments, central banks, investment banks, firms, etc. – that hold each other’s

shares, debts and other obligations. Such interdependencies can lead to cascading defaults

and failures, which are often avoided through massive bailouts of institutions deemed “too

big to fail.” Recent examples include the U.S. government’s interventions in A.I.G., Fannie

Mae, Freddie Mac, and General Motors; and the European Commission’s interventions in

Greece and Spain. Although such bailouts circumvent the widespread failures that were

more prevalent in the nineteenth and early twentieth centuries, they emphasize the need

to study the risks created by a network of interdependencies. Understanding these risks is

crucial to designing incentives and regulatory responses that defuse cascades before they are

imminent.

In this paper we develop a general model that produces new insights regarding financial

contagions and cascades of failures among organizations linked through a network of financial

interdependencies. Organizations’ values depend on each other – e.g., through cross-holdings

of shares, debt or other liabilities. If an organization’s value becomes sufficiently low, it

hits a failure threshold at which it discontinuously loses further value; this imposes losses

on its counterparties, and these losses then propagate to others, even those who did not

interact directly with the organization initially failing. At each stage, other organizations

may hit failure thresholds and also discontinuously lose value. Relatively small and even

organization-specific shocks can be greatly amplified in this way.1

In our model, organizations hold primitive assets (any factors of production or other

investments) as well as shares in each other.2 The basic network we start with describes

which organizations directly hold which others. Cross-holdings lead to a well-known problem

of inflating book values3, and so we begin our analysis by deriving a formula for a non-

inflated “market value” that any organization delivers to final investors outside the system

of cross-holdings. This formula shows how each organization’s market value depends on

the values of the primitive assets and on any failure costs that have hit the economy. We

can therefore track how asset values and failure costs propagate through the network of

interdependencies. An implication of failures being complementary is that cascades occur

in “waves” of dependencies. Although in practice these might occur all at once, it can be

useful to distinguish the sequence of dependencies in order to figure out how they might be

avoided. Some initial failures are enough to cause a second wave of organizations to fail.

1The discontinuities incurred when an organization fails can include the cost of liquidating assets, the
(temporary) misallocation of productive resources, as well as direct legal and administrative costs. Given that
efficient investment or production can involve a variety of synergies and complementarities, any interruption
in the ability to invest or pay for and acquire some factors of production can lead to discontinuously inefficient
uses of other factors, or of investments. See Section 2.3 for more details.

2We model cross-holdings as direct (linear) claims on values of organizations for simplicity, but the model
extends to all sorts of debt and other contracts as discussed in Section A.2 in the Online Appendix.

3See Brioschi, Buzzacchi, and Colombo (1989) and Fedenia, Hodder, and Triantis (1994).
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Once these organizations fail, a third wave of failures may occur, and so on. A variation

on a standard algorithm4 then allows us compute the extent of these cascades by using the

formula discussed above to propagate the failure costs at each stage and determine which

organizations fail in the next wave. Policymakers can use this algorithm in conjunction with

the market value formula to run counterfactual scenarios and identify which organizations

might be involved in a cascade under various initial scenarios.

With this methodology in hand, our main results show how the probability of cascades

and their extent depend on two key aspects of cross-holdings: integration and diversifica-

tion. Integration refers to the level of exposure of organizations to each other: how much

of an organization is privately held by final investors, and how much is cross-held by other

organizations. Diversification refers to how spread out cross-holdings are: is a typical organi-

zation held by many others, or by just a few? Integration and diversification have different,

nonmonotonic effects on the extent of cascades.

If there is no integration then clearly there cannot be any contagion. As integration

increases, the exposure of organizations to each other increases and so contagions become

possible. Thus, on a basic level increasing integration leads to increased exposure which tends

to increase the probability and extent of contagions. The countervailing effect here is that

an organization’s dependence on its own primitive assets decreases as it becomes integrated.

Thus, although integration can increase the likelihood of a cascade once an initial failure

occurs, it can also decrease the likelihood of that first failure.

With regard to diversification, there are also tradeoffs, but on different dimensions. Here

the overall exposure of organizations is held fixed but the number of organizations cross-held

is varied. With low levels of diversification, organizations can be very sensitive to particular

others, but the network of interdependencies is disconnected and overall cascades are limited

in extent. As diversification increases, a “sweet spot” is hit where organizations have enough

of their cross-holdings concentrated in particular other organizations so that a cascade can

occur, and yet the network of cross-holdings is connected enough for the contagion to be

far-reaching. Finally, as diversification is further increased, organizations’ portfolios are

sufficiently diversified so that they become insensitive to any particular organization’s failure.

Putting these results together, an economy is most susceptible to widespread financial

cascades when two conditions hold. The first is that integration is intermediate: each or-

ganization holds enough of its own assets that the idiosyncratic devaluation of those assets

can spark a first failure, and holds enough of other organizations for failures to propagate.

The second condition is that organizations are partly diversified: the network is connected

enough for cascades to spread widely, but nodes don’t have so many connections that they

are well-insured against the failure of any counterparty. Our analysis of these tradeoffs in-

cludes both analytical results on a class of networks for which the dynamics of cascades are

tractable, as well as simulation results on other random cross-holding networks.

4This sort of algorithm is the obvious one for finding extreme points of a lattice, and so is standard in a
variety of equilibrium settings. Ours is a variation on one from Eisenberg and Noe (2001).
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In the simulations, we examine several important specific network structures. One is a

network with a clique of large “core” organizations surrounded by many smaller “peripheral”

organizations, each of which is linked to a core organization. This emulates the network of

interbank loans. There we see a further nonmonotonicity in integration: if core organizations

have low levels of integration then the failure of some peripheral organization is contained,

with only one core organization failing; if core organizations have middle levels of integration

then widespread contagions occur; if core organizations are highly integrated then they be-

come less exposed to any particular peripheral organization and more resistant to peripheral

failures. A second model is one with concentrations of cross-holdings within sectors or other

groups. As cross-holdings become more sector-specific, particular sectors become more sus-

ceptible to cascades, but widespread cascades become less likely. The level of segregation at

which this change happens depends on diversification. With lower diversification, cascades

disappear at lower rates of segregation – it takes less segregation to fragment the network

and prevent cascades.

We also consider what a regulator or government might do to mitigate the possibility

of cascades of failures. Preventing a first failure prevents the potential ensuing cascade of

failures and it might be hoped that a clever reallocation of cross-holdings could achieve

this. Unfortunately, we show that any fair exchange of cross-holdings or assets involving the

organization most at risk of failing makes that organization more likely to fail at some asset

prices close to the current asset prices. Making the system unambiguously less susceptible

to a first failure necessitates “bailing out” the organization most at risk of failing.

Finally, we illustrate the model in the context of cross-holdings of European debt.

While there is a growing literature on networks of interdependencies in financial markets5

our methodology and results are different from any that we are aware of, especially the results

on nonmonotonicities in cascades due to integration and diversification.

An independent study by Acemoglu, Ozdaglar and Tahbaz-Salehi (2012b), as well as

related earlier studies of Gouriéroux, Héam and Monfort (2012) and Gai and Kapadia (2010),

are the closest to ours.6 They each examine how shocks propagate through a network based

on debt holdings or interbank lending, where shocks lead an organization to pay only a

5For example, see Rochet and Tirole (1996), Kiyotaki and Moore (1997), Allen and Gale (2000), Eisenberg
and Noe (2001), Upper and Worms (2004), Cifuentes, Ferrucci and Shin (2005), Leitner (2005), Allen and
Babus (2009), Lorenza, Battiston, Schweitzer (2009), Gai and Kapadia (2010), Wagner (2010), Billio et al.
(2012), Demange (2011), Diebold and Yilmaz (2011), Dette, Pauls, and Rockmore (2011), Gai, Haldane, and
Kapadia (2011), Greenwood, Landier, and Thesmar (2012), Ibragimov, Jaffee and Walden (2011), Upper
(2011), Acemoglu et al. (2012a), Allen, Babus and Carletti (2012), Cohen-Cole, Patacchini and Zenou
(2012), Gouriéroux, Héam and Monfort (2012), Alvarez and Barlevy (2013), Glasserman and Young (2013)
and Gofman (2013).

6Cabrales, Gottardi, and Vega-Redondo (2013) study the tradeoff between the risk-sharing enabled by
greater interconnection and the greater exposure to cascades resulting from larger components in the financial
network. Their focus is also on some benchmark networks (minimally connected and complete ones) and
they examine which ones are best for different distributions of shocks. Again, our work is complementary
not only in terms of distinguishing diversification and integration but also analyzing comparative statics for
intermediate network structures and finding nonmonotonicites there.
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portion of its debts. They are also interested in how shocks propagate as a function of

network architecture. However, beyond the basic motivation and focus on the network

propagation of shocks, the studies are quite different and complementary. The main results

of Acemoglu, Ozdaglar and Tahbaz-Salehi (2012b) characterize the best and worst networks

from a social planner’s perspective. For moderate shocks a perfectly diversified pattern of

holdings is optimal, while for very large shocks perfectly diversified holdings become the worst

possible.7 Our focus is on the complementary question of what happens for intermediate

shocks and for a variety of networks. To this end, we consider a class of random networks

and ask how the consequences of a given moderate shock depend on diversification and

integration. The results highlight that intermediate levels of diversification and integration

can be the most problematic.

Gai and Kapadia (2010) made two observations. First: rare, large shocks may have ex-

treme consequences when they occur – a point elaborated upon in the subsequent literature

discussed above. Second, a shock of a given magnitude may have very different consequences

depending on where in the network it hits and on the average connectivity of the network.

Gai and Kapadia develop these points in a standard model of epidemics in which the network

is characterized by its degree distribution. An innovation of our model is to go beyond the

degree distribution of a network and calculate equilibrium (fixed-point) values and inter-

dependencies for organizations. Doing so allows us to distinguish an important dimension

of financial networks: integration, which can be varied independently of diversification.

Building on that, we show how diversification and integration each affect the ingredients of

financial cascades – and the final outcomes – in different and non-monotonic ways. In doing

so, we recover, as a special case, Gai and Kapadia’s observation that cascades can be non-

monotonic in connectivity.8 But we also gain key new results on when and how the “danger

zone” of intermediate diversification can be blunted by changing the level of integration in

the system. Finally, we study how the integration of a financial network interacts with a

core-periphery structure and with segregation, and other correlation structures.

2 The Model and Determining Organizations’ Values

with Cross-Holdings

2.1 Primitive Assets, Organizations, and Cross-Holdings

There are n organizations (e.g., countries, banks, or firms) making up a set N = {1, . . . , n}.
The values of organizations are ultimately based on the values of primitive assets or

factors of production – from now on simply assets – M = {1, . . .m}. For concreteness, a

7Shaffer (1994) also identifies a trade-off between risk sharing and systemic failures. While diversified
portfolios reduce risk, they also result in organizations holding similar portfolios and a system susceptible to
simultaneous failures. See also Ibragimov, Jaffee and Walden (2011) and Allen, Babus and Carletti (2012).

8In different settings, Cifuentes, Ferrucci and Shin (2005) and Gofman (2013) also find that cascades can
be non-monotonic in connectivity.
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primitive asset may be thought of as a project that generates a net flow of cash over time.9

The present value (or market price) of asset k is denoted pk. Let Dik ≥ 0 be the share of

the value of asset k held by (i.e., flowing directly into) organization i and let D denote the

matrix whose (i, k)-th entry is equal to Dik. (Analogous notation is used for all matrices.)

An organization can also hold shares of other organizations. For any i, j ∈ N the number

Cij ≥ 0 is the fraction of organization j owned by organization i, where Cii = 0 for each i.10

The matrix C can be thought of as a network in which there is a directed link from j to i if

value flows in that direction – i.e., if i owns a positive share of j, so that Cij > 0.11

After all these cross-holding shares are accounted for, there remains a share Ĉii := 1 −∑
j∈N Cji of organization i not owned by any organization in the system – a share assumed

to be positive.12 This is the part that is owned by outside shareholders of i, external to the

system of cross-holdings. The off-diagonal entries of the matrix Ĉ are defined to be 0.

Cross-holdings are modeled as linear dependencies in this paper, and we now briefly

discuss the interpretation of this. We view the functional form as an approximation of debt

contracts around and below organizations’ failure thresholds – the region of organizations’

values that are important whenever one’s failure causes another to fail. In this region, under

most bankruptcy procedures13 there is linear rationing in how much of the debt is paid back.

Some organizations may be far from their failure thresholds, and for those, others’ changes

in value have a smaller effect on the risk of failure. The linear model can incorporate

both of these effects through the slope parameters in the cross-holdings matrix; this is

discussed in detail in Section 2.5, as well as Section A.2 of the Online Appendix. Of course,

this is a crude approximation, but allows a tractable analysis of cross-dependencies, and

provides basic insights that should still be useful when nonlinearities are addressed in detail.

More generally, cross-holdings can involve all sorts of contracts; any liability in the form of

some payment that is due could be included.14 Directly modeling other sorts of contracting

9The primitive assets could be more general factors: prices of inputs, values of outputs, the quality of
organizational know-how, investments in human capital, etc. To keep the exposition simple, we model these
as abstract investments and assume that net positions are nonnegative in all assets.

10It is possible to instead allow Cii > 0, which leads to some straightforward adjustments in the derivations
that follow; but one needs to be careful in interpreting what it means for an organization to have cross-
holdings in itself – which effectively translates into a form of private ownership.

11 Some definitions: a path from i1 to i` in a matrix M is a sequence of distinct nodes i1, i1, . . . , i` such
that Mir+1ir > 0 for each r ∈ {1, 2, . . . , ` − 1}. A cycle is a sequence of (not necessarily distinct) nodes
i1, i1, . . . , i` such that Mir+1ir > 0 for each r ∈ {1, 2, . . . , `− 1} and Mi1ir > 0.

12This assumption ensures that organization’s market values (discussed below) are well-defined. It is
slightly stronger than necessary. It would suffice to assume that, for every organization i, there is some j
such that Ĉjj > 0 and there is a path from j to i. An organization with Ĉii = 0 would essentially be a holding
company, and the important aspect is to have an economy where there are at least some organizations that
are not holding companies and some outside shareholders that no organizations have claims on.

13A richer model would include priority classes, but the basic issues that we address in the simplified
model should still appear in such a richer model.

14In essence, our modeling is a reduced form that aggregates all effects into a linear dependence of each
organization on others, allowing for a discontinuous loss at a critical organization value. In cases where
organizations can short sell other organizations, or hold options or other derivatives that appreciate in value
when another organization falls in value, some of our lattice results (discussed in Sections 2.6 and 3.2.3)
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between organizations would complicate the analysis and so we focus on this formulation for

now to illustrate the basic issues. Section A.2 in the Online Appendix discusses extending

the model to more general liabilities.

2.2 Values of Organizations: Accounting and Adjusting for Cross-

Holdings

In a setting with cross-holdings, there are subtleties in determining the “fair market” value

of an organization, and the real economic costs of organizations’ failures. Doing the ac-

counting correctly is essential to analyzing cascades of failure. The basic framework for the

accounting was developed by Brioschi, Buzzacchi, and Colombo (1989) and Fedenia, Hodder,

and Triantis (1994). In this section, we briefly review the accounting and the key valuation

equations in the absence of failure costs. In ensuing sections, we incorporate failures and

associated discontinuities.

