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Abstract

Designed experiments conducted by crop scientists often
give rise to several random sources of variation. Pertinent
examples are split-plot designs, series of experiments and
repeated measurements taken on the same field plot. Data
arising from such experiments may be conveniently ana-
lysed by mixed models. While the mixed model framework
is by now very well developed theoretically, and good
software is readily available, the technology is still under-
utilized. The purpose of the present paper is, therefore, to
encourage more widespread use of mixed models. We
outline basic principles, which help in setting up mixed
models appropriate in a given situation, the main task
required from users of mixed model software. Several
examples are considered to demonstrate key issues. The
theoretical underpinnings are briefly sketched in so far as
they are practically relevant for making informed use of
mixed-model computer packages. Finally, a brief review is
given of some recent methodological developments, which
are of interest to the plant sciences. A German version of
this paper is available from the corresponding author upon
request.
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Introduction

In agricultural research, designed experiments are
usually analysed based on a linear model. More
often than not, the model is of the mixed type,
because it includes several effects representing
different random sources of variation. A few
examples are as follows: (1) A split-plot experiment
requires two error terms for main-plots and sub-
plots. (2) Repeated measurements taken at different
points in time and/or space are correlated, which

may be accounted for by a mixed model with an
appropriate variance–covariance structure. (3) The
spatial analysis of geostatistical data is read-
ily embedded in a mixed model framework.
(4) Experiments replicated at several sites and/or
in several years call for a linear model with random
environmental effects, providing environments may
be considered as a random factor and the objective
is to compute treatment means across environ-
ments. (5) Recovery of inter-block information in
an incomplete block design can be invoked by
specifying a random block effect.
Prior to the advent of computers, the analysis of
a mixed model was a daunting task. In fact,
analysis was only feasible for simple, balanced
designs. A full-fledged analysis of more complex
data sets, e.g. of an unbalanced series of experi-
ments accommodating heterogeneity of variance at
various levels (treatment by environment interac-
tion and error) and spatial correlation at the field
level (Smith et al. 2001), was beyond reach. While
the mixed model framework has been well devel-
oped over the past 20 years (McLean et al. 1991,
Searle et al. 1992, Verbeke and Molenberghs 2000)
and analyses are now easy to perform with modern
statistical software, the use of mixed models in
agricultural research does not seem to have reached
the level it deserves. This discrepancy is partly due
to the fact that presentation of the methodology in
many textbooks is rather heavy on the theoretical
side, making mixed models seem more difficult than
they actually are. Also, the output of mixed model
packages is somewhat unfamiliar to those accus-
tomed to analysis-of-variance (anova) tables and
least significant differences, although there are far
more similarities than dissimilarities.
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We are convinced that agricultural scientists can
produce valid and useful mixed model analyses with
little difficulty if equipped with the appropriate
software and a solid understanding of some basic
principles. The purpose of the present paper is to
describe these principles. In so doing, we hope to
help disseminate this powerful and versatile meth-
odology. A major focus will be on the formulation
of a mixed model, the main task in a computer-
based analysis. We also give a cursory review of
some recent developments in mixed model meth-
odology which are relevant to plant scientists.
Readers already fluent in mixed models will find
little new material. Our intended readership are
researchers with a working background in classical
anova, who want to get a grip on mixed models.
A mixed model analysis consists of two major
steps: (1) Setting up a model. (2) Making statis-
tical inferences (parameter estimation, tests and
confidence intervals). Our paper devotes a section
to each of these two steps. In �Rules for Setting up
a Mixed Model�, we give a number of rules we
have found useful in developing mixed models.
The rules are focused on anova-type mixed
models for qualitative treatment factors (Hocking
1985). The principles of statistical inference are
discussed in �Statistical inference�. Our model
notation is described in �Rules for Setting up a
Mixed Model�. Extensions of the anova-type
mixed model will be briefly reviewed at the end
of the paper (see �A brief review of some exten-
sions to anova-type mixed models as relevant in
agronomy�). The presentation is written with the
user of a statistical package in mind. There are
many good packages for mixed model analysis
(ASREML, BMDP, GENSTAT, SAS, S-PLUS
and SPSS). While the principles we outline apply
to any of these packages, for illustration we
occasionally refer to the SAS system (Littell et al.
1996), a package with which we are familiar and
which is quite commonly used among agrono-
mists. We would like to stress, however, that our
referring to one particular package does not imply
a specific recommendation.

Model Syntax

A convenient model notation

Example 1
A split-plot experiment is performed in which the
main-plot factor A (fertilizer) is laid out in
randomized complete blocks (R), while the sub-

plot factor B (genotype) is completely randomized
within main-plots. A linear model for the data can
be written as

yijk ¼ l þ ai þ bj þ ðabÞij þ rk þ bik þ eijk ð1Þ

where yijk is the yield of ith fertilizer and jth
genotype in kth block, l the general mean, ai the
main effect of ith fertilizer, bj the main effect of jth
genotype, (ab)ij the fertilizer-by-genotype interac-
tion, rk the effect of kth block, bik the error of ith
main-plot within kth block and eijk the sub-plot
error (residual).
All effects are fixed, except for the random error
terms bik and eijk, which are assumed to be
normally distributed with zero mean and variances
r2b and r2e, respectively. We consider (1) an anova-
type mixed model because of the simple assumption
of independence and homogeneity of variance for
all random effects. There are numerous extensions
to anova-type mixed models, which relax these
assumptions. A brief review will be given at the end
of the paper.
Assume that in a data file to be submitted to
analysis, genotypes are coded by A, fertilizers are
coded by B and blocks are coded by R. Then an
alternative expression for the above model, which is
more akin to the syntax used by statistical packages
for linear models, is

