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A B S T R A C T   

With the extensive adoption of artificial intelligence (AI), construction engineering and management (CEM) is 
experiencing a rapid digital transformation. Since AI-based solutions in CEM has become the current research 
focus, it needs to be comprehensively understood. In this regard, this paper presents a systematic review under 
both scientometric and qualitative analysis to present the current state of AI adoption in the context of CEM and 
discuss its future research trends. To begin with, a scientometric review is performed to explore the character-
istics of keywords, journals, and clusters based on 4,473 journal articles published in 1997–2020. It is found that 
there has been an explosion of relevant papers especially in the past 10 years along with the change in keyword 
popularity from expert systems to building information modeling (BIM), digital twins, and others. Then, a brief 
understanding of CEM is provided, which can be benefited from the emerging trend of AI in terms of automation, 
risk mitigation, high efficiency, digitalization, and computer vision. Special concerns have been put on six hot 
research topics that amply the advantage of AI in CEM, including (1) knowledge representation and reasoning, 
(2) information fusion, (3) computer vision, (4) natural language processing, (5) intelligence optimization, and 
(6) process mining. The goal of these topics is to model, predict, and optimize issues in a data-driven manner 
throughout the whole lifecycle of the actual complex project. To further narrow the gap between AI and CEM, six 
key directions of future researches, such as smart robotics, cloud virtual and augmented reality (cloud VR/AR), 
Artificial Intelligence of Things (AIoT), digital twins, 4D printing, and blockchains, are highlighted to constantly 
facilitate the automation and intelligence in CEM.   

1. Introduction 

The construction engineering and management (CEM) inside the 
scope of the architecture, engineering, and construction (AEC) industry 
is fraught with its own problems and complications, which covers a set 
of construction-related activities and processes along with human fac-
tors and interactions [97]. Construction, as a large sector of the econ-
omy, plays prominent roles in driving economic growth and long-term 
national development [76]. According to a survey from McKinsey Global 
Institute in 2017, the global construction industry makes up around 13% 
of the world’s Gross Domestic Product (GDP) and this number is pro-
jected to rise to 15% in 2020. Meanwhile, construction projects create a 
broad range of job opportunities for 7% of the world’s working popu-
lation. Despite its economic importance, an obvious issue is poor labor 
productivity during the construction procedure, negatively leading to 
the waste of manpower, material resources, and financial resources. 
Since construction activities contribute a lot to our society economically, 

it makes the most sense to take proper construction management for the 
purpose of improving product performance. If the construction pro-
ductivity is enhanced by as much as 50% to 60% or higher, it is esti-
mated to bring an additional $1.6 trillion into the industry’s value each 
year and further boost the global GDP [20]. 

Construction with inherent complexity is regarded as one of the most 
dangerous industries, which is greatly susceptible to a variety of un-
predictable factors, such as participants in different roles, the change-
able environment in large uncertainty, struck-by-equipment hazard, and 
others [172,199]. Therefore, the construction industry tends to cause a 
small scale of fatal accidents with higher frequency than other domains, 
which is even responsible for 30-40% of fatalities worldwide [251]. For 
example, accidents on construction sites have killed more than 26,000 
workers in the United States during 1989 – 2013 [243]. There were in 
total 782 fatal construction accidents in Europe in 2014, and the rate of 
casualties was about 13 per 100,000 workers [213]. According to 
Korea’s Ministry of Employment and Labor annual report from 2012 to 
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2015, the mortality rate of Korea’s construction industry remained the 
highest among other economic sectors [98]. Construction in China has 
been regarded as one of the riskiest industries, where the number of fatal 
accidents exceeds many developed countries without a significant 
downward trend [234]. Numerous researches have revealed that safety 
issues are tied up with hazardous working conditions and the lack of 
supervision, emphasizing the necessity of construction management for 
safety guarantee and accident prevention [120]. Through identifying, 
evaluating, and reacting to the potential risk in dynamic and hazardous 
construction environments at an early stage, it is expected to eliminate 
safety hazards and then achieve a sustainable reduction in fatalities in 
the construction industry. 

In the context of “Industry 4.0”, CEM is going through constant in-
novations towards digitalization and intelligence, in order to realize a 
considerable boost in automation, productivity, and reliability. That is 
to say, the construction industry is reshaping itself along the whole 
construction value chain, including the planning, construction, opera-
tion, and maintenance (O&M). For the purpose of launching the real 
digital strategies in CEM, artificial intelligence (AI) acts as the backbone 
to change the way a construction project performs. As a branch of 
computer science, AI drives computers to sense and learn inputs like 
human-being for perception, knowledge representation, reasoning, 
problem-solving, and planning, which can deal with complicated and ill- 
defined problems in an intentional, intelligent, and adaptive manner. 
The investment in AI is undergoing rapid growth, in which machine 
learning particularly accounts for a major proportion to learn suffi-
ciently robust data from multiple sources and then act on the insights of 
data to make smart decisions adaptively. According to a report from 
Accenture company [168], AI is already altering every walk of life, 
which heralds dramatic potential to boost labor efficiency by 40% and 
double annual economic growth rates in 2035. To make AI live up to 
expectations, more and more companies are actively investing in various 
AI technologies, which put AI into a sharper focus and extend its 
application scope [46]. When AI talents continue to mature, it is 
believed that AI methods will become the next digital frontier to easily 
transform massive data into useful knowledge, leading to a high degree 
of automation and intelligence in both industry and commerce. 
Although a considerable amount of engineering data increases unpre-
cedently in the construction project, the adoption of AI techniques still 
lags behind the process in other industries. Therefore, there is immense 
interest in implementing a variety of AI methods in the CEM domain to 
seize the valuable opportunity of digital evolution for better perfor-
mance and profitability. 

Due to the remarkable growth of AI applications in civil engineering, 
some reviews about this topic have been published. However, most of 
them only highlight the value of AI on a specific sub-area, such as 
structural engineering [175], building information modeling (BIM) 
[252], automated construction manufacturing [86], computer vision 
[66], and others. That is to say, they only offer a narrowed perspective 
rather than a general view of AI implementation within CEM. In the 
meanwhile, they largely depend on the manual review and appraisal, 
possibly leading to biased findings [87]. Moreover, Darko et al. [50] 
conducted a review on AI in the AEC industry using scientometric 
analysis, in order to raise the awareness of AI in AEC. But it does not 
provide a comprehensive introduction of AI techniques and practical AI 
applications in CEM. Only two future research directions, namely the 
robotic automation and convolutional neural networks, are identified, 
which are not sufficient. Yan et al. [219] reviewed the literature spe-
cifically concentrating on data mining in the construction industry. 
However, data mining is a subset of AI to automatically process data and 
retrieve useful insights. Many promising techniques beyond data mining 
also deserve some attention, which are capable of providing value-added 
services in CEM, such as the performance prediction and optimization, 
process mining, visual analytics, energy management, and others [22]. 

To tackle these existing limitations of current reviews, we aim to 
present a broader and more systemic review to capture the evolution and 

application of AI in the domain of CEM incorporating both the scien-
tometric analysis and qualitative analysis. To sum up, the main objective 
of this review is to: (1) search the academic publications within the topic 
and perform scientometric analysis (Section 2); (2) summarize the ac-
tivities and characteristics of CEM and highlight the benefits of AI in 
CEM (Section 3);(3) report several hot research topics of the state-of-the- 
art AI techniques for CEM improvement (Section 4); and (4)identify the 
signposts for the future researches for digitalizing CEM (Section 5). 

2. Analysis of publications 

In the beginning, relevant papers within the domain of CEM are 
retrieved to prepare our database for review. The following three criteria 
are adopted to guide the search of peer-reviewed papers: (1) Web of 
Science (WOS), Scopus, American Society of Civil Engineers (ASCE) 
Library, Wiley Online Library, and IEEE library are defined as the 
adopted academic databases for selecting targeted publications. (2) 
Selected keywords focus on the main concepts of this review, which can 
be simply divided into two aspects: one is about the AI along with its 
critical branches, and the other is about CEM. To make the search more 
effective, we also refer to some previous review papers [50,92] to 
identify specific keywords. These two kinds of keywords are then com-
bined by Boolean operations. In short, a search is performed on relevant 
studies following the rule below: (“artificial intelligence” OR “AI” OR 
“computational intelligence”) AND (“civil engineering” OR “construc-
tion engineering” OR “construction industry” OR “construction man-
agement” OR “construction project”). (3) Many existing reviews have 
built a profile of relevant publications over the last two decades, which 
are proved suitable to comprehend the development changes and de-
velopments within the targeted topic [92,136]. Accordingly, we set the 
search period from 1997 to 2020 for a meaningful investigation based on 
the reason below. Since 2002, due to the growth of data and computa-
tional power, the research interests gradually turn to machine learning 
and deep learning at a higher level of intelligence for various purposes in 
the construction industry. Before 2002, researches mainly concentrate 
on the expert system, which is the early AI-enabled method to mimic 
human behavior and knowledge for decision making. It is known that 
these works before 2002 are relatively simple and intuitive, and thus we 
don’t have to consider them all. For controlling the number of papers, 
the main articles for 5 years before 2002 are retrieved as representatives. 
In brief, there are three more restrictions to determine the scope of 
publication research, including published year (1997 – 2020), document 
type (“Article”, “Review”), and language (“English”). As a result, a total 
of 4,473 papers mostly related to the study area are chosen and stored in 
our database, which are discussed as follow.  

(1) The annual number of relevant publications shows an upward 
trend during 1997–2020, indicating that the use of emerging AI 
in the construction industry is becoming a hot topic at present. It 

Fig. 1. Amount of publications for AI applications in CEM during 1997 – 2020.  
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is clear in Fig. 1 that the number of relevant publications in-
creases rapidly year by year in the past 23 years. Around 84.78% 
of papers are published from 2010 onward, which means the 
popularity of AI-based CEM boosts especially after 2010. It 
should be noted that the last number 528 is only the papers 
published in the first six months of 2020, which has surpassed the 
annual publications during 1997–2018. A Gompertz function is 
used to fit the data well under an adjusted R-square of 0.913, 
which is visualized by the red line in Fig. 1 along with a 95% 
confidence band. When the fitted function works, it is estimated 
that the number of relevant publications can increase to over 700 
at the end of 2020. That is to say, AI solutions in the field of CEM 
are gaining more and more attention under the expectation of 
bringing digital innovation in construction.  

