
1 By default Scikit-Learn caches downloaded datasets in a directory called scikit_learn_data in your home
directory.

CHAPTER 3

Classification

In Chapter 1 I mentioned that the most common supervised learning tasks are
regression (predicting values) and classification (predicting classes). In Chapter 2
we explored a regression task, predicting housing values, using various algorithms
such as linear regression, decision trees, and random forests (which will be explained
in further detail in later chapters). Now we will turn our attention to classification
systems.

MNIST
In this chapter we will be using the MNIST dataset, which is a set of 70,000 small
images of digits handwritten by high school students and employees of the US
Census Bureau. Each image is labeled with the digit it represents. This set has
been studied so much that it is often called the “hello world” of machine learning:
whenever people come up with a new classification algorithm they are curious to see
how it will perform on MNIST, and anyone who learns machine learning tackles this
dataset sooner or later.

Scikit-Learn provides many helper functions to download popular datasets. MNIST is
one of them. The following code fetches the MNIST dataset from OpenML.org:1

from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784', as_frame=False)

The sklearn.datasets package contains mostly three types of functions: fetch_*
functions such as fetch_openml() to download real-life datasets, load_* functions
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to load small toy datasets bundled with Scikit-Learn (so they don’t need to be down‐
loaded over the internet), and make_* functions to generate fake datasets, useful
for tests. Generated datasets are usually returned as an (X, y) tuple containing
the input data and the targets, both as NumPy arrays. Other datasets are returned
as sklearn.utils.Bunch objects, which are dictionaries whose entries can also be
accessed as attributes. They generally contain the following entries:

"DESCR"

A description of the dataset

"data"

The input data, usually as a 2D NumPy array

"target"

The labels, usually as a 1D NumPy array

The fetch_openml() function is a bit unusual since by default it returns the inputs as
a Pandas DataFrame and the labels as a Pandas Series (unless the dataset is sparse).
But the MNIST dataset contains images, and DataFrames aren’t ideal for that, so it’s
preferable to set as_frame=False to get the data as NumPy arrays instead. Let’s look
at these arrays:

>>> X, y = mnist.data, mnist.target
>>> X
array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])
>>> X.shape
(70000, 784)
>>> y
array(['5', '0', '4', ..., '4', '5', '6'], dtype=object)
>>> y.shape
(70000,)

There are 70,000 images, and each image has 784 features. This is because each image
is 28 × 28 pixels, and each feature simply represents one pixel’s intensity, from 0
(white) to 255 (black). Let’s take a peek at one digit from the dataset (Figure 3-1).
All we need to do is grab an instance’s feature vector, reshape it to a 28 × 28 array,
and display it using Matplotlib’s imshow() function. We use cmap="binary" to get a
grayscale color map where 0 is white and 255 is black:
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2 Datasets returned by fetch_openml() are not always shuffled or split.
3 Shuffling may be a bad idea in some contexts—for example, if you are working on time series data (such as

stock market prices or weather conditions). We will explore this in Chapter 15.

import matplotlib.pyplot as plt

def plot_digit(image_data):
    image = image_data.reshape(28, 28)
    plt.imshow(image, cmap="binary")
    plt.axis("off")

some_digit = X[0]
plot_digit(some_digit)
plt.show()

Figure 3-1. Example of an MNIST image

This looks like a 5, and indeed that’s what the label tells us:

>>> y[0]
'5'

To give you a feel for the complexity of the classification task, Figure 3-2 shows a few
more images from the MNIST dataset.

But wait! You should always create a test set and set it aside before inspecting the data
closely. The MNIST dataset returned by fetch_openml() is actually already split into
a training set (the first 60,000 images) and a test set (the last 10,000 images):2

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

The training set is already shuffled for us, which is good because this guarantees
that all cross-validation folds will be similar (we don’t want one fold to be missing
some digits). Moreover, some learning algorithms are sensitive to the order of the
training instances, and they perform poorly if they get many similar instances in a
row. Shuffling the dataset ensures that this won’t happen.3
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Figure 3-2. Digits from the MNIST dataset

Training a Binary Classifier
Let’s simplify the problem for now and only try to identify one digit—for example,
the number 5. This “5-detector” will be an example of a binary classifier, capable
of distinguishing between just two classes, 5 and non-5. First we’ll create the target
vectors for this classification task:

y_train_5 = (y_train == '5')  # True for all 5s, False for all other digits
y_test_5 = (y_test == '5')

Now let’s pick a classifier and train it. A good place to start is with a stochastic gra‐
dient descent (SGD, or stochastic GD) classifier, using Scikit-Learn’s SGDClassifier
class. This classifier is capable of handling very large datasets efficiently. This is in
part because SGD deals with training instances independently, one at a time, which
also makes SGD well suited for online learning, as you will see later. Let’s create an
SGDClassifier and train it on the whole training set:

from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)
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Now we can use it to detect images of the number 5:

>>> sgd_clf.predict([some_digit])
array([ True])

The classifier guesses that this image represents a 5 (True). Looks like it guessed right
in this particular case! Now, let’s evaluate this model’s performance.

Performance Measures
Evaluating a classifier is often significantly trickier than evaluating a regressor, so we
will spend a large part of this chapter on this topic. There are many performance
measures available, so grab another coffee and get ready to learn a bunch of new
concepts and acronyms!