Y ¼ Aþ BþA � BþRþR �AþR �A � B ð2Þ

with the following identities: Y equals yijk, A equals
ai, B equals bj, A Æ B equals (ab)ij, R Æ A equals bik
and R Æ A Æ B ¼ eijk. Model (2) does not contain a
symbol for the generalmeanor intercept,l, based on
thepremise that (virtually) any linearmodel contains
this effect. Often, the residual term (R Æ A Æ B in this
case) is not stated either. In this paper we retain and
underline the residual for clarity. To further simplify
the notation, one may drop the response Y
(Wilkinson and Rogers 1973), yielding

Aþ BþA � BþRþR �AþR �A � B: ð3Þ

The effects A, B, A Æ B and R are fixed, while R Æ A
and R Æ A Æ B are random. This may be indicated
by separating fixed and random effects with a
colon, listing fixed effects first (Patterson 1997):

Aþ BþA � BþR : R �AþR �A � B: ð4Þ

We use the notation in (4) throughout for two
reasons: (i) it is simpler than the notation in (1) and
yet conveys basically the same information; (ii) it is
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essentially the notation used with statistical
software. For �Example 1� the important statements
with the MIXED procedure of the SAS system
would be

model Y ¼ A B A � B R;

random R �A;

All fixed effects are listed in the model statement,
while all random effects, except the residual, are
specified in the random statement. The residual
need not be stated explicitly, as it will be fitted
automatically.

Four model operators

To derive a model appropriate for a given design,
we use a short-hand notation proposed by Nelder
(1965), Wilkinson and Rogers (1973) and McCul-
lagh and Nelder (1989). This notation involves four
operators, which we now describe. The operators
provide a convenient way of stating a model in
compact form. The notation is intuitively appealing
and quickly reveals the main features of the design.

Dot operator ( Æ )
The dot operator is used to define crossed effects.
The formation of a crossed effect may be considered
as a mathematical operation, just as the addition of
terms in a model using the �+� operator. The dot
operator has higher priority, i.e. A Æ (B + C) ¼ A Æ
C + A Æ B. Also, the dot operator is commutative
and associative, so that A Æ B ¼ B Æ A and (A Æ B) Æ
C ¼ A Æ (B Æ C). When two effects are crossed,
which contain the same factor, duplicate terms are
deleted. For example, (R Æ A) Æ (R Æ B)¼R Æ A Æ B.

Product-term operator [pt(.)]
IfMdenotes amodel, then pt(M) is the product term
(using dots) of all effects in M. For example,
pt(A + B) ¼ A Æ B and pt(A + B Æ C)¼A Æ B Æ C.

Nesting operator (/)
If a factor B is nested within another factor A, the
model must contain the terms A and A Æ B. A short-
hand notation for this is A/B, where �/� is a nesting
operator. Thus, we may write A/B ¼ A + A Æ B.
If an additional factor C is nested within B, we may
write A/B/C. The nesting operator is associative,
i.e. A/(B/C) ¼ (A/B)/C. Moreover, we have
A/(B + C) ¼ A/B + A/C. If A and B are them-
selves model formulae, A/B is defined as A/B ¼
A + pt(A) Æ B.

Crossing operator (·)
The model for two crossed factors A and B can be
represented by A · B ¼ A + B + A Æ B. We use
�·� in place of the symbol �*� proposed by
McCullagh and Nelder (1989) to avoid confusion
with the SAS syntax, in which �*� denotes the dot
operator. Two important algebraic rules for a set of
three factors A, B and C are

A� ðBþ CÞ ¼ Aþ ðBþ CÞ þA � ðBþ CÞ
¼ Aþ Bþ CþA � BþA � C ð5Þ

and

ðA� BÞ=C ¼ A� Bþ ptðA� BÞ � C
¼ A� BþA � B � C: ð6Þ

Rules for Setting up a Mixed Model

In this section, we state and exemplify a number of
rules, which help in setting up a mixed model. For
ease of reference, an overview of the rules, together
with the Journal page, is given in Table 1.

Random vs. fixed

Rule 1 (when is a factor random?)
A factor is random when the observed levels can
be regarded as randomly sampled from a popu-
lation (e.g. environments and sampling units).
Alternatively, a factor is random if it represents a
randomization unit (e.g. plots). Otherwise the
factor is usually taken as fixed (e.g. non-random-
ized blocks and treatments). If comparisons are to
be made among the levels of a factor (e.g.
treatments), the factor is considered as fixed,
regardless of whether or not it is random by

Table 1: Summary of rules for setting up an anova-type
mixed model

Rule Key phrase
Journal
page

1 When is a factor random? 312
2 Two types of factor 313
3 Keep treatment and block model

separate, at least initially
313

4 Effects of the block model 313
5 Coding of block factors 314
6 Interaction among block and

treatment factors
315

7 Multi-phase experiments 315
8 Taking random effects fixed 316

312 Piepho et al.



design. If a factor is random, then all effects
containing that factor are random.

