

PRO2514 - Pesquisa Quantitativa em Gestão de Operações

Análise Discriminante

Prof. Dr. Renato de Oliveira Moraes

Bibliotecas a serem usadas nessa aula

- MASS
- tidyverse
- caret

Exemplo 1

Variável dependente com 2 categorias

X11 - Especificação da compra

0: não usa análise valor

1: usa análise de valor para cada compra

Variáveis independentes

X1: Delivery Speed

X2: Price Level

X3: Price Flexibility

X4: Manufacturer Image

X5: Service

X5: Salesforce Image

X7: Product Quality

Passos

- Importar a base de dados Hatco.XLSX
- Instalar a biblioteca MASS: install.packages("MASS") library (MASS)
- Construir o modelo de análise discriminante com funções lineares (supõe que matriz de covariância é a mesma entre os grupos): mod discr <- lda ($x11 \sim x1 + x2 + x3 + x4 + x5 + x6 + x7$, data =Hatco)
- Olhar o modelo: print(mod_discr)

print(mod_discr)

Prior probabilities of groups:

0 1

0.4 0.6

Group means:

	x1	x2	x 3	x4	x 5	х6	x 7
0	2,500	2,988	6,803	5,300	2,715	2,625	8,293
1	4,192	1,948	8,622	5,213	3,050	2,692	6,090

Prof. Dr. Renato de Oliveira Moraes

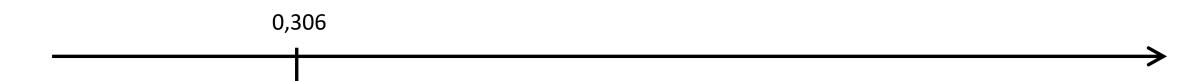
print(mod_discr) – continuação

Coefficients of linear discriminants:

	LD1
x 1	0,608
x2	0,238
x 3	0,507
x 4	-0,057
x5	-0,429
х6	0,381
x7	-0,592

Função discriminante

 $0,608 \times 1 + 0,238 \times 2 + 0,507 \times 3 - 0,057 \times 4 - 0,429 \times 5 + 0,381 \times 6 - 0,592 \times 7$



Centro do Grupo 0: Empresas que não usam análise de valor

Cálculo do centroide dos grupos pela função discriminante

Valores médios das variáveis em cada um dos dois grupos

Grupo	x 1	x2	x 3	x 4	x5	х6	x7
0	2,500	2,988	6,803	5,300	2,715	2,625	8,293
1	4,192	1,948	8,622	5,213	3,050	2,692	6,090

Função discriminante

 $0,608 \times 1 + 0,238 \times 2 + 0,507 \times 3 - 0,057 \times 4 - 0,429 \times 5 + 0,381 \times 6 - 0,592 \times 7$

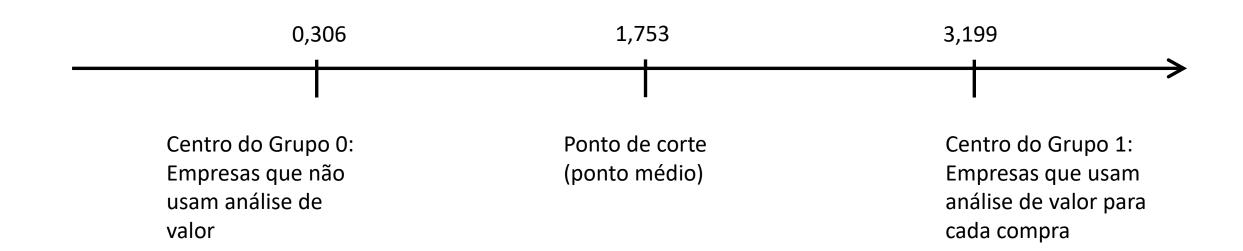
Centroides dos grupos – valor da função discriminante nos centroides dos grupos