Measuring Accuracy Using Cross-Validation
A good way to evaluate a model is to use cross-validation, just as you did in
Chapter 2. Let’s use the cross_val_score() function to evaluate our SGDClassifier
model, using k-fold cross-validation with three folds. Remember that k-fold cross-
validation means splitting the training set into k folds (in this case, three), then
training the model k times, holding out a different fold each time for evaluation (see
Chapter 2):

>>> from sklearn.model_selection import cross_val_score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604 ])

Wow! Above 95% accuracy (ratio of correct predictions) on all cross-validation folds?
This looks amazing, doesn’t it? Well, before you get too excited, let’s look at a dummy
classifier that just classifies every single image in the most frequent class, which in
this case is the negative class (i.e., non 5):

from sklearn.dummy import DummyClassifier

dummy_clf = DummyClassifier()
dummy_clf.fit(X_train, y_train_5)
print(any(dummy_clf.predict(X_train)))  # prints False: no 5s detected

Can you guess this model’s accuracy? Let’s find out:

>>> cross_val_score(dummy_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.90965, 0.90965, 0.90965])

That’s right, it has over 90% accuracy! This is simply because only about 10% of the
images are 5s, so if you always guess that an image is not a 5, you will be right about
90% of the time. Beats Nostradamus.

This demonstrates why accuracy is generally not the preferred performance measure
for classifiers, especially when you are dealing with skewed datasets (i.e., when some
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classes are much more frequent than others). A much better way to evaluate the
performance of a classifier is to look at the confusion matrix (CM).

Implementing Cross-Validation
Occasionally you will need more control over the cross-validation process than
what Scikit-Learn provides off the shelf. In these cases, you can implement cross-
validation yourself. The following code does roughly the same thing as Scikit-Learn’s
cross_val_score() function, and it prints the same result:

from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone

skfolds = StratifiedKFold(n_splits=3)  # add shuffle=True if the dataset is
                                       # not already shuffled
for train_index, test_index in skfolds.split(X_train, y_train_5):
    clone_clf = clone(sgd_clf)
    X_train_folds = X_train[train_index]
    y_train_folds = y_train_5[train_index]
    X_test_fold = X_train[test_index]
    y_test_fold = y_train_5[test_index]

    clone_clf.fit(X_train_folds, y_train_folds)
    y_pred = clone_clf.predict(X_test_fold)
    n_correct = sum(y_pred == y_test_fold)
    print(n_correct / len(y_pred))  # prints 0.95035, 0.96035, and 0.9604

The StratifiedKFold class performs stratified sampling (as explained in Chapter 2)
to produce folds that contain a representative ratio of each class. At each iteration the
code creates a clone of the classifier, trains that clone on the training folds, and makes
predictions on the test fold. Then it counts the number of correct predictions and
outputs the ratio of correct predictions.

Confusion Matrices
The general idea of a confusion matrix is to count the number of times instances of
class A are classified as class B, for all A/B pairs. For example, to know the number of
times the classifier confused images of 8s with 0s, you would look at row #8, column
#0 of the confusion matrix.

To compute the confusion matrix, you first need to have a set of predictions so that
they can be compared to the actual targets. You could make predictions on the test
set, but it’s best to keep that untouched for now (remember that you want to use the
test set only at the very end of your project, once you have a classifier that you are
ready to launch). Instead, you can use the cross_val_predict() function:
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from sklearn.model_selection import cross_val_predict

y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)

Just like the cross_val_score() function, cross_val_predict() performs k-fold
cross-validation, but instead of returning the evaluation scores, it returns the predic‐
tions made on each test fold. This means that you get a clean prediction for each
instance in the training set (by “clean” I mean “out-of-sample”: the model makes
predictions on data that it never saw during training).

Now you are ready to get the confusion matrix using the confusion_matrix()
function. Just pass it the target classes (y_train_5) and the predicted classes
(y_train_pred):

>>> from sklearn.metrics import confusion_matrix
>>> cm = confusion_matrix(y_train_5, y_train_pred)
>>> cm
array([[53892,   687],
       [ 1891,  3530]])

Each row in a confusion matrix represents an actual class, while each column rep‐
resents a predicted class. The first row of this matrix considers non-5 images (the
negative class): 53,892 of them were correctly classified as non-5s (they are called true
negatives), while the remaining 687 were wrongly classified as 5s (false positives, also
called type I errors). The second row considers the images of 5s (the positive class):
1,891 were wrongly classified as non-5s (false negatives, also called type II errors),
while the remaining 3,530 were correctly classified as 5s (true positives). A perfect
classifier would only have true positives and true negatives, so its confusion matrix
would have nonzero values only on its main diagonal (top left to bottom right):

>>> y_train_perfect_predictions = y_train_5  # pretend we reached perfection
>>> confusion_matrix(y_train_5, y_train_perfect_predictions)
array([[54579,     0],
       [    0,  5421]])

The confusion matrix gives you a lot of information, but sometimes you may prefer
a more concise metric. An interesting one to look at is the accuracy of the positive
predictions; this is called the precision of the classifier (Equation 3-1).

Equation 3-1. Precision

precision = TP
TP + FP

TP is the number of true positives, and FP is the number of false positives.

A trivial way to have perfect precision is to create a classifier that always makes
negative predictions, except for one single positive prediction on the instance it’s
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most confident about. If this one prediction is correct, then the classifier has 100%
precision (precision = 1/1 = 100%). Obviously, such a classifier would not be very
useful, since it would ignore all but one positive instance. So, precision is typically
used along with another metric named recall, also called sensitivity or the true positive
rate (TPR): this is the ratio of positive instances that are correctly detected by the
classifier (Equation 3-2).

Equation 3-2. Recall

recall = TP
TP + FN

FN is, of course, the number of false negatives.