Example 2
A series of experiments is performed with a set of
selected genotypes. Experiments are replicated
across a random sample of locations from a target
region. The objective of the analysis is to obtain
genotype means across locations representative of
the target region. The design entails two factors:
genotypes and locations. Genotype is a fixed factor,
because comparisons among levels of that factor
are of interest and because the genotypes were
selected, i.e. they do not represent a random sample
of some well-defined population of genotypes. By
contrast, location is a random factor because
locations were randomly sampled and there is no
interest in the levels sampled; test locations merely
serve as replications. The interaction of genotype
and environment is random, because it contains the
location factor.
It should be pointed out that quite often,
locations are not selected at random, e.g. when
existing research facilities are used, which were
placed to represent certain agroecological zones. In
these cases, it is more appropriate to regard
locations as a fixed factor.

Two types of factor

Rule 2 (two types of factor)
We may distinguish treatment and block factors.
Block factors comprise randomly selected sampling
units (plants, soil samples, etc.), randomization
units (rows, columns, incomplete blocks, main-
plots, sub-plots, etc.) and blocking units not
involved in randomization (complete blocks, envi-
ronments, etc.). Block factors are needed to
uniquely identify each observational unit (plot,
plant, etc.), i.e. block factors are innate to the
observational units (Brien 1983). A treatment
factor and its levels are chosen by the experimenter
to answer a research question. Levels of a rand-
omized treatment factor are allocated to observa-
tional units by a randomization process, i.e.
treatments are not innate to observational units.

Example 3
A series of randomized complete block experiments
with different genotypes is replicated across loca-
tions. Genotype is a randomized treatment factor,
while location, complete block and plot are block
factors. Specifically, a location may be regarded as

a super-block made up of several complete blocks.
The block factors are needed to identify and are
innate to the observational units (plots). By con-
trast, genotypes are allocated to observational units
by a randomization process and so are not innate
to them.

Treatment and block model for a randomized

experiment

The rules we give in this section are essentially
those proposed by Nelder (1965) and Wilkinson
and Rogers (1973). They are also related to
directives for obtaining the block model as imple-
mented in GENSTAT (Payne and Wilkinson 1977)
and GLIM (McCullagh and Nelder 1989). The
rules are based on R. A. Fisher’s premise of no
interaction among treatment and block effects
(Nelder 1965, Brien 1983, Bailey 1991).

Rule 3 (keep treatment and block model separate,
at least initially)
In modelling a designed experiment, it is useful to
keep the treatment model and the block model
separate (Nelder 1965). The treatment structure
can be modelled solely using treatment factors,
while the block model can be expressed exclusively
in terms of block factors. The block model fully
describes the data when there are no treatment
effects and it represents the structure innate to the
observational units.

Rule 4 (effects of the block model)
In a designed experiment, each randomization unit
(error stratum) receives a separate random effect.
An experimental or blocking unit becomes a
randomization unit, when levels of a factor or
factor combination (treatment or other) are ran-
domly allocated to different units. If two random-
izations (error strata) are crossed, i.e. a unit of one
randomization extends across several units of the
other, the cross generates a further experimental
unit (e.g. a plot). The model, therefore, also
contains a random effect obtained by crossing the
two variables representing the crossed randomiza-
tion units. If more than two randomizations are
mutually crossed, the model contains random
effects obtained by all possible crosses among the
variables representing the crossed randomization
units (two-way, three-way, etc.). Each type of
sampling unit also receives a separate random
effect. Finally, the block model contains fixed
effects for blocking factors, which are not involved
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in randomization or sampling, e.g. blocks in a
randomized complete block design. The random
effect corresponding to the observational unit is
equivalent to the residual.

Rule 5 (coding of block factors)
Each block factor can be uniquely coded by a
separate variable. This coding makes it easy to set
up a correct block model. After the block model has
been formulated, a variable coding for a block
factor can often be replaced by a variable coding for
a treatment factor or by a crossed effect of several
treatment factors. In this event, the variable coding
the block factor may vanish from the final model. It
should be stressed, however, that this type of
replacement is not needed for obtaining a correct
analysis, and one may prefer not to make it,
particularly in complex experiments, where it
can obscure the main features of the design (Brien
1983).

Example 4
A treatment factor A is tested in randomized
complete blocks (R). The block model comprises a
fixed effect for complete blocks and a random effect
for plots (randomization units) nested within com-
plete blocks.Assume that the plotswithin a block are
uniquely coded by the variable PLOT, i.e. each plot
in a block has a different level of PLOT. The block
model has the form R : R Æ PLOT, while the treat-
ment model is A. A short-hand for the nested
randomization of plots within blocks is R/PLOT.
The complete model is A+R : R Æ PLOT. A plot
within a block is also uniquely identified by the level
ofA testedon theplot, sowemay replacePLOTbyA
and use the equivalent model A+R : R Æ A.

Example 5
A treatment factor A is tested in a Latin square
design. There are two crossed randomization units,
i.e. rows (ROW) and columns (COL). Hence, the
block model is ROW · COL ¼ ROW + COL +
ROW Æ COL. The crossed effect ROW Æ COL rep-
resents the observational unit (plot), which is
generated by the crossing of rows and columns.
Adding the treatment model, the full model reads
A : ROW + COL + ROW Æ COL.