(2) Journals, which public more relevant papers about CEM, are 
more likely to be cited by other papers on similar topics. Fig. 2 
visualizes the top 10 journals that provide the most number of 
related papers and the top 10 journals owning the most-cited 
papers in our prepared datasets. All the 12 journals in Fig. 2 
have an impact score larger than 3.0 in the year 2020, and thus 
their importance can be validated. In other words, these journals 
contribute more to studies on the topic of AI-based CEM. As can 
be seen, the majority of journals owning more than 400 publi-
cations on the targeted topic are Journal of Computing in Civil 
Engineering, Automation in Construction, Journal of Construction 
Engineering and Management, and Computer-Aided Civil and Infra-
structure Engineering, which take up approximately 39.48% of 
papers in our dataset. Also, papers from these top 4 journals are 
more influential, which can be cited more frequently by other 
selected papers. Although the number of related publications 
from Journal of Cleaner Production and Safety Science ranks at the 
8th and 9th place, these two journals are not in the list of top 10 
most-cited journals. Instead, Neurocomputing and IEEE Trans-
action on Neural Networks and Learning Systems can provide main 
sources of references for citations. These two journals mainly 
focus on a collection of new computational models and algo-
rithms from the theory level, which can be applied in engineering 
practice to realize their application values.  

(3) With the help of a Java-based scientific visualization tool named 
CiteSpace, the co-occurrence keyword analysis is performed to 
output knowledge maps. Keywords are the core words or phrases 

to capture the essence of papers, which are depicted in Fig. 3 by 
nodes and co-occurrence links. The size of font and node directly 
proportionates to the number of publications containing a certain 
keyword. It is clear that the top 5 keywords in the highest fre-
quency of occurrence are “artificial intelligence”, “neural 
network”, “construction management”, “model”, and “machine 
learning”. Apart from frequency, a metric termed centrality can 
also be calculated to measure the role of nodes in the knowledge 
network [121]. It turns out that these five most-frequent key-
words also have a comparatively high value of centrality (0.51, 
0.18, 0.38, 0.3, and 0.39, respectively), which are also likely to 
exert more influence on other nodes. To better understand a 
bunch of keywords, we can simply divide them into two parts. 
One is about the method, such as “artificial intelligence”, “neural 
network”, “machine learning”, “fuzzy logic”, and “algorithm”. 
The other is about the purpose, such as “construction manage-
ment”, “design”, “prediction”, “optimization”, and 
“classification”.  

(4) Cluster analysis is conducted by CiteSpace to discover underlying 
topics and research front from a large collection of papers. Since 
the network of keywords in Fig. 3 has a large modularity Q 
(0.775), it suggests that this network can be reasonably divided 
into several clusters for further investigation. Fig. 4 visualizes the 
11 identified clusters. For a clearer understanding, Table 1 splits 
these discovered clusters into two groups: one concerns the 
method, and the other concerns the leading application areas. 
The silhouette scores of all clusters are larger than 0.859, indi-
cating the great homogeneity in each cluster. In other words, the 
robustness and significance of the clustering results are verified. 
Labels derived from the log-likelihood tests (LLR) are assigned to 
clusters to characterize the cluster’s nature. For example, the 
cluster named expert system (#0) is in the largest size. That is 
because the expert system has been proposed early since the 
1970s and developed for a long time, resulting in the earliest 
average year of publications (2010) among 11 clusters. The cur-
rent research trend of the expert system is to integrate higher- 
level intelligence (i.e., machine learning and deep learning) 
into it, allowing for automatic adjustment of the knowledge base 
to inform more reliable decisions [152]. By contrast, the mean 
year of second-largest cluster #1 is 2019, indicating that the 
recent hot issues have turned to the topic of digital 

Fig. 2. Top 10 journals in terms of paper number and cited number.  
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transformation. Ongoing efforts have been made to implement 
more advanced digital solutions in the real construction project, 
such as BIM, IoT, digital twins, and others, which are part of the 

growing trend in driving CEM towards digitalization, automa-
tion, and productivity. 

3. Understanding of CEM 

Through reviewing the relevant and latest publications, we sum-
marize the related activities and characteristics of CEM to provide an in- 
depth understanding of the construction industry. It should be noted 
that large volumes of heterogeneous data are collected at every stage of 
the project especially with the advent of the BIM and wireless sensor 
network (WSN) to make CEM a data-intensive field. Hence, it is 
reasonable to perform various AI techniques to take full advantage of 
such data in a range of ways, which have the potential to effectively 
tackle the characteristics of CEM during the total project life cycle. To 
sum up, several benefits from AI are highlighted, which are proven to 
significantly advance the field of CEM. 

3.1. Activities in CEM 

CEM can be split into two parts: one is construction engineering, and 
the other is construction management. Construction engineering can be 
defined as a completed process including designing, scheduling, budg-
eting, building itself. Appropriate management over the lifetime of a 
project is a necessity for all sorts of construction projects, aiming to 
guide the project to success under the control of time, cost, scope, 
quality, and collaboration. Project managers coordinate closely with 
other participants to draw up plans, schema, timelines, costs, personnel 
arrangements, and others for construction management. They monitor 

Fig. 3. Keywords of the selected papers visualized in a network.  

Fig. 4. Cluster map of keywords.  
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the entire progress of work and concentrate on all aspects of the project 
(i.e., labor, capital, time, equipment, material, risk), and then give back 
corresponding instructions to lower the possibility of delays, budget 
overruns, high risks, and great conflicts. In short, the main activities in 
CEM can be classified into three major phases as follows. 

(1) Planning: Before the start of physical construction, it is of ne-
cessity to create detailed plans for the project development concerning 
resources, schedule, budget, dependencies, and others. The well- 
prepared plans need to be fitted to a reasonable time scale and work-
flow, which assist in reducing cost, duration, and irrational process in 
the practical project. For instance, the schematic design can be drawn to 
fully describe the building systems. Scheduling can chronologically 
distribute multiple activities, and then assign dates, workers, and re-
sources to a certain activity. Cost estimation is the process of predicting 
the required funds and resources for conducting a project within a 
defined scope. In short, the main task in the planning phase is the project 
plan formulation to rationally streamline the construction process, 
which can also serve as a reference to monitor the actual process and 
direct it to be finished punctually within the estimated budget 

(2) Construction: This is a phase of executing the physical construc-
tion, and thus the plan made at the previous phase is expected to pay off. 
Construction workers and project managers are the major participants 
involving in the construction phase. For construction workers, they are 
the manual labor to perform the on-site tasks, including layout marking, 
excavation, foundation work, column casting, wall construction, lintel, 
roofing, plastering, fixing of doors, windows, electrical and plumbing 
works, tiles laying, painting, and others. Skilled workers are also needed 
to operate sophisticated machine tools. Regarding project managers, 
they oversee the actual construction process regarding the scope, 
budget, and schedule, and then compare the observations to the defined 
planning. If an inconsistency is detected, the corresponding action can 
be enacted to bring the process back into conformance or adjust plans to 
copy with changes. Moreover, managers are responsible for recognizing 
the exposure of risk and the associated impact on the performance, 
schedule, or budget of projects. For better quality control. these iden-
tified risks need to be analyzed in both the qualitative and quantitative 
view, and thus timely responses can be created to proactively address 
the potential issues. 

(3) Operation and Maintenance (O&M): When construction is 
completed, the project will enter a new phase called O&M. It is known 
that O&M takes most of the time within the lifecycle, leading to a large 
amount of cost accounting for around 60% of the total project budget 

[74]. The goal of O&M is to operate and maintain a constructed facility 
to not only meet the anticipated functions over its lifecycle but also 
ensure the safety and comfort of users. More specifically, operation 
means the provision of day-to-day services to operate and control the 
facility in an efficient, economical, and reliable manner, while mainte-
nance aims to minimize the possibility of system failure from two as-
pects. For one thing, time-based preventive maintenance detects the 
potential risks and adjusts the ongoing operation prior to unexpected 
events. For another, corrective maintenance implemented after the 
occurrence of problems strives to repair the problematic parts and get 
them back on the normal status as quickly as possible. Besides, recent 
attention in O&M has focused on sustainability. The execution of O&M 
must obey some energy regulations and standards to make the facility 
run long-termly, safely, and energy-savingly, and eventually improve 
users’ satisfaction. 

3.2. Characteristic of CEM 

Since a construction project is unique, temporary, and progressive in 
nature for producing the desired objective, CEM can be considered as a 
process to handle a series of interrelated tasks over a fixed time period 
within certain limitations. According to the relevant papers retrieved in 
Section 2, the key characteristics of CEM are outlined from the following 
five points. 

(1) Uniqueness: Due to the differences rooting in client requirements, 
project size, conditions, influences, and constraints, construction pro-
jects are varied from one another to enhance the difficulty of project 
management. Thus, it is unreasonable to simply replicate the sched-
uling, design scheme, budget, and logistics of an existing project to a 
new one. In addition, individuals with differing roles, including de-
signers, engineers, suppliers, contractors, managers, and other service 
providers, are temporarily organized in a project. It means that each 
project is carried out by a unique team, and each team has its own 
characteristics regarding the participants’ skills, knowledge, experience, 
communication, and collaboration. It is noteworthy that a highly cus-
tomizable solution is deemed as a necessity to ensure the reliability and 
efficiency of the project that is very technical and characteristically 
unique. 

(2) Labor intensive: Typically, a huge amount of manual labor will 
engage in a construction project, who can offer great quantities of 
physical effort for project implementation, timely completion, and 
quality assurance. It is estimated that the proportion of labor costs can 

Table 1 
Summary of the identified clusters.  

Type Cluster 
ID 

Cluster topic Size Silhouette Mean 
year 

Alternative label (LLR) 

Method 0 Expert system 19 0.896 2010 Multicriteria decision making, profiling, agreement option, decision support systems, 
computer programming 

2 Hybrid model 14 0.978 2013 Computational intelligence, machine learning, hybrid method, multivariate 
regression, fuzzy logic 

3 Artificial bee colony 13 0.949 2016 Optimization, swarm intelligence optimization, genetic algorithm, structural design, 
sustainability 

5 Neural network 11 0.859 2012 Neural networks, artificial neural network, fuzzy neural networks, differential 
evolution, crack detection 

9 Knowledge 
representation 

9 0.888 2018 Software prototyping, intelligent agents, product individual characteristics 
identification, probabilistic methods, fuzzy logic 

Application/ 
Purpose 

1 Digital 
transformation 

14 0.972 2019 Bim, industry foundation classes (ifc), big data, internet of things (iot), digital twin 

4 Subway systems 12 0.892 2016 Condition assessment, health monitoring, image processing, system identification, 
construction safety 

6 Information 
technology 

11 0.876 2014 Construction cost management, control variable, communications & control systems, 
safety, data mining 

7 Fog 10 0.974 2019 Smart contract, smart oracle, blockchain, cloud, storage 
8 Soil 9 0.972 2017 Artificial ground freezing, water demand, hydrology, sustainable development goals, 

environmental science 
10 Biogeotechnics 8 1 2015 Hazardous waste disposal, groundwater potential mapping, thermal conductivity, 

electrical conductivity, electrical conductivity probe  
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take up over 30% of the total project budget, indicating that intensive 
labor is a critical component in construction. For improving the per-
formance and productivity of construction projects, there is fast growth 
in the demand for skilled and semi-skilled workers with rich expertise 
and proficient skills, and thus many efforts are needed to provide pro-
fessional training. Meanwhile, another trend to release the burden from 
manpower costs is that unskilled workers are being replaced by auto-
matic machines. It is envisaged that the collaboration of knowledgeable 
labor forces and machines is capable of driving the project forward more 
easily, efficiently, and safely. 