If you are confused about the confusion matrix, Figure 3-3 may help.

Figure 3-3. An illustrated confusion matrix showing examples of true negatives (top left),
false positives (top right), false negatives (lower left), and true positives (lower right)

Precision and Recall
Scikit-Learn provides several functions to compute classifier metrics, including preci‐
sion and recall:

>>> from sklearn.metrics import precision_score, recall_score
>>> precision_score(y_train_5, y_train_pred)  # == 3530 / (687 + 3530)
0.8370879772350012
>>> recall_score(y_train_5, y_train_pred)  # == 3530 / (1891 + 3530)
0.6511713705958311
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Now our 5-detector does not look as shiny as it did when we looked at its accuracy.
When it claims an image represents a 5, it is correct only 83.7% of the time. More‐
over, it only detects 65.1% of the 5s.

It is often convenient to combine precision and recall into a single metric called the
F1 score, especially when you need a single metric to compare two classifiers. The
F1 score is the harmonic mean of precision and recall (Equation 3-3). Whereas the
regular mean treats all values equally, the harmonic mean gives much more weight to
low values. As a result, the classifier will only get a high F1 score if both recall and
precision are high.

Equation 3-3. F1 score

F1 = 2
1

precision + 1
recall

= 2 × precision × recall
precision + recall = TP

TP + FN + FP
2

To compute the F1 score, simply call the f1_score() function:

>>> from sklearn.metrics import f1_score
>>> f1_score(y_train_5, y_train_pred)
0.7325171197343846

The F1 score favors classifiers that have similar precision and recall. This is not always
what you want: in some contexts you mostly care about precision, and in other
contexts you really care about recall. For example, if you trained a classifier to detect
videos that are safe for kids, you would probably prefer a classifier that rejects many
good videos (low recall) but keeps only safe ones (high precision), rather than a
classifier that has a much higher recall but lets a few really bad videos show up in
your product (in such cases, you may even want to add a human pipeline to check
the classifier’s video selection). On the other hand, suppose you train a classifier to
detect shoplifters in surveillance images: it is probably fine if your classifier only has
30% precision as long as it has 99% recall (sure, the security guards will get a few false
alerts, but almost all shoplifters will get caught).

Unfortunately, you can’t have it both ways: increasing precision reduces recall, and
vice versa. This is called the precision/recall trade-off.

The Precision/Recall Trade-off
To understand this trade-off, let’s look at how the SGDClassifier makes its classifica‐
tion decisions. For each instance, it computes a score based on a decision function.
If that score is greater than a threshold, it assigns the instance to the positive class;
otherwise it assigns it to the negative class. Figure 3-4 shows a few digits positioned
from the lowest score on the left to the highest score on the right. Suppose the
decision threshold is positioned at the central arrow (between the two 5s): you will
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find 4 true positives (actual 5s) on the right of that threshold, and 1 false positive
(actually a 6). Therefore, with that threshold, the precision is 80% (4 out of 5). But
out of 6 actual 5s, the classifier only detects 4, so the recall is 67% (4 out of 6). If
you raise the threshold (move it to the arrow on the right), the false positive (the
6) becomes a true negative, thereby increasing the precision (up to 100% in this
case), but one true positive becomes a false negative, decreasing recall down to 50%.
Conversely, lowering the threshold increases recall and reduces precision.

Figure 3-4. The precision/recall trade-off: images are ranked by their classifier score,
and those above the chosen decision threshold are considered positive; the higher the
threshold, the lower the recall, but (in general) the higher the precision

Scikit-Learn does not let you set the threshold directly, but it does give you access to
the decision scores that it uses to make predictions. Instead of calling the classifier’s
predict() method, you can call its decision_function() method, which returns a
score for each instance, and then use any threshold you want to make predictions
based on those scores:

>>> y_scores = sgd_clf.decision_function([some_digit])
>>> y_scores
array([2164.22030239])
>>> threshold = 0
>>> y_some_digit_pred = (y_scores > threshold)
array([ True])

The SGDClassifier uses a threshold equal to 0, so the preceding code returns the
same result as the predict() method (i.e., True). Let’s raise the threshold:

>>> threshold = 3000
>>> y_some_digit_pred = (y_scores > threshold)
>>> y_some_digit_pred
array([False])

This confirms that raising the threshold decreases recall. The image actually repre‐
sents a 5, and the classifier detects it when the threshold is 0, but it misses it when the
threshold is increased to 3,000.
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How do you decide which threshold to use? First, use the cross_val_predict()
function to get the scores of all instances in the training set, but this time specify that
you want to return decision scores instead of predictions:

y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3,
                             method="decision_function")

With these scores, use the precision_recall_curve() function to compute precision
and recall for all possible thresholds (the function adds a last precision of 0 and a last
recall of 1, corresponding to an infinite threshold):

from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)

Finally, use Matplotlib to plot precision and recall as functions of the threshold value
(Figure 3-5). Let’s show the threshold of 3,000 we selected:

plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2)
plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2)
plt.vlines(threshold, 0, 1.0, "k", "dotted", label="threshold")
[...]  # beautify the figure: add grid, legend, axis, labels, and circles
plt.show()

Figure 3-5. Precision and recall versus the decision threshold

You may wonder why the precision curve is bumpier than the recall
curve in Figure 3-5. The reason is that precision may sometimes go
down when you raise the threshold (although in general it will go
up). To understand why, look back at Figure 3-4 and notice what
happens when you start from the central threshold and move it
just one digit to the right: precision goes from 4/5 (80%) down to
3/4 (75%). On the other hand, recall can only go down when the
threshold is increased, which explains why its curve looks smooth.
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At this threshold value, precision is near 90% and recall is around 50%. Another way
to select a good precision/recall trade-off is to plot precision directly against recall, as
shown in Figure 3-6 (the same threshold is shown):

plt.plot(recalls, precisions, linewidth=2, label="Precision/Recall curve")
[...]  # beautify the figure: add labels, grid, legend, arrow, and text
plt.show()

Figure 3-6. Precision versus recall

You can see that precision really starts to fall sharply at around 80% recall. You
will probably want to select a precision/recall trade-off just before that drop—for
example, at around 60% recall. But of course, the choice depends on your project.