Example 6
A split-plot experiment with two factors A and B is
conducted with main-plots arranged in complete
blocks (R). Factor A is the main-plot factor, i.e.
levels of A are randomly allocated to main-plots

within a block. Levels of B are randomly allocated
to sub-plots within a main-plot. There are two
nested randomization units: main-plots (MAIN)
within complete blocks and sub-plots (SUB) within
main-plots. A short-hand for the block model is
R/MAIN/SUB, which expands as

R=ðMAIN=SUBÞ ¼ R=ðMAINþMAIN � SUBÞ
¼ RþR �MAINþR �MAIN � SUB ð7Þ

A main-plot within a complete block can be
identified by specifying the level of A tested on
the main-plot. Also, a sub-plot within a main-plot
can be identified by the level of B tested on the sub-
plot. Thus, the block model can also be expressed
as R/A/B, which expands as R : R Æ A+R Æ A Æ B.
The treatment model is A · B ¼ A + B + A Æ B,
where A Æ B is the interaction of A and B, so the
full model is as given in eqn (4).

Example 7
When many treatments are to be tested, a complete
replication may be subdivided into incomplete
blocks. Each treatment is tested once in a replica-
tion. This type of design is denoted as lattice design
and comes in different variants (Mead 1997). The
layout of a lattice design for a single treatment
factor involves two nested randomization units:
plots (PLOT) within incomplete blocks and incom-
plete blocks (IBLOCK) nested within complete
replications (R). Thus, the block model is
R/IBLOCK/PLOT, which expands as

R : R � IBLOCKþR � IBLOCK � PLOT ð8Þ

Example 8
Two factors A and B are laid out as a split-
block (strip-plot) design with A in main-rows
(MAINROW) and B in main-columns
(MAINCOL). The randomization of main-rows
and main-columns is crossed. Each plot in this
design is regarded as a main-plot, which serves as a
block to accommodate two additional factors C and
D. These are laid out as a split-block with C in sub-
rows (SUBROW) and D in sub-columns (SUB-
COL). The treatment model is A · B · C · D,
while the block model is R/(MAINROW ·
MAINCOL)/(SUBROW · SUBCOL). Within a
block, main-rows and main-columns are uniquely
identified by A and B. Similarly, sub-rows and sub-
columns in a main-plot are uniquely identified by
C and D. Thus, the blockmodel can also be given as
R/(A · B)/(C · D) which reflects the fact that the
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crossed randomization for C and D is nested within
that for A and B. The block model expands as

R : R �AþR � BþR �A � BþR �A � B � C
þR �A � B �DþR �A � B � C �D ð9Þ

The first three random terms represent the
randomization structure for A and B as a split-
block. The random terms involving C and D are all
nested within R Æ A Æ B.

Interaction among block and treatment factors

Rule 6 (interaction among block and treatment
factors)
After setting up the block and treatment models,
assuming absence of block-by-treatment interaction,
one may check if there is reason to assume an
interaction among a block factor and a treatment
factor. The need for an interaction term among a
block and a treatment factor may occur when
heterogeneity among different block units is expected
to be large. An interaction term can be added to the
model, providing the design allows estimation of the
interaction.A prerequisite for estimability of a block-
by-treatment interaction is that valid analyses are
possible for each level of the block factor. An analysis
of block-by-treatment interaction may be of major
interest, e.g. when blocks are different environments.

Example 9
Randomized complete block experiments testing
different genotypes (G) are replicated across several
randomly selected locations (L). Blocks are coded
by R, while plots are coded by PLOT. Locations are
an additional blocking factor, which is super-
imposed on complete blocks. The block model is
given by L/R/PLOT, while the treatment model
equals G. Assuming no block-by-treatment interac-
tion, the full model is G : L+L Æ R+L Æ R Æ PLOT.
Differences among locations are usually so large,
that a genotype-by-location interaction (L Æ G)
must be postulated. Estimation of L Æ G is feasible
because a full analysis is possible for each location.
Adding this interaction, the model is

G : Lþ L �Gþ L �Rþ L �R � PLOT ð10Þ

Multi-phase experiments

Some experiments can be subdivided into several
phases, with a different design used in each phase.
In a two-phase design, e.g. observational units

from the first phase are taken to the second phase,
where they are randomized according to a new
design (Brien 1983).

Rule 7 (multi-phase experiments)
If an experiment involves several phases, set up the
block model for each and add block models from
different phases to the overall model. Any repeti-
tions of an effect in block models from different
phases are deleted. Similarly, if several effects are
confounded, only one of the confounded effects is
retained. The block model of a phase pertains to
observational units in that phase, i.e. all block
factors identify and are innate to the observational
units of that phase. Samples obtained from obser-
vational units at a phase are allocated by a
randomization scheme to observational units of a
subsequent phase. Any steps taken prior to rand-
omized allocation in the subsequent phase are
considered as belonging to the immediately pre-
ceding phase.
Rule 7 is essentially equivalent to the set of rules
given by Brien (1983) and Brien and Payne (1999)
(also see http://www.maths.unisa.edu.au/matcjb/
multitier/). Appealing to Rule 6, interactions
among treatment factors and block factors from
different phases may be added as deemed appro-
priate, providing the design allows identification of
these effects.