The equity value Vi of an organization i is the total value of its shares – those held by

other organizations as well as those held by outside shareholders. This is equal to the value

of organization i’s primitive assets plus the value of its claims on other organizations:

Vi =
∑
k

Dikpk +
∑
j

CijVj. (1)

Equation (1) can be written in matrix notation as

V = Dp + CV

and solved to yield15

V = (I−C)−1Dp. (2)

Adding up equation (1) across organizations (and recalling that each column of D adds

up to 1) shows that the sum of the Vi exceeds the total value of primitive assets held by the

organizations. Essentially, each dollar of net primitive assets directly held by organization i

contributes a dollar to the equity value of organization i, but then is also counted partially

on the books of all the organizations that have an equity stake in i.16

As argued by both Brioschi, Buzzacchi, and Colombo (1989) and Fedenia, Hodder, and

Triantis (1994), the ultimate (non-inflated) value of an organization to the economy – what

we call the “market” value – is well-captured by the equity value of that organization that

is held by its outside investors. This value captures the flow of real assets that accrues to

would no longer hold. That is an interesting topic for further research.
15Under the assumption that each column of C sums to less than 1 (which holds by our assumption of

nonzero outside holdings in each organization), the inverse (I−C)−1 is well-defined and nonnegative (Meyer,
2000, Section 7.10).

16This initially counterintuitive feature is discussed in detail by French and Poterba (1991) and Fedenia,
Hodder, and Triantis (1994).
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final investors of that organization. The market value, which we denote by vi, is equal to

ĈiiVi, and therefore:17

v = ĈV = Ĉ(I−C)−1Dp = ADp. (3)

We refer to A = Ĉ(I − C)−1 as the dependency matrix. It is reminiscent of Leontief’s

input-output analysis. Equation 3 shows that value of an organization can be represented

as a sum of the value of its ultimate claims on primitive assets, with organization i owning a

share Aij of j’s direct holdings of primitive assets. This is the portfolio of underlying assets

an outside investor would hold to replicate the returns generated by holding organization

i. To see this, suppose each organization fully owns exactly one proprietary asset, so that

m = n and D = I. In this case, Aij describes the dependence of i’s value on j’s proprietary

asset. It is reassuring that A is column stochastic so that indeed the total values of all

organizations add up to the total values of all underlying assets – for all j ∈ N , we have18∑
i∈N

Aij = 1.

2.3 Discontinuities in Values and Failure Costs

An important part of our model is that organizations can lose productive value in discon-

tinuous ways if their values fall below certain critical thresholds. These discontinuities can

lead to cascading failures and also the presence of multiple equilibria.

There are many sources of such discontinuities. For example, if an airline can no longer

pay for fuel, then its planes may be forced to sit idle (as happened with Spanair in February

of 2012) which leads to a discontinuous drop in revenue in response to lost new bookings, and

so forth. If a country or firm’s debt rating is downgraded, it often experiences a discontinuous

jump in its cost of capital. Dropping below a critical value might also involve bankruptcy

proceedings and legal costs. Broadly, many of these discontinuities stem from an illiquidity

17A way to double check this equation is to derive the market value of an organization from the book value
of its underlying assets and cross-holdings less the part of its book value promised to other organizations in
cross-holdings:

vi =
∑
j

CijVj −
∑
j

CjiVi +
∑
k

Dikpk

or
v = CV − (I− Ĉ)V + Dp = (C− (I− Ĉ))V + Dp.

Substituting for the book value V from (2), this becomes

v = (C− I + Ĉ)(I−C)−1Dp + Dp = (C− I + Ĉ + (I−C))(I−C)−1Dp = ADp.

18This can be seen by defining an augmented system in which there is a node corresponding to each
organization’s external investor and noting that, under our assumptions, the added nodes are the only
absorbing states of the Markov chain corresponding to the system of asset flows. Column j of A describes
how the proprietary assets entering at node j are shared out among the external absorbing nodes. Since all
the flow must end up at some external absorbing node, A must be column-stochastic.
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which then leads to an inefficient use of assets. Indeed, given that efficient production can

involve a variety of synergies and complementarities, any interruption in the ability to pay

for and acquire some factors of production can lead to discontinuously inefficient uses of

other factors, or of investments. One detailed and simple microfoundation is laid out in

Section 2.5 below.

If the value vi of a organization i falls below some threshold level vi, then i is said

to fail and incurs failure costs βi(p).19 These failure costs are subtracted from a failing

organization’s cash flow. They can represent the diversion of cash flow towards dealing with

the failure or a reduction in the returns generated by proprietary assets. Either way this

introduces critical non-linearities – indeed, discontinuities – into the system.

We base failure costs on the (market) value of an organization, vi, and not the book

value, Vi. This captures the idea that failure occurs when an organization has difficulties

or disruptions in operating, and the artificial inflation in book values that accompanies

cross-holdings is irrelevant in avoiding a failure threshold.20 Nonetheless, the model could

instead make failures dependent upon the book values Vi, in cases where cash flows relate

to book values. Nothing qualitative would change in what follows, as the critical ingredients

of thresholds of discontinuities and cascades that depend on cross-holdings would still all be

present, just with different trigger points.

Let us say a few words about the relative sizes of these discontinuities. Recent work has

estimated the cost of default to average 21.7 percent of the market value of an organization’s

assets, (with substantial variation – see Davydenko, Strebulaev, and Zhao (2012), as well as

James (1991)).21 It might be hoped that organizations will reduce the scope for cascades

of failures by minimizing their failure costs and reducing the threshold values at which

they fail. In fact, as we show in the Online Appendix (Section A.3), financial networks

can create moral hazard and favor the opposite outcome. As discussed in Leitner Leitner

(2005), counterparties have incentives to bail out a failing organization22 to avoid (indirectly)

incurring failure costs. To improve its bargaining position in negotiating for such aid, an

organization may then want to increase its failure costs and make its failure more likely.

Nevertheless, although default costs can be large both absolutely and relative to the value

of an organization’s assets (e.g., the size of the recent Greek write-down in debt, or the

fire-sale of Lehman Brothers’ assets), it can also be that smaller effects snowball. Given that

a major recession in an economy is only a matter of a change of a few percentage points

in its growth rate, when contagions are far-reaching, the particular drops in value of any

single organization need not be very large in order to have a large effect on the economy.

We develop this observation further in Section 3.1.

19The argument p reflects that these costs can depend on the values of underlying assets, as would be the
case when these are liquidated for a fraction of their former value. See Section 2.5 for more detail.

20For example, if the failure threshold were based on book values, then two organizations about to fail
would be able to avoid failure by exchanging cross-holdings and inflating their book values.

21Capping the failure costs is not important for our model, but they could easily be capped at vi or (Dp)i
or some other natural level.

22For example, in the form a debt write-down.
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2.4 Including Failure Costs in Market Values

The valuations in (2) and (3) have analogs when we include discontinuities in value due to

failures. The discontinuous drop imposes cost directly on an organization’s balance sheet,

and so the book value of organization i becomes:

Vi =
∑
j 6=i

CijVj +
∑
k

Dikpk − βiIvi<vi

where Ivi<vi is an indicator variable taking value 1 if vi < vi and value 0 otherwise.

This leads to a new version of (2):

V = (I−C)−1(Dp− b(v,p)), (4)

where bi(v,p) = βi(p)Ivi<vi .
23 Correspondingly, (3) is re-expressed as

v = Ĉ(I−C)−1(Dp− b(v)) = A(Dp− b(v,p)). (5)

An entry Aij of the dependency matrix describes the proportion of j’s failure costs that

i bears when j fails as well as i’s claims on the primitive assets that j directly holds. If

organization j fails, thereby incurring failure costs of βj, then i’s value will decrease by

Aijβj.

2.5 A Simple Microfoundation

To help fix ideas, we discuss one simple microfoundation – among many – of the model and

the value equations provided above.

Organizations are owner-operated firms. For simplicity, let each firm have a single pro-

prietary asset: an investment project that generates a return. Our model is then simplified

to the case m = n and D = I. Firms have obligations to each other: for instance, promised

payments for inputs or other intermediate goods. These obligations comprise the cross-

holdings. Once a firm’s value no longer covers the full promised value of its payments, all

creditor organizations – who are of equal seniority – are rationed in proportion to Vi, with

organization j claiming CijVi of i’s value. Thus, even though the obligations might initially

be in the form of debt, the relevant scenario for our cascades – and the one the model focuses

on – is one in which the full promised amounts cannot be met by the organizations. This

is a regime of “orderly write-downs” in which creditors are willing to take a fraction of the

face value they are owed. Thus, the values of cross-holdings are simply linear in Vi, as in our

equations. (Section A.2 in the Online Appendix illustrates this in detail.)

23The number bi(v,p) reflects realized failure costs, and is zero when failure does not occur. It always
depends on the asset values through the indicator Ivi≤v, but the bankruptcy costs βi may depend on
underlying asset values, p. See Section 2.5 below for an example. We will suppress the argument p when it
is not essential.
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The value left to the owner-operators is vi = ĈiiVi. While the firm continues to operate,

this amount must cover return on capital, wages, benefits, and pension obligations for the

owner operators.24 The share Ĉii can be thought of as all of the stock or equity held in the

firm, while the Cij’s are payment obligations from the firm to other firms. The Ĉii residual

shares correspond to the control rights of the firm, while the Cij’s simply represent obliga-

tions to other creditors. If the value left to the owner-operators/shareholders is sufficiently

low (below some outside option value of their time or effort), they may choose to cease oper-

ations.25 Indeed, we posit that there is a critical threshold vi such that if the value available

to the owner-operator falls below it, he or she chooses to cease operations and to liquidate

the asset. In other words, once vi < vi the asset is liquidated.

Liquidation is irreversible and total: a firm cannot partially liquidate its proprietary asset.

Liquidation is also costly: if i liquidates its proprietary asset, it incurs a loss of λi cents on

the dollar.26 In terms of our model, βi(p) = λipi. Recalling that bi(v,p) = βi(p)Ivi<vi , it

follows that

v = A (p− b(v,p)) .

2.6 Equilibrium Existence and Multiplicity

A solution for organization values in equation (5) is an equilibrium set of values, and encapsu-

lates the network of cross-holdings in a clean and powerful form, building on the dependency

matrix A.

There always exists a solution and there can exist multiple solutions to the valuation

equation (multiple vectors v satisfying (5)) in the presence of the discontinuities. In fact,

the set of solutions forms a complete lattice.27

There are two distinct sources of equilibrium multiplicity. First, taking other organiza-

tions’ values and the values of underlying assets as fixed and given, there can be multiple

possible consistent values of organization i that solve equation (5). There may be a value

of vi satisfying equation (5) such that 1vi<vi = 0 and another value of vi satisfying equation

(5) such that 1vi<vi = 1; even when all other prices and values are held fixed. This source of

multiple equilibria corresponds to the standard story of self-fulfilling bank runs (see classic

models such as Diamond and Dybvig (1983)). The second source of multiple equilibria is

the interdependence of the values of the organizations: the value of i depends on the value

of organization j, while the value of organization j depends on the value of organization

i. There might then be two consistent valuation vectors for i and j: one in which both i

24Indirectly, the value vi includes the cross-holdings that firm i has in others; that is, accounts receivable
that can be used to meet payroll and other obligations.

25This can happen for various reasons. For example, in the case of Spanair, there was too little money to
cover wages, fuel, and other basic maintenance costs, and the airline was forced to cease operations. It could
also be that the owners no longer view it worthwhile to continue to devote efforts to this investment project.

26These losses involve time that the asset is left idle, costs of assessing values and holding sales of assets,
costs of moving assets to another production venue, and loss of firm specific capital and knowledge.

27This holds by a standard application of Tarski’s fixed point theorem, as failures are complements.
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and j fail and another in which both i and j remain solvent. This second source of multiple

equilibria is different from the individual bank run concept, as here organizations fail because

people expect other organizations to fail, which then becomes self-fulfilling.

In what follows, we typically focus on the best case equilibrium, in which as few orga-

nizations as possible fail.28 This allows us to isolate sources of necessary cascades, distinct

from self-fulfilling sorts of failure, which have already been studied in the sunspot and bank

run literatures. When we do discuss multiple equilibria, we will consider only the second

novel source of multiplicity – multiplicity due to interdependencies between organizations –

rather than the well-known phenomenon of a bank run on a single organization. With suit-

able regularity conditions (so that other equilibria are appropriately stable in some range of

parameters), the results presented below should have analogs applying to other equilibria,

including the worst case equilibrium.

2.7 Measuring Dependencies

The dependency matrix A takes into account all indirect holdings as well as direct holdings.

The central insights of the paper are derived using this matrix. In this section we identify

some useful properties of the dependency matrix A and explore its relation to direct cross-

holdings C.

2.7.1 An Example

To see how the dependency matrix A and direct cross-holdings matrix C might differ, con-

sider the following example. Suppose there are two organizations, i = 1, 2, each of which

has a 50% stake in the other organization. The associated cross-holdings matrix C and the

dependency matrix A are as follows. (Recall that Ĉii is equal to 1 minus the sum of the

entries in column i of C.)

C =

(
0 0.5

0.5 0

)
Ĉ =

(
0.5 0

0 0.5

)
A = Ĉ(I−C)−1 =

(
2
3

1
3

1
3

2
3

)
.

In this simple example, we can already see that direct claims – as captured by C and Ĉ

– can differ quite substantially from the ultimate value dependencies described by A. First,

even though an organization 1’s shareholders have a direct claim on 50% of its value, they

are ultimately entitled to more than this – as they also have some claims on the value of

organization 2, which includes part of the value of organization 1. Second, the ultimate

dependence of each organization on the other is smaller than what is apparent from C, by

the fact that value is conserved.29

28As discussed in Section 3.2.3, in this best case equilibrium no organization fails that does not also fail
in all other equilibria.

29A further (starker) illustration of A and C can differ is available in the Online Appendix (Section A.1).
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Although A can differ substantially from the direct holdings captured by C + Ĉ, some

general statements can be made about the differences.

Lemma 1. Ĉii is a lower bound on Aii, but Aii can be much larger than Ĉii.

1. Aii

Ĉii
≥ 1 for each i, with equality if and only if there are no cycles of cross-holdings (i.e.

directed cycles in C) that include i.

2. For any n, there exists a sequence of n-by-n matrices
(
C(`)

)
such that

A
(`)
ii

Ĉ
(`)
ii

→ ∞ for

all i.

The magnitudes of the terms on the main diagonal of A turn out to be critical for

determining whether and to what extent failures cascades (Section 3.1) and the size of a

moral hazard problem we discuss in the Online Appendix. Lemma 1 demonstrates that the

lead diagonal of A can be larger than the lead diagonal of Ĉ, but can never be smaller.

The potential for a large divergence comes from the fact that sequences of cross-holdings

can involve cycles (i holds j, who holds k, who holds `, . . . , who holds i), so that i can end

up with a higher dependency on its own assets than indicated by looking only at its outside

investors’ direct holdings (Ĉii) .

2.8 Avoiding a First Failure

Before moving on to our main results regarding diversification and integration, we provide

a result that uses our model to show that there are necessarily tradeoffs in preventing the

spark that ignites a cascade. Any fair trades of cross-holdings and assets that help an

organization avoid failure in some circumstances must make it vulnerable to failure in some

new circumstances. This is a sort of “no-free-lunch” result for avoiding first failures.