Suppose you decide to aim for 90% precision. You could use the first plot to find the
threshold you need to use, but that’s not very precise. Alternatively, you can search
for the lowest threshold that gives you at least 90% precision. For this, you can use the
NumPy array’s argmax() method. This returns the first index of the maximum value,
which in this case means the first True value:

>>> idx_for_90_precision = (precisions >= 0.90).argmax()
>>> threshold_for_90_precision = thresholds[idx_for_90_precision]
>>> threshold_for_90_precision
3370.0194991439557
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To make predictions (on the training set for now), instead of calling the classifier’s
predict() method, you can run this code:

y_train_pred_90 = (y_scores >= threshold_for_90_precision)

Let’s check these predictions’ precision and recall:

>>> precision_score(y_train_5, y_train_pred_90)
0.9000345901072293
>>> recall_at_90_precision = recall_score(y_train_5, y_train_pred_90)
>>> recall_at_90_precision
0.4799852425751706

Great, you have a 90% precision classifier! As you can see, it is fairly easy to create a
classifier with virtually any precision you want: just set a high enough threshold, and
you’re done. But wait, not so fast–a high-precision classifier is not very useful if its
recall is too low! For many applications, 48% recall wouldn’t be great at all.

If someone says, “Let’s reach 99% precision”, you should ask, “At
what recall?”

The ROC Curve
The receiver operating characteristic (ROC) curve is another common tool used with
binary classifiers. It is very similar to the precision/recall curve, but instead of plot‐
ting precision versus recall, the ROC curve plots the true positive rate (another name
for recall) against the false positive rate (FPR). The FPR (also called the fall-out) is the
ratio of negative instances that are incorrectly classified as positive. It is equal to 1 –
the true negative rate (TNR), which is the ratio of negative instances that are correctly
classified as negative. The TNR is also called specificity. Hence, the ROC curve plots
sensitivity (recall) versus 1 – specificity.

To plot the ROC curve, you first use the roc_curve() function to compute the TPR
and FPR for various threshold values:

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)

Then you can plot the FPR against the TPR using Matplotlib. The following code
produces the plot in Figure 3-7. To find the point that corresponds to 90% precision,
we need to look for the index of the desired threshold. Since thresholds are listed in
decreasing order in this case, we use <= instead of >= on the first line:
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idx_for_threshold_at_90 = (thresholds <= threshold_for_90_precision).argmax()
tpr_90, fpr_90 = tpr[idx_for_threshold_at_90], fpr[idx_for_threshold_at_90]

plt.plot(fpr, tpr, linewidth=2, label="ROC curve")
plt.plot([0, 1], [0, 1], 'k:', label="Random classifier's ROC curve")
plt.plot([fpr_90], [tpr_90], "ko", label="Threshold for 90% precision")
[...]  # beautify the figure: add labels, grid, legend, arrow, and text
plt.show()

Figure 3-7. A ROC curve plotting the false positive rate against the true positive rate for
all possible thresholds; the black circle highlights the chosen ratio (at 90% precision and
48% recall)

Once again there is a trade-off: the higher the recall (TPR), the more false positives
(FPR) the classifier produces. The dotted line represents the ROC curve of a purely
random classifier; a good classifier stays as far away from that line as possible (toward
the top-left corner).

One way to compare classifiers is to measure the area under the curve (AUC). A
perfect classifier will have a ROC AUC equal to 1, whereas a purely random classifier
will have a ROC AUC equal to 0.5. Scikit-Learn provides a function to estimate the
ROC AUC:

>>> from sklearn.metrics import roc_auc_score
>>> roc_auc_score(y_train_5, y_scores)
0.9604938554008616
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4 Scikit-Learn classifiers always have either a decision_function() method or a predict_proba() method, or
sometimes both.

Since the ROC curve is so similar to the precision/recall (PR)
curve, you may wonder how to decide which one to use. As a rule
of thumb, you should prefer the PR curve whenever the positive
class is rare or when you care more about the false positives than
the false negatives. Otherwise, use the ROC curve. For example,
looking at the previous ROC curve (and the ROC AUC score),
you may think that the classifier is really good. But this is mostly
because there are few positives (5s) compared to the negatives
(non-5s). In contrast, the PR curve makes it clear that the classifier
has room for improvement: the curve could really be closer to the
top-right corner (see Figure 3-6 again).