Example 10
The present example considers a variant of the
split-plot design discussed by Cochran and Cox
(1957, Section 7.33) and, in a slightly different
form, by Hinkelmann and Kempthorne (1994,
Section 13.4.3). Assume that in the first phase the
treatment factor harvesting date (A) is tested in
complete blocks (R). On each plot, harvested plants
are bulked and subsequently split into three sub-
samples, each of which is to be analysed for a
nutrient by one of three different chemical meth-
ods, defining a second treatment factor B with three
levels. For a plot, the three methods are randomly
allocated to the three samples. The design at phase
I is a split-plot with block model R/A/B ¼
R :R Æ A+R Æ A Æ B. The chemical analysis in the
lab constitutes phase II of the experiment. Samples
are dried in the lab before chemical analysis. It is a
curiosity and, in fact, a weakness of this design that
the treatment factor A (harvesting date) needs to be
used as a blocking factor in time, because harvested
plants must be processed immediately, i.e. samples
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from different harvest dates cannot be dried at the
same time. Clearly, main effects for harvest dates
are confounded with block effects from phase II, so
strictly speaking, the design does not permit
inferences with respect to harvest date main effects.
Three ovens (O) are available for drying. They
must be used simultaneously to make subsequent
chemical analyses comparable. The three ovens are
just large enough for drying all plant samples of a
harvest date. They differ in the speed with which
the plant samples are dried. This difference in speed
may affect chemical analyses. Thus, the type of
oven is used as a blocking variable. Specifically, the
main plot from the first phase is taken as the
column of a Latin square for testing factor B, while
the oven type (O) is taken to be the row (Fig. 1). A
separate Latin square is used for each harvest date
(A), i.e. Latin squares are nested within A. For a
given level of A, the main-plot is uniquely identified
by the block from phase I (R). Thus, O and R
identify rows and columns of each Latin square
and the block model for the second phase is
A/(R · O) ¼ A :A Æ R+A Æ O+A Æ R Æ O. Note
that the main-plot effect A Æ R occurs in the block
model of both phases because both phases use the
main-plot as a randomization unit. In addition, the
block model of phase II contains a main effect for
A, which serves as a blocking variable. Only one
copy of the effects A and A Æ R is retained in the
final model. Moreover, both R Æ A Æ B and A ÆR ÆO
are effects with a separate level for each observa-
tional unit (sample) and so both represent a
residual. Clearly, the two effects are confounded,
so only one of the two terms is retained. Note that
it is impossible to estimate separate variance
components for confounded random effects. It
should be stressed, however, that the two residual
effects are not identical. The term R Æ A Æ B repre-
sents sub-sampling error from phase I, while
A Æ R Æ O accounts for added residual variation
incurred in the drying process of phase II.

Including the treatment model A · B, the full
model reads

Aþ BþA � BþR : A �OþR �AþR �A � B ð11Þ

This is essentially the model given by Cochran and
Cox (1957) and by Hinkelmann and Kempthorne
(1994), except that we take A Æ O random to reflect
the randomization structure.

Taking random effects fixed

Rule 8 (taking random effects fixed)
A random effect, which does not contain (is not
aliased with) the fixed effect to be tested (F-test,
t-test, etc.), may be taken as fixed in the analysis.
This is advantageous mainly when the random
effect has less than five or 10 levels, in which case
variance component estimates will be very unreli-
able. To decide whether a random effect contains
the fixed effects to be tested, one needs to express
the random effect in terms of the factors involved in
the fixed effect, if possible, as described in Rule 5.
Additionally, a simple check works as follows:
Replace the random effect by its cross with the
treatment effect to be tested. If the resulting
analysis remains completely unaltered, the fixed
effects is contained in the random effect, but not
otherwise.

Example 7 (continued)
The model for a lattice design in eqn (8) involves a
random term, R Æ IBLOCK, for incomplete blocks.
This term does not include the treatment effect A,
as can be verified from the fact that replacing
R Æ IBLOCK by R Æ IBLOCK Æ A changes the
result of the analysis. Thus, we may formally treat
R Æ IBLOCK as fixed, when making statistical
inferences regarding A. The resulting analysis will
exploit only the intra-block information and is
therefore known as intra-block analysis (Cochran
and Cox 1957, Mead 1997, Federer and Wolfinger

Fig. 1: Phase II design (laboratory) with four Latin squares for factor B (chemical method) with levels b1, b2 and b3
(Example 10). There is one Latin square for each level of A (harvesting date; a1, a2, a3 and a4). For each Latin
square, rows are ovens (o1,o2 and o3), while columns correspond to blocks (I, II and III) from phase I. The ovens in
each Latin square are the same
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1998, Federer et al. 2001). By contrast, the model
with random blocks also utilizes the inter-block
information. Recovery of inter-block information
is worthwhile when the block variance is not large
relative to the residual variance and when the
number of blocks is large enough to obtain reliable
estimates of the block variance component. Quite
often, both analyses yield rather similar results.