To state this result, it is helpful to introduce some notation. We write organization

i’s value assuming no failures at asset prices p, cross-holdings C and direct holdings D as

vi(p,C,D). An organization i is closest to failing at positive asset prices p, cross-holdings

C, and direct holdings D if there exists a (necessarily unique) λ > 0 such that at asset

prices λp, organization i is about to fail, vi(λp,C,D) = vi, while all other organizations are

solvent, vj(λp,C,D) > vj for j 6= i. Define q(p,C,D) := λp.

Before stating the result we also introduce the concept of fair trades.30 Fair trades

are exchanges of cross-holdings or underlying assets that leave the (market) values of the

organizations unchanged at current asset prices.31 More precisely, the matrices (C,D) and

30This definition takes prices of assets (p) as given, but not necessarily the prices of organizations, valuing
them based on their holdings. It does not incorporate the potential impact of failures of organizations on
their values. Thus it is a benchmark that abstracts away from the failure costs, which is the right benchmark
for the exercise of seeing the impact of trades on first-failures.

31So, absent failure, the values of organizations are the same before and after fair trades.
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(C′,D′) are said to be related by a fair trade at p if v = v′, where v = Ap and v′ = A′p;

the matrix A′ is computed as in (5) with C′ and D′ playing the roles of C and D.32

Proposition 1. Suppose an organization i is closest to failing at asset prices p, cross-

holdings C, and direct holdings D. Consider new cross-holdings and direct holdings C′ and

D′ resulting from a fair trade at p so that row i of A′ is different from that of A. Then, for

any ε > 0, there is a p′ within an ε-neighborhood of q(p,C,D),33 such that i fails at prices

p′ after the fair trade but not before: vi(p
′,C′,D′) < vi < vi(p

′,C,D).

It is conceivable that if an organization is at risk of eventual failure but not imminent

failure there could exist some fair trades that would unambiguously make that organization

safer: prone to failure at a smaller set of prices. An organization might hedge a particular

risk. Proposition 1 shows that, at least when it comes to saving the most vulnerable organi-

zation, there are always tradeoffs: new holdings that avoid failure at one set of prices make

failure more likely at another set of nearby prices. So, to fully avoid a failure (at nearby

prices) once it is imminent requires some unfair trades or external infusion of capital.

3 Cascades of Failures: Definitions and Preliminaries

In order to present our main results, we need to first provide some background results and

definitions regarding how the model captures cascades, which we present in this section.

These preliminaries outline how failures cascade and become amplified, a simple algorithm

for identifying the waves of failures in a cascade, and our distinction between diversification

and integration.

3.1 Amplification through Cascades of Failures

A relatively small shock to even a small organization can have large effects by triggering

a cascade of failures. The following example illustrates this. For simplicity, suppose that

organization 1 has complete ownership of a single asset with value p1. Suppose that p′ differs

from p only in the price of asset 1, such that p′1 < p1. Finally, suppose v1(p) > v1(p) > v1(p
′)

so that 1 fails after the shock changing asset values from p to p′. Beyond the loss in value due

to the decrease in the value of asset 1, organizations 2’s value also decreases by a term arising

from 1’s failure cost, A21β1 (recall (5)). If organization 2 also fails, organization 3 absorbs

part of both failure costs: A31β1 + A32β2, and so organization 3 may fail too, and so forth.

With each failure, the combined shock to the value of each remaining solvent organization

increases and organizations that were further and further from failure before the initial shock

can get drawn into the cascade. If, for example, the first K organization end up failing in

32We show in Section A.3.1 of the Online Appendix that there are circumstances under which organizations
may have incentives to undertake “unfair” trades because of the failure costs.

33I.e. p′ such that ‖p′ − q(p,C,D)‖∞ < ε, where ‖ · ‖∞ denotes the sup-norm.
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the cascade, the the cumulative failure costs to the economy are β1 + · · · + βK , which can

greatly exceed the drop in asset value that precipitated the cascade.

3.2 Who Fails in a Cascade?

A first step towards understanding how susceptible a system is to a cascade of failures,

and how extensive such a cascade might be, is to identify which organizations will fail

following a shock. Again, we focus on the best-case equilibrium.34 Studying the best case

equilibrium following a shock identifies the minimal possible set of organizations that could

fail. (Results for the worst-case equilibrium are easy analogs identifying the maximal possible

set of organizations that will fail.)

3.2.1 Identifying Who Fails When

To understand how and when failures cascade we need to better understand when a fall in

asset prices will cause an initial failure and whether the first failure will result in other failures.

Utilizing the dependency matrix A, for each organization i we can identify the boundary in

the space of underlying asset prices below which organization i must fail, assuming no other

organization has failed yet. We can also identify how the failure of one organization affects

the failure boundaries of other organizations and so determine when cascades will occur and

who will fail in those cascades. We begin with an example that illustrates these ideas very

simply, and then develop the more general analysis.

34This is the best case equilibrium across all possible equilibria; this statement remains true even when
we consider multiplicity not arising from interdependencies among organizations.
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3.2.2 Example Continued
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(d) Cascades of Failure

Figure 1: With positive cross-holdings the discontinuities in values generated by the failure
costs can result in multiple equilibria and cascades of failure.

Let us return to the example introduced in Section 2.7.1, taking D = I, so each orga-

nization owns one proprietary asset. We suppose that organization i fails when its value

falls below 50 and upon failing incurs failure costs of 50. Organization i therefore fails when
2
3
pi + 1

3
pj < 50. Figure 1a shows the failure frontiers for the two organizations. When asset

prices are above both failure frontiers, neither organization fails in the best case equilibrium

outcome. One object that we study is the boundary between this region and the region in

which at least one organization fails in all equilibria. We call this boundary the first failure

frontier and it is shown in Figure 1b.

The failure boundaries shown in Figure 1a are not the end of the story. If organization j

fails, then organization i’s value falls discontinuously. In effect, through i’s cross-holding in

j and the reduction in j’s value, i bears 1/3 of j’s failure costs of 50. Organization i then
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fails if 2
3
pi + 1

3
(pj − 50) < 50. We refer to this new failure threshold as i’s failure frontier

conditional on j failing and label it FF ′i . These conditional failure frontiers are shown in

Figure 1c.

The conditional failure frontiers identify a region of multiple equilibria due to interde-

pendencies in the value of the organizations. As discussed earlier, this is a different source of

multiple equilibria from the familiar bank run story (we do not depict the multiple equilibria

corresponding to this). The multiple equilibria arise because i’s value decreases discontinu-

ously when j fails and j’s value decreases discontinuously when i fails. It is then consistent

for both i to and j to survive, in which case the relevant failure frontiers are the uncondi-

tional ones, and consistent for both i and j to fail, in which case the relevant failure frontiers

are the conditional ones.

Figure 1d identifies the regions where cascades occur in the best case equilibrium.35

When asset prices move from being outside the first failure frontier to being inside this

region, the failure of one organization precipitates the failure of the other organization. One

organization crosses its unconditional (best-case) failure frontier and the corresponding asset

prices are also inside the other organization’s conditional failure frontier (which includes the

costs arising from the other organizations failure).36

3.2.3 A Simple Algorithm for Identifying Cascade Hierarchies

Although all the relevant information about exactly who will fail at what asset prices can be

represented in diagrams such as those in the previous section for simple examples, the num-

ber of conditional failure frontiers grows exponentially with organizations and while adding

assets increases the dimensions making their geometric depiction infeasible. Thus, while the

diagrams provide a useful device for introducing ideas, they are of less use practically. In

this section, we provide an algorithm that traces the propagation of a specific shock that

causes one organization to fail.37 As before, we focus on the best-case equilibrium in terms

of having the fewest failures and the maximum possible values vi.

At step t of the algorithm, let the set Zt be the set of failed organizations. Initialize

Z0 = ∅. At step t ≥ 1:

1. Let b̃t−1 be a vector with element b̃i = βi if i ∈ Zt−1 and 0 otherwise.

35Compare with Figure 3 in Gouriéroux, Héam and Monfort (2012), which makes some of the same points.
36As hinted at above, the full set of multiple equilibria is more complex than pictured in Figure 1 and

this is discussed in the Online Appendix (Sections A.7 and A.8). For example the worst-case equilibrium
has frontiers further out than those in Figure 1c, as those are based on including failure costs arising from
the other organization failing. The worst-case equilibrium is obtained by examining frontiers based on
failure costs presuming that both fail, and then finding prices consistent with those frontiers. There are
also additional equilibria that differ from both the best and worst case equilibria – ones that presume one
organization’s failure but not the other organization’s, and find the highest prices consistent with these
presumptions.

37This sort of algorithm is the obvious one for finding extreme points of a lattice, and so is standard (for
instance, see Theorem Theorem 5.1 in Vives (1990)). Variations on it appear in the literature on contagions,
as in Eisenberg and Noe (2001) and Blume et al (2011).
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2. Let Zt be the set of all k such that entry k of the following vector is negative:

A
[
Dp− b̃t−1

]
− v.

3. Terminate if Zt = Zt−1. Otherwise return to step 1.

When this algorithm terminates at step T (which it will given the finite number of

organizations), the set ZT corresponds to the set of organizations that fail in the best case

equilibrium.38

This algorithm provides us with hierarchies of failures. That is, the various organizations

that are added at each step (the new entries in Zt compared to Zt−1) are organizations whose

failures were triggered by the cumulative list of prior failures; they would not have failed if

not for that accumulation and, in particular, if not for the failures of those added at the last

step. Thus, Z1 are the first organizations to fail, then Z2 \ Z1 are those whose failures are

triggered by the first to fail, and so forth.

Note that the sets depend on p (and C and D), and so each configuration of these can

result in a different structure of failures. It is possible to have some C and D such that

there are some organizations that are never the first to fail, and others who are sometimes

the first to fail and sometimes not.

The hierarchical structure of failures has immediate and strong policy implications. If any

level of the hierarchy can be made empty, then the cascade stops and no further organization

will fail. This suggests that one cost effective policy for limiting the effect of failures should be

to target high levels of the hierarchy that consist of relatively few organizations.39 However,

such policies may involve more intervention than is necessary. For example, within a wave

there could be a single critical organization, the saving of which would prevent any further

failure regardless of whether other organizations in the same level failed. Saving an entire

level from failure is sufficient for stopping a cascade, but not necessary.

3.3 Defining Integration and Diversification

One of our contributions is a distinction between the roles of diversification and integration

in cascades. Before presenting those results (in the next Section), we provide the essential

distinction.

We say that a financial system becomes more diversified when the number of cross-holders

in each organization i weakly increases and the cross-holdings of all original cross-holders of

i weakly decrease.

Formally, cross-holdings C′ are more diversified than cross-holdings C if and only if

38The same algorithm can be used to find the set of organizations that fail in the worst case equilibrium
by instead initializing the set Z0 to contain all organizations and looking for organizations that will not fail,
and so forth.

39As considered in Section 2.8.
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• C ′ij ≤ Cij for all i, j such that Cij > 0, with strict inequality for some ordered pair

(i, j), and

• C ′ij > Cij = 0 for some i, j.

Thus, diversification captures the spread in organizations’ cross-holdings.

A financial system becomes more integrated if the external shareholders of each organiza-

tion i have lower holdings, so that the total cross-holdings of the each organization by other

organizations weakly increases.

Formally, cross-holdings C′ are more integrated than cross-holdings C if and only if

Ĉ ′ii ≤ Ĉii for all i with strict inequality for some i. This is equivalent to the condition that∑
j:j 6=i

C ′ji ≥
∑
j:j 6=i

Cji,

for all i with strict inequality for some i.40

Thus, integration captures the depth or extent of organizations’ cross-holdings. This can

be viewed as an intensive margin. In contrast, diversification pertains to the number of

organizations interacting directly with one another, and so is an extensive margin.

It is possible for a change in cross-holdings to both increase diversification and integration.

There are changes in cross-holdings that increase diversification but not integration and other

changes that increase integration but not diversification.

3.4 Essential Ingredients of a Cascade

To best understand the impact of diversification and integration on cascades it is useful to

identify three ingredients that are necessary for a widespread cascade:

I. A First Failure: Some organization must be susceptible enough to shocks in some assets

that it fails.

II. Contagion: It must be that some other organizations are sufficiently sensitive to the

first organization’s failure that they also fail.41

III. Interconnection: It must be that the network of cross-holdings is sufficiently connected

so that the failures can continue to propagate and are not limited to some small com-

ponent.

40This definition is simple and well-suited to our simulations as in these we will have symmetric values of
underlying assets. However, when underlying asset values are asymmetric there may be changes in cross-
holdings consistent with either increasing or decreasing integration that result in substantial changes in the
relative values of organizations, and so a more complicated definition is needed. Thus, in our formal results
we work with a definition that also holds organizations’ market values constant.

41Note that it need not be an immediate cross-holder that is the sensitive one. Drops in values propagate
through the network (as captured by the matrix A), and so the second organization to fail need not be an
immediate cross-holder, although that would typically be the case.
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Keeping these different ingredients of cascades in mind will help us disentangle the dif-

ferent effects of changes in cross-holdings.

Let us preview of some of the ideas, which we will soon make precise in by imposing

some additional structure on the model. As we increase integration (without changing each

organization’s counterparties), an organization becomes less sensitive to its own investments

but more sensitive to other organizations’ values, and so first failures can become less likely

while contagion can become more likely conditional on a failure. This decreases the circum-

stances that lead to first failures, making things better with respect to I, while it increases

the circumstances where there can be contagion, making things worse with respect to II.

Interconnection (III) is not impacted one way or the other as the network pattern does not

change (by assumption). As we increase diversification, organizations become less dependent

on any particular neighbor, so contagions can be harder to start, but the network becomes

more connected, and so the extent of a contagion broadens (at least up to a point where the

network is fully connected). This decreases the circumstances where there can be contagion,

making things better with respect to II, while increasing the potential reach of a contagion

conditional upon one occurring, making things worse with respect to III.

Understanding this structure makes some things clear. First, integration and diversifi-

cation affect different ingredients of cascades. Integration affects an organization’s exposure

to others compared to its exposure to its own assets, while diversification affects how many

others one is (directly and indirectly) exposed to. Second, both integration and diversifi-

cation improve matters with respect to at least one of the cascade ingredients above while

causing problems along a different dimension. These tradeoffs result in nonmonotonic effects

of diversification and integration on cascades, as we now examine in detail.

4 How Do Cascades Depend on the Diversification and

Integration of Cross-Holdings?

We now turn to our main results.

We begin with some analytic results and then provide additional results via simulations

for some random network structures.

4.1 The Consequences of Diversification and Integration: Ana-

lytic Results

4.1.1 A General Result on Integration

To begin, we prove a general result about how integration affects the extent of cascades.

The result permits any initial cross-holdings C, an arbitrary vector of costs β, an arbitrary

vector of threshold values v, any direct holdings of assets D, and any underlying asset values

p.
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Recall that the matrices (C,D) and (C′,D′) are said to be related by a fair trade at p if

v = v′, where v = Ap and v′ = A′p; the matrix A′ is computed as in (5) with C′ and D′

playing the roles of C and D.42

Proposition 2. Consider (C,D) and (C′,D′) that are related by a fair trade at p,43 and

such that integration increases: A′ij ≥ Aij whenever i 6= j. Every organization that fails in

the cascade at (C,D,p) also fails at (C′,D′,p).