Let’s now create a RandomForestClassifier, whose PR curve and F1 score we can
compare to those of the SGDClassifier:

from sklearn.ensemble import RandomForestClassifier

forest_clf = RandomForestClassifier(random_state=42)

The precision_recall_curve() function expects labels and scores for each
instance, so we need to train the random forest classifier and make it assign a
score to each instance. But the RandomForestClassifier class does not have a
decision_function() method, due to the way it works (we will cover this in Chap‐
ter 7). Luckily, it has a predict_proba() method that returns class probabilities for
each instance, and we can just use the probability of the positive class as a score, so
it will work fine.4 We can call the cross_val_predict() function to train the Random
ForestClassifier using cross-validation and make it predict class probabilities for
every image as follows:

y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3,
                                    method="predict_proba")

Let’s look at the class probabilities for the first two images in the training set:

>>> y_probas_forest[:2]
array([[0.11, 0.89],
       [0.99, 0.01]])

The model predicts that the first image is positive with 89% probability, and it
predicts that the second image is negative with 99% probability. Since each image is
either positive or negative, the probabilities in each row add up to 100%.
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These are estimated probabilities, not actual probabilities. For
example, if you look at all the images that the model classified
as positive with an estimated probability between 50% and 60%,
roughly 94% of them are actually positive. So, the model’s estima‐
ted probabilities were much too low in this case—but models can
be overconfident as well. The sklearn.calibration package con‐
tains tools to calibrate the estimated probabilities and make them
much closer to actual probabilities. See the extra material section in
this chapter’s notebook for more details.

The second column contains the estimated probabilities for the positive class, so let’s
pass them to the precision_recall_curve() function:

y_scores_forest = y_probas_forest[:, 1]
precisions_forest, recalls_forest, thresholds_forest = precision_recall_curve(
    y_train_5, y_scores_forest)

Now we’re ready to plot the PR curve. It is useful to plot the first PR curve as well to
see how they compare (Figure 3-8):

plt.plot(recalls_forest, precisions_forest, "b-", linewidth=2,
         label="Random Forest")
plt.plot(recalls, precisions, "--", linewidth=2, label="SGD")
[...]  # beautify the figure: add labels, grid, and legend
plt.show()

Figure 3-8. Comparing PR curves: the random forest classifier is superior to the SGD
classifier because its PR curve is much closer to the top-right corner, and it has a greater
AUC
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As you can see in Figure 3-8, the RandomForestClassifier’s PR curve looks much
better than the SGDClassifier’s: it comes much closer to the top-right corner. Its F1
score and ROC AUC score are also significantly better:

>>> y_train_pred_forest = y_probas_forest[:, 1] >= 0.5  # positive proba ≥ 50%
>>> f1_score(y_train_5, y_pred_forest)
0.9242275142688446
>>> roc_auc_score(y_train_5, y_scores_forest)
0.9983436731328145

Try measuring the precision and recall scores: you should find about 99.1% precision
and 86.6% recall. Not too bad!

You now know how to train binary classifiers, choose the appropriate metric for
your task, evaluate your classifiers using cross-validation, select the precision/recall
trade-off that fits your needs, and use several metrics and curves to compare various
models. You’re ready to try to detect more than just the 5s.

Multiclass Classification
Whereas binary classifiers distinguish between two classes, multiclass classifiers (also
called multinomial classifiers) can distinguish between more than two classes.

Some Scikit-Learn classifiers (e.g., LogisticRegression, RandomForestClassifier,
and GaussianNB) are capable of handling multiple classes natively. Others are strictly
binary classifiers (e.g., SGDClassifier and SVC). However, there are various strategies
that you can use to perform multiclass classification with multiple binary classifiers.

One way to create a system that can classify the digit images into 10 classes (from 0
to 9) is to train 10 binary classifiers, one for each digit (a 0-detector, a 1-detector, a
2-detector, and so on). Then when you want to classify an image, you get the decision
score from each classifier for that image and you select the class whose classifier
outputs the highest score. This is called the one-versus-the-rest (OvR) strategy, or
sometimes one-versus-all (OvA).

Another strategy is to train a binary classifier for every pair of digits: one to distin‐
guish 0s and 1s, another to distinguish 0s and 2s, another for 1s and 2s, and so
on. This is called the one-versus-one (OvO) strategy. If there are N classes, you need
to train N × (N – 1) / 2 classifiers. For the MNIST problem, this means training
45 binary classifiers! When you want to classify an image, you have to run the
image through all 45 classifiers and see which class wins the most duels. The main
advantage of OvO is that each classifier only needs to be trained on the part of the
training set containing the two classes that it must distinguish.

Some algorithms (such as support vector machine classifiers) scale poorly with the
size of the training set. For these algorithms OvO is preferred because it is faster
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to train many classifiers on small training sets than to train few classifiers on large
training sets. For most binary classification algorithms, however, OvR is preferred.

Scikit-Learn detects when you try to use a binary classification algorithm for a
multiclass classification task, and it automatically runs OvR or OvO, depending
on the algorithm. Let’s try this with a support vector machine classifier using the
sklearn.svm.SVC class (see Chapter 5). We’ll only train on the first 2,000 images, or
else it will take a very long time:

from sklearn.svm import SVC

svm_clf = SVC(random_state=42)
svm_clf.fit(X_train[:2000], y_train[:2000])  # y_train, not y_train_5

That was easy! We trained the SVC using the original target classes from 0 to 9
(y_train), instead of the 5-versus-the-rest target classes (y_train_5). Since there are
10 classes (i.e., more than 2), Scikit-Learn used the OvO strategy and trained 45
binary classifiers. Now let’s make a prediction on an image:

>>> svm_clf.predict([some_digit])
array(['5'], dtype=object)

That’s correct! This code actually made 45 predictions—one per pair of classes—and
it selected the class that won the most duels. If you call the decision_function()
method, you will see that it returns 10 scores per instance: one per class. Each class
gets a score equal to the number of won duels plus or minus a small tweak (max
±0.33) to break ties, based on the classifier scores:

