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Previous class 

• Missing data 
• Data interpolation 
• Data distribution 
• Outlier identification 
• Feature scaling 
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This class 

• Assess correlation 
• Assess data (dis)similarity 
• High-dimensional data  
• Dimension reduction - PCA 
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 Correlation 

• Features within a dataset can be related for lots of reasons. For 
example: 
– One variable could cause or depend on the values of another 

variable. 
– One variable could be lightly associated with another variable. 
– Two variables could depend on a third unknown variable. 

 

• Feature correlation may indicate redundancy in information 
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Correlation 

– Positive Correlation: both variables change in the same direction. 
– Neutral Correlation: no relationship in the change of the variables. 

(unrelated) 
– Negative Correlation: variables change in opposite directions. 
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Correlation 
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Measuring correlation 

• Covariance 
 

• Pearson correlation 
 

• Spearman correlation 
 

• … 
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Covariance 
• between two variables (given n samples) 

 

𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 =  
∑ 𝑋𝑋𝑖𝑖 − 𝑋𝑋� 𝑌𝑌𝑗𝑗 − 𝑌𝑌�

𝑛𝑛 − 1 
 

 
• Linear relationship, Gaussian-like distribution 
• The sign of the covariance can be interpreted as whether the two variables 

change in the same direction (positive) or change in different directions 
(negative).  

• A covariance value of zero indicates that both variables are completely 
independent. 

• The magnitude of the covariance is not easily interpreted.  
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Ex. Covariance matrix of two variables 

 
X = [0 1 2] 

 
Y = [2 1 0] 

 
1 −1
−1 1  
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Pearson correlation 

• named for Karl Pearson – a measure of linear correlation 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)

𝑃𝑃𝑠𝑠𝑠𝑠𝐶𝐶 𝑋𝑋 ∗ 𝑃𝑃𝑠𝑠𝑠𝑠𝐶𝐶(𝑌𝑌)
 

 
• returns value between -1 and 1 that represents the limits of correlation 

from a full negative correlation to a full positive correlation.  
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Pearson correlation 

• Assumptions 
– Both variables quantitative and normally distributed with no outliers 
– Data from a random or representative sample 
– You expect a linear relationship 

 

• If any of these assumptions are violated, should consider a 
rank correlation measure, e.g., Spearman, Kendall... 
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Pearson correlation 

Correlation coefficient Correlation strength Correlation type 

-.7 to -1 Very strong Negative 

-.5 to -.7 Strong Negative 

-.3 to -.5 Moderate Negative 

0 to -.3 Weak Negative 

0 None Zero 

0 to .3 Weak Positive 

.3 to .5 Moderate Positive 

.5 to .7 Strong Positive 

.7 to 1 Very strong Positive 
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https://www.scribbr.com/statistics/correlation-coefficient/ 



Spearman correlation 

• Two variables may be related by a nonlinear relationship 
• Further, they may have a non-Gaussian distribution 

– use the Spearman’s correlation coefficient (named for Charles 
Spearman) to summarize the strength between the two data 
samples.  

– can also be used if there is a linear relationship between the 
variables, but will have slightly less power (e.g. may result in lower 
coefficient scores) 
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Spearman correlation 

• The scores are between -1 and 1 for perfectly negatively 
correlated variables and perfectly positively correlated, 
respectively. 
 

• These statistics are calculated from the relative rank of values 
on each sample.  
– common approach in non-parametric statistics, e.g. statistical 

methods where we do not assume data has a Gaussian distribution. 
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Spearman correlation 

• A correlation coefficient is a descriptive (bivariate or 
multivariate) statistic 

• Values obtained based on sample data do not necessarily 
generalize to the population 
– Test statistics (F test, t-test) to learn about statistical significance 
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Spearman correlation 

• Test of statistical significance 
• P-value: a measure of how likely or probable it is that any 

observed correlation is due to chance.  
– P-values range between 0 (0%) and 1 (100%). A p-value close 

to 1 suggests no correlation other than due to chance, p-
values close to 0 indicate the observed correlation is unlikely 
to be due to chance. 
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Correlation vs causation 

• “Correlation does not imply causation” 
 
– Correlation means there is a statistical association between 

variables.  

 
– Causation means that a change in one variable causes a change in 

another variable. 
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https://www.scribbr.com/methodology/correlation-vs-causation/ 



Correlation vs causation 

• https://www.tylervigen.com/spurious-correlations 
• https://towardsdatascience.com/correlation-is-not-causation-

ae05d03c1f53  
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https://www.tylervigen.com/spurious-correlations
https://towardsdatascience.com/correlation-is-not-causation-ae05d03c1f53
https://towardsdatascience.com/correlation-is-not-causation-ae05d03c1f53


Assessing data (dis)similarity 

• Data items described by multiple (quantitative attributes) 
 
– Spatialization: items as points in a (multi)dimensional space 
– Geometry => graphical representation = visualization 

 
– Ex. https://www.youtube.com/watch?v=wvsE8jm1GzE 
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Distances & similarities 