Grupo 0: 0,306

Grupo 1: 3,199

Função discriminante

 $0,608 \times 1 + 0,238 \times 2 + 0,507 \times 3 - 0,057 \times 4 - 0,429 \times 5 + 0,381 \times 6 - 0,592 \times 7$

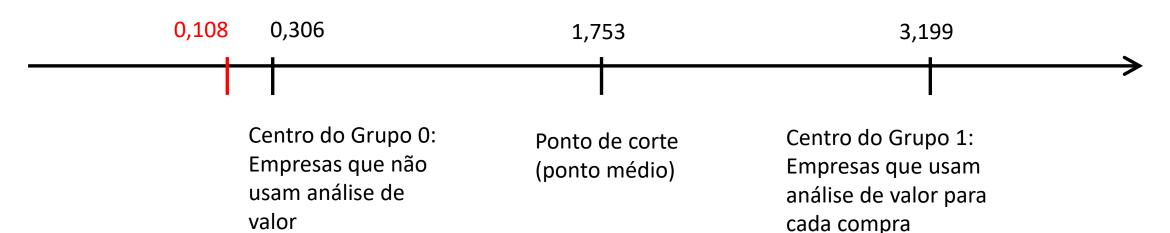


Onde classificar uma nova observação

x1 x2 x3 x4 x5 x6 x7 2 3 6 7 3 4 8

 $0,608 \times 1 + 0,238 \times 2 + 0,507 \times 3 - 0,057 \times 4 - 0,429 \times 5 + 0,381 \times 6 - 0,592 \times 7 = 0,108$

Nova observação classificada no Grupo 0



Analisar a qualidade do modelo

- Instalar a biblioteca tidyverse install.packages("tidyverse") library (tidyverse)
- Fazer a predição:
 predicao = mod_discr %>% predict (Hatco)
- Olhar os resultados:

```
head(predicao$class, 10)
head(predicao$posterior, 10)
head(predicao$x, 10)
```

// classes atuais
// probabil de pertencer a cada grupo

// valor da função discriminante

Análise da taxa geral de acertos

l = mean(predicao\$class == Hatco\$x11)

print(I)

0,9 // 90% de acertos

Construção da tabela de confusão

table(predicao\$class, Hatco\$x11, dnn=c("previsto","Real"))

	Re	eal
Previsto	0	1
0	37	7
1	3	53

Medidas de classificação binária

		Realidade			
		Positivo (1)	Negativo (0)		
ão	Positivo (1)	VP – Verdadeiro Positivo	FP – Falso Positivo		
Previsão	Negativo (0)	FN – Falso Negativo	VN – Verdadeiro Negativo		

$$Eficácia = \frac{(VP + VN)}{(VP + FN + FP + VN)}$$

$$Precisão = \frac{VP}{(VP + FP)}$$

$$Sensibilidade = \frac{VP}{(VP + FN)}$$

$$Especificidade = \frac{VN}{(FP + VN)}$$

$$Eficácia = \frac{(VP + VN)}{(VP + FN + FP + VN)}$$

		Realidade			
		Positivo (1)	Negativo (0)		
ão	Positivo (1)	VP – Verdadeiro Positivo	FP – Falso Positivo		
Previsão	Negativo (0)	FN – Falso Negativo	VN – Verdadeiro Negativo		

Taxa geral de acerto do modelo

$Precisão = \frac{VI}{(VP + FP)}$

		Realidade			
		Positivo (1)	Negativo (0)		
ão	Positivo (1)	VP – Verdadeiro Positivo	FP – Falso Positivo		
Previsão	Negativo (0)	FN – Falso Negativo	VN – Verdadeiro Negativo		

A probabilidade de uma previsão positiva ser verdadeira

$Sensibilidade = \frac{VI}{(VP + FN)}$

		Realidade		
		Positivo (1)	Negativo (0)	
ão	Positivo (1)	VP – Verdadeiro Positivo	FP – Falso Positivo	
Previsão	Negativo (0)	FN – Falso Negativo	VN – Verdadeiro Negativo	