>>> some_digit_scores = svm_clf.decision_function([some_digit])
>>> some_digit_scores.round(2)
array([[ 3.79,  0.73,  6.06,  8.3 , -0.29,  9.3 ,  1.75,  2.77,  7.21,
         4.82]])

The highest score is 9.3, and it’s indeed the one corresponding to class 5:

>>> class_id = some_digit_scores.argmax()
>>> class_id
5

When a classifier is trained, it stores the list of target classes in its classes_ attribute,
ordered by value. In the case of MNIST, the index of each class in the classes_ array
conveniently matches the class itself (e.g., the class at index 5 happens to be class '5'),
but in general you won’t be so lucky; you will need to look up the class label like this:

>>> svm_clf.classes_
array(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], dtype=object)
>>> svm_clf.classes_[class_id]
'5'

If you want to force Scikit-Learn to use one-versus-one or one-versus-the-rest, you
can use the OneVsOneClassifier or OneVsRestClassifier classes. Simply create
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an instance and pass a classifier to its constructor (it doesn’t even have to be a
binary classifier). For example, this code creates a multiclass classifier using the OvR
strategy, based on an SVC:

from sklearn.multiclass import OneVsRestClassifier

ovr_clf = OneVsRestClassifier(SVC(random_state=42))
ovr_clf.fit(X_train[:2000], y_train[:2000])

Let’s make a prediction, and check the number of trained classifiers:

>>> ovr_clf.predict([some_digit])
array(['5'], dtype='<U1')
>>> len(ovr_clf.estimators_)
10

Training an SGDClassifier on a multiclass dataset and using it to make predictions is
just as easy:

>>> sgd_clf = SGDClassifier(random_state=42)
>>> sgd_clf.fit(X_train, y_train)
>>> sgd_clf.predict([some_digit])
array(['3'], dtype='<U1')

Oops, that’s incorrect. Prediction errors do happen! This time Scikit-Learn used
the OvR strategy under the hood: since there are 10 classes, it trained 10 binary
classifiers. The decision_function() method now returns one value per class. Let’s
look at the scores that the SGD classifier assigned to each class:

>>> sgd_clf.decision_function([some_digit]).round()
array([[-31893., -34420.,  -9531.,   1824., -22320.,  -1386., -26189.,
        -16148.,  -4604., -12051.]])

You can see that the classifier is not very confident about its prediction: almost all
scores are very negative, while class 3 has a score of +1,824, and class 5 is not too far
behind at –1,386. Of course, you’ll want to evaluate this classifier on more than one
image. Since there are roughly the same number of images in each class, the accuracy
metric is fine. As usual, you can use the cross_val_score() function to evaluate the
model:

>>> cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy")
array([0.87365, 0.85835, 0.8689 ])

It gets over 85.8% on all test folds. If you used a random classifier, you would get
10% accuracy, so this is not such a bad score, but you can still do much better. Simply
scaling the inputs (as discussed in Chapter 2) increases accuracy above 89.1%:

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()
>>> X_train_scaled = scaler.fit_transform(X_train.astype("float64"))
>>> cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy")
array([0.8983, 0.891 , 0.9018])
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Error Analysis
If this were a real project, you would now follow the steps in your machine learning
project checklist (see Appendix A). You’d explore data preparation options, try out
multiple models, shortlist the best ones, fine-tune their hyperparameters using Grid
SearchCV, and automate as much as possible. Here, we will assume that you have
found a promising model and you want to find ways to improve it. One way to do
this is to analyze the types of errors it makes.

First, look at the confusion matrix. For this, you first need to make predictions using
the cross_val_predict() function; then you can pass the labels and predictions to
the confusion_matrix() function, just like you did earlier. However, since there are
now 10 classes instead of 2, the confusion matrix will contain quite a lot of numbers,
and it may be hard to read.

A colored diagram of the confusion matrix is much easier to analyze. To plot such a
diagram, use the ConfusionMatrixDisplay.from_predictions() function like this:

from sklearn.metrics import ConfusionMatrixDisplay

y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred)
plt.show()

This produces the left diagram in Figure 3-9. This confusion matrix looks pretty
good: most images are on the main diagonal, which means that they were classified
correctly. Notice that the cell on the diagonal in row #5 and column #5 looks slightly
darker than the other digits. This could be because the model made more errors
on 5s, or because there are fewer 5s in the dataset than the other digits. That’s why
it’s important to normalize the confusion matrix by dividing each value by the total
number of images in the corresponding (true) class (i.e., divide by the row’s sum).
This can be done simply by setting normalize="true". We can also specify the val
ues_format=".0%" argument to show percentages with no decimals. The following
code produces the diagram on the right in Figure 3-9:

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,
                                        normalize="true", values_format=".0%")
plt.show()

Now we can easily see that only 82% of the images of 5s were classified correctly. The
most common error the model made with images of 5s was to misclassify them as 8s:
this happened for 10% of all 5s. But only 2% of 8s got misclassified as 5s; confusion
matrices are generally not symmetrical! If you look carefully, you will notice that
many digits have been misclassified as 8s, but this is not immediately obvious from
this diagram. If you want to make the errors stand out more, you can try putting zero
weight on the correct predictions. The following code does just that and produces the
diagram on the left in Figure 3-10:
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sample_weight = (y_train_pred != y_train)
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,
                                        sample_weight=sample_weight,
                                        normalize="true", values_format=".0%")
plt.show()

Figure 3-9. Confusion matrix (left) and the same CM normalized by row (right)

Figure 3-10. Confusion matrix with errors only, normalized by row (left) and by column
(right)

Now you can see much more clearly the kinds of errors the classifier makes. The
column for class 8 is now really bright, which confirms that many images got misclas‐
sified as 8s. In fact this is the most common misclassification for almost all classes.
But be careful how you interpret the percentages in this diagram: remember that
we’ve excluded the correct predictions. For example, the 36% in row #7, column #9
does not mean that 36% of all images of 7s were misclassified as 9s. It means that 36%
of the errors the model made on images of 7s were misclassifications as 9s. In reality,
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only 3% of images of 7s were misclassified as 9s, as you can see in the diagram on the
right in Figure 3-9.