Example 9 (continued)
In model (10), we may take all effects as fixed,
which do not contain G. This yields

Gþ Lþ L �R : L �Gþ L �R � PLOT ð12Þ

This model will provide an analysis, in which
genotype comparisons are based solely on compar-
isons within experiments, while the between-experi-
ment information is not exploited. The analysis is
analogous to an intra-block analysis for an incom-
plete block design (Patterson 1997). By contrast,
analysis using (10) also exploits the inter-experi-
ment as well as the inter-block information, which
will be present when the data are unbalanced. Quite
often in series of experiments for cultivar evalua-
tion, variances associated with random terms not
involving G are large, so the between-experiment
information is small and both analyses yield similar
results. Analysis by model (12) is useful mainly
when the number of locations is small.

Statistical Inference

It is not our aim to provide an extensive description
of the theoretical underpinnings of statistical
inference for mixed models, which can be found
elsewhere (e.g. Hocking 1985, Searle et al. 1992,
Verbeke and Molenberghs 2000). Our objective is
to briefly discuss a few issues that are relevant for
users of mixed model packages. In particular, we
will contrast classical anova procedures to likeli-
hood-based mixed model analyses now in common
use.

Missing data

Quite often, designed experiments give rise to
missing values due to unforeseen circumstances,
so that the data set available for analysis is smaller
than planned by design. Fortunately, statistical
inference for mixed models remains valid, provi-
ding the data meet the missing completely at random
(MCAR) assumption (Verbeke and Molenberghs

1997). Loosely speaking, the MCAR assumption
requires that the missing data pattern is inde-
pendent of the design, particularly the treat-
ment structure. A more rigid definition of the
MACR assumption is given, e.g., in Verbeke and
Molenberghs (1997). In fact, statistical inference
remains valid under somewhat milder conditions
than the MCAR assumption, as discussed in
Verbeke and Molenberghs (1997). Care is needed
in deciding whether or not the MCAR assumption
is satisfied, as shown in the next two examples.

Example 11
Three sub-samples per plant are analysed in the lab
for a plant nutrient. A test tube is accidentally
dropped in the lab, thus giving rise to missing data.
Which particular test tube is dropped will not
usually be influenced by the treatment or random-
ization units corresponding to the test tube, so data
are missing completely at random.

Example 12
A pot experiment is performed to evaluate three
different fertilizers. Each pot contains ten plants at
the onset of the experiment. One of the fertilizers
has a harmful effect on some plants, causing them
to die off during the experiment. The resulting
missing data pattern does not meet the MCAR
assumption – which particular plants are missing
depends on the treatment.

Ordinary least squares vs. generalized least squares

Fixed effects parameters of a linear model may be
estimated by the method of ordinary least squares
(OLSE). This method is optimal in linear models
with a single error term and homogeneous vari-
ances (Searle et al. 1992). In mixed linear models,
however, OLSE is not usually optimal. A better
method is known as generalized least squares
(GLSE). This method uses weights computed from
the variance components of random effects. GLSE
has optimal properties when the variance compo-
nents are known. Parameter estimators then are
best linear unbiased estimators, i.e. they have
minimum variance among all unbiased linear
estimators. In practice, variance components need
to be estimated, but GLSE is usually better than
OLSE, even if variance component estimates are
used. OLSE is the estimation method used in the
SAS procedure GLM, while the MIXED procedure
employs GLSE. Parameter estimates by the two
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methods do not usually agree, except for some
special cases (Searle et al. 1992), e.g. when the data
are balanced (Piepho and Spilke 1999).

Estimation of variance components

There are several methods for the estimation of
variance components (Searle et al. 1992). Restric-
ted maximum likelihood (REML) (Patterson and
Thompson 1971) has come to be the method of
choice, and it is the default in most mixed model
packages. The output of REML-based mixed
model procedures usually contains a number of
descriptive measures related to the maximized
restricted likelihood (or log-likelihood), which will
be unfamiliar to those accustomed mainly to
classical anova procedures. These statistics may
be used for assessing model fit and for selecting
among several candidate models, as described by
Wolfinger (1996), and are relevant mainly when
using mixed models, which are not of the simple
anova type.
When a random term has few levels, the variance
component estimate may become unreliable. In this
case, it should be checked whether the effect can be
taken as fixed by Rule 8. Also, for balanced data, it
is worthwhile to drop the non-negativity constraint
on variance component estimates (NOBOUND
option in PROC MIXED of SAS). This will make
REML estimates identical with anova estimates,
which are optimal for balanced data and yield exact
Wald-tests for fixed effects (Piepho and Spilke
1999).

anova vs. REML-based Wald-tests

Tests of fixed effects in a mixed model may be
performed by two different strategies, which do not
necessarily yield identical results. The first is based
on a classical decomposition of the total sum of
squares into components attributable to different
model effects. F-tests are constructed based on the
expected values of anova mean squares, which can
be computed using a general algorithm described,
e.g. by Milliken and Johnson (1984). Specifically,
F-statistics are constructed as a ratio of linear
combinations of mean squares so that the numer-
ator and denominator expected values are the same
except for an additional term in the numerator
depending on the effect to be tested. This method
is implemented, e.g., in the GLM procedure of
SAS. It is preferable to more ad hoc methods such
as that proposed by Heyland and Kochs (1978).