Proposition 2 states that if we integrate cross holdings via fair trades, so that organi-

zations end up holding more of each other’s investments, then we face more failures in any

given cascade that begins. Thus, benefits of integration comes only via avoiding first failures.

There is a tradeoff: integrating can eliminate some first failures. However, given that a first

failure occurs, it only exacerbates the resulting cascade.

The reasoning behind the proposition is as follows. As can be seen immediately from

equation (5), when organization i fails and incurs failure costs βi, it is the ith column of

A which determines who (indirectly) pays these costs. Increasing Aij for all i and j 6= i

increases the share of i’s failure costs paid by each other organization. This increases the

negative externality i imposes on each organization following its own failure. These other

organizations are then more likely to also fail once i fails and so the number of organizations

that fail in the cascade weakly increases.

4.1.2 A Result on Diversification and Integration

In order to bring diversification into the picture, we specialize the model a bit. Fixing any

given level of diversification and integration a network can typically be rewired to make it

more or much less susceptible to cascades of failures. This is an obstruction to analytical

comparative statics in diversification that hold for every network. By working with a ran-

dom graph model that imposes some structure on the distribution of possible cross-holdings

matrices, we can overcome this challenge and make statements that hold with high probabil-

ity.44 The random graph model is tractable yet flexible with respect to degree distributions,

making it well-suited to the study of diversification. Our analysis of it illustrates some basic

intuitions. We then come back to verify, via simulations, that these intuitions generalize to

random networks that are less analytically tractable.

Before introducing any randomness, suppose G is a fixed matrix with all entries in {0, 1};
we call this an adjacency matrix of an unweighted, directed graph. The interpretation is

42We show in the Online Appendix (Section A.3.1), that there are circumstances under which organizations
may have incentives to undertake “unfair” trades because of the failure costs.

43The definition of a fair trade ignores any failure costs – i.e., the values before and after a trade are
calculated as if failures do not occur. This offers a clear benchmark.

44When one allows the number of nodes to become arbitrarily large, then various techniques related to
laws of large numbers can be applied to deduce connectedness properties of a random network. Thus, one
can make statements that are likely to hold with high probability when the number of nodes is large. For
surveys of techniques relevant to our analysis, see (Jackson, 2008, Chapter 4) and Newman (2010).
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that Gij=1 if organization i has a claim on organization j. To make it into a cross-holdings

matrix, we posit that a fraction c of each organization is held by other organizations, spread

evenly among the di =
∑

j Gji organizations that hold it. We call di the out-degree of i

and analogously define in-degree by dini =
∑

iGij to be the number of organizations that i

holds.45

Thus, for i 6= j

Cij =
cGij

dj
.

The remaining 1 − c of the organization is held by its external shareholders, so that

Ĉii = 1− c.
Holding c fixed, as the out-degree dj increases, the number of organizations having cross-

holdings in j increases, but each of those organizations has lower cross-holdings in j. Thus,

in this model, increasing dj increases diversification but not integration.

Holding the underlying graph G fixed, as c increases each organization has lower self-

holdings but higher cross-holdings in the other organizations it already holds. Thus increas-

ing c increases integration but not diversification. This is made precise in the following

lemma shows how increased integration weakly increases Aij for all i and all j 6= i and

strictly increases at least one off-diagonal entry of A in each column.

Lemma 2. Suppose that Cij = cGij/dj for some adjacency matrix G, with 0 < c ≤ 1
2

and

each di ≥ 1.46 Then Aii is decreasing in c and Aij is increasing in c:

1. ∂Aii

∂c
< 0 for each i;

2.
∂Aij

∂c
≥ 0 for all i 6= j;

3.
∂Aij

∂c
> 0 for all i 6= j so that there is a path47 from j to i in G.

Next we introduce the random network model. Fix a degree distribution π = (πij), where

πij is the fraction of nodes that have in-degree i and out-degree j and the integer indices

satisfy 0 ≤ i, j ≤ n− 1. Let G(π, n) be the set of all directed graphs on n that have degree

distribution π. We say π is feasible for n when G(π, n) is nonempty.48 A random network

with degree distribution π is a draw from G(π, n) uniformly at random.

45Note that these terms are intuitive when viewed from the perspective of value flow: out-degree corre-
sponds how many organizations receive the value that flows out from i by directly holding it. In-degree
describes the number of organizations that i holds, and that therefore send value to i.

46Note that Lemma 2 does not impose any assumptions on the underlying graph G other than each
organization being cross-held by at least one other. Interestingly, the monotonicity identified in Lemma 2
does not always hold for c > 1/2. For such c, there are graph structures where further increases in c result
in the immediate neighbors of i depending less on i. The increase in Aij for non-neighbors of i can come at
the expense of both Aii and Aij for j such that Cij > 0.

47Recall footnote 11.
48For G(π, n) to be a nonempty set, some basic relations have to be satisfied by π: (i) nπij is always a

(nonnegative) integer, since it must be a number of nodes; (ii)
∑

ij iπij =
∑

ij jπij , since each is equal to
the number of directed edges in the graph divided by n.
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For a given π, we denote by d = max{i : πij > 0 or πji > 0 for some j} the maximum

degree of the network and by d = min{i : πij > 0 or πji > 0 for some j} the minimum degree.

Finally, we define the average directed degree d to be the expected out-degree of the vertex

at the end of a link chosen uniformly at random from G(π, n).49 This is a basic measure of

average diversification in the graph that overweights organizations held by many others, and

turns out to be the right one for our purposes. Together, the three parameters d, d, and d

operationalize the notion diversification in this random network model.

Each organization has a single asset of value 1 (so D = I and p = (1, . . . , 1)). We set

all organizations’ thresholds vi to a common v ∈ (0, 1), and set βi = pi, so that a failing

organization has its proprietary asset completely devalued.

Define ṽmin = 1−c
1−cd/d and ṽmax = 1−c

1−cd/max{d,1} .
50

How does the degree distribution, π, affect the extent of cascades? Let G be a random

draw of a network with n nodes and degree distribution π. Let f(π, n) be the expected

fraction of organizations that fail if the network is given by G and one proprietary asset

value pi is devalued to 0, with i selected uniformly at random.

Proposition 3.

If one proprietary asset fails (uniformly at random), a non-vanishing fraction of organi-

zations fail if and only if there are intermediate levels of both integration and diversification.

In particular, consider a degree distribution π with associated average directed degree d,

maximum degree d, and minimum degree d; and let (nk) be an infinite sequence of natural

numbers such that π is feasible for each nk.

1. The fraction of failures tends to 0 (f(π, nk)→ 0) if either of the following conditions

hold:

(ii) d < 1 (diversification is too low), or

(i) d > c(1−c)
ṽmin−v (diversification is too high, or integration is too high or low).

2. The fraction of failures is nonvanishing (lim infk f(π, nk) > 0) if both of the following

conditions hold:

(i) d > 1 (diversification is not too low), and

(ii) d < c(1−c)
ṽmax−v (diversification is not too high and integration is intermediate).

Proposition 3 documents a non-monotonicity of failures in diversification and integration.

Part (1) shows that if either integration or diversification is extreme (low or high), then

there can be no substantial contagion: 1(i) is satisfied if diversification is too low, and 1(ii)

49This depends only on π. To see this, let φi be the probability that a node of out-degree j is found by
following a randomly chosen edge; we can see that φj =

∑
i iπij/

∑
j,i iπij . Now note that d =

∑
jφj .

50These serve as lower and upper bounds, respectively, on organization values, as verified in the proof of
Proposition 3.
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is satisfied when diversification is high51 or when integration is high or low (c is close to

0 or 1). In other words, contagion can occur only if both integration and diversification

are intermediate. Part 2 then gives a sufficient condition: upper and lower bounds on the

diversification parameters d and d, respectively,52 specifying the intermediate range in which

contagion occurs.53

The intuition for Proposition 3 is as follows. If c is very low, then no firm holds enough

of its counterparties for contagion to propagate. If c is very high, then no firm is sufficiently

exposed to its own asset for a first failure to happen. So consider the range where c is

intermediate. For random graphs of the type we study here, once the average directed

degree d crosses the threshold 1, the graph structure changes from many small isolated

components of vanishing size to a giant component of non-vanishing size. It starts out

small, but increases in size as d grows. Thus, if d < 1, contagion to a positive fraction of

organizations following the failure of a single proprietary asset is impossible. At the other

extreme, once d >
⌈

c
ṽmin−v

⌉
, a single organization’s failure will not cause a sufficient decrease

in the value of any other organization to induce a second failure. When integration and

diversification are intermediate, so that none of these obstructions to contagion occur, part

(2) of the proposition states that a (nonvanishing) fraction of organizations fail.

The reasoning above makes use of properties of large networks. Regardless of the param-

eter values, when there are only a small number of organizations, networks with intermediate

connectedness are realized with non-trivial probability. Thus, in settings with very few criti-

cal organizations, one has to rely on direct calculations (e.g., see the core-periphery analysis

in Section 5.1).

4.2 The Different Roles of Diversification and Integration: Simu-

lations on Random Networks

We now show that the analytic results of the previous section hold in other classes of sim-

ulated random networks. We also derive some richer insights into comparative statics in

various levels of diversification and integration.

4.2.1 Simulated Random Networks

To illustrate how increased diversification and increased integration affect the number of

organizations that fail in a cascade following the failure of a single organization’s assets, we

specialize the model.

Each organization has exactly one proprietary asset, so that m = n and D = I. This

keeps the analysis uncluttered, and allows us to focus on the network of cross-holdings.

51Note that as c(1− c) < 1/4 for all c ∈ (0, 1), 1(ii) is always satisfied for all d > 1/(4(ṽmin − v))
52Fixing a ratio d/d < 1/c, the right-hand side of 2(ii) is constant in d; in this sense 2(ii) is a true upper

bound on d.
53Observe that when the graph is regular, so that d = d = d, then ṽmax and ṽmin become identical and the

result becomes fully tight, with no distance between the necessary and the sufficient condition for contagion.
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For simplicity, we also start with asset values of pi = 1 for all organizations, and have

common failure thresholds vi = θvi, for a parameter θ ∈ (0, 1), where vi is the starting value

of organization i when all assets are at value 1. In case an organization fails it loses its full

value, so that βi = vi.

The cross-holdings are derived from an adjacency matrix G with entries in {0, 1}, where

Gij = 1 indicates that i has cross-holdings in j and we set Gii = 0.

Again, a fraction c of each organization is held by other organizations, spread evenly

among the di =
∑

j Gji organizations that hold it as in (4.1.2) The remaining 1 − c of the

organization is held by its external shareholders, so that Ĉii = 1− c.
To illustrate the effects of increasing diversification and increasing integration on cascades

we examine a setting where connections between organizations are formed at random, with

each organization having cross-holdings in a random set of other organizations.

In particular, we form a directed random graph, with each directed link having probability

d/(n− 1), so that the expected indegree and outdegree of any node is d. More precisely, the

adjacency matrix of the graph is a matrix G (usually not symmetric), where Gij for i 6= j

are i.i.d. Bernoulli random variables each taking value 1 with probability d/(n − 1) and 0

otherwise.

To examine the effects of increasing diversification (increasing d) and increasing integra-

tion (increasing c), we simulate an organization’s proprietary asset failing and record the

number of organizations that fail in the resulting cascade.

We follow a simple algorithm:

Step 1. Generate a directed random network G with parameter d as described above.

Step 2. Calculate the matrix C from G according to (4.1.2), where Ĉii = 0.5.

Step 3. All organizations start with asset values of pi = 1. Calculate organizations’ initial

values vi and set vi = θvi for some θ ∈ (0, 1).

Step 4. Pick an organization i uniformly at random and drop the value (pi) of i’s proprietary

asset to 0.54

Step 5. Assuming all other asset values (pj for j 6= i) stay at 1, calculate the best equilibrium

using the algorithm from Section 3.2.3.

The main outcome variable we track is the number of failures in the best-case equilibrium.

4.2.2 The Consequences of Diversification: It Gets Worse Before it Gets Better

For our simulations, we consider n = 100 nodes and work with a grid on expected degree d

between 1 and 20 (varying it increments of 1/3). We work with values of θ ∈ [0.8, 1].

54Thus, we are focusing on a case where an organization’s proprietary project is shut down upon failure.
While clearly not the only case of interest, it is a common one in some bankruptcies.
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Our first exercise is to vary the level of diversification (the expected degree d in the

network) while holding other variables fixed and to see how the number of organizations

(out of 100) that fail varies with the diversification.

Figures 2a and 2b illustrate how the proportion of organizations that fail changes as the

level of diversification (d) is varied (fixing integration at c = 0.5).

Figure 2a shows the result for a level of the failure threshold (θ = 0.93) for which the

curves display their typical nonmontonicities clearly. When d is sufficiently low, 1.5 or

below, then we see the percentage of organizations that fail is less than 20. At that level, the

network is not connected; a typical organization has direct or indirect connections through

cross-holdings to only a small fraction of others, and any contagion is typically limited to

a small component. As d increases (in the range of 2 to 6 other organizations) then we see

substantial cascades affecting large percentages of the organizations. In this middle range,

the network of cross-holdings has two crucial properties: it is usually connected55, and

organizations still hold large enough cross-holdings in individual other organizations so that

contagion can occur. This is the “sweet spot” where ingredients II and III are present and

strong – contagion is possible and there is enough interconnection for a cascade to spread.

As we continue to increase diversification, the extent of cascades is falls, as diversification is

now lowering the chance that contagion occurs. In summary, there is constantly a tradeoff

between II and III, but initially III dominates as diversification leads to dramatic changes

in the connectedness of the network. Then II dominates: once the network is connected, the

main limiting force is the extent to which the failure of one organization sparks failures in

others, which is decreasing with diversification. These three regimes are illustrated in Figure

3.
Figure 2b shows how these effects vary with θ. Higher values of θ correspond to higher

failure thresholds, and so it becomes easier to trigger contagions. This leads to increases in

the curves for all levels of diversification. Essentially, increasing θ leads to a more fragile

economy across the board.

The main results in Section 4.1 provide analytical support for the non-monotonicity

due to diversification identified in the simulations and helps identify the forces behind the

non-monotonicity. With low levels of diversification, contagions are difficult to start and

will frequently die out before affecting many organizations. Condition III is not met, as the

network of cross-holdings is not connected. Even if all organizations directly or independently

dependent on the failing organization i (those j such that Aij > 0) also fail in the cascade,

there are sufficiently few such organizations that the cascade dies out quickly and is small.

As we increase diversification into intermediate levels, we see an increase in the number of

organizations that fail in a cascade. Since network components are larger, the failure of any

one organization infects more other organizations, and more organizations are drawn into

the cascade. However, as we continue to diversify cross-holdings, eventually the increased

diversification leads to a decrease in exposure of any one organization to any other, and so

the necessary condition II is not met as no organization depends very much on any other.

55That is, there is a path in C from any node to any other.
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(a) Effects of diversification: the percentage of
organizations failing as a function of expected de-
gree for θ = 0.93 (c = 0.5, n = 100).
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(b) Effects of diversification for several failure
thresholds: percentage of organizations failing as
a function of expected degree for various levels of
θ (c = 0.5, n = 100).