• Proximity in space as a proxy to `similarity´ (or `dissimilarity´) 
– Data `points´ that are close in space are similar  
– Data `points´ that are far away in space are dissimilar   

• Similar to `clustering´ algorithms in machine learning 
 

• Distance between points to quantify (dis)similarity 
– Short distances (low values of distance function) => higher similarity 
– High distances (high values of distance function) => higher 

dissimilarity 
 
 
 

24 



Distances & similarities 

• A distance function is a metric if it satisfies the properties of 
– Non-negativity 
– Identity 
– Symetry 
– Triangular inequality 

 

• All metrics are distances, but not all distance functions are 
metric 
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Distances & similarities 

• Once we  measure (dis)similarity 
– We can identify groups of data items (cluster, visualization) 
– Analyze  patterns in groups, explain behavior of groups 
– Infer an organization for the data 
– Consider a new item in relation to existing groups 
– Employ machine learning algorithms to generate 

descriptive/predictive models 
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Computing distances 

• Depends on the type of variable 
– Quantitative 
– Binary 
– Categorical: nominal/ordinal 

27 



Distances & similarities 

• Quantitative 
– Minkowski family of distances 

• Euclidean, Manhattan, Chebyshev 

– Cosine similarity 
– Correlation coefficient 
– ... 
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Distances & similarities 
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0 ≤  𝜃𝜃 ≤  
𝜋𝜋
2

 



Distances & similarities 
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0 ≤  𝜃𝜃 ≤  
𝜋𝜋
2

 

cos 𝜃𝜃 = 𝑃𝑃𝑠𝑠𝑠𝑠 𝐷𝐷𝐶𝐶𝐷𝐷𝐷,𝐷𝐷𝐶𝐶𝐷𝐷𝐷   
disim Doc1, Doc2 = 1 − sim(Doc1, Doc2) 



Euclidean vs cosine 

• Euclidean distances 
between points A, B, C all 
equal (8), cosine 
similarities are different 
 

• Cosine similarities between 
points A’, B’, C’ all equal (1, 
or 0 distance), Euclidean 
distances are different 
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Source: https://medium.com/@sasi24/cosine-similarity-
vs-euclidean-distance-e5d9a9375fc8 



Euclidean vs cosine 

• When to use cosine? 
– Great illustrated discussion here: 

https://cmry.github.io/notes/euclidean-v-cosine 

 
– “Cosine similarity is generally used as a metric for measuring distance 

when the magnitude of the vectors does not matter. This happens for 
example when working with text data represented by word counts.” 
 

– See section Cosine in action 
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https://cmry.github.io/notes/euclidean-v-cosine


Categorical variables 

• Many algorithms take numerical variables only => encoding 
categorical variables 
– Ordinal values can be directly mapped to discrete numbers 
– Non-ranked values require specific strategies, e.g. “one-hot 

encoding” 
 

• See https://www.analyticsvidhya.com/blog/2020/08/types-of-
categorical-data-encoding/ 
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Categorical variables 
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one hot encoding 
creates `dummy variables´ 



Categorical variables 
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dummy encoding: N-1 features to represent N 
labels/categories 



Distances & similarities 

• Binary variables 
– Simple matching 
– Jaccard  
– Hamming 
– ...  
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Distances & similarities 

• Good tutorial:  
 
 

• Similarity Measurement (revoledu.com) 
 

37 

https://people.revoledu.com/kardi/tutorial/Similarity/


Distances & similarities 

• If you have n data points described by d features: d-
dimensional space representation given by n x d matrix  

• Eventually, you may compute a dissimilarity measure in this 
space 
– Yields another representation of your data:  n x n dissimilarity matrix 
– This computation is computationally expensive O(n2) 

• Space embedding: obtain the embedding matrix from the 
distance matrix  
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Data representation 
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8 2 11 10 7 12 5 12 15 10 0 

0 12 1 12 12 5 1 7 11 12 12 

10 0 12 12 9 12 0 10 12 12 8 

1 12 05 12 12 16 2 12 9 12 0 

12 10 2 12 1 12 12 11 6 0 12 

6 12 05 17 12 10 12 12 9 12 8 

12 12 7 12 0 12 0 12 10 12 12 

2 10 05 15 12 1 12 10 9 8 2 

7 12 05 0 12 12 10 17 9 12 12 

5 6 8 12 12 15 12 6 9 17 0 

10 12 0 11 10 2 7 12 2 16 7 

12 8 05 12 12 12 8 12 9 12 12 

0 12 01 12 9 0 12 10 5 5 12 

0 1 05 10 15 12 8 12 9 11 5 

12 5 0 12 12 12 12 12 18 12 12 

5 12 15 2 7 5 0 12 9 0 8 

n x d data matrix (embedding) n x n (symmetric) distance matrix  



Distances & similarities 

 
 

• Issue to pay attention 
– Data in high-dimensional spaces  
– Scenarios where d >> n (sparse spaces) 

 
– Distances in high-dimensional spaces do not behave as our intuition 

tells (from observing low-dimensional Cartesian spaces) 
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Distances & similarities 

• High-dimensional spaces display properties that are against our 
intuition 
– Highly sparse... lots of empty spaces 
– Relative contrast: difference between the maximum and the minimum 

(Euclidean) distances tends to zero as dimensionality increases 
– Concentration of distances: pairwise distances nearly the same for all 

points...  
– Concept of nearest-neighbor not meaningful: small perturbation can 

change the nearest point into the farthest one 
 

– http://www.mariovalle.name/CrystalFp/uploads/CrystalFpLib/high-dim-
spaces.pdf 
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Distances & similarities 

• Euclidean distance behaves poorly in high-dimensions 
• Select a distance function appropriate 
• Minkowski norm, cosine distance, ...  