(3) Dynamics: Although a project has been clearly defined from the 
beginning to the end, the actual execution of the project is unable to 
always stick to the plan. Inevitable changes or adjustments caused by 
various reasons will occur dynamically throughout the whole lifecycle of 
the project. For instance, the project alternatives need to be reformu-
lated due to some human factors (i.e., clients’ dissatisfaction, designers’ 
and engineers’ mistakes, financial problems from contractors) and un-
foreseen conditions (i.e., undesired delay, bad weather, complex 
geologic environment, additional demands of labor, equipment, and 
material). Besides, when any additions or reductions are applied to the 
project scope, the scheduling and budget should be updated accordingly 
to adapt to the changing circumstances. To assure the success of a 
construction project, managers need to flexibly identify changes and 
perform effective controls. 

(4) Complexity: The complexity of construction projects can arise 
from two aspects, namely the task and participant. For one thing, con-
struction tasks are heavy, diverse, and interconnected, which can 
possibly meet conflicting scheduling or performance problems. To make 
the operation process running smoothly, a variety of factors, such as 
security, environment, weather, workers, time limit, and others, should 
be taken into full consideration. Additionally, although the advanced 
technology (i.e., BIM and IoT) and new materials are adopted for more 
sustainable development, they are prone to contribute toward a higher 
degree of complexity. For another, workers with varying backgrounds, 
cognitive levels, and business interests will play different roles in the 
project, who communicate and share information with each other for a 
common goal. This kind of multi-disciplinary collaboration will inevi-
tably result in intricate interactions in individuals and tasks. 

(5) Uncertainty: Uncertainties are unknown before they occur, which 
can be regarded as unavoidable threats to raise the risk of project failure. 
Notably, a high level of uncertainty is inherent in complicated con-
struction projects, which is closely related to various factors. For 
instance, before the site construction, scheduling and cost need to be 
estimated reasonably under great uncertainty. The improper estimation 
will impede the progress of the project. As for the architecture design, 
some questions about it remain to be answered, such as whether the 
design can pass audits, whether clients are satisfied with the design, and 
others. In the construction phase, a great deal of unknown uncertainty 
comes from the ground conditions, soil-structure interaction, weather 
conditions, building material properties, design changes, reliability of 
suppliers, and others. If these uncertainties are detected and measured in 
an early stage, potential risks can be mitigated to increase the likelihood 
of a successful construction project. 

3.3. Benefits of AI in CEM 

Although AI stands out as transformational technology to potentially 
bring about unprecedented changes in our work and life, its application 
in CEM with the nature of uniqueness, labor-intensive, dynamic, 
complexity, and uncertainty is still in its infancy. In the immediate 
future, the construction industry is projected to increase more focus and 
investment in AI. That is to say, a variety of AI methods will be utilized 
to well handle the rapid growth of data generation in CEM through 
training suitable models. It is believed that AI can deliver promises on 
prediction, optimization, and decision making, in order to assist the 
traditional construction industry to catch up with the fast pace of 

automation and digitalization. The substantial benefits of AI in CEM are 
outlined below. 

(1) Automation: AI drives the process of project management more 
technically automatable and objective. It is proved that AI-based solu-
tions contribute to overcoming distinct disadvantages from conven-
tional construction management relying on manual observation and 
operation, which is more prone to bias and confounding. For instance, 
machine learning algorithms are applied to intelligently learn the mass 
of accumulated data for hidden knowledge discovery, which are also 
integrated into project management software to facilitate automatic 
data analysis and decision making. The insights gained from such 
advanced analytics help managers to better understand the construction 
project, formalize tacit knowledge from project experiences and rapidly 
spot the project concerns in a data-driven manner [89]. As for the on-site 
construction monitoring, drones and sensors are utilized to automati-
cally record data and take images/videos about the construction status, 
environment, and progress, in order to offer a more comprehensive 
picture of the site through various project stages without human inter-
action. That is to say, evidence caught by such techniques can replace 
the traditional manual observation, which tends to be time-consuming, 
tedious, and error-prone. 

(2) Risk mitigation: AI can monitor, recognize, evaluate, and predict 
potential risk in terms of safety, quality, efficiency, and cost across teams 
and work areas even under high uncertainty, which has been predomi-
nantly adopted for risk identification, assessment, and prioritization [3]. 
That is to say, various AI methods, like probabilistic models, fuzzy 
theory, machine learning, neural networks, and others, have been 
applied to learn data collected from the construction site to capture 
interdependencies of causes and accidents, measure the probability of 
failure occurrence, evaluate the severity of the risk from both the 
qualitative and quantitative view. They can effectively address the 
limitations of traditional risk analysis, such as the vagueness and 
vulnerability from specialist experience and subjective judgment. As a 
result, the AI-based risk analysis can provide assistive and predictive 
insights on critical issues, which help project managers to quickly pri-
oritize possible risks and determine proactive actions instead of re-
actions for risk mitigation, such as to streamline operations on the job 
site, adjust staff arrangement, and keep projects on time and budget. In 
other words, AI presents valuable opportunities to realize early trou-
bleshooting to prevent undesirable failure and accidents in the complex 
workflow. Additionally, robots can take charge of unsafe activities to 
minimize the number of humans working in dangerous environments. 

(3) High efficiency: Another important use of AI techniques is in 
optimization problems, aiming to make the construction project run 
more smoothly and efficiently. For instance, process mining is a new AI- 
enabled approach to generate valuable insights into the complicated 
construction procedure, such as to track key workflows, predict de-
viations, detect invisible bottlenecks, extract collaboration patterns, and 
others [198]. Such discovered knowledge is critical to project success, 
which can guide the optimization of the construction execution process. 
It is expected to avoid unnecessary steps, reworks and conflicts, poten-
tial delays, and poor cooperation. In turn, tactical decisions can be made 
for trouble-shooting at an early stage, driving the improvement of 
operational efficiency. It is also effective in preventing costly correction 
at the remaining stage. Different types of optimization algorithms are 
also a powerful tool for drawing up more plausible construction plans 
under the optimal tradeoff among time, cost, and quality [17]. More-
over, AI-powered robots have been directly adopted on the construction 
site to take over the repetitive and routine construction tasks, such as 
bricklaying, welding, tiling, and others. They can work continuously 
without taking a break at almost the same rate and quality, indicating 
that the proper use of smart machinery will ensure efficiency, produc-
tivity, and even profitability. 

(4) Digitalization: It should be noted that BIM has played the leading 
role in digitalizing the construction industry, which has gone far more 
than the 3D modeling to provide a pool of information concerning the 
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full project lifecycle [90]. To further facilitate the digitalization of in-
formation in intelligent CEM, BIM can be reasonably considered as a 
digital backbone to work with AI. For BIM, it provides a platform for not 
only collecting large data about all aspects of the project, but also 
sharing, exchanging, and analyzing data in real-time to achieve in-time 
communication and collaboration among various participants. For the 
AI techniques, they deeply explore massive amounts of data from BIM to 
automate and improve the construction process. The integration of BIM 
and AI can move the paper-based work towards online management. For 
one thing, it can deliver the most efficient and effective information to 
keep continuous updating of the ongoing project. For another, it can 
take advantage of BIM data to make real-time analysis, and thus im-
mediate reactions can be performed to streamline the complicated 
workflow, shorten operation time, cut costs, reduce risk, optimize staff 
arrangement, and others. 

(5) Computer vision: The automated and robust computer vision 
techniques have gradually taken the place of the laborious and unreli-
able visual inspection in civil infrastructure condition assessment. Cur-
rent advances in computer vision techniques lie in the deep learning 
methods to automatically process, analyze, and understand data in im-
ages or videos through end-to-end learning. Towards the goal of intel-
ligent management in the construction project, computer vision is 
mainly used to perform visual tasks for two main purposes named in-
spection and monitoring, which can potentially promote the under-
standing of complex construction tasks or structural conditions 
comprehensively, rapidly, and reliably [179]. To be more specific, in-
spection applications perform automated damage detection, structural 
component recognition, unsafe behavior, and condition identification. 
Monitoring applications is a non-contact method to capture a quanti-
tative understanding of the infrastructure status, such as to estimate 
strain, displacement, cracks’ length, and width. To sum up, the vision- 
based methods in CEM are comparatively cost-effective, simple, effi-
cient, and accurate, which can robustly translate image data into 
actional information for structural health evaluation and construction 
safety assurance. 

4. Research topics of AI in CEM 

Various AI techniques have been developed to make machines mimic 
human cognitive processes in terms of learning, reasoning, and self- 
correcting. According to [138], the developed AI techniques are 

categorized into four major groups, namely the expert system, fuzzy 
logic, machine learning, and optimization algorithm. To be more spe-
cific, an expert system is a straightforward and understandable method 
towards intelligent decision making, which contains possible expert 
knowledge and reasoning to address complicated problems. Fuzzy logic 
deals with input data in vagueness, uncertainty, impreciseness, and 
incompleteness through converting them into computer understandable 
forms, and then responses are made based on a set of fuzzy rules. Ma-
chine learning is a great step of AI to teach machines how to discover 
patterns hidden in large data and realize data-driven predictions on 
future tasks. As machine learning evolves, deep learning and rein-
forcement learning as the new trends have been developed at a higher 
level. Optimization algorithm aims to locally or globally search the 
optimal results from a set of available alternatives. In addition, process 
mining is still a young discipline to bridge the gap between process 
management and data science. Although process mining takes full 
advantage of event logs with the aim of monitoring, diagnosing, 
analyzing, and improving the actual process, it has not yet received 
enough attention. Herein, we also consider the process mining tech-
niques as an important branch of AI. 

It is known that the application domains of AI could be very wide. 
Relying on the five important AI approaches mentioned above, we put 
emphasis on six hot research topics of AI in CEM, as summarized in 
Fig. 5. Different AI approaches have been carried out in these research 
topics for different purposes, such as to detect and mitigate risk, to un-
derstand the nature of the project for better planning and adjustment. 
What’s more, these topics are highly associated with the five discovered 
keyword clusters belonging to AI methods in Table 1. For example, the 
topic of knowledge representation and reasoning is related to clusters of 
expert system and knowledge representation; the topics of information 
fusion, computer vision, and neural language processing are connected 
with clusters of the hybrid model and neural network; the topic of 
intelligent optimization is relevant to the cluster of artificial bee colony; 
the topic of process mining is linked to clusters of knowledge repre-
sentation and hybrid model. In each research topic, we list at most five 
representative papers for each supporting area in tables under the se-
lection standard that they are highly cited by other researchers or they 
are published in recent ten years or they are from the leading research 
groups. These publications serve as evidence to verify that the use of 
these popular AI approaches in CEM is not just a theoretical subject. The 
introduction of six hot research topics is detailed below. 