Figure 2: How diversification (the average number of other organizations that an organization
cross-holds) affects the percentage of organizations failing, averaged over 1000 simulations.
The horizontal axis corresponds to diversification in terms of the expected degree in the
random network of cross-holdings.

(a) Low diversification (b) Medium diversification (c) High diversification

Figure 3: Example random networks (plotted here with undirected edges) for different levels
of diversification. The transition from (a) many disconnected components to (b) a large
component where each node has few neighbors to (c) a large component in which each node
has many neighbors is clearly visible.

4.2.3 Cascades are Larger but Less Frequent in More Integrated Systems

Next, we consider the implications of increased integration in our simple model on the depth

of cascades, as illustrated in Figure 4.

Figures 4a and 4b illustrate how the proportion of organizations that fail changes as the

level of integration is varied from c = 0.1 to 0.5, for two different values of θ (the fraction

of initial value that must be retained for an organization to avoid failure). As integration is

increased the curves all shift upward and we see increased cascades.

Although the effects in Figures 4a and 4b show unambiguous increases in cascades as

integration increases, they work with levels of c ≤ 0.5 for which there is not so much of

a tradeoff. In particular, for c ≤ 0.5 the initial organization whose asset price is dropped
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(a) Five levels of integration and the percentage
of organizations failing as a function of expected
degree (θ = 0.93, n = 100).
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(b) Five levels of integration and the percentage
of organizations failing as a function of expected
degree (θ = 0.96, n = 100).

Figure 4: How integration (the fraction c of a typical portfolio held by other organizations)
affects the percentage of organizations failing, averaged over 1000 simulations. The horizontal
axis corresponds to the diversification level (the expected degree in the random network of
cross-holdings). The two figures work with different failure thresholds and depict how the
size of cascades varies with the level of integration c ranging from 0.1 to 0.5.

to 0 always fails (in the range of θ ≥ 0.8 considered in the simulations). As c is increased

beyond 0.5, eventually the integration level begins to help avoid first failures, because each

organization is less exposed to the failure of own proprietary asset. Then we see the tradeoff

between I and II that is present as integration is varied (holding diversification constant, so

III – having to do with the connectedness of the network – is not affected). We can see this

in Figure 5.

Figure 5 shows that as integration increases to very high levels, the percentage of first

failures drops: organizations are so integrated that the drop in the value of an organization’s

own investments is less consequential to it, and so there is no first failure.

To summarize, increasing integration (as long as it is not already very high) makes shocks

more likely to propagate to neighbors in the financial network and increases contagion via

the mechanism of II. For very high levels of integration, each organization begins to carry

something close to the market portfolio, and so any first failure caused by the devaluation

of a single proprietary asset becomes less likely.

5 Alternative Network Structures

Additional insights emerge from examining some other random graph models of financial

interdependencies.
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Figure 5: How integration affects the percentage of “first failures”: the percentage of simu-
lations with at least one organization failing, for various levels of integration c from 0.4 to
0.9, with the horizontal axis tracking diversification (expected degree) in the network. The
failure threshold is constant at θ = 0.8.

5.1 A Core-Periphery Model

As a stylized representation of the interbank lending market, we examine a core-periphery

model where 10 large organizations are completely connected among themselves, and each

of 90 smaller organizations has one connection to a random core organization.56 Each of the

ten large core organizations has proprietary assets with an initial value of 8. Each of the 90

peripheral organizations has proprietary assets with an initial value of 1.

We then vary different facets of integration:57 the level CCC of cross-holdings of each

core organization by other core organizations, the level CPC of cross-holdings of each core

organization by peripheral organizations, and the level CCP of cross-holdings of each periph-

eral organization by core organizations. The remaining private holdings, Ĉii, are as follows:

Ĉii = 1− CCC − CPC for a core organization, and Ĉii = 1− CCP for a peripheral one.

We first explore what happens when a core organization fails. As we see in the left-

hand part of Figure 6a, the fraction of peripheral organizations that fail along with the

core organization is increasing in CPC . Once the core organizations become sufficiently

integrated among themselves, starting around CCC = .29, the core organization’s failure

begins to cascade to other core organizations, and then wider contagion occurs. How far this

ultimately spreads is governed by the combination of integration levels.

56Soromaki et al. (2007) map the US interbank network based on the Fedpayments system. They identify
a clique of 25 completely connected banks (including the very largest ones), and thousands of less connected
peripheral regional and local banks.

57Note that in this model the diversification (degree) structure is essentially fixed given the structure of
ten completely inter-connected organizations and the peripheral ones each having one connection; the only
randomness comes from the random attachment of each peripheral organization to a single core organization.
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(b) One peripheral organization’s asset initially fails

Figure 6: The consequences of failure in the core-periphery model. The horizontal axis is the
fraction of each core organization cross-held by other core organizations (integration of core
to core). In Figure 6a, curves correspond to different levels of cross-holdings of each core
organization by peripheral organizations. In Figure 6b, they correspond to different levels
of cross-holdings of peripheral organizations by core ones. The failure threshold is θ = .98.

The more subtle effects are seen in in Figure 6b. The curves are layered in terms of in-

tegration between the core and periphery CPC , with increased integration leading to higher

failure rates due to an initial failure of a peripheral organization. However, the magnitude

of the failure rates is initially increasing in core integration (CCC < .25) and then decreasing

in core integration (CCC > .25). Initial increases in core-integration enable contagion from

one core organization to another, which leads to widespread cascades. Once core integration

becomes high enough, however, core organizations become less exposed to their own periph-

eral organizations, and so then are less prone to fail because of the failure of a peripheral

organization.

5.2 A Model with Segregation among Sectors

Second, we considered a model that admits segregation (homophily) among different seg-

ments of an economy: for instance among different countries, industries, or sectors. In this

model, there are ten different groups of ten nodes each. The key feature being varied is the

relative intensity of nodes’ connections with others in their own group compared to other

groups. This captures the difference between integration across industries and integration

within industries. Varying this difference leads to the results captured in Figure 7. An

obvious effect is that increasing homophily can eventually sever connections between groups

of organizations and lead to lower contagion. However, as we see in Figure 7, the curves

associated with different levels of diversification (expected degrees d) cross each other. With

medium diversification (e.g., d = 3 or d = 5) there is initially a higher level of contagion

29



than with higher diversification (e.g., d = 7 or d = 9). This is because organizations are

more susceptible to each other with medium degrees than with high degrees and the network

is still connected enough to permit widespread contagion. However, lower-degree networks

fragment at lower levels of homophily than high degree networks. So at high levels of ho-

mophily, lower-degree networks are actually more robust. For example, once at least 95

percent of relationships are within own group (in expectation), then we see lower contagion

rates with diversifications d = 3, 5 than with d = 7, 9.
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Figure 7: Ten groups of ten organizations each. The vertical axis is the fraction of organiza-
tions that fail as a function of the homophily. The horizontal axis is the fraction of expected
cross-holdings in same-type organizations. Curves correspond to different diversification
levels (expected degrees d). The failure threshold is θ = .96.

5.3 Power Law Distributions

We also examined networks with more extreme degree distributions, such as a power-law

distribution. Those results are described in detail in Section A.4.1 in the Online Appendix

and are in line with the original regular networks. More extreme exponents in the power law

actually lead to smaller contagions on average, but larger contagions conditional on some

high-degree organization’s failure.

5.4 Correlated and Common Assets

An important concern that emerged from the recent financial crisis is that many organizations

may have investments with correlated payoffs, which could potentially exacerbate contagions,

as many organizations’ values may be low at the same time. In Sections A.4.2 and A.4.3 we

examine two variations with correlated values. As one might expect, increasing correlation
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increases the failure rate. The more interesting part is that the increase occurs abruptly at

a particular level of correlation.

We also examine a model in which organizations have some holdings of both an id-

iosyncratic and a common asset, with the possibility of leverage in holdings of the common

asset. Some organizations are long the asset and others can be short. This results in some

interesting patterns in cascades: even low leverage levels can lead to increased cascades by

increasing organizations’ exposures. However, organizations that are short the common asset

might escape a cascade triggered by a shock to that asset.

6 Illustration with European Debt Cross-Holdings

We close the paper with an illustration of the model with data on the cross-holdings of debt

among six European countries (France, Germany, Greece, Italy, Portugal and Spain). We

include this as a proof of concept, and emphasize that the crude estimates that we use for

cross-holdings make this noisy enough that we do not see the conclusions as robust, but

merely as illustrative of the methodology.58

We take the fundamental asset owned by each country to be its fiscal stream; by exchang-

ing cross-holdings, countries acquire holdings whose value depends on the value of others’

fiscal streams as well as on their own. We model failure as being triggered by a certain

percentage loss in the value of a country’s aggregate holdings. In the simulations, when

a country “fails,” it defaults on 50% of its obligations to foreign countries – an arbitrary

choice, but not unfounded, as we see from the writedown of Greek debt. Such losses may

arise for various reasons: discontinuous changes in government policies of how to make use of

fiscal streams; government decisions not to honor obligations (at which point it makes sense

to do so discontinuously); discontinuities in the fiscal streams themselves (due to strikes,

discontinuous changes in foreign investments, bank runs, and so forth). Indeed, all of these

phenomena were observed in the recent Greek crisis. Finally, for the purposes of this illustra-

tive exercise, we treat these countries as a closed system with no holdings by other countries

outside of these six.

6.1 The Data

Data on the cross-holdings are for the end of December 2011 from the BIS (Bank for In-

ternational Settlements) Quarterly Review (Table 9B). The data used for this exercise are

the consolidated foreign claims of banks from one country on debt obligations of another

58See Upper (2011) for a nice review of the empirical literature simulating the effects of shocks to financial
systems. Explicit losses due to bankruptcy are not usually considered in this literature, but an important
exception is Elsinger et al. (2006), who find that these costs can make a large difference to the extent
of contagion in simulation analysis. Our approach is well-suited to developing a deeper analysis of the
propagation of discontinuities, as we examine the various levels of a cascade – which failures cause which
others. This is illustrated in this section.
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country. The data looks at the immediate borrower rather than the final borrower59 when a

bank from a country different from the final borrower serves as an intermediary.60

This gives following raw cross-holdings matrix, where the column represents the country

whose debt is being held and the row is the country which holds that debt. So, for example,

through their banking sectors Italy owes France $329,550M, while France only owes Italy

$40,311M.



(France) (Germany) (Greece) (Italy) (Portugal) (Spain)

(France) 0 174862 1960 40311 6679 27015

(Germany) 198304 0 2663 227813 2271 54178

(Greece) 39458 32977 0 2302 8077 1001

(Italy) 329550 133954 444 0 2108 29938

(Portugal) 21817 30208 51 3188 0 78005

(Spain) 115162 146096 292 26939 21620 0


.

To convert the above matrix into our fractional cross-holdings matrix, C, we then esti-

mate the total amount of debt issued by each country. To do this, we estimate the ratio of

foreign to domestic holdings by 1/3, in line with estimates of by Reinhart and Rogoff (2011).

Then, the formula A = Ĉ(I−C)−1 implies:

A =



(France) (Germany) (Greece) (Italy) (Portugal) (Spain)

(France) 0.71 0.13 0.13 0.17 0.07 0.11

(Germany) 0.18 0.72 0.12 0.11 0.09 0.14

(Greece) 0.00 0.00 0.67 0.00 0.00 0.00

(Italy) 0.07 0.12 0.03 0.70 0.03 0.05

(Portugal) 0.01 0.00 0.02 0.00 0.67 0.02

(Spain) 0.03 0.03 0.02 0.02 0.14 0.68


.

The matrix A can be pictured as a weighted directed graph, as in Figure 8. The arrows

show the way in which decreases in value flow from country to country. For example, the

arrow from Greece to France represents the value of France’s claims on Greek assets, and thus

how much France is harmed when Greek debt loses value. The areas of the ovals represent

the value of each country’s direct holdings of primitive assets. All dependencies of less than

5% have been excluded from Figure 8 (but appear in the table above).

We treat the investments in primitive assets as if each country holds its own fiscal stream,

59Which basis is appropriate is discussed in section A.10 of the Online Appendix.
60For illustrative purposes, we examine holdings at a country level, so that all holdings of Italian debt by

banks or other investors in France are treated as being held by the entity “France,” and we suppose that
substantial losses by banks and investors in France would lead to a French default on national debt. It would
be more accurate to disaggregate and build a network of all organizations and investors, if such data were
available.
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Figure 8: Interdependencies in Europe: The matrix A, describing how much each country
ultimately depends on the value of others’ debt. The widths of the arrows are proportional
to the sizes of the dependencies with dependencies less than 5% excluded; the area of the
oval for each country is proportional to its underlying asset values.

which is used to pay for the debt, and presume that the values of these fiscal streams are

proportional to GDP. Thus, D = I and p is proportional to the vector of countries’ GDPs.61

Normalizing Portugal’s GDP to 1, the initial values in 2011 are:

v0 = Ap =



0.71 0.13 0.13 0.17 0.07 0.11

0.18 0.72 0.12 0.11 0.09 0.14

0.00 0.00 0.67 0.00 0.00 0.00

0.07 0.12 0.03 0.70 0.03 0.05

0.01 0.00 0.02 0.00 0.67 0.02

0.03 0.03 0.02 0.02 0.14 0.68


·



11.6

14.9

1.3

9.2

1.0

6.3


=



12.7 (France)

14.9 (Germany)

0.8 (Greece)

9.4 (Italy)

0.9 (Portugal)

7.1 (Spain)


.

6.2 Cascades

To illustrate the methodology, we consider a simple scenario. The failure thresholds are set

to θ multiplied by 2008 values.62 If a country fails, then the loss in value is vi/2, so that half

the value of its debt is lost.

61We work in the scale of GDPs – that is, we do not carry around an explicit constant of proportionality
relating the value of the fiscal streams p to the value of GDP; we simply take the entries of the vector p to
be the GDP values.

62Those values are calculated in the same way as the values above, being proportional to 2008 GDP values
instead of 2011 and again normalized by setting Portugal’s 2011 GDP to 1.
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We examine the best equilibrium values for various levels of θ. Greece’s value has already

fallen by well more than ten percent, and so it has hit its failure point for all of the values

of θ. We then raise θ to various values and see which cascades occur.

Value of θ .9 .93 .935 .94
First Failure Greece Greece Greece Greece, Portugal
Second Failure Portugal Spain
Third Failure Spain France
Fourth Failure France, Germany Germany, Italy
Fifth Failure Italy

Table 1: Hierarchies of Cascades in the Best Equilibrium Algorithm, as a Function of the
Failure Threshold θ.

We see that Portugal is the first failure to be triggered by a contagion. Although it is not

particularly exposed to Greek debt directly, the fact that its GDP has dropped substantially

means that it is triggered once we get to θ = .935. Once Portugal fails, then Spain fails

due to its poor initial value and its exposure to Portugal. Then the large size of Spain,

and the exposure of France and Germany to Spain cause them to fail. Pushing θ up to .94

causes Portugal to fail directly, and then leads to a similar sequence. (Increasing θ further

would not change the ordering; it would just cause some countries to fail at earlier waves.)

Interestingly, Italy is the last in each case: this is due to its low exposure to others’ debts. Its

GDP is not particularly strong, but it does not hold much of the dent of the other countries,

with the exceptions of France and Germany.