It is also possible to normalize the confusion matrix by column rather than by row:
if you set normalize="pred", you get the diagram on the right in Figure 3-10. For
example, you can see that 56% of misclassified 7s are actually 9s.

Analyzing the confusion matrix often gives you insights into ways to improve your
classifier. Looking at these plots, it seems that your efforts should be spent on reduc‐
ing the false 8s. For example, you could try to gather more training data for digits that
look like 8s (but are not) so that the classifier can learn to distinguish them from real
8s. Or you could engineer new features that would help the classifier—for example,
writing an algorithm to count the number of closed loops (e.g., 8 has two, 6 has one,
5 has none). Or you could preprocess the images (e.g., using Scikit-Image, Pillow, or
OpenCV) to make some patterns, such as closed loops, stand out more.

Analyzing individual errors can also be a good way to gain insights into what your
classifier is doing and why it is failing. For example, let’s plot examples of 3s and 5s in
a confusion matrix style (Figure 3-11):

cl_a, cl_b = '3', '5'
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]
[...]  # plot all images in X_aa, X_ab, X_ba, X_bb in a confusion matrix style

Figure 3-11. Some images of 3s and 5s organized like a confusion matrix
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As you can see, some of the digits that the classifier gets wrong (i.e., in the bottom-left
and top-right blocks) are so badly written that even a human would have trouble
classifying them. However, most misclassified images seem like obvious errors to us.
It may be hard to understand why the classifier made the mistakes it did, but remem‐
ber that the human brain is a fantastic pattern recognition system, and our visual
system does a lot of complex preprocessing before any information even reaches our
consciousness. So, the fact that this task feels simple does not mean that it is. Recall
that we used a simple SGDClassifier, which is just a linear model: all it does is assign
a weight per class to each pixel, and when it sees a new image it just sums up the
weighted pixel intensities to get a score for each class. Since 3s and 5s differ by only a
few pixels, this model will easily confuse them.

The main difference between 3s and 5s is the position of the small line that joins the
top line to the bottom arc. If you draw a 3 with the junction slightly shifted to the left,
the classifier might classify it as a 5, and vice versa. In other words, this classifier is
quite sensitive to image shifting and rotation. One way to reduce the 3/5 confusion
is to preprocess the images to ensure that they are well centered and not too rotated.
However, this may not be easy since it requires predicting the correct rotation of each
image. A much simpler approach consists of augmenting the training set with slightly
shifted and rotated variants of the training images. This will force the model to learn
to be more tolerant to such variations. This is called data augmentation (we’ll cover
this in Chapter 14; also see exercise 2 at the end of this chapter).

Multilabel Classification
Until now, each instance has always been assigned to just one class. But in some cases
you may want your classifier to output multiple classes for each instance. Consider
a face-recognition classifier: what should it do if it recognizes several people in the
same picture? It should attach one tag per person it recognizes. Say the classifier
has been trained to recognize three faces: Alice, Bob, and Charlie. Then when the
classifier is shown a picture of Alice and Charlie, it should output [True, False,
True] (meaning “Alice yes, Bob no, Charlie yes”). Such a classification system that
outputs multiple binary tags is called a multilabel classification system.

We won’t go into face recognition just yet, but let’s look at a simpler example, just for
illustration purposes:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier

y_train_large = (y_train >= '7')
y_train_odd = (y_train.astype('int8') % 2 == 1)
y_multilabel = np.c_[y_train_large, y_train_odd]
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5 Scikit-Learn offers a few other averaging options and multilabel classifier metrics; see the documentation for
more details.

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)

This code creates a y_multilabel array containing two target labels for each digit
image: the first indicates whether or not the digit is large (7, 8, or 9), and the second
indicates whether or not it is odd. Then the code creates a KNeighborsClassifier
instance, which supports multilabel classification (not all classifiers do), and trains
this model using the multiple targets array. Now you can make a prediction, and
notice that it outputs two labels:

>>> knn_clf.predict([some_digit])
array([[False,  True]])

And it gets it right! The digit 5 is indeed not large (False) and odd (True).

There are many ways to evaluate a multilabel classifier, and selecting the right metric
really depends on your project. One approach is to measure the F1 score for each
individual label (or any other binary classifier metric discussed earlier), then simply
compute the average score. The following code computes the average F1 score across
all labels:

>>> y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3)
>>> f1_score(y_multilabel, y_train_knn_pred, average="macro")
0.976410265560605

This approach assumes that all labels are equally important, which may not be the
case. In particular, if you have many more pictures of Alice than of Bob or Charlie,
you may want to give more weight to the classifier’s score on pictures of Alice. One
simple option is to give each label a weight equal to its support (i.e., the number of
instances with that target label). To do this, simply set average="weighted" when
calling the f1_score() function.5

If you wish to use a classifier that does not natively support multilabel classification,
such as SVC, one possible strategy is to train one model per label. However, this
strategy may have a hard time capturing the dependencies between the labels. For
example, a large digit (7, 8, or 9) is twice more likely to be odd than even, but the
classifier for the “odd” label does not know what the classifier for the “large” label
predicted. To solve this issue, the models can be organized in a chain: when a model
makes a prediction, it uses the input features plus all the predictions of the models
that come before it in the chain.