A frequência com que o modelo identifica os casos positivos

$Especificidade = \frac{VV}{(FP + VN)}$

		Realidade				
		Positivo (1)	Negativo (0)			
ão	Positivo (1)	VP – Verdadeiro Positivo	FP – Falso Positivo			
Previsão	Negativo (0)	FN – Falso Negativo	VN – Verdadeiro Negativo			

A frequência com que o modelo identifica os casos negativos

Construção da tabela de confusão

	Re	eal
Previsto	0	1
0	37	7
1	3	53

$$Eficácia = \frac{(37+53)}{100} = 0,90$$

$$Precisão = \frac{37}{(37+7)} \approx 0.841$$

$$Sensibilidade = \frac{37}{(37+3)} \approx 0.925$$

$$Especificidade = \frac{53}{(7+53)} \cong 0,883$$

- Instalar pacote caret install.packages('caret') library (caret)
- Preparar dados da classificação e predicação observado = as.factor (Hatco\$x11) predito = predicao\$class
- Gerar matriz de confusão confusionMatrix (predito, observado) caret::confusionMatrix

confusionMatrix (predito, observado)

```
Reference
Prediction
           37
                    53
```

```
Eficácia (Accuracy : 0.9)
```

95% CI: (0.8238, 0.951)

No Information Rate: 0.6

P-Value [Acc > NIR] : 2.339e-11

Kappa : 0.7951

Mcnemar's Test P-Value: 0.3428

```
Sensibilidade Sensitivity: 0.9250
Especificidade Specificity: 0.8833
 Precisão (Pos Pred Value : 0.8409
```

Neg Pred Value: 0.9464

Prevalence: 0.4000

Detection Rate: 0.3700

Detection Prevalence: 0.4400

Balanced Accuracy: 0.9042

Outras formar de avaliar o modelo discriminante

- Separação da base de dados em duas partes: desenvolvimento e teste. Essa abordagem é muito comum em ciências de dados.
 - Base de desenvolvimento é usada para construção do modelo –
 70% a 80% da base original
 - Base de teste é usada para avaliar os acertos de classificação do modelo – de 20% a 30% da base original
- Validação cruzada. São construídos N modelos, onde N é o número de observações da base de dados. A cada construção de modelo, uma observação e ignorada e usada para avaliar a capacidade de classificação do modelo

Exemplo 2

Variável dependente com 3 categorias

x14: situação compra

1: nova

2: primeira recompra

3: outras

Variáveis independentes

X1: Delivery Speed

X2: Price Level

X3: Price Flexibility

X4: Manufacturer Image

X5: Service

X5: Salesforce Image

X7: Product Quality

$$mod2_discr <- Ida (x14 ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, data = Hatco)$$

print(mod2_discr)

print(mod2_discr)

```
Call: lda(x14 ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, data = Hatco)
```

Prior probabilities of groups:

1 2 3 0.34 0.32 0.34

Group means:

	x1	x 2	x3	x4	x5	x6	x7
1	2.482353	2.094118	7.135294	4.958824	2.229412	2.614706	7.614706
2	3.421875	3.181250	7.296875	5.565625	3.284375	2.712500	7.315625
3	4.635294	1.864706	9.214706	5.238235	3.255882	2.670588	6.002941