Fig. 5. Summary of main research topics and their corresponding AI approaches.  
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4.1. Knowledge representation and reasoning 

Knowledge representation and reasoning are the early forms of AI, 
which adopt a symbolic representation of domain knowledge and pre- 
defined rules to build the knowledge-based system instead of complex 
algorithms or statistics. Computers can, therefore, rationally understand 
the available knowledge, facts, and beliefs from the real world, and then 
make use of them to draw valid conclusions and facilitate logic inference 
in a transparent and efficient manner. Table 2 summarizes some relevant 
studies in the field of CEM. Particularly, structural equation modeling 
(SEM) and Bayesian network are two simple and useful tools to establish 
measurement models for knowledge representation. To be specific, SEM 
introduced in the 1980s adopts the schematic diagram to describe the 
complicated casual relationships among multiple variables, which can 
also estimate associated coefficients concurrently [216]. One of the 
important applications in SEM is construction safety management from 
different angles, which is commonly integrated with exploratory factor 
analysis (EFA). For instance, Zaira and Hadikusumo [224] performed 
SEM to recognize the most impactful intervention-related safety prac-
tices for the improvement of workers’ safety behavior. Liu et al. [126] 
combined SEM and EFA to determine the predominant risk factors and 
guide the safety control in the complex metro construction project. 
Zhang et al. [236] developed an SEM-based method to identify 
changeable roles of safety leadership during different phases of a con-
struction project, which helped to better allocate duty on safety man-
agement among stakeholders. 

As for the Bayesian network, it is a probabilistic graphical model 
with nodes as variables and links as causality. The typical approach for 
constructing a proper Bayesian network structure depends on either a 
large amount of historical data or the knowledge of engineers/experts. 
Apart from modeling the causal relations among attributes of uncer-
tainty and risk, the Bayesian network can act as a powerful decision- 
making tool using the Bayesian inference [158]. On the one side, the 
forward propagation can forecast the probability distribution of the risk 
event under the combination of relevant factors. On the other side, the 
backward propagation can output the posterior probability distribution 
of each factor in a certain condition of the risk event. It has been widely 
used in modeling, analyzing, and predicting the construction project risk 
in terms of structural health, complicated construction environment, 
operation quality, contract, scheduling, cost, and others, allowing for 
identifying critical factors and making better decisions to minimize 
failure probability. For example, Wu et al. [214] performed predictive, 
sensitivity, and diagnostic analysis in a dynamic Bayesian network, 
aiming to provide corresponding preventive strategies before undesir-
able events occur. Leu and Chang [114] developed a Bayesian-network- 
based safety risk assessment to calculate probabilities of safety risks and 

examine causes of accidents at steel building construction projects, in 
order to reduce the risk of the object fall, collapse, and electrocution. Yet 
et al. [222] presented a Bayesian Network modeling framework to 
analyze risk scenarios and budget policies, which helped managers in 
project selection, planning, and control. 

Besides, there are also many other mature approaches for reasoning 
purposes. For clarity, we classify some important methods demon-
strating border applications in CEM into three types as follows. The first 
one is probability-based reasoning, which refers to probability theory 
with logic to indicate the uncertainty in knowledge. The fault tree 
analysis (FTA) and the Bayesian network are two representatives for 
probabilistic risk analysis and failure evaluation. The second one is rule- 
based reasoning, which deploys a set of rules in the “if <conditions>, 
then <conclusion>” format along with logical connectives, such as 
AND, OR, NOT, and others. As a typical method in this category, fuzzy 
logic is particularly useful in modeling qualitative data elicited from 
expert opinion and allowing reasoning with ambiguous information, 
which generally follows the three steps of “fuzzifying” inputs by mem-
bership functions, integrating knowledge and making inferences by 
fuzzy set logic, and “defuzzifying” these inferences for a final decision 
[93]. It has been found that to integrate fuzzy logic with the Bayesian 
network or analytic hierarchy process (AHP) has shown complementary 
strengths in risk assessment or multi-criteria selection especially when 
the problems are characterized by subjective uncertainty, ambiguity, 
and vagueness [70]. The last one is the fuzzy cognitive map (FCM) 
learned from data or developed by expert opinions. Under the combi-
nation of the fuzzy logic and cognitive map, this kind of fuzzy graph 
structure interprets complex relationships and allows systematic causal 
propagation, which can provide immediate understanding and identi-
fication of root causes of a risk event even under complicated, uncertain, 
and subjective conditions [211]. Also, the hybrid FCM with other 
methods, like SEM, Bayesian network, have been developed to drive the 
modeling process faster and determine more accurate parameters, which 
has been extensively used for risk analysis, decision making, and project 
complexity analysis [131]. Remarkably, although the above-mentioned 
methods are easy to implement, they tend to suffer from the high 
computational cost in large-scale spatial and temporal datasets. 

4.2. Information fusion 

A notion of the smart CEM is to use various sensors installed in civil 
infrastructures for data acquisition. Since this type of collected data 
contains a large amount of hidden knowledge, information fusion is 
necessarily performed to combine such data from multiple sources for 
better detection, inference, and characterization. In turn, promising 
results of an overall evaluation can be generated to ensure the efficiency, 
reliability, and sustainability of the project. The techniques of infor-
mation fusion have been extensively utilized in multisensory environ-
ments with the following advantages. Firstly, the heterogeneous data 
gathered by multiple sensors are usually influenced by measurement 
error, sensor accuracy, environmental factors, inevitably leading to a 
high degree of uncertainty in practical projects. Through aggregating 
multiple evidence, additional informative and rich data can be gener-
ated to better tackle uncertain problems and reduce data ambiguity. 
Secondly, it has been found that fusing observed information can reach a 
higher accuracy of a classification decision than considering each sensor 
independently. Moreover, data fusion supports wider spatial and tem-
poral coverage, which helps decision-makers to more clearly compre-
hend the observed situation and achieve more convincing predictions. 

Notably, information fusion is a powerful tool especially for risk 
perception in construction projects. It intends to perform a credible 
assessment of the overall structural safety based on the integration of 
information from different sensors at different locations. In general, 
there are three levels of information fusion, namely the data level, 
feature level, and decision level [30]. At the data level, the information 
fusion process directly utilizes raw data in the form of signal refinement 

Table 2 
Some studies for knowledge representation and reasoning.  

Method Purpose Studies 

SEM Construction safety management [126,162,224,236,239] 
Project complexity understanding [130] 
Optimization of construction 
collaboration 

[217] 

Bayesian 
network 

Risk analysis and prediction in 
construction projects 

[96,114,153,214,222] 

FTA Risk analysis and prediction in 
construction projects 

[41,88,91,151,184] 

Fuzzy 
Bayesian 

Risk analysis and prediction in 
construction projects 

[1,134,153,192,208,241] 

Fuzzy AHP Risk analysis and prediction in 
construction projects 

[1,117,134,148,192] 

Multicriteria selection of construction 
site, contractor, supplier 

[21,94,165,167] 

FCM Risk analysis and prediction in 
construction projects 

[37,237] 

Change analysis in construction 
projects for better planning 

[102,181]  
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as inputs, such as structure vibration velocity and acceleration. It can not 
only offer more accurate data than the individual source, but also pro-
vide a preliminary understanding of the observed situation. At the 
feature level, characteristics of features are retrieved from the raw data, 
which are then fused into a single concatenated feature vector. These 
extracted features can be fed into machine learning models for further 
analysis. At the decision level, decisions from different data sources are 
integrated under specific combination rules, in order to generate more 
robust and accurate evaluation along with more specific inferences 
about the risk status. Table 3 lists some relevant works about informa-
tion fusion. It can be seen that two main methods are widely used for 
information fusion, namely Dempster-Shafer (D-S) evidence theory and 
machine learning. 

The D-S evidence theory is a mathematical method to combine multi- 
sensory information under incompleteness, inconsistency, and impre-
cision. As an extension of the probability theory, it adopts the basic 
probability assignment (BPA) function, belief (Bel) function, and plau-
sibility (Pl) function to quantify evidence and its uncertainty. That is to 
say, D-S evidence theory is able to integrate beliefs from multiple sen-
sors. One of its significant applications is structural health monitoring, 
which can synthesize multi-source evidence in an extremely high degree 
of conflict to support risk perception and assessment for single structure 
elements or complicated structural systems. Guo et al. [83] has verified 
the effectiveness of D-S evidence theory in detecting and locating even 
slight damage in beams and plates under noisy environments. Moreover, 
D-S evidence theory has been integrated into other AI techniques, such 
as Bayesian network [153], fuzzy theory [238], cloud model [242], and 
genetic algorithms [80], to achieve more satisfactory performance. Also, 
it should be noted that D-S evidence theory has obvious advantages over 
the Bayesian model: one is that it needs no prior probability, and the 
other is that it can well handle incomplete data. 

Although D-S evidence theory is simple, it may lack accuracy and 
flexibility to formulate non-linear relationships in complicated problems 
with huge data. Currently, various machine learning algorithms have 
been increasingly applied in the forecasting analysis, which can learn 
large data from different sources and then focus on predicting new in-
puts [4]. In particular, the ensemble model, support vector machine 
(SVM), and artificial neural network (ANN) are more often used, whose 
performances have been compared with each other in the intelligent 
diagnosis of machine structure [85]. Specifically, ensemble learning 

methods, such as random forest, adaptive boosting, extreme gradient 
boosting, and others, combine decisions from multiple weak models and 
reach the final results by voting. SVM builds optimal hyperplanes in 
higher-dimensional space to search for a global solution. ANN is inspired 
by biological neural networks with interconnected neurons to imitate 
human learning processes. Similarly, machine learning embodies its 
great value in structural health monitoring for different purposes, such 
as structural damage identification and diagnosis, structure strength 
prediction, system reliability, and durability assessment, infrastructure 
maintenance, and others. Its effectiveness and robustness have been 
proved in a variety of civil structures, including the beam, slab, steel 
frame, building, dam, bridge, metro tunnel, tower, and others [175]. 
Moreover, some efforts have been made to develop hybrid models by 
integrating D-S evidence theory into machine learning algorithms, 
aiming to make better use of multi-sensory information and obtain 
higher accuracy [161,250]. Apart from structural engineering, machine 
learning also acts as a practical method in predicting building energy 
consumption, which offers data-driven guidance to formulate long-term 
strategies for energy planning, management, and conservation [9]. 
Since a lot of smart energy meters and sensors have installed in buildings 
to monitor their energy consumption during the O&M phase, sufficient 
data concerning various factors (i.e., electricity, lighting, cooling, and 
heating load, temperature, humanity, etc.) is available to be explored by 
machine learning algorithms for reaching a full understanding of 
building performance. 