In case the numerator or the denominator of the
F-statistic involve more than one mean square, the
Satterthwaite-method (Milliken and Johnson 1984)
may be used to compute degrees of freedom.
The second method computes Wald-type F-sta-
tistics using GLSE of fixed effects based on REML
estimates of the variance components (Littell et al.
1996). It is the method employed by the MIXED
procedure of the SAS system. The printed output
of MIXED will be familiar to those accustomed to
classical anova in that an F-test is produced for
each fixed effect in the model. What is unfamiliar is
the lack of sums of squares and mean squares. The
distribution of the F-statistic under the null hypo-
thesis usually needs to be approximated. The
currently best approximation method is that pro-
posed by Kenward and Roger (1997), which is
available via the DDFM option of the MIXED
procedure.
For balanced data, anova F-tests and Wald-tests
produce identical results, providing REML is not
constrained to produce non-negative variance esti-
mates (Piepho and Spilke 1999), but results for
unbalanced data differ. It is not clear, which of the
two methods is preferable. Wald-tests use GLSE,
which is optimal only when variance components
are known, as is rarely the case in practice.
In the analysis of linear models with a single
error term, sums of squares may be computed by
different methods. The most common methods
are sequential sums of squares, denoted as Type I
SS in SAS and Type III SS (Searle 1987). These
same methods are used for a mixed model anova.
In addition, Wald-type F-tests may be defined for
testing Type I or Type III hypothesis. Nelder
(1994) has a lucid discussion of Type I and Type
III hypothesis tests, and provides strong argu-
ments in favour of Type I hypothesis testing, e.g.
better power. Type III hypotheses are relevant
mainly if one is prepared to test main effects for
a fixed factor when interactions with another
fixed factor are significant. The Type III vs. Type
I controversy essentially becomes a non-issue, if
one adheres to the philosophy of testing main
effects and marginal means only when the inter-
action is not significant. For details see Nelder
(1994).

Mean comparisons

Treatment means may be computed from least
squares estimates of fixed effects (either OLSE or
GLSE). These means are known as least square
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means (LS-means). When the data are balanced,
the standard error of a difference (S.E.D.) among
LS-means is the same for each pairwise compar-
ison. In this case, a common critical difference may
be computed. For example, Fisher’s least signifi-
cant difference is given by LSD ¼ t · S.E.D.,
where t is a critical value from a t-distribution
with appropriate degrees of freedom. In addition, a
lines display or letters display can be obtained by
standard procedures (Steel and Torrie 1980).
When data are unbalanced, the S.E.D. is not
constant among comparisons, and hence there is
no common critical difference. In addition, a lines
display is not forthcoming by standard approa-
ches. This is disappointing for those used to lines
displays and critical differences. Some packages,
e.g. GENSTAT and ASREML, report an average
S.E.D. across all pairwise comparisons, which
may be reported in place of a critical difference
as a measure of accuracy. The MIXED proce-
dure of SAS produces all pairwise comparisons in
a line-by-line fashion, together with an S.E.D. for
each comparison, but no average S.E.D. (this can
be computed in a subsequent datastep). H. P.
Piepho (2003) has developed an algorithm which
produces a letters display for unbalanced as well
as for balanced data. An SAS macro is available
from the author upon request.
The GLM procedure of SAS computes LS-means
based onOLSE and it does not compute appropriate
S.E.D.Thus, theGLMprocedure shouldnot be used
for mean comparisons. TheMIXED procedure uses
GLSE to obtain LS-means. Standard errors are
computed from REML estimates of the variance
components, and degrees of freedommay be derived
using the method of Kenward and Roger (1997).
Multiple testing entails the danger of an inflated
Type I error rate. For balanced data, many
specialized methods are available for controlling
the family-wise Type I error rate (FWE), e.g. the
Tukey procedure (Hsu 1996). These methods are
not applicable in the unbalanced mixed linear
model. A general-purpose method for FWE control
is the simulation approach by Edwards and Berry
(1987), which is implemented in the MIXED
procedure. A number of alternative methods are
discussed by Westfall et al. (1999), who provide
several SAS macros.

Prediction of random effects (BLUP)

There is an important exception to Rule 1. A
treatment factor may be considered random due to

the sampling design, and yet there is an interest in
the specific treatment levels tested in an experiment.
If the number of levels is large, it is advantageous
to consider the factor as random and obtain
estimates of random effects under that model
(Searle et al. 1992, p. 18), e.g. in a plant breeding
trial evaluating a large set of lines derived from a
single cross. A popular estimation method for this
purpose is known as best linear unbiased prediction
(BLUP) and it is often used in plant and animal
breeding (Searle et al. 1992, Mrode 1998). BLUPs
may be more efficient than estimators assuming
fixed effects. In most agronomic trials, however, the
treatment levels are purposefully selected and the
number of levels is small, so the assumption of
random sampling is not tenable.

A Brief Review of Some Extensions to anova-
Type Mixed Models as Relevant in Agronomy

This paper has focused on anova-type mixed
models. There are a number of extensions to this
type of mixed model, which will be briefly reviewed
in this section. A full coverage is beyond the scope
of this paper, and the reader interested in more
details is referred to the pertinent literature.
Often, repeated measurements are taken on the
same experimental unit, the repetition being either
in space or in time or both. Repeated measure-
ments call for special attention due to the correla-
tion induced by the fact that the same experimental
unit is involved in several non-randomized meas-
urements.

Example 13
A randomized complete block experiment is con-
ducted to evaluate four different fertilizers for a
perennial grass crop. On each plot, repeated
measurements of yield are made in successive years,
which define a second (repeated) treatment factor.
Observations made on the same plot in successive
years are correlated. The correlation among neigh-
bouring years can be expected to be higher than,
e.g. that among the first and the last.