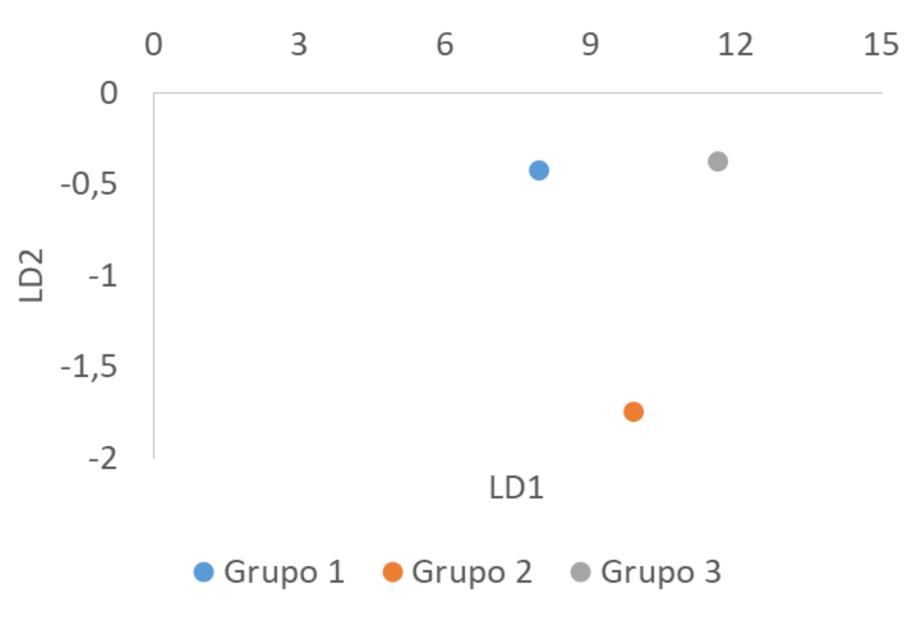
print(mod2_discr)

```
Coefficients of linear discriminants:
```

```
LD1 LD2
x1 -0.04164167 -0.89853715
x2 -0.14117700 -1.47110540
x3 0.78796904 0.28424773
x4 0.42300427 -0.49658943
x5 1.67295097 1.26898251
x6 -0.62939446 0.68743446
x7 -0.18984722 0.09056349
```

Proportion of trace:

LD1 LD2 0.8545 0.1455



predicao2 = mod2_discr %>% predict (Hatco)
mean(predicao2\$class == Hatco\$x14)
0.86

table(predicao2\$class, Hatco\$x14, dnn=c("Previsto","Real"))

		Rea	1	
Previs	to	1	2	3
	1	30	1	0
	2	3	24	2
	3	1	7	32

Gerar matriz de confusão e qualidade do modelo de classificação

observado2 = as.factor (Hatco\$x14) predito2 = predicao2\$class

confusionMatrix (predito2, observado2)

confusionMatrix (predito2, observado2)

Confusion Matrix and Statistics

Reference

Prediction 1 2 3

1 30 1 0

2 3 24 2

3 1 7 32

Overall Statistics

Accuracy: 0.86

95% CI: (0.7763, 0.9213)

No Information Rate: 0.34

P-Value [Acc > NIR] : <2e-16

Kappa : 0.7897

Mcnemar's Test P-Value: 0.1888

confusionMatrix (predito2, observado2)

Statistics by Class:

	Class: 1	Class: 2	Class: 3
Sensitivity	0.8824	0.7500	0.9412
Specificity	0.9848	0.9265	0.8788
Pos Pred Value	0.9677	0.8276	0.8000
Neg Pred Value	0.9420	0.8873	0.9667
Prevalence	0.3400	0.3200	0.3400
Detection Rate	0.3000	0.2400	0.3200
Detection Prevalence	0.3100	0.2900	0.4000
Balanced Accuracy	0.9336	0.8382	0.9100

Exercício – Análise Discriminante Cereais Matinais

Variáveis

- Brand
- Manufacturer : G, K e Q
- Calories
- Protein
- Fat
- Sodium
- Fiber
- Carbohydrates
- Sugar
- Potassium

Construir um modelo discriminante

Variável Dependente: Manufacturer (G, K e Q)

Variáveis Independentes:

- Calories
- Protein
- Fat
- Sodium
- Fiber
- Carbohydrates
- Sugar
- Potassium