4.3. Computer vision 

There has been a surge of interest in the emerging topic of computer 
vision in construction-related projects over the last few years. Typically, 
computer vision takes effect in conjunction with acquisition equipment, 
like camera, unmanned aerial vehicles (UAVs), LiDAR, and others, to 
offer non-contact and remote solutions for project monitoring, and then 
these captured image data can be converted into actional information in 
a reliable, fast, and cost-effective manner [189]. Technologies aided by 
computer vision mainly contribute to the automatic and robust vision- 
based inspection, which gradually take the place of the error-prone, 
time-consuming, laborious, and dangerous manual observation by 
people. In the end, the current state of unsafe conditions or behavior in 
the infrastructure or construction site can be easily identified and 
assessed, which in turn suggests solutions to mitigate the possible haz-
ards ahead of time [136]. 

Table 4 lists some studies of computer vision in CEM. It is clear that 
the practical goals of computer vision in CEM mainly lie in structural 
health monitoring and construction site monitoring. For one thing, 
computer vision supports the automated process of detecting and 
assessing the defects and damage (i.e., crack, spalling, corrosion, holes, 
joint damage, etc.) exiting on various types of civil infrastructure, 
including buildings, bridges, tunnels, roads, sewer pipes, and others, 
aiming to ensure the safety and serviceability of the structure systems 
[108]. It is helpful not only in the routine inspection for construction 
quality control or infrastructure maintenance, but also in the post- 
disaster inspection to lay a solid foundation for recovery and 

Table 3 
Some studies for information fusion.  

Method Purpose Studies 

D-S evident 
theory 

Structural health 
monitoring 

[80,83,65,238,242] 

Fire detection and 
alarm 

[55,215,225] 

Ensemble model Structural health 
monitoring 

[47,56,195,223,244,247] 

Building energy 
consumption 
prediction 

[13,157,194,209,210] 

SVM Structural health 
monitoring 

[48,161,171,233,250] 

Building energy 
consumption 
prediction 

[34,60,150,178,246] 

ANN Structural health 
monitoring 

[49,79,82,146,163] 

Fire detection and 
alarm 

[81,122,173,176] 

Building energy 
consumption 
prediction 

[23,33,64,95,107,115,118,140,177,186] 

Reinforcement 
learning 

Infrastructure 
maintenance 

[139,212,220] 

Building energy 
management 

[106,124,125`,129,143]  

Table 4 
Some studies for computer vision.  

Method Purpose Studies 

CNN-based Structural health monitoring [16,31,36,147,226] 
Construction site monitoring [35,54,,132] 

R-CNN-based Structural health monitoring [32,39,53,103,218] 
Construction site monitoring [,67,68,,187] 

YOLO Structural health monitoring [227] 
Construction site monitoring [104,145] 

FCN-based Structural health monitoring [59,119,154,202,218] 
GAN Structural health monitoring [73,135] 
Point cloud-based Construction project management [19,182,183,197,204]  
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reconstruction in the afflicted district. For another, computer vision is 
performed for field observation, which can automatically track, recog-
nize, predict, and assess construction resources on site, such as workers, 
materials, equipment, and others. Based on the continuous and auto-
matic monitoring of unsafe conditions and behavior, safety-related in-
formation can be extracted from 2D digital images and videos to 
evaluate potential risk in ongoing works and site conditions timely and 
precisely from three views: scene, location, and action [179]. For 
example, Fang et al. [69] summarized the successful application areas of 
computer vision in detecting improper usage of personal protective 
equipment (PPE), exposure of hazard area, risk of falling, failure of 
following the safety procedure and planned workflow. Generally 
speaking, computer vision can provide problem-solving directions in 
minimizing risks before their occurrence, which greatly improves the 
field-based occupational safety and health during the construction 
procedure. 

Currently, deep learning has become the mainstream method in 
computer vision instead of the traditional statistical models, which has a 
stronger ability in capturing the contextual information from images to 
achieve state-of-the-art results. Deep learning-based methods are mainly 
responsible for three tasks, namely the image classification, object 
detection, semantic segmentation. To be more specific, image classifi-
cation is to understand an entire image as a whole by assigning a certain 
label to it. The classification task is often conducted by the most popular 
architecture named convolutional neural networks (CNNs) with three 
important types of neural layers, which are the convolutional layers for 
generating feature maps, pooling layers for reducing the spatial di-
mensions of inputs, and fully connected layers for creating 1D feature 
vector to make the classification. More advanced models have been 
developed based on CNN as their backbone architecture, such as Alex-
Net, VGGNet, ResNet, and others. Object detection aims to both identify 
and locate one or more unsafety conditions in an image, which can draw 
the bounding box around each object of interest and give it a proper 
label. For this purpose, the region-based convolutional neural network 
(R-CNN) is the basic algorithm to combine rectangular region proposals 
and convolutional neural network features. Some variations, like Fast R- 
CNN, Faster R-CNN, Mask R-CNN, are also developed to improve the 
poor computational efficiency of R-CNN. Another family of object 
detection named you only look once (YOLO) also plays significant roles, 
which only relies on a single convolutional network trained end to end 
to predict the bounding box and the corresponding probability of the 
class label. The goal of semantic segmentation is to semantically un-
derstand the role of each pixel in the image, and thus each pixel is given 
a label to precisely identify the location and shape of damage. This task 
heavily depends on an extension of the classical CNN called fully con-
volutional networks (FCNs), which adopts the fully convolutional layer 
instead of the fully connected layer. FCN is proven useful in learning a 
mapping from pixels to pixels and making predictions on arbitrary-sized 
inputs. Moreover, it should be noted that insufficient training images are 
a common problem in the actual project. Generative adversarial network 
(GAN) propose in 2014 can be in charge of data augmentation to 
improve the model performance [230]. 

In addition, it should be noted that the 3D point cloud is another 
important type of image data in computer vision to capture the accurate 
as-is conditions of facilities with spatial information. Many point-based 
algorithms have been developed to specialize in manipulating 
complexity and variety of point cloud arising from varying density and 
irregular sampling, aiming to cluster and segment such point cloud data 
in an efficient and accurate manner. They have also been applied to the 
whole lifecycle of construction projects to automatically find the objects 
of interest and make an evaluation of the as-built status for intelligent 
project management. Through 3D model reconstruction, geometry 
quality inspection, construction progress tracking, and performance 
analysis, it is expected to improve project quality, productivity, and 
safety [205]. 

4.4. Natural language processing 

Natural language processing (NLP), as an important subfield of AI, 
mainly drives computers to process, explore, and interpret language- 
related data in the form of text and words, resulting in human-like 
natural language comprehension. The traditional manual way of 
studying the free-text data is prone to leave a lot of valuable knowledge 
unexplored. For this concern, NLP is increasingly adopted to replace the 
tedious human oversight, which can make sense of the textual infor-
mation in great volumes under less labor cost and fast speed. Since the 
construction industry is information-intensive, NLP has the potential to 
deeply investigate lots of text files accumulated in the domain of CEM 
for supporting the management of construction projects and engineering 
information. Noteworthily, a growing interest of NLP is appearing in the 
domain of CEM to improve construction safety, which intends to retrieve 
important information from the safety reports and make content anal-
ysis for better interpretability and less ambiguity. 

Typically, safety reports are in the unstructured or semi-structured 
free-text data format, which documents undesired construction in-
cidents along with detailed information, like events, time, location, 
causes, injuries, and others. With the help of NLP, valuable and regu-
latory information can be efficiently extracted from a high number of 
unstructured textual reports. Managers can, therefore, learn lessons 
from the incident precursors to achieve amelioration of construction 
safety control and assessment. For one thing, dangerous behavior and 
factors can be easily identified and classified at an early stage for the 
post-event analysis, and thus human intervention can be performed in 
time to lower the risk in construction sites and procedures. For another, 
it can also make convincing predictions on the potential hazards that are 
prone to occur in future events, such as workers’ injury and fatality, 
equipment damage, abnormal process or conditions, and others. It al-
lows managers to take proactive actions to prevent the re-occurrence of 
similar accidents. 

In essence, the NLP-based risk analysis can be considered as a task of 
classifying causations leading to construction accidents and retrieving 
similar risk cases, which has been commonly realized by some popular 
machine learning algorithms. Marucci-Wellman et al. [137] carried out 
four machine learning algorithms, namely naïve Bayes, single word and 
bi-gram models, support vector machine, and logistic regression, to 
classify text of injury narratives from large administrative databases for 
injury surveillance and prevention, all of which could reach more than 
30% accuracy compared to manual review. Besides, ontology is another 
useful method to conceptualize the terms, their conceptual de-
pendencies, and the associated axioms. Since it relies on meaning and 
rules to automate the information extraction and content analysis, it has 
been proved effective in avoiding the relatively opaque nature of ma-
chine learning [193]. However, there are two obvious shortcomings in 
the machine learning and ontology-based models: one is that they tend 
to be inefficient due to the great human effort in preparing features and 
rules; the other is that their classification performance cannot always be 
ensured due to the weak generalization. As an alternative, some deep 
learning-based approaches have also been proposed for NLP, which can 
extract feature representations automatically and show promising im-
provements in capturing arguments and their underlying relationships 
from textual documents. For example, Zhong et al [245] designed a 
novel framework incorporating deep learning and text mining for the 
purpose of more than topic identification and hazard classification, 
which could also build word co-occurrence networks to reveal hazard 
patterns and track hazard dynamic evolution over time for accident 
prevention. Except for handling construction accident reports to ensure 
site safety, NLP techniques can also be conducted to convert other un-
structured documents with different contents into understandable and 
actionable information for various goals, such as to automatically assign 
workforce, check the compliance of BIM-based building designs recor-
ded by IFC schema with building codes, extract energy requirements 
from energy conservation codes, and others. Some studies about NLP 
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applications are listed in Table 5. 

4.5. Intelligent optimization 

Intelligent optimization is a task of searching for the optimal solution 
to minimize or maximize an objective function subjected to a set of 
constraints. Typically, the optimization problem can be divided into two 
types: the simple version is the single objective optimization to identify a 
single optimal alternative; while the complex one is the multi-objective 
optimization to simultaneously optimize more than one objective 
function and then return a feasible set of decisions. It is known that the 
determination of the most optimal solution in engineering practice 
under high complexity, interdependency, and nonlinearity could be 
cumbersome and time-consuming. To ease such a process, various types 
of meta-heuristic optimization methods developed in the past several 
decades appear to be the prospective alternative. They can take less time 
in determining the acceptable near-optimal solutions, which are espe-
cially suitable in complex nondeterministic polynomial time-hard 
problems and multi-objective optimization problems through seeking 
the balance between intensification and diversification of the search 
space [77]. In particular, some meta-heuristic optimization methods, 
such as genetic algorithm (GA), simulated annealing (SA), particle 
swarm optimization (PSO), shuffled frog-leaping algorithm (SFLA), 
firefly algorithm (FA), differential evolution (DE), artificial bee colony 
(ABC), ant colony optimization (ACO), have been extensively used in the 
domain of CEM, which are proven to own merits of simple imple-
mentation, efficient computational time, robustness, and global optima 
selection. Hybrid models to integrate these methods have also been 
proposed to further improve the optimization performance. 