Clearly the above exercise is based on rough numbers, ad hoc estimates for the default

thresholds, and a closed (six country) world. Nonetheless, it illustrates the simplicity of the

approach and makes it clear that much more accurate simulations could be run with access

to precise cross-holdings data, default costs and thresholds.63

We re-emphasize that the cascades are (hopefully!) off the equilibrium path, but that

understanding the dependency matrix and the hierarchical structure of potential cascades

can improve policy interventions.

7 Concluding Remarks

Based on a simple model of cross-holdings among organizations that allows discontinuities

in values, we have examined cascades in financial networks. We have highlighted several

important features. First, diversification and integration are usefully distinguished as they

have different effects on financial contagions. Second, both diversification and integration

entail tradeoffs in how they affect contagion. These tradeoffs result in nonmonotonic effects

63Of course, a linear cross-holdings structure is also an important simplification. A further refinement
would involve modeling the holdings in greater detail, and solving for the ultimate dependencies of organi-
zations on assets (analogous to computing the A matrix) in that more complicated world.
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where middle ranges are the most dangerous with respect to cascades of failures. The

tradeoffs can also be related to important realistic aspects of a network, such as its core-

periphery and segregation structure.

A fully endogenous study of the network of cross-holdings and of asset holdings is a

natural next step.64 We illustrate some moral hazard issues in the Online Appendix (Section

A.3): organizations can have incentives to affect both bankruptcy costs and thresholds in

socially inefficient ways. These considerations suggest that endogenizing the basic structures

of our model will be delicate and that a simple general equilibrium approach will not suffice.

This presents interesting challenges for future research.

The approach we have outlined could be used to inform policy. For example, counterfac-

tual scenarios can be run using the algorithm. To determine the marginal effect of saving

a set of organizations, the failure costs of those organizations can be set to zero and the

algorithm run with and without their failure costs. This identifies a new set of organiza-

tions to fail in a cascade conditional on the intervention. This set of organizations can be

compared to the set of organizations that fail under other interventions, including doing

nothing. It is important to note that the aforementioned exercise must be repeated for any

set of underlying asset prices that are of interest. As underlying asset prices change the

differences between organizations’ values and their failure thresholds change. These changes

may be highly correlated depending on the underlying asset holdings. When many organiza-

tions have similar exposures to underlying assets, they will be relatively close to their failure

frontiers at the same time, and so the first (and subsequent) waves of failures may change

drastically for fairly small changes in asset prices.
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Soramäki, K., M. L. Bech, J. Arnold, R. J. Glass, and W. E. Beyeler (2007):

“The topology of interbank payment flows,” Physica A, 379, 317333.

Upper, C. (2011): “Simulation methods to assess the danger of contagion in interbank

markets,” Journal of Financial Stability, 7, 111–125.

Upper, C. and A. Worms (2004): “Estimating bilateral exposures in the German inter-

bank market: Is there a danger of contagion?” European Economic Review, 48, 827–849.

Vivex, X. (1990): “Nash equilibrium with strategic complementarities,” Journal of Math-

ematical Economics, 19:3, 305321.

Wagner, W. (2010): “Diversification at financial institutions and systemic crises,” Journal

of Financial Intermediation, 19, 373–386.

8 Appendix: Proofs

Proof of Lemma 1:
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One representation of A is as the following infinite sum, known as the Neumann series:

A = Ĉ
∞∑
p=0

Cp = Ĉ + Ĉ
∞∑
p=1

Cp (6)

It follows immediately that Aii ≥ Ĉii and that there is equality if and only if there are

no cycles involving i. Part (2) can be proved by considering Ĉ and C such that Ĉii = ε for

all i and Cij = (1 − ε)/(n − 1) for all i and all j. Taking ε → 0, we have Ĉii → 0 but A

tends to the matrix with all entries equal to 1/n.

Proof of Proposition 1.

As any trade involving organization i must change composition of i’s dependency on

underlying assets, after any trade there must exists a price vector p′′ within an ε neighborhood

of λp, such that vi(p
′′,C′,D′|Z = ∅) 6= vi(p

′′,C,D|Z = ∅) = vi. For the Proposition to be

false, it must then be that vi(p
′′,C′,D′|Z = ∅) > vi(p

′′,C,D|Z = ∅). Define price p′ such

that 1
2
p′′ + 1

2
p′ = λp. As ||p′ − λp||1 = ||p′′ − λp||1 and p′′ is within an ε neighborhood of

λp, p′ is also within an ε neighborhood of λp.

By the linearity of organizations’ values, absent any failure, and as the trade was fair

1

2
vi(p

′′,C′,D′|Z = ∅) +
1

2
vi(p

′,C′,D′|Z = ∅) = vi(λp,C′,D′|Z = ∅)
= vi

= vi(λp,C,D|Z = ∅)

=
1

2
vi(p

′′,C,D|Z = ∅) +
1

2
vi(p

′,C,D|Z = ∅)

Thus as vi(p
′′,C′,D′|Z = ∅) > vi(p

′′,C,D|Z = ∅),

vi(p
′,C′,D′|Z = ∅) < vi < vi(p

′,C,D|Z = ∅).

Proof of Proposition 2.

Following the failures of organizations Zk−1, the value of organization i is:

vi(Zk−1) =
n∑

j /∈Zk−1

AijDjkpk +
n∑

j∈Zk−1

Aij(Djkpk − βj) = vi(∅)−
n∑

j∈Zk−1

Aijβj.

As fair trades hold constant vi(∅), this equation shows that the value of organization i

given failures Zk−1 is weakly decreasing in Aij for all j 6= i. Holding fixed the hierarchies

in which all other organizations fail, after a weak increase in Aij for all i and all j 6= i, if

organization i failed in hierarchy k it will now fail (weakly) sooner in hierarchy k′ ≤ k and

if organization i did not fail in any hierarchy it might now fail in some hierarchy.

Moreover, as failures are complementary, if organization i fails strictly sooner in hierarchy

k′ weakly more organizations will be included in all subsequent failure sets Zk′′ , for all k′′ > k′.
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This is because more failure costs are summed over in the above equation when calculating

a organization’s value in each failure hierarchy.

Proof of Lemma 2:

Let C = Gd−1 and note that by the Neumann series we may write

A = (1− c)
∞∑
t=0

ctC
t

∂A

∂c
= (1− c)

∞∑
t=1

tct−1C
t −

∞∑
t=0

ctC
t

= −I +
∞∑
t=1

(t(1− c)− c)ct−1Ct
.

Since c ≤ 1
2
, every term in the summation over t is nonnegative. Moreover, ct−1C

t
has a

strictly positive entry whenever there is a path of length t from i to j in C, or equivalently in

G. This shows claims 2 and 3 in the proposition. To verify claim 1, note that every column

of A sums to 1. Claim 3 along with the assumption that every node in G has at least one

neighbor shows that every column has an off-diagonal entry that strictly increases in c; and

no off-diagonal entry decreases by claim 2. So the diagonal entry strictly decrease in c.

Proof of Proposition 3:

We begin the proof with a simple lemma, proved in Section A.11 of the Online Appendix.

Lemma 3. The values ṽmax and ṽmin are upper and lower bounds, respectively, for the value

of any organization.

We also introduce some terminology. Recall from Section 2.1 that if Cji > 0 there is an

edge from i to j – corresponding to value flowing from i to j. We adopt the same convention

for G: we say there is an edge from i to j if Gji = 1, and define paths analogously – recall

footnote 11. Fixing a graph G and a node i, the fan-out of i, denoted R+(i), is the set of

nodes j such that there is a directed path from i to j in G. These are the j’s that have

direct or indirect cross-holdings in i. Throughout, G is drawn uniformly at random from

G(π, nk), with nk left implicit.

If 1(i) in the proposition’s statement holds (d < 1), then by Theorem 1 of Cooper and

Frieze (2004), for any ε > 0 and large enough k, with probability at least 1− ε there are at

no nodes having a fan-out larger than εnk. Since only nodes in R+(i) can fail following the

failure of i, this proves that for large enough k, we havef(π, nk) ≤ ε.

Suppose 1(ii) in the proposition’s statement holds. Fix ε > 0. Suppose that proprietary

asset i (belonging to organization i) is the one that is randomly selected to fail. Take any

j such that Gji > 0. The amount by which the value of organization j falls is Aji. By

the Neumann series (equation 6), Aji ≤ (1 − c)c/d + Rji, where Rji = (1− c)
(∑∞

p=2 Cp
)
ji

accounts for the value flowing along paths from i to j in C other than the edge from i to j

with weight Cji – i.e., paths of length 2 or longer. The following is proved in Section A.11:

Lemma 4. For any ε, if k is large enough, then with probability at least 1−ε, simultaneously

for all j such that Gji = 1, we have Rji = (1− c)
(∑∞

p=2 Cp
)
ji
≤ ε.
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By 1(ii) in the proposition’s statement, and Lemma 3, (1 − c)c/d < ṽmin − v ≤ vj − v.

So, for small enough ε, a failure of i, which reduces j’s value by at most (1 − c)c/d + ε, is

not enough to cause the failure of any counterparty j, and so there is no contagion.

Now suppose 2(i) and 2(ii) hold, and again fix ε > 0. Let i be the index of the first asset

to fail. By Theorems 2 and 3 of Cooper and Frieze (2004), because d > 1, with probability

at least ε, the node i has fan-out of size at least εnk, for small enough ε and large enough

k. Suppose that organization j has holdings in organization i (i.e., Gji > 0) and recall

that if organization i fails (losing all remaining value, since βi = vi), organization j’s value

will decrease by Aji. By the Neumann series (equation 6) Aji ≥ c(1−c)
d

, deterministically.65

Organization j will therefore fail, following the failure of organization i if:

vi −
c(1− c)

d
< v,

which is guaranteed by d < c(1−c)
ṽmax−v . This argument applies again to all the neighbors of j

once it fails; iterating this argument, we find that the whole set R+(i) fails. Thus, in the

event (probability ≥ ε) that node i has fan-out of size at least εnk, at least εnk nodes fail,

which establishes that f(π, nk) ≥ ε2 for large enough k.

This completes the proof of the proposition.

65This lower bound on Aji can be found by considering only the direct effect of j’s cross-holdings in i and
not any further feedbacks.
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A Online Appendix:

Financial Networks and Contagion

A.1 More on Cross-Holdings Matrices and the Induced Depen-

dencies

We expand the illustration of the model.

Recall our simple example from Section 2.7. There are two organizations, i = 1, 2, each

of which has a 50% stake in the other organization. The associated cross-holdings matrix C

and the dependency matrix A are as follows. (Recall that Ĉii is equal to 1 minus the sum

of the entries in column i of C.)

C =

(
0 0.5

0.5 0

)
Ĉ =

(
0.5 0

0 0.5

)
A = Ĉ(I−C)−1 =

(
2
3

1
3

1
3

2
3

)
.

21
outside 
claims

outside 
claims

Figure 9: An illustration of cross-holdings in the two-organization example. The arrows
indicate how a dollar of income arriving at one of the organizations is allocated between its
direct holders and other organizations. Dollars that stay within the system are further split
up. The A matrix describes how they are ultimately allocated.

A slightly richer example of potential differences between the cross-holdings and induced

dependencies is as follows, with three organizations.

C =

 0 0.75 0.75

0.85 0 0.10

0.10 0.00 0

 A = Ĉ(I−C)−1 =

 0.18 0.13 0.15

0.77 0.83 0.66

0.05 0.04 0.19



The weighted graphs of the matrix C + Ĉ and the associated A are shown in Figure 10,

illustrating the substantial differences.

First, note that organization 1 is almost a holding company: it is mostly owned by other

organizations, and so the second two entries of the corresponding row in A are much smaller

than the corresponding entries in C + Ĉ.
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(a) Weighted graph of C + Ĉ.

1

2 3

.77 .05

.66

.04

A=Ĉ (I‐C)‐1
A11= .18

A12= .13 A13= .15

.19.83

(b) Weighted graph of A.

Figure 10: The widths of the edges are proportional to the sizes of cross-holdings; the arrows
point in the direction of the flow of assets: from the organization that is held and to the
holder. Outgoing edges in (a) reflect the private (final) shareholders’ holdings. The cross-

holdings and outside holdings measured by C+Ĉ can be very different from the dependency
matrix A, which measures how each organization’s market value ultimately depends on the
assets held by each organization.

Also, we see that the outside shareholders of organization 2 have direct and indirect claims

on 66% of organization 3’s direct asset holdings, even though the organization has only 10% of

the shares of organization 3 directly in cross-holdings. Intuitively, as organization 2 directly

owns 85% of organization 1, its outside shareholders indirectly have claims to organization

1’s large direct stakes in both organization 2 and organization 3.

A.2 Debt and Other Liabilities

Throughout the paper we suppose that organizations’ values depend linearly on the organi-

zations they have holdings in, with positive slope coefficients. Debt contracts do not have

this form, provided organizations can meet the face values of their obligations. But, as we

emphasize in Section 2.5, the center of our analysis is on situations in which organizations

cannot meet the face values of their obligations and must ration their counterparties. In this

region, our linear cross dependencies approximate cross-holding of debt.66

Also, we emphasize that the discontinuous failure costs need not be triggered at the

point where the value of an organization is below the face value of debt. There can be some

regime of orderly write-down until a threshold where there is a disruption in the ability for

the organization to operate, below which its value is reduced discontinuously, entering a

66It is not essential that debt all organizations be in the linear regime. If there are organizations that are
“safe” and are able to pay the face value of their debts, one can model claims on them as claims on just
another fundamental asset. Claims that a “safe” organization i has on an organization j in the write-downs
regime can be viewed as j’s obligation to an outside shareholder. In other words, since reductions in value
do not feed through safe organizations, they can be treated as exogenous.
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regime of disorderly default. This is illustrated in Figure 11.

Value of i’s debt  
holding in j 

 

0 
Value of j’s proprietary asset 

(𝑝𝑗) 
 

𝐴𝑖𝑗 𝑫𝒑 − 𝒃 𝒗 𝑗 

Disorderly 
default 

Write  
downs 

Full debt  
value 

Figure 11: As the value of organization j’s proprietary asset pj decreases, a first threshold
is reached at which the organization cannot meets its liabilities. We focus on values of pj
below this threshold. After the threshold comes a region of orderly default in which debt
holders accept write-downs on the value of their debt. As remaining value is rationed i’s
value decreases linearly in pj until a second threshold is crossed which we refer to as j’s
failure threshold. This can be interpreted as the point at which j’s assets are liquidated and
ongoing operations cease. The resulting failure costs cause a discontinuous decrease in the
value of debt holdings in j.

More generally, the model is easily adapted to other sorts of cross-liabilities in addition to

the linear cross-holdings. These could reflect any sort of debt or other contractual agreement,

which could be contingent on the market value of the organizations (for instance, the debt

cannot exceed the organization’s market value if there is limited liability). If we let Lji(V)

be the amount owed to j by i as a function of book value, and L the corresponding matrix

(with 0’s on its diagonal, as an organization cannot have debt to itself) book values become:

Vi =
∑
j 6=i

CijVj +
∑
j 6=i

(Lij(V)− Lji(V)) +
∑
k

Dikpk − βiIvi<vi .