The good news is that Scikit-Learn has a class called ChainClassifier that does
just that! By default it will use the true labels for training, feeding each model the
appropriate labels depending on their position in the chain. But if you set the cv
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hyperparameter, it will use cross-validation to get “clean” (out-of-sample) predictions
from each trained model for every instance in the training set, and these predictions
will then be used to train all the models later in the chain. Here’s an example showing
how to create and train a ChainClassifier using the cross-validation strategy. As
earlier, we’ll just use the first 2,000 images in the training set to speed things up:

from sklearn.multioutput import ClassifierChain

chain_clf = ClassifierChain(SVC(), cv=3, random_state=42)
chain_clf.fit(X_train[:2000], y_multilabel[:2000])

Now we can use this ChainClassifier to make predictions:

>>> chain_clf.predict([some_digit])
array([[0., 1.]])

Multioutput Classification
The last type of classification task we’ll discuss here is called multioutput–multiclass
classification (or just multioutput classification). It is a generalization of multilabel
classification where each label can be multiclass (i.e., it can have more than two
possible values).

To illustrate this, let’s build a system that removes noise from images. It will take
as input a noisy digit image, and it will (hopefully) output a clean digit image,
represented as an array of pixel intensities, just like the MNIST images. Notice that
the classifier’s output is multilabel (one label per pixel) and each label can have
multiple values (pixel intensity ranges from 0 to 255). This is thus an example of a
multioutput classification system.

The line between classification and regression is sometimes blurry,
such as in this example. Arguably, predicting pixel intensity is more
akin to regression than to classification. Moreover, multioutput
systems are not limited to classification tasks; you could even have
a system that outputs multiple labels per instance, including both
class labels and value labels.

Let’s start by creating the training and test sets by taking the MNIST images and
adding noise to their pixel intensities with NumPy’s randint() function. The target
images will be the original images:

np.random.seed(42)  # to make this code example reproducible
noise = np.random.randint(0, 100, (len(X_train), 784))
X_train_mod = X_train + noise
noise = np.random.randint(0, 100, (len(X_test), 784))
X_test_mod = X_test + noise
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y_train_mod = X_train
y_test_mod = X_test

Let’s take a peek at the first image from the test set (Figure 3-12). Yes, we’re snooping
on the test data, so you should be frowning right now.

Figure 3-12. A noisy image (left) and the target clean image (right)

On the left is the noisy input image, and on the right is the clean target image. Now
let’s train the classifier and make it clean up this image (Figure 3-13):

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train_mod, y_train_mod)
clean_digit = knn_clf.predict([X_test_mod[0]])
plot_digit(clean_digit)
plt.show()

Figure 3-13. The cleaned-up image

Looks close enough to the target! This concludes our tour of classification. You now
know how to select good metrics for classification tasks, pick the appropriate preci‐
sion/recall trade-off, compare classifiers, and more generally build good classification
systems for a variety of tasks. In the next chapters, you’ll learn how all these machine
learning models you’ve been using actually work.

128 | Chapter 3: Classification



6 You can use the shift() function from the scipy.ndimage.interpolation module. For example,
shift(image, [2, 1], cval=0) shifts the image two pixels down and one pixel to the right.

Exercises
1. Try to build a classifier for the MNIST dataset that achieves over 97% accuracy1.

on the test set. Hint: the KNeighborsClassifier works quite well for this task;
you just need to find good hyperparameter values (try a grid search on the
weights and n_neighbors hyperparameters).

2. Write a function that can shift an MNIST image in any direction (left, right, up,2.
or down) by one pixel.6 Then, for each image in the training set, create four
shifted copies (one per direction) and add them to the training set. Finally, train
your best model on this expanded training set and measure its accuracy on the
test set. You should observe that your model performs even better now! This
technique of artificially growing the training set is called data augmentation or
training set expansion.

3. Tackle the Titanic dataset. A great place to start is on Kaggle. Alternatively, you3.
can download the data from https://homl.info/titanic.tgz and unzip this tarball
like you did for the housing data in Chapter 2. This will give you two CSV files,
train.csv and test.csv, which you can load using pandas.read_csv(). The goal
is to train a classifier that can predict the Survived column based on the other
columns.

4. Build a spam classifier (a more challenging exercise):4.
a. Download examples of spam and ham from Apache SpamAssassin’s publica.

datasets.
b. Unzip the datasets and familiarize yourself with the data format.b.
c. Split the data into a training set and a test set.c.
d. Write a data preparation pipeline to convert each email into a feature vector.d.

Your preparation pipeline should transform an email into a (sparse) vector
that indicates the presence or absence of each possible word. For example, if
all emails only ever contain four words, “Hello”, “how”, “are”, “you”, then the
email “Hello you Hello Hello you” would be converted into a vector [1, 0,
0, 1] (meaning [“Hello” is present, “how” is absent, “are” is absent, “you” is
present]), or [3, 0, 0, 2] if you prefer to count the number of occurrences of
each word.
You may want to add hyperparameters to your preparation pipeline to control
whether or not to strip off email headers, convert each email to lowercase,
remove punctuation, replace all URLs with “URL”, replace all numbers with
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“NUMBER”, or even perform stemming (i.e., trim off word endings; there are
Python libraries available to do this).

e. Finally, try out several classifiers and see if you can build a great spam classi‐e.
fier, with both high recall and high precision.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.
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