In Table 6, the optimization techniques play critical roles in decision 
making across the entire lifecycle of a complicated construction project. 
Firstly, optimization is proven useful in addressing the issue of priori-
tizing tasks and allocate proper crews/resources under conflicts and 
limitations [61]. As summarized by [11], the optimization-based 
scheduling approach intends to maximize the labor stability, minimize 
the completion time and cost, balance workload, and analyze the dy-
namic demand over the course of the project. In other words, time-cost- 
quality trade-off in construction schedules can be well handled and 
quantified, contributing to the increased productivity, flexibility, qual-
ity, work continuity, and collaboration towards the smooth completion 
of the construction task. Secondly, optimization is a prospective alter-
native for the structural design problems, which can effectively deal 
with a series of design constraints to identify suitable truss size and 
shape, reinforcement layout, and others. In general, the main problem is 
raised to minimize structural mass or maximize load capacity subjecting 
to stress, displacement, and/or natural frequency constraints, aiming to 
design optimal structure with notable stiffness, ductility, reliability, and 
long service life [28]. From references listed in Table 6, it can be seen 
that several experiments have been applied successfully in both the basic 
truss and complex structural systems. Also, optimization can dynami-
cally update the structural model considering uncertainty from material 
properties, structural geometry, and others, aiming to predict structural 
responses matching the reality well. Thirdly, the construction site layout 

planning also involves optimization. This topic can be interpreted as a 
decision-making process to determine the feasible location for a set of 
interrelated facilities under multiple constraints from the shape and 
boundary of the site and intricate interaction of various activities and 
workers, in order to meet design requirements, maximize design quality, 
and minimize design cost [123]. By tracking on-site vehicles and labor 
along with the demand and location of equipment and material, a dy-
namic layout model can be developed to further ensure the safety, 
productivity, and cost-efficiency of the construction process in real time. 
Noted that, the synergy of BIM and optimization becomes popular at 
present, which provides valuable opportunities for automatic genera-
tion, visualization, and simulation of the optimized solutions and layout 
scheme [10,201]. Lastly, the importance of optimization has been 
highlighted in identifying optimized solutions for developing cost- 
optimal and nearly-zero-energy buildings with less computational 
effort [84,174]. For long-term sustainability, problems need to take into 
account multiple criteria, variables, and constraints to improve the 
building energy consumption, greenhouse gas emissions, operation and 
retrofit cost, indoor thermal comfort, lighting and HVAC systems, 
renewable energy systems, and others, which can ultimately guide the 
energy renovation interventions and building upgrading. 

4.6. Process mining 

Process mining is relatively a young research discipline belonging to 
a sub-area of AI techniques. Since process mining is devoted to exploring 
event logs, it can be regarded as a connection between event logs and the 
operational process. As a result, it can provide transparent and fact- 
based insights from real event logs for better process monitoring and 
control. The research topic of process mining can be grouped into three 
major types, which are process discovery, process conformance, and 
process enhancement [198]. In other words, event logs can be learned to 
automatically create process models as a reflection of the actual process 
and calculate process metrics. Then, a wide range of analytical methods 
can be carried out in the discovered process model to detect possible 
problems (i.e., inefficiencies, bottlenecks, and other weaknesses) and 
capture characteristics of the organization in the process. Consequently, 
process mining assists managers to quickly point at the key parts of the 
process and inform data-driven decisions for strengthening operations 
and accelerating the process. 

Some software products for process mining are available to effi-
ciently convert event logs into process-related views and deliver 
insightful analytics, such as the ProM framework, Disco (Fluxicon), 
Celonis, ARIS Process Mining, Myivenio, and others. The first task of the 
software is to create a visual map to clearly describe the step-by-step 
process, which is followed by more advanced analysis in the model to 
realize functions of diagnosis, checking, exploration, prediction, 
recommendation, and others. With the help of software, process mining 
is not merely a theoretical subject, which has been put into industrial 
practice, such as healthcare, business, education, manufacturing, and 
others [57]. According to a recent survey, the top benefits of process 

Table 5 
Some studies for NLP.  

Method Purpose Studies 

Machine learning 
model 

Construction safety report analysis [40,44,78,137,229] 
Staff arrangement [142] 
Stakeholder opinion mining [133] 

Ontology-based 
model 

Construction safety report analysis [42,193,232,249] 
Energy requirements extraction 
from codes 

[248] 

Deep learning model Construction safety report analysis [,228,245] 
Integration with BIM for code 
checking 

[188,231]  

Table 6 
Some studies for intelligent optimization.  

Method Purpose Studies 

Single-objective 
optimization 

Construction project 
scheduling 

[12,72,116,144] 

Structural design [28,29,71,100,190] 
Multi-objective 

optimization 
Construction project 
scheduling 

[8,61–63,105] 

Structural design [18,43,75,164,166] 
Dynamic model updating [170,180] 
Construction site layout 
planning 

[2,101,111,149,201] 

Energy efficiency decision- 
making 

[15,51,52,113,174]  
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mining techniques are associated with objectivity, accuracy, speed, and 
transparency [6]. It is worth noting that the starting point of process 
mining is the event log, a special data type containing process-specific 
information, including cases, activities, persons, and time, to capture 
flows of activities in the chronological order. Since the growing use of 
BIM applications can also generate great volumes of computer- 
generated event logs, it is reasonable to expand process mining to 
CEM for knowledge discovery and decision making. 

To further maximize the strength of BIM event logs, some researches 
as outlined in Table 7 have performed process mining-based approaches 
to automatically discover critical processes in BIM-enabled projects, 
which can provide the basis for process analysis to explore participants’ 
behavior and work process objectively. For example, Kouhestani and 
Nil-Bakht [110] retrieved the as-happened design process from log data 
based on process discovery algorithms, which was then deployed to 
build process models to strongly support managers in understanding and 
analyzing the BIM project execution. Hattab and Hamzeh et al. [7] built 
an agent-based model and social networks to simulate the way the 
communication and behaviors of design teams perform in a BIM-based 
design process, and then the established model was carefully exam-
ined for proactive design management. Commonly, there is hidden 
knowledge about productivity, bottlenecks, process deviations, social 
networks of actors behind such event log data. It means that the full 
potential of the BIM event log can be harnessed from the data layer. 
Some researchers have paid attention to knowledge discovery towards 
better management of the design phase. For example. Yarmohammadi 
et al.[221] and Zhang et al. [240] extracted implicit command execution 
patterns to evaluate design productivity. Pan et al. [155,159] utilized 
novel clustering algorithms to retrieve inherent insights into design 
behavior at both the individual and team level, in order to strategically 
plan the work schedule. Pan et al. [160] and Zhang et al. [235] built 
social networks to describe the collaborative design among designers, 
which could capture characteristics of the sociological network and 
designers’ performance to further enhance cooperation. Pan and Zhang 
[156] built the long-short term memory neural network to learn design 
command sequences, resulting in accurate predictions about the three 
most possible incoming commands to guide the design process. In brief, 
all the promising analysis and results show that the exploration of 
complex processes in a data-driven and systematic manner offers un-
precedented opportunities to understand the BIM-enabled projects. 
Based on measurement, diagnosis, prediction, and benchmark of pro-
ductivity and collaboration from the log data, proper decisions can be 
expectedly informed to formulate suitable collaboration strategies and 
work arrangements toward a more efficient and sustainable modeling 
process. 

5. Future research trends 

In the future, CEM will continue to undergo rapid digital trans-
formation. It is evident that more and more advanced technologies 

inspired by AI will be implemented and spread to the entire lifecycle of 
the project (i.e., design, construction, O&M). As outlined in Fig. 6, we 
focus on six important directions to further tackle a diversity of existing 
issues in laborious, complex, or even dangerous tasks within the CEM 
domain. For one thing, the first three topics, namely smart robotics, 
cloud VR/AR, and AIoT, are usable, efficient, and strongly linked to the 
built environment for safety enhancement and evaluation, operational 
performance improvement, and others [66,120,191]. At present, most of 
the relevant studies are still conceptually proposed. To accelerate 
extensive applications toward a growth phase, it is believed that the 
interest in these three topics will keep on the rise and become more 
acknowledged. Moreover, the new development is to connect them with 
BIM to constitute the more advanced systems for a higher level of 
automation, interoperability, and intelligence. For another, the last 
three research areas, namely the digital twins, 4D printing, and block-
chain, are emerging topics from innovations of the manufacturing and 
financial industry. The possible hotspots in the near future are to extend 
the last three topics to the construction industry in the pursuit of the 
long-term sustainability of projects. Herein, we regard these six identi-
fied future directions of CEM as the key technological innovators to 
further embrace the innovation in construction. The tremendous po-
tential of these future directions lies in paving a more affordable and 
effective way to relieve the burden on manual labor and facilitate smart 
construction management, as presented below. 

(1) Smart robotics 
Smart robotics have been progressing rapidly to drive a wide range of 

semi- or fully-autonomous construction applications. There are two 
broad types of robotics, namely the ground robots and aerial robots 
[14]. For instance, construction robots in different functions have been 
developed based on human requirements, which can automate some 
manual processes and take over repeatable tasks, such as brick-laying, 
mansory, prefabrication, model creation, rebar tying, demolition, and 
others. In other words, robots make it easy to transform low-level 
components (i.e., steel, wood, concrete, etc.) into high-level building 
blocks. Also, robots can be in charge of some high-risk tasks to protect 
workers from work-related injuries and accidents. Thus, there are 
several foreseeable benefits of such robots, including to address the 
labor shortage, to lower operation costs, to ensure overall quality, pro-
ductivity, and safety. Regarding the aerial robots, unmanned aerial ve-
hicles (UAV) carrying image acquisition systems (i.e., camera, laser 
scanner, go-pros) are typical representatives. They are the rising trend in 
land survey, site monitoring, and structure health monitoring, since they 
can make the procedure easier, safer, more efficient and affordable. 
Instead of the manual inspecting, UAVs fly over the construction site or 
even fly into the building structure to take high-resolution images, 
capture real-time videos, conduct laser scanning remotely, in order to 
maintain the safety of employees and detect structure defects (i.e., 
cracks, erosion, blister, spall, etc.). Moreover, machine learning can be 
deployed to train robots, and thus robots with talent can act more 
intelligently by learning from a simulation. An issue in the current state 
is that the adoption of smart robotics has not reached a large scale and 
the approaches of construction automation remain at the seed phase 
[24]. Therefore, continued effort needs to be put to enhance robot usage 
by equipping the robot systems with more powerful abilities and 
merging them into the built environment. As the robot technology be-
comes increasingly ubiquitous, robots will be used for performing more 
professional tasks in unstructured environments, which is expected to 
bring opportunities for future construction automation. 