This leads to book values of

V = (I−C)−1(Dp− (L(V)− LT (V))1− b(v)). (7)
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where a superscript T indicates transpose, and correspondingly market values are then

v = Ĉ(I−C)−1(Dp− (L(V)− LT (V))1− b(v)). (8)

A.3 Endogenously High Failure Costs and Thresholds due to Moral

Hazard

Whether an organization fails depends on its failure threshold. The impact that its failure

has on other organizations depends on its failure costs. If organizations have some control

over their failure thresholds and costs, then we might hope that they would choose to limit

these. We show in this section that organizations can actually have incentives to increase

both their failure costs and thresholds.

A.3.1 Organization Values Can Be Endogenous

Our previous analysis has assumed that exchanges of cross-holdings or assets between or-

ganizations occur through fair trades at the current asset prices (recall Section 4.1). That

was useful for illustrating the workings of the model and identifying the general effects of

diversification and integration. However, the value to an organization of a trade depends

not only on the value of the bundle of assets being received, but also on the implications

of the trade for ensuing failures. Solvent or liquid organizations may have incentives to bail

out insolvent or illiquid ones in order to avert a contagion (as pointed out, e.g., by Leitner

2005).67 For instance, it can be that by relinquishing some holdings (in either assets or

another organization) an organization’s value actually increases! This means that we cannot

value organizations solely based on their implied underlying asset holdings, but need also to

consider the solvency of all other organizations. Trades can be “incentive compatible” when

they are not “fair” (as evaluated by pricing the traded assets at the prices p and neglecting

failure costs).

We first illustrate the endogeneity of values through a simple example, and then explore

the associated moral hazard issues.

A.3.2 An Example

Consider a world with two assets and two organizations. We begin with a case where

asset holdings are D1 = (1, 0), D2 = (0, 1). Initial cross-holdings are C1(0) = (0, 1/2)

and C2(0) = (1/2, 0), such that each organization has a one half stake in the other (so

Ĉii = 1/2).

67Leitner 2005 argues that incentives for interconnected organizations to bail one another out can help
them provide insurance to each other when they otherwise would not be able to commit to doing so, and that
this provides an efficiency benefit from financial interconnections that can be traded off against increased
systemic risk.
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From equation (5) it is easily verified that the organizations’ indirect holdings of the

underlying assets are given by

A =

(
2
3

1
3

1
3

2
3

)
.

With the initial cross-holdings organization 1 receives 2/3 of asset 1’s value while orga-

nization 2 receives 1/3. The opposite is true for the asset 2.

Let both asset 1 and asset 2 have price p1 = p2 = 10. Thus, without any failure costs,

the values of the organizations would be v1 = v2 = 10.

We let v1 = 0 and v2 = 11; let organization 2’s failure costs be β2 = 6. This means

that if there are no changes in cross-holdings, from (5) the values of the two organizations

are 8 and 6.68 Suppose now that organization 1 can make a transfer to organization 2. If

organization 1 were to make a transfer of 1 to organization 2, organization 2 would not fail

and the values of the two organizations would be 9 and 11. Thus by making a transfer to

organization 2, organization 1 is able to increase its value from 8 to 9! Such a payment

might be a direct transfer of cash or implemented through a trade in underlying assets or

cross-holdings. For example, organization 1 might simply give organization 2 an increased

stake in itself.69 Organization 1 is incentivized to “save” organization 2.70

Suppose we now extend the above example to permit organization 2 to have some control

over its failure costs β2 and failure threshold v2. For simplicity we suppose that organization

2 can choose from β2 ∈ {0, 5, 10} and from v2 ∈ {10, 11, 12, 13, 14}. Note that organization 2

can avoid failure without any intervention from organization 1 by choosing v2 = 10. However,

such a choice is not in the best interest of organization 2.

We assume organization 1 will ‘save’ organization 2 if doing so weakly increases its value.

If organization 2 needs saving (v2 > 10), 1’s value after just saving 2 will be v′1 = 10−(v2−10)

while its value will be 10 − (β2/3) if it does not save organization 2. Organization 1 will

therefore save organization 2 if and only if v2 > 10 and:

β2
3
> (v2 − 10).

The left hand side is the increase in value 1 receives from 2 remaining solvent and the

right hand side is the cost of saving 2 – the transfer 1 must make to 2 for 2 to remain solvent.

Table 2 below shows the transfers that organization 1 will make to organization 2 for the

different values of v2 and β2 that organization 2 can choose. These choices of v2 and β2 then

result in different values for organization 2 as shown in Table 3:

68Values before failure costs are 10 for both organizations. Organization 2 therefore fails and its failure
cost of 6 reduces the effective value of its proprietary asset from 10 to 4. Organization 2 ultimately incurs
2/3 of this loss while organization 1 incurs 1/3.

69One of the lower cost ways in which organization 1 might “save” organization 2 is to simply take over
organization 2.

70All the parameter values in the example can be varied slightly without generating a discontinuous change
in the equilibrium. In this sense the example presented is not a knife-edge case.
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Failure Costs β2
0 5 10

10 0 0 0
Failure 11 0 1 1

Threshold v2 12 0 0 2
13 0 0 3
14 0 0 0

Table 2: Transfer made from 1 to 2.

Failure Costs β2
0 5 10

10 10 10 10
Failure 11 10 11 11

Threshold v2 12 10 6 2/3 12
13 10 6 2/3 13
14 10 6 2/3 3 1/3

Table 3: Value of 2 after the transfer.

As can be seen in Tables 2 and 3, for a fixed failure threshold, organization 2 is only saved

when its failure costs are sufficiently large. Conditional on being saved 2’s value is increasing

in his failure threshold and conditional on not being saved, organization 2’s value is weakly

decreasing in his failure threshold. For sufficiently high failure thresholds organization 2 is

never saved and for sufficiently low failure threshold organization 2 doesn’t fail. To maximize

its utility after a bailout, organization 2 must set the highest failure costs it can and then

carefully choose its failure threshold so that organization 1 is just incentivized to save it. In

this example, this requires organization 2 choosing a failure threshold of 13 and failure costs

of 10.

Of course, if organizations can commit not to bail each other out, then these moral

hazard problems can be avoided. However, firms have a fiduciary obligation to maximize

shareholder value, even if this involves bailing out a failing organization they have a stake

in. This can make it difficult for organizations to commit not to bail out one another, and

absent such a commitment device, organizations can have strong incentives to increase their

failure costs and manipulate their failure thresholds.

The moral hazard problem in this example occurs absent any intervention by the gov-

ernment. Failure costs alone are sufficient for moral hazard problems to arise.71 It arises

because organizations do not fully bear their failure costs. As other organizations pay (in-

directly through the devaluation of holdings in i) some of organization i’s failure costs (βi),

these other organizations will be prepared to expend resources bailing out i. As the propor-

tion of i’s failure costs that i pays is given by Aii, a natural measure of the severity of the

moral hazard problem is 1−Aii. When 1−Aii = 0 there is no moral hazard problem and the

extent of the moral hazard problem is monotonic in 1−Aii in the following sense: If 1−Aii is

increased by redistributing shares of i from outside shareholders to other organizations, such

that all other organizations’ claims on i weakly increase, any organization that previously

would have bailed out i faces weakly stronger incentives to bail out i while organizations

who previously would not have found it profitable to bail out i may now find it profitable to

do so.

We saw in Section 3.1 that cascades of failure can occur, amplifying and propagating

71This moral hazard problem also distorts organizations’ investment decisions, both in terms of their
investments in risky projects and their investments in cross-holdings.
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shocks if failure costs are sufficiently large and failure thresholds are sufficiently high. The

analysis in this section has identified an endogenous mechanism through which organizations

are willing to invest in increasing their failure costs and possibly their failure thresholds. Al-

though such investments are valuable to an organization only in the event that it is bailed

out, and in an uncertain world such bailouts may or may not be forthcoming, the mis-

alignment of incentives due to the moral hazard problem can nevertheless result in systems

endogenously conducive to cascades of failure.

A.4 Additional Simulations

In this section we describe some additional simulations similar to those reported in section

4, but with a couple of alterations.

A.4.1 Power Law Distributions

First we let the out-degree distribution for the organizations follow a (truncated) power law

instead of modeling Erdos-Renyi random graphs. Specifically we let the outdegree dout of

each organization be drawn independently from a distribution p(dout) = a ∗ d−γout, where γ is

the power law parameter and a is a normalizing constant that ensures p(dout) is a probability

distribution. So, if according to a draw from this power law distribution organization i has

a degree of 6, we randomly gave six other organizations a c/6 share of i.

The objective of these simulations is to study the affect of the parameter γ on the number

of failures. However, to prevent the effect of γ being conflated with changes to the expected

degree d, we hold the expected degree constant by truncating the degree distribution. In

other words we pick a maximum possible degree and adjust it for different levels of gamma

to hold the expected degree d constant.72

As γ increases the number of failures decrease, but there are typically larger effects for

even small changes in the expected degree d. This is true both when the out-degree follows

a power law and when the in-degree follows a power law.

A.4.2 Correlated Asset Holdings

To explore the impact of organizations’ asset holdings being correlated, we run simulations

where instead of simply sending one organization’s underlying asset value to zero and keeping

all others at value 1, we do the following. We model drop one organization’s direct asset

holdings by s%, and we also decrease some other organizations’ assets by s% where we pick

72As the truncation can only occur at integer maximum degrees we vary the maximum degree between
the floor and ceiling of the ideal truncation point. In all cases the normalizing constant adjusts to ensure
p(dout) is a probability distribution.
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(a) Out Degree: Average failures of 100 orga-
nizations with out degrees drawn from a power
distribution.
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(b) In Degree: Average failures of 100 organiza-
tions with in degrees drawn from a power distri-
bution.

Figure 12: How the average number of failures changed with the power law parameter γ
for different expected degrees, averaged over 10000 simulations. The failure threshold is
constant at θ = 0.95 and the degree of integration is c = 0.4.

those other organizations each with a probability ρ. As ρ nears 1, all the assets drop together,

whereas when ρ nears 0 then only the one organization fails. As we increase ρ we increase

the number of organizations that fail together.73

From Figures 13a and 13b, when there is a network of interdependent organizations

increasing the correlation of asset holdings to even a low level from a baseline of an uncor-

related system can result in relatively small shocks having highly uncertain outcomes that

often result in very many failures.

A.4.3 Common Asset Holdings

We begin with baseline simulation model with average degree d = 3 and integration of

c = 0.4, and make the following adjustments. First, each organization has holdings in two

assets, a proprietary asset and a common asset. The total value of the common asset is

set to 1 and the total value of all proprietary assets is set to 99, so that the relative value

of the common asset is relatively low. Next each organization has holdings of the common

asset equal to a 1/n-th share. However, this share was then adjusted in the following way.

One organization has an additional share equal to ` times a uniform[0,1] draw, and another

organization is the counter-party to this position and reduces their holdings by the same

73This is a very simple way of introducing correlated shocks. A more detailed but nonetheless straight-
forward way of incorporating correlated positions would be to model holdings of many different assets that
are held by multiple organizations. We could even permit people to hold negative amounts of an asset to
represent shorting, although the total net position in the system must remain constant. See Section A.4.3.
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Figure 13: How correlated asset holdings affects the percentage of organizations failing,
averaged over 5000 simulations. The x-axis lists the correlation in asset holdings measure
by the proportion of organizations that suffer the different shocks.

amount. We continue in this way until each organization receives one positive or negative

adjustment. The parameter ` is intended to capture leverage – and note that for ` > 1/d

negative holdings of the common asset are possible. We then adjust the value of each

organization’s proprietary asset so that their total initial asset value is 1 – as before.

Next, we group the organizations into 10 groups of 10, as in our homophily simulations.

However, unlike before, this grouping was not entirely random. A parameter ρ governs

the extent to which the grouping is random versus based on organizations’ positions in the

common asset. When ρ = 0 it is entirely random. When ρ = 1 it is based entirely on

holdings of the common asset. As before a homophily parameter h governs the relatively

likelihood of links within groups versus across groups.

Thus, when h > 0 and ρ > 0 organizations with similar exposures to the common asset

are more likely to be linked to each other. We can now look at the effect of correlating

risks in a system with homophily/segregation by holding h constant and comparing ρ = 0 to

ρ > 0. And in a system with no homophily/segregation, we can see the effect of correlated

risks by reducing the leverage parameter – exposure to the common asset becomes more

correlated as the parameter ` decreases, with perfect correlation for ` = 0.

Interestingly, in this model, correlating risks by adjusting the ρ parameter has a minimal

impact regardless of homophily. The key parameter that had a very substantial impact

is the leverage parameter. For even small shocks to the common asset of 5 percent, large

cascades occur (across the range of other parameters) for ` > 1.5. Note that for these

higher levels of leverage, the correlation in exposure to the common asset is actually lower.

The threshold value of the parameter ` for which a large cascade occurs decreases in the

size of the shock. However, for large shocks to the common asset of 20 percent, increasing
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the parameter ` reduces the extent of the cascade. Intuitively, a large parameter ` means

that some organizations have negative holdings of the common asset (short positions - e.g.,

Goldman Sachs in the 2008 crisis) and their value can increase sufficiently for them to survive

the failure of many other organizations.

A.5 Using the Dependency Matrix

This section validates the direct use and manipulation of the dependency matrix A. Propo-

sition 4 shows that absent any discontinuities (i.e. with failure costs of zero for all organi-

zations), any change in C or A can be represented as changes in D alone. Proposition 5

then identifies a simple necessary and sufficient condition for the A to be valid – that is for

there to exist direct cross-holdings C it can be derived from. This second result allows one

to directly manipulate A.

Proposition 4. Assuming there are no failures, for any D,C there is a D′,C′ with C being

the matrix of zeros and Ĉ being the identity that results in the same organization values

for any underlying asset prices p. Similarly, for any A,D there exists D′ with C being the

matrix of zeros and Ĉ being the identity that results in the same organization values for any

underlying asset prices p.

Proposition 4 follows directly from letting

D′ = (Ĉ(I−C)−1)D = AD.

Thus, in the absence of failure, it is simply the indirect holdings of underlying assets that

matter, and so one can equivalently work with them in understanding organizations’ values.

The proposition implies that instead of considering trades in cross-holdings, when we are

working to understand what might trigger a first failure (so that none have yet occurred)

there is always some trade in underlying assets that replicates the trade in cross-holdings.

However, in practice, at least some of the underlying assets are non-tradeable and so can

only be held through cross-holdings.74 To work in the underlying asset space we therefore

want to know when trades of underlying assets can be replicated through an exchange of

cross-holdings, keeping the organizations’ asset holdings (D) constant. Proposition 5 pro-

vides necessary and sufficient conditions on A for it to be a valid representation of some

C.

Proposition 5. There exists a valid cross-holdings matrix Ĉ + C (i.e. one that is column

stochastic, contains non-negative entries and has strictly positive entries on the lead diagonal)

that generates A if and only if A−1ii > 0 for all i and A−1ij ≤ 0 for all i and all j 6= i.

74If all underlying assets were freely tradeable then there would be no reason for any cross-holdings. Any
portfolio of claims to underlying assets held through cross-holdings could be replicated as direct holdings
and without any risk of devaluation through failure.
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Proof of Proposition 5: Recall from (5) that

A = Ĉ(I−C)−1.