The analysis of repeated measurements needs to
account for the correlation among observations on
the same experimental unit. There are many
different types of model that can be imposed on
the correlation structure, including autoregressive
and spatial models. These correlation structures
can be embedded in a mixed model framework,
but the resulting models are no longer of the
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anova-type (Davidian and Giltinan 1995, Diggle
et al. 1996, Hand and Crowder 1996, Verbeke
and Molenberghs 1997, 2000, Schabenberger and
Pierce 2001). Good related key words for searching
the literature are spatial statistics, geostatistics, time
series and longitudinal data. Long-term rotation
experiments pose a number of specific repeated-
measures problems, which require specialized mod-
elling approaches (Singh et al. 1997).
A simple method for the analysis of repeated
measurements is to compute a summary statistic
per the smallest randomized observational unit
(plot, pot, etc.). This will yield one data point per
unit, so the data can, in fact, be analysed by anova-
type mixed models (Diggle et al. 1996). For exam-
ple, phytopathologists use the �area under the curve�
as an integral measure of disease incidence over a
period of time (Campbell and Madden 1990).
Trends in time or space across a short series of
repeated measurements on the same unit can often
be assessed by simple linear regression, yielding one
slope estimate per experimental unit (Bürkert et al.
2002) or by non-linear regression parameters.
Often, a simple mean across the series is a useful
summary, e.g. in a multi-year grazing trial.
Many authors have suggested the analysis of
repeated measurements as if the repeated treatment
factor were the split-plot factor in a split-plot
design (�split-plot in time�; Steel and Torrie 1980,
Peterson 1994). This approach may be justly
criticized, mainly on the grounds that a justification
by randomization theory is not forthcoming
(Hinkelmann and Kempthorne 1994). Its popular-
ity stems from the fact that analysis is relatively
simple. With the advent of powerful computers and
advanced mixed model software, the split-plot
approach has become largely obsolete. A split-plot
model implies a very simple correlation structure
for repeated measurements, and strictly speaking
its use is justified only when a better fit compared
with more complex correlation structures has been
established (Wolfinger 1996).
The mixed model approach to repeated meas-
urements needs to be contrasted with multivariate
anova methods (manova) (Cole and Grizzle 1966).
The manova approach has two important draw-
backs: (i) The sample size required for multivariate
test statistics to be computable is usually larger
than for test statistics under a mixed model. In fact,
the necessary sample size may be prohibitive for
agronomic trials. (ii) The manova approach can
analyse only complete series of repeated measure-
ments. In Example 13, if one of the measurements

on the same plot is missing, all measurements on
that plot must be omitted from the analysis. By
contrast, with mixed models there is no need to
omit any observations. The main advantage of the
manova approach lies in the less restrictive statis-
tical assumptions compared with mixed modelling.
For more details see Hand and Crowder (1996) and
Diggle et al. (1996).
Large field trials pose formidable problems in
terms of error control and classical blocked designs
are not always effective. An alternative approach is
to use spatial models for the correlation among
neighbouring plots. Many of the methods of spatial
analysis for field trials can be embedded in the
mixed model framework (Cullis and Gleeson 1991,
Gilmour et al. 1997, Gleeson 1997, Wu et al. 1998).
Spatial models may also be combined with smooth-
ing splines to account for large-scale field trends
(Verbyla et al. 1999).
In this paper, we basically neglected the treat-
ment structure and mainly looked at the block
model, as this may involve several random effects,
thus rendering the linear model of the mixed type.
For simplicity, all treatment factors were assumed
to be qualitative. If a treatment factor is quantita-
tive such as fertilizers or pesticides tested in
different quantities, one may consider a regression.
Regression in mixed models falls in the anova

framework so long as all regression coefficients are
fixed. When some coefficients are random, one may
need to use more refined modelling (Wolfinger
1996, Verbeke and Molenberghs 1997).
The analysis of a series of experiments is com-
plicated due to the presence of treatment-by-
environment interaction. anova-type mixed models
cannot always satisfactorily model interaction and
several extensions have been suggested, including
heteroscedastic (Denis et al. 1997, Frensham et al.
1997, Piepho 1999a) and multiplicative (Piepho
1997, Smith et al. 2001) models. A topic related to
a series of experiments is stability analysis. Meas-
ures of stability are very popular among plant
breeders and agronomists as a means to assess yield
variability across varying environments. Many
stability measures can be expressed as functions
of parameters of a mixed model (Piepho 1998,
1999a), and so mixed models play a key role in
stability analysis. In addition, spatial models at the
field trial level can be integrated with advanced
models for treatment-by-environment interaction
within a single mixed model (Smith et al. 2001).
Mixed models have also been extended to allow
for non-normal data. The extension is known as the
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generalized linear mixed model (Schabenberger and
Pierce 2001, McCulloch and Searle 2001), and it is
highly relevant for problem data such as count data
(e.g. weeds and insects) and percentages (e.g.
disease incidence, weed coverage and emergence
rates) (Piepho 1999b). Moreover, non-linear mixed
models can accommodate intrinsically non-linear
regression models (Davidian and Giltinan 1995),
e.g. plant growth models (Gregoire and Schaben-
berger 1996, Schabenberger and Pierce 2001).
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