(2) Cloud virtual and augmented reality (cloud VR/AR) 
The evolutionary path of VR/AR is towards the cloud. Based on the 

fifth-generation (5G) networks and edge cloud technologies, cloud VR/ 
AR solutions have appeared to speed up VR/AR applications and 
improve users’ experience. For one thing, VR/AR performs as the in-
formation visualization technology to realize more interactions between 
the physical and cyber worlds, where VR simulates the entire situation 
and AR integrates the information about the real entities with computer- 

Table 7 
Some studies for process mining.  

Method Purpose Studies 

Process discovery 
and diagnose 

Build process models to describe the as- 
happened process and make the 
diagnosis to discover potential reasons 
for failure and delays 

[7,45,109,110] 

Pattern 
extraction 

Retrieve the most frequent command 
sequences for productivity monitoring 
and evaluation 

[155,159,221,240] 

Social network 
analysis 

Discover social networks in the design 
process to increase collaboration 
opportunities 

[160,235] 

Time-series 
analysis 

Make intelligent design command 
predictions towards automation and 
intelligence of the design process 

[156]  
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generated images. Due to the merit of providing an engaging and 
immersive environment, VR/AR has been tentatively applied to simulate 
hazardous construction scenarios, which helps managers to easily 
recognize underlying dangers and issues in the working environment 
and then formulate reasonable plans and measures ahead of accidents in 
a visual and interactive way [120]. Another common adoption of VR/AR 
emerged in recent years is construction engineering education and 
training [203]. Instead of courses taught by professionals, VR/AR 
technologies can well train workers on the basis of both visualization 
and experience in real time, aiming to strengthen workers’ cognitive 
learning and safety consciousness and even raise overall productivity. 
For another, the 5G evolution is fast enough to stream VR and AR data 
from the cloud. That is the say, the significant advances of cloud VR/AR 
root in cloud computing and interactive quality networking, which can 
effectively strengthen the data processing capability from the local 
computer to the cloud and then make real-time perception along with 
responsive interactive feedback. As for the future work about con-
struction safety instruction and evaluation, it is desired to design a cloud 
architecture of VR/AR under the integrated applications of virtualiza-
tion, cloud computing, edge computing, AI techniques, network slicing, 

and others. As expected, it can rapidly process imagery data from 
different cloud VR/AR services for supporting a rapid and automatic 
process of as-built model generation, and thus the immersive and intu-
itive scene information can be revealed for risk evaluation. Moreover, 
another potential topic is to configure cloud VR/AR with BIM to further 
maximize the value of BIM. The integration of cloud VR/AR and BIM can 
visualize and immerse the physical context of the construction activities 
into the real environments, which is expected to bring various benefits, 
such as to make the complex interdependencies between tasks more 
explicit, to make people literally walk into buildings for a better un-
derstanding of the project, facilitate onsite assembly with fewer un-
necessary mistakes, and others [206,207]. 

(3) Artificial Intelligence of Things (AIoT) 
AIoT is the new-generation of IoT, which incorporates AI techniques 

into IoT infrastructure for more efficient IoT operation and data analysis. 
To be more specific, IoT can be defined as a network of interconnected 
physical devices, like sensors, drones, 3D laser scanner, wearable and 
mobile devices, radio frequency identification devices (RFID), which is 
attached to construction resources to collect real-time data about the 
operational status of the project. Many studies have focused on 

Fig. 6. Future directions of AI in CEM.  
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developing some smart IoT-based sensing systems to feasibly track the 
progress, monitor the worksite, which are expected to support contin-
uous project improvement and accident prevention [99]. In the mean-
time, the huge amount of recorded data can be shared over a network, 
and then be analyzed deeply by various AI methods to offer actional 
insights for better supervision and decision making. In other words, 
AIoT solutions for the construction industry rely on real-time data 
transformation and instantaneous data analysis. Since AIoT is empow-
ered by AI, its superiority over the traditional IoT lies in providing 
analysis and control functions for intelligent decision making. Through 
synthesizing and analyzing data collected via IoT infrastructure in un-
precedented volumes and rates, it can automate the real-time decision 
making at an operational level to remotely control the construction 
worksite, optimize the project performance, and predict future condi-
tions for the maintenance planning [38,127]. However, the practical use 
of AIoT is still in the startup phase, since this new technology still has 
some wrinkles to work out, like the edge computing issue, security issue, 
and others. Besides, a literature review reveals that the BIM-IoT inte-
gration is increasingly beneficial in several prevalent domains, like 
construction operation and monitoring, health and safety management, 
construction logistics and management, facility management [191]. 
That is to say, BIM offers an information delivery and management 
platform, while IoT provides a steady flow of time-series data. Accord-
ingly, it can be envisioned that the synergy between AIoT and BIM under 
5G wireless communication will become the hot spot in future works, 
which can considerably promote the efficiency of the data collection, 
data transmission, data processing based on cloud computing towards 
smart home, smart city, and smart construction industry [142]. 

(4) Digital twin 
The digital twin is a realization of the cyber-physical system for 

visualization, modeling, simulation, analyzing, predicting, and opti-
mizing. It incorporates three key components, namely the physical en-
tity, virtual entity, and connection of data, to form a practical loop 
[141]. Typically, there are two ways of dynamic mapping in the digital 
twin [169]. On the one hand, inspection data is collected in the physical 
world, which is then transferred to the virtual world for further analysis. 
On the other hand, simulation, prediction, and optimization are per-
formed in the virtual model by learning data from multiple sources, 
which can provide immediate solutions to guide the realistic process and 
make it adapt to the changeable environment. As evidence from litera-
ture [25], more attention has been paid to the inclusion of BIM, IoT, and 
data mining techniques into the digital twin, aiming to deliver smarter 
construction services. More specifically, BIM as a digital representation 
can be the start point of the digital twin, and the web-based integration 
of IoT gathers a large amount of data to enrich BIM. Both the as-built and 
as-designed models can be accessible in the digital twin, where infor-
mation from these two parts can continuously exchange and synchro-
nized. To maximize the strength of data, various data mining and AI 
techniques are leveraged to make digital twins generic across the board 
domains for automated monitoring of site progress, early detection of 
potential problems, optimization of construction logistics and sched-
uling, value chain management of the construction company, evaluation 
of structural health, and others. Due to industry trends, the research 
attempts on the development of digital twins will continue to increase. 
Except for the buildings and other infrastructure assets, the next point 
can focus on the practical use of digital twins under cloud computing 
and IoT-based services at the city level integrating heterogeneous sub- 
assets, like buildings, utilities, transportation infrastructure, and peo-
ple [128]. Besides, VR simulation can be paired with the human- 
centered digital twin to model, monitor, and predict a person’s cogni-
tive status, which is expected to become a key component of the future 
infrastructure equipped with smart information and communication 
technology in smart cities [58]. 

(5) 4D printing 
The emerging technology called 4D printing adds the fourth 

dimension from time into 3D printing, enabling the 3D printed objects to 

change their shape and behavior over time in response to external 
stimuli, like heat, light, temperature, and others. It is notable that 4D 
printing inherits all merits from 3D printing (also known as additive 
manufacturing). 3D printing relies on a computer-controlled machine 
guided by digital 3D models to produce objects layer-by-layer with some 
promising advancements as follows [112]. Firstly, the 3D printer can 
work automatically and efficiently with little human surveillance, which 
potentially shortens the project duration from weeks or months to a 
matter of hours or days. Secondly, the 3D printer is more flexible in 
creating curved walls and roofs and other unstandardized shapes. Due to 
the great geometric freedom, more sophisticated designs and structures 
can be easily built and customized with no restriction of the usual 
fabrication. Thirdly, the materials for 3D printing can be empowered 
with special features, such as great tensile strength, corrosion resistance, 
high-temperature resistance. This kind of optimized material with 
controlled mechanical behavior helps to raise the durability of build-
ings. Lastly, most materials used are recycled, organic, and eco-friendly, 
leading to great sustainability. The number of materials can be esti-
mated accurately to avoid unnecessary waste and decrease material 
costs. Although there are more and more construction projects based on 
concrete, polymer, and metal additive manufacturing applications since 
2012, many of them are not performed for commercial use [26]. To 
further promote the practical application of 3D printing, problems that 
need to be settled include to control structural safety, to conduct 
architectural paradigm shift, to develop a rational and digital design 
workflow. Notably, 3D printing is now moving towards 4D printing 
involving the time dimension and intelligent behavior. The big break-
through of 4D printing over 3D printing is its intelligent behavior in 
transforming configurations for self-assembly, multi-functionality, and 
self-repair. 4D printing in construction is currently in its experimental 
stage, which has imposed some fresh challenges, such as the great de-
mand for digitally savvy engineers, advanced computational analysis, 
new ideas in design and structure verification [27]. 

(6) Blockchain 
A nascent technology called blockchain is a powerful shared global 

infrastructure, which is originally utilized for simplifying and securing 
transactions among parties [196]. Basically, the concept of blockchain 
can be explained as a verified chain with blocks of information, and each 
block embodies data associated with processes in a trusted environment. 
That is to say, history data along with modifications can be saved across 
a network and protected by cryptographic technology. Since the 
blockchain builds a distributed ledger, all users of the network can ac-
cess the stored digital information concurrently. Once a block is entered 
and verified, no modification is allowed in the information. In the same 
way, blockchain in construction can aggregate the adaptable and scal-
able knowledge into a shared dashboard, and thus the project manage-
ment systems can be converted into a more transparent and secure 
practice. As literature shows, the key opportunities of blockchain in CEM 
lie in the built environment for smart energy, cities, government, homes, 
transportations, and others, which are still insufficiently developed 
[185]. For example, blockchain can be served as a decentralized, 
transparent, and comprehensive database for the improvement of built 
asset sustainability, resulting in a more inclusive and reliable process for 
the project lifecycle assessment [185]. It can also be combined with BIM 
to collect large data from various stages of the project and share data 
securely among stakeholders, aiming to support life-cycle project man-
agement [200]. The BIM model can be updated timely when it receives 
the next block of information. Therefore, project delivery can become 
automated and streamlined, achieving improved productivity, trust-
worthiness, and cost. In addition, the creation of a smart contract 
written into code is another critical application of blockchain to enforce 
the expected behavior by itself and reduce payment fraud [5]. The 
process will only be executed when the corresponding criteria are 
satisfied, resulting in high accuracy, compliance, transparency, cost- 
effectiveness, and collaboration in activities, like payment, contract 
administration, and others. 
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6. Conclusions 

Recent decades have seen the rapid development of digital technol-
ogy and the growth of big data in the old construction industry. In 
particular, the adoption of AI has gained significant attention, which 
tries to equip machines with human-like intelligent behavior and 
reasoning. It is found that various AI techniques have created tremen-
dous value in revolutionizing the construction industry, leading to a 
more reliable, automated, self-modifying, time-saving, and cost- 
effective process of CEM. In contrast to traditional computational 
methods and expert judgments, the promising AI is superior in dealing 
with complex and dynamic problems under great uncertainty and 
intensive data, which is more likely to return accurate and convincing 
results for tactical decision-making. The contributions of this review are: 
(1) To provide a basic understanding of CEM and reveal the potential 
value of AI in supporting and improving CEM. (2) To capture and discuss 
the state-of-the-art researches related to AI applications in CEM, which 
provide strong evidence to highlight the benefits of AI techniques in 
providing intelligent solutions by learning from previous data even with 
incompleteness and uncertainty in an automatic, efficient, and reliable 
manner. (3) To depict the evolution of research trends in the future, 
which help researchers to appreciate these prominent future works in 
AI-enabled CEM and seek further research opportunities for the more 
widespread leverage of AI in CEM. 