If A is invertible, manipulating this equations yields that:

A−1 = (Ĉ(I−C)−1)−1

A−1 = (I−C)Ĉ−1

A−1Ĉ = I−C

C = I−A−1Ĉ (9)

If we can represent the right hand side of this equation just in terms of the A matrix,

we will have found a way to map an A matrix into a C matrix. We will then just need to

find conditions under which the C matrix we are deriving is column stochastic and has all

non-negative elements (and strictly positive elements on the lead diagonal) when added to

Ĉ. When these conditions are met, the A matrix will have an associated valid C matrix it

can be derived from and we can work directly with it.

Considering entry (i, i) of this matrix equation, and recalling that Ĉ is a diagonal matrix:

Cii = 1− (A−1)iiĈii.

Since Cii = 0 by assumption, we find Ĉii = 1/(A−1)ii. This puts the left hand side of (9)

in terms of just A. Letting Ĉ be the matrix thus defined, set

S = I−A−1Ĉ. (10)

Thus the matrix A can be derived from a valid C (equal to the S matrix in equation 10)

if and only if (i) S + Ĉ is column stochastic such that column j of S sums to 1 − Ĉjj and

(ii) all entries of S + Ĉ are non-negative and the lead diagonal is strictly positive.

First we prove that S+Ĉ is column stochastic. All valid A matrices are column stochastic

and so A−1 is also column stochastic. To see this let 1 be the vector of ones such that 1A = 1.

This is the definition of A being column stochastic. Now post multiply by A−1. We then

find that 1 = 1A−1 and so A−1 is also column stochastic.

As A−1 is column stochastic,
∑n

i=1(A
−1)ijĈjj = Ĉjj

∑n
i=1(A

−1)ij = Ĉjj. Adding Ĉ to

both sides of equation 10 we then have that:

n∑
i=1

Sij + Ĉij =
n∑
i=1

Iij − (A−1)ijĈjj + Ĉij = 1− Ĉjj + Ĉjj = 1

As S + Ĉ is always column stochastic, there exists a valid C representation of A if and
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only if all entries of S + Ĉ are non-negative and all entries of Ĉ are strictly positive.

From equation 10 the elements of S are:

Sii + Ĉii = 1− (A−1)ii
(A−1)ii

+
1

(A−1)ii
=

1

(A−1)ii
and Sij + Ĉii = − (A−1)ij

(A−1)jj
,

for all i and all j 6= i. Thus all elements of S are well-defined and weakly positive if and

only if (A−1)ii > 0 and (A−1)ij ≤ 0 for all i and all j 6= i.

A.6 Bounds on the Dependency Matrix

We provide some useful upper bounds on the possible values of the dependency matrix A.

Let c = maxk 1− Ĉkk, and

Aij = Ĉii
c

1− c
max
k 6=i

Cik

1− Ĉkk

and

Aii = Ĉii

(
1 +

c

1− c
max
k 6=i

Cik

1− Ĉkk

)
.

Lemma 5. Aij is an upper bound on Aij for all i and j. Therefore, if Ĉii = 1− c for all i, so

that each organization holds c of its holdings in other organizations and 1− c in itself, then

Aij ≤ maxk 6=iCik for each i and j 6= i, and Aii ≤ (1− c) + maxk 6=iCik.

Proof. Recall that

A = Ĉ(I−C)−1,

or alternatively that

A = Ĉ
∞∑
t=0

Ct.

Let C be the matrix for which we set Cij =
Cij

1−Ĉjj
.

Then,

A ≤ Ĉ
∞∑
t=0

ctC
t
.

Note that C is a column stochastic matrix. It follows that C
t−1

is also a column stochastic

for any t ≥ 1 (because it is a column-stochastic matrix raised to a power). Write C
t

= CC
t−1

.

From this, given the fact that C
t−1

is column stochastic for each t, it follows that the ij-th

entry of C
t

is no more than maxk 6=i maxk 6=i
Cik

1−Ĉkk
. Also, note that for t = 0, the ij-th entry
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of C
t

when j 6= i is 0. Thus, for i 6= j,

Aij ≤ Ĉii

∞∑
t=1

ct max
k 6=i

Cik.

Then since 1/
∑∞

t=1 c
t = c/(1− c) it follows that

Aij ≤ Ĉii
c

1− c
max
k 6=i

Cik,

This is the claimed expression for j 6= i. For j = i we also have the ii-then entry of C
0

being

1. The simplifications for Ĉii = 1− c for all i follow directly.

A.7 Multiple Equilibria and Discontinuities in Organizations’ Val-

ues

In the absence of any failure issues, equation (5) is a standard pricing equation describing

how the values of organizations depend on the primitive asset values v = A [Dp]. The novel

and interesting part of equation (5) comes from the failure costs b(v). These terms generate

several complexities that equation (5) illuminates.

In particular, the presence of failure introduces several forms of discontinuity which result

in multiple equilibria. Discontinuities in the value of a given organization i can come from

two sources. The basic form is that the failure costs of organization i can be triggered when

the values of other organizations or underlying assets fall which then lead i to hit its failure

threshold. The other form is due to another organization, in which i has cross-holdings,

hitting its failure threshold, which then leads to a discontinuous drop in the value of i’s

holdings and consequently its value.

In terms of multiplicities of equilibria, there are also different ways in which these can

occur. The first is that taking other organizations’ values and the value of underlying assets

as fixed and given, there can be multiple possible consistent values of organization i that

solve equation (5). There may be a value of vi satisfying equation (5) such that 1vi≤vi = 0 and

another value of vi satisfying equation (5) such that 1vi≤vi = 1; even when all other prices and

values are held fixed. This generates the a first source of multiple equilibria corresponding

to the standard story of self-fulfilling bank runs (such as those in classic models such as

Diamond and Dybvig (1983)).

The second is the interdependence of the values of the organizations: the value of i

depends on the value of organization j, while the value of organization j depends on the

value of organization i, and given the discontinuities possible in prices due to failure costs,

there can be multiple solutions. There might then be two consistent joint values of i and j:

one consistent value in which both i and j fail and another consistent value in which both i

and j remain solvent. This second source of multiple equilibria is different from the individual
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bank run concept, as here organizations fail because people expect other organizations to

fail, which then becomes self-fulfilling.

Although governments may be able to give assurances such as insuring deposits that

manipulate expectations regarding the self-fulfilling value of a single organizations, it seems

more difficult to control expectations when an organization’s value depend on the expected

values of many other organizations. For example, an organization’s value can depend on the

expected value of an organization that falls under the regulatory oversight of another govern-

ment. Suppose organizations A and B have cross-holdings in each other and organization B

also has cross-holdings in organization C. Investors in organization A may then become less

confident investors will keep their money in organization B, or less confident the investors

in B have confidence in them or in the investors in C, and so on.

A.8 Including Multiple Equilibria Due to Bank Runs

This section extends the example in section 3.2.2. The same parameter values are used in

Figure 14 as were used in section 3.2.2 and Figure 1, although the scale of the axis has been

adjusted. As can be seen the scope for multiple equilibria increases a great deal once bank

runs are permitted. Note i’s failure threshold conditional on i failing is shift out twice as far

as i’s failure threshold conditional on j failing because i effectively pays 2/3 of his failure

costs but only 1/3 of j’s. As shown in Figure 14d there is a large set of prices for which it is

consistent for both 1 and 2 to both fail such that total failure costs of 100 are incurred and

failure costs of 50 are paid by each organization.

55



p2 

p1 50 

50 

100 
0 

100 

FF2|1 

FF1|2 

Multiple Equilibria 
due only to 

interdependencies 

FF1 

FF2 

(a) Multiple Equilibria due only to interdepen-

dencies and without bankruns

p2 

p1 50 

50 

100 
0 

100 

FF1|1 

Multiple Equilibria of 
1 due only to bank 

runs 

FF1 

(b) Multiple Equilibria of 1 due to bank runs

p2 

p1 50 

50 

100 
0 

100 

FF2|2 
FF2 

Multiple Equilibria of 
2 due only to bank 

runs 

(c) Multiple Equilibria of 2 due to bank runs

p2 

p1 
0 

FF1|1 

FF1 

FF2|2 FF2|1 

FF1|2 

FF2 

FF1|1,2 

FF2|1,2 

All Regions of 
Multiple 
Equilibria 

50 

50 

100 

100 

(d) All Multiple Equilibria

Figure 14: The total set of multiple equilibria is much larger once bank runs are permitted.
Nevertheless, the interdependencies provide an additional source of multiplicity even when
bank runs are permitted.

A.9 Best-Case and Worst-Case Tradeoffs

We now return to considering multiplicity of equilibria due to the interdependencies between

organizations. We identify a the tension between limiting failures in the best case equilibrium

and worst case equilibrium. Trades that prevent any organizations failing in the best case

outcome can also make more organizations fail in the worst case outcome.

We say that cross-holdings are best-case safest when they maximize the percentage de-

crease in asset prices that would be necessary for a first organization to fail. More formally,

cross-holdings are best-case safest at D,p if in the best equilibrium all organizations survive

and the cross-holdings solve the following maximization problem:
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max
C

min
i

vi(C, p)− vi
vi(C, p)

It is possible for all organizations to fail if the total value of primitive assets less all failure

costs can be allocated in a way that leaves all organizations below their failure thresholds.

Such an allocation exists if and only if:
∑
k

∑
i

Dikpik −
∑
i

βi <
∑
i

vi.

Proposition 6. Suppose organizations’ failure costs are a proportion γ of the value of their

direct asset holdings such that βi = γ
∑
k

Dikpk and it is possible for all organizations to fail.

Then all asset holdings that are best-case safest at prices p also result in all organizations

failing in worst-case equilibrium.

Proof. If no organization fails, then their market values are:

v = ADp.

In order to be best case safest, we need to maximize the percentage loss that any orga-

nization can suffer without failing. As all assets have positive value, this requires equalizing

the proportional loss in value each organization must suffer to fail. If this was not equalized,

reallocating assets at the margin from the set of organizations furthest from their failure con-

straints to those organizations closest to them would increase the percentage loss in value

that any organization can suffer without failing. Thus, in a best case safest asset allocation:

v = ADp = θv

for some scalar θ.

As by assumption it is possible for all organizations to fail at the same time and so:∑
i

∑
k

Dikpk −
∑
i

βi <
∑
i

vi

As failure costs are a constant proportion of the value of organizations’ direct asset

holdings and as A is column stochastic:∑
j

∑
i

∑
k

(1− γ)AijDikpk <
∑
i

vi

Using equation A.9:

(1− γ)θ
∑
i

vi <
∑
i

vi

and so (1− γ)θ < 1.

Suppose now all organizations fail. In this case:
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v = A(Dp− β) = ADp(1− γ) = (1− γ)θv < v

Thus, in the worst case equilibrium, all organizations fail.

Proposition 6 illustrates that if trades are undertaken with the sole purpose of achieving

the best case safest outcome, these same trades can also result in the worst possible outcome

occurring in the worst-case equilibrium – all organizations failing.

A.10 Details: Cascades of Default in Europe

We first discuss the data used and then provide the calculations of the vis. There is data

available from the Bank of International Settlements on aggregated cross-liabilities between

countries on both an immediate borrower basis (which reports all contracts) and a final

borrower basis (which nets out contracts with intermediaries replacing them with contracts

between the final parties). If two parties trade through an intermediary we assume that

intermediary writes separate contracts with the two parties (or acts as some kind of guaran-

tor). In this case default by the intermediary would affect both parties and it is appropriate

to use the intermediate borrower basis data.75

The calculations of the vis are based on the peak GDPs from 2008. The normalized

GDPs (relative to Portugal’s GDP in 2011) are:

12.0

15.3

1.5

9.7

1.1

6.7


.

This leads to values based on the A matrix of:

v0 = Ap =



0.71 0.13 0.13 0.17 0.07 0.11

0.18 0.72 0.12 0.11 0.09 0.14

0.00 0.00 0.67 0.00 0.00 0.00

0.07 0.12 0.03 0.70 0.03 0.05

0.01 0.00 0.02 0.00 0.67 0.02

0.03 0.03 0.02 0.02 0.14 0.68


·



12.0

15.3

1.5

9.7

1.1

6.7


=



13.1 (France)

15.4 (Germany)

1.0 (Greece)

9.8 (Italy)

1.0 (Portugal)

7.5 (Spain)


.

75Note that calculating the A matrix is far more involved than just looking at the final borrower basis
data.
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Thus

v = θ



13.1 (France)

15.4 (Germany)

1.0 (Greece)

9.8 (Italy)

1.0 (Portugal)

7.5 (Spain)


, and β =

θ

2



13.1 (France)

15.4 (Germany)

1.0 (Greece)

9.8 (Italy)

1.0 (Portugal)

7.5 (Spain)


.

A.11 Lemmas in the Proof of Proposition 3

Here we prove Lemmas 3 and 4. We maintain the notation of that proof.

Proof of Lemma 3: By the Neumann series (equation 6) applied to the structure of the

present random graph, we have (absent any failures)

v = (1− c)
∞∑
p=0

Ck1 ≤ (1− c)
∞∑
p=0

ck(d−1G)k1 ≤ (1− c)
∞∑
p=0

(
c
d

d

)k
1

where in the first inequality we have used a bound Cij ≤ Aij/d on the entries of C, and in

the second we have used the fact that Gk1 ≤ d
k
1, which is easy to verify by induction and

the fact that d is the maximum degree of k. This establishes that vi ≤ ṽmax for each i. The

argument for the inequality vi ≥ ṽmin is analogous: we use that Cij ≥ Aij/d and then the

fact that Gk1 ≥ dk1.

Proof of Lemma 4: Fix a j as defined in the statement. We will prove the lemma by

translating into a statement about the probability of a certain event in a suitably defined

Markov chain, which turns out to be more intuitive to establish. Let C be defined by

Cxy = Gxy/dy. Consider a Markov process (Xt) with state space {0, 1, 2, . . . , n} and initial

state i. The state 0 is an absorbing state. From state x ≥ 1, with probability 1 − c a

transition occurs to state 0, and otherwise the probability of moving to any state y ≥ 1 is

given by Cyx. Observing that C = c ·C, it is easy to verify that Qji =
(∑∞

p=2 Cp
)
ji

is the

probability of the following event Ej: there is some t ≥ 2 such that Xt = j.

We will show that the probability of Ej is at most ε/d for each j such that Gji = 1; since

there are at most d such j, we then conclude by the union bound that the probability of⋃
j:Aji=1Ej is at most ε. Let T be the (random) set of nodes reached with positive probability

from i in exactly two steps. For a fixed constant a, let M be the (random) set of nodes with

a directed path of length at most a to j. Clearly, |M | ≤
∑a

k=0 d
a ≤ d

a+1
(recall that the

maximum degree of any node is d). In other words, M constitutes a very small fraction of

the nodes in the graph. Applying the Bollobás configuration model as outlined in Section

2.1 of Cooper and Frieze to make precise the fact that T and M are essentially independent

conditional on i, we deduce that we can find n large enough so that the probability that

T ∩M is nonempty is at most ε/(2d). Thus, Qji ≤ ε/(2d)+(1−c)a: to return to j via a path
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of length at least 2, the Markov process has to take at least a steps, and has a probability

1− c of being absorbed at 0 at every step. Taking a large shows that Qji ≤ ε/d.
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