Within the context of CEM, AI has been found to automate and 
accelerate the process of learning, reasoning, and perceiving from large 
data, which exhibits huge potential in tackling different engineering 
projects according to their own characteristics. That is to say, the AI- 
based solutions in construction projects are different from one 
another. As expected, strategic decisions that are suitable for a certain 
project will be informed without human intervention under complicated 
and uncertain environments. Besides, this kind of tactical decision 
making can possibly be adapted to the changeable conditions to opti-
mize the project operation continuously for delivering smarter con-
struction management throughout the full project lifecycle. Hence, it 
can be reasonably considered that the practical value of these relevant 
research topics lies in addressing challenges arising from characteristics 
of CEM, including uniqueness, labor-intensive, dynamics, complexity, 
and uncertainty. In general, AI makes sense of big data to yield deeper 
insights following three basic steps, including data acquisition and 
preprocessing, data mining based on appropriate models, and knowl-
edge discovery and analysis. Different AI-related approaches can even-
tually achieve three major functions presented below, which are 
beneficial to CEM in terms of automation, risk mitigation, high effi-
ciency, digitalization, and computer vision.  

(1) Modeling and pattern detection: Modeling is a process of creating 
conceptual models in a standard, consistent, and predictable 
manner. Since modeling is the key prerequisite for further 
knowledge interpretation and reasoning to resolve complex 
construction problems, the quality and reliability of the estab-
lished model will have a significant impact on analytical results. 
Various knowledge representation methods based on rules, 
logics, and schemas have been developed for building the 
research model in an understandable form for computers. Also, 
the model is supposed to incorporate rich information of the real 
project, including declarative, procedural, structural, meta, and 
heuristic knowledge. Another direct way of information extrac-
tion from data is patten detection, which can detect and retrieve 
critical patterns and regularities hidden in large data with ease 
and automaticity. In other words, pattern detection can simplify 
the complicated problem by decomposing it into small pieces and 
return outputs only based on characteristics of data itself, which 
has demonstrated application potential in process mining, com-
puter vision, NLP, and others. For instance, process discovery 
algorithms can automatically define and map the end-to-end 

construction process into a clear process model in the digital 
representation, which can then act as a foundation for fact-based 
analysis to improve the process. Besides, pattern recognition is 
especially useful in extracting features from images or videos, 
which can automatically identify damage-like, crack-like, unsaf-
ety condition-like patterns for infrastructure condition assess-
ment and construction safety assurance.  

(2) Prediction: The AI-powered analytic based on machine learning is 
typically a prediction task, which learns from given sets of his-
torical data to make precise predictions for new observations. 
Specifically, the supervised learning for classification or regres-
sion can assign the class label to data or predict future data value 
and trends. The purpose of unsupervised learning for clustering is 
to separate data points without labels into several meaningful 
clusters, and data in the same group owns similar traits. As for the 
construction industry, the prediction is also an important stra-
tegic task for project control instead of empirical methods. In 
particular, AI is expected to classify, quantify, and forecast po-
tential risks related to project performance and their relevant 
impacts, in order to conduct reliable diagnosis and analysis ahead 
of time concerning broad aspects of the project performance, like 
planning, constructability, safety, productivity, and others. The 
predicted results can, therefore, serve as the baseline knowledge 
to guide proactive management, aiming to ensure the effective-
ness and reliability of the project towards its goals. For instance, 
since undesired delays will inevitably lead to low efficiency, cost 
overruns, and other negative effects, the prediction of possible 
delays in the construction process can help in uncovering key 
factors related to bottlenecks and pursuing high-accuracy esti-
mation in project duration. Under the comprehensive consider-
ation of numerous factors along with their interrelationships, AI 
assists in precisely perceiving the safety risk of structure systems 
in advance even under uncertainty and dynamics.Accordingly, 
immediate actions can be taken to copy with the possible risk to 
reduce the likelihood of the risk event occurring. 

Accordingly, immediate actions can be taken to copy with the 
possible risk to reduce the likelihood of the risk event occurring.  

(3) Optimization: Optimization can be considered as a decision- 
making process for seeking and delivering practical sustainable 
solutions to the construction project. By maximizing the expected 
effects, optimization can make a process perfectly adhere to a set 
of criteria and constraints. Typically, popular meta-heuristic 
optimization algorithms, such as GA, SA, PSO, and others, have 
been widely applied for construction project planning, con-
struction, and maintenance. They can constantly provide rec-
ommendations to not only minimize duration and cost but also 
maximize productivity and safety. For example, based on opti-
mized project objectives, proper plans in terms of strategy, 
operation, and schedule can be formulated at the planning stage 
as an important premise for project success. At the phase of 
executing construction tasks in a complicated site, optimization 
assists in better allocating resources, arranging staff, determining 
layouts of facilities, and making corresponding adjustments in a 
reasonable and timely manner. Lastly, O&M optimization intends 
to both run the day-to-day operational tasks responsibly and 
perform maintenance measures suitably at optimal cost, which 
can keep the infrastructure in a satisfactory state. It also con-
tributes to reducing waste and building energy consumption to 
support sustainability. 
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method for short-term load forecasting during periods with significant 
temperature variations in city of Burbank, Appl. Soft Comput. 16 (2014) 80–88, 
https://doi.org/10.1016/j.asoc.2013.12.001. 

[179] J. Seo, S. Han, S. Lee, H. Kim, Computer vision techniques for construction safety 
and health monitoring, Adv. Eng. Inform. 29 (2) (2015) 239–251, https://doi. 
org/10.1016/j.aei.2015.02.001. 

[180] F. Shabbir, P. Omenzetter, Particle swarm optimization with sequential niche 
technique for dynamic finite element model updating, Comput. Aided Civ. 
Infrastruct. Eng. 30 (5) (2015) 359–375, https://doi.org/10.1111/mice.12100. 

[181] M. Shahinmoghaddam, A. Nazari, M. Zandieh, CA-FCM: towards a formal 
representation of expert’s causal judgements over construction project changes, 
Adv. Eng. Inform. 38 (2018) 620–638, https://doi.org/10.1016/j. 
aei.2018.09.006. 

[182] M.M. Sharif, M. Nahangi, C. Haas, J. West, Automated model-based finding of 3D 
objects in cluttered construction point cloud models, Comput. Aided Civ. 
Infrastruct. Eng. 32 (11, 2017) 893–908, https://doi.org/10.1111/mice.12306. 

[183] S. Shirowzhan, S.M. Sepasgozar, H. Li, J. Trinder, P. Tang, Comparative analysis 
of machine learning and point-based algorithms for detecting 3D changes in 
buildings over time using bi-temporal lidar data, Autom. Constr. 105 (2019) 
102841, https://doi.org/10.1016/j.autcon.2019.102841. 

[184] S. Shoar, A. Banaitis, Application of fuzzy fault tree analysis to identify factors 
influencing construction labor productivity: a high-rise building case study, 
J. Civ. Eng. Manag. 25 (1) (2019) 41–52, https://doi.org/10.3846/ 
jcem.2019.7785. 

[185] A. Shojaei, J. Wang, A. Fenner, Exploring the feasibility of blockchain technology 
as an infrastructure for improving built asset sustainability, Built Environ. Project 
Asset Manag. (2019), https://doi.org/10.1108/BEPAM-11-2018-0142. 

[186] S. Sholahudin, H. Han, Simplified dynamic neural network model to predict 
heating load of a building using Taguchi method, Energy 115 (2016) 1672–1678, 
https://doi.org/10.1016/j.energy.2016.03.057. 

[187] H. Son, H. Choi, H. Seong, C. Kim, Detection of construction workers under 
varying poses and changing background in image sequences via very deep 
residual networks, Autom. Constr. 99 (2019) 27–38, https://doi.org/10.1016/j. 
autcon.2018.11.033. 

[188] J. Song, J. Kim, J.-K. Lee, NLP and deep learning-based analysis of building 
regulations to support automated rule checking system, ISARC, in: Proceedings of 
the International Symposium on Automation and Robotics in Construction Vol. 
35, IAARC Publications, 2018, pp. 1–7. 

[189] B.F. Spencer Jr., V. Hoskere, Y. Narazaki, Advances in computer vision-based civil 
infrastructure inspection and monitoring, Engineering 5 (2) (2019) 199–222, 
https://doi.org/10.1016/j.eng.2018.11.030. 

[190] S. Talatahari, A.H. Gandomi, X.-S. Yang, S. Deb, Optimum design of frame 
structures using the eagle strategy with differential evolution, Eng. Struct. 91 
(2015) 16–25, https://doi.org/10.1016/j.engstruct.2015.02.026. 

[191] S. Tang, D.R. Shelden, C.M. Eastman, P. Pishdad-Bozorgi, X. Gao, A review of 
building information modeling (BIM) and the internet of things (IoT) devices 
integration: present status and future trends, Autom. Constr. 101 (2019) 127–139, 
https://doi.org/10.1016/j.autcon.2019.01.020. 

[192] O. Taylan, A.O. Bafail, R.M. Abdulaal, M.R. Kabli, Construction projects selection 
and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies, Appl. Soft 
Comput. 17 (2014) 105–116, https://doi.org/10.1016/j.asoc.2014.01.003. 

[193] A.J.-P. Tixier, M.R. Hallowell, B. Rajagopalan, D. Bowman, Automated content 
analysis for construction safety: a natural language processing system to extract 
precursors and outcomes from unstructured injury reports, Autom. Constr. 62 
(2016) 45–56, https://doi.org/10.1016/j.autcon.2015.11.001. 

[194] S. Touzani, J. Granderson, S. Fernandes, Gradient boosting machine for modeling 
the energy consumption of commercial buildings, Energy Build. 158 (2018) 
1533–1543, https://doi.org/10.1016/j.enbuild.2017.11.039. 
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