 

• Know your data: high-dimensional data is not always hd 
– effective/intrinsic dimensionality vs embedding dimensionality 
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Distances & similarities 

• When a distance function is a good one? 
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Distances & similarities 
When a distance function is a good one? 
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Relative contrast depends on the distance algorithm chosen (here some example of 
pairwise distances distribution from CrystalFp). From: 

http://www.mariovalle.name/CrystalFp/uploads/CrystalFpLib/high-dim-spaces.pdf 



Visualization issues 

• Visualization cannot be directly used to understand high 
dimensional data, mainly because we can produce graphical images 
only in 2D and 3D. 

• High-dimensional datasets are usually huge (to fight the sparseness 
of the high dimensional spaces), and a computer screen has a finite 
number of distinct pixels.  

• On the converse, full automatic knowledge discovery approaches 
only work for well-defined and clearly specified problems 
– visualization can offer insights, even if its usage in high dimensional spaces 

is not intuitive or perceptually immediate. 
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Visualization issues 

• Grasp partial idea of the high-dimensional space structure: 
visualiza it on 2D screen in a way that preserves at least 
approximately the distances between data points in the 
original space. 

• Category of techniques known as multidimensional projection 
 

• Later…  
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Dimension Reduction 

• Approaches 
– Feature selection  
– Change the representation space  

• E.g., Principal Component Analysis 
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Dimension Reduction 

• Common approach: Principal Component Analysis 
– Obtains new features (the principal components) as linear 

combinations of the original correlated)  features/variables 
– The PCs are essentially (uncorrelated)  linear combinations of the 

original variables, capturing most of the variance in the data (Jolliffe 
2002)  

– the first PC explains the most variance, the second explains the 
second most variance, and so on, with each subsequent component 
explaining less 
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PCA for dimension reduction 

• Goal is to find linearly independent dimensions (PCs) which can 
losslessly represent the data points. 

 
• Number of PC = number of dimensions, but last PCs can often be 

discarded 
 

• Those newly found dimensions should allow us to 
predict/reconstruct the original dimensions. The 
reconstruction/projection error should be minimized. 
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PCA for dimension reduction 

 
• particularly useful in processing data with many features, 

where multi-colinearity exists between the features 
 

• beyond visualization, useful for denoising and data 
compression 
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How PCA works 
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Source: Gewers et al. 2018 
arXiv 1804.02502v2 



How PCA works 

• Calculate the covariance matrix X of data points 
• Calculate eigenvectors and corresponding eigenvalues 
• Sort the eigenvectors according to their eigenvalues in 

decreasing order 
• Choose first k eigenvectors as the new k dimensions => these 

are the most important directions! 
• Transform the original d-dimensional data points onto the new 

k dimensions 
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PCA explained@StaQuest 

• https://www.youtube.com/watch?v=HMOI_lkzW08   ~5 min – 
how to interpret 
 

• https://www.youtube.com/watch?v=FgakZw6K1QQ  ~21 min – 
step by step 
 

• https://www.youtube.com/watch?v=oRvgq966yZg   ~8 min – 
practical tips  
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https://www.youtube.com/watch?v=HMOI_lkzW08
https://www.youtube.com/watch?v=FgakZw6K1QQ
https://www.youtube.com/watch?v=oRvgq966yZg


How PCA works 

• Quite often, the dataset is standardized prior to PCA  
– advisable when the original variables have significantly different 

dispersions or scales, to avoid biasing the influence of certain 
variables  

– get misleading components if use data features of different scales 
 

• If features are of different scales should use  correlation matrix 
instead of covariance matrix 
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Notes 

• Always normalize your data before doing PCA because if we 
use data features of different scales, you get misleading 
components  
 

• If features are of different scales should use  correlation matrix 
instead of covariance matrix 
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Data pre-processing tasks 
• Checking for & handling missing values 
• Checking for & handling categorical data (data mining) 
• Verify distribution of variables - check for anomalies and outliers 
• Feature scaling (normalization, standardization) 
• Assessing data (dis)similarity 
• Assess correlation between variables 
• Dimension reduction (e.g. PCA transformation) 
• Data sub-sampling 
• Data aggregation 
• Data interpolation 
• Data splitting (e.g. for data mining model learning) 
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Sources/material 

T. Munzner, Visualization Analysis & Design 
 
Information Visualization Fundamentals, Enrico Bertini, online course 
in Coursera 
 
M. Valle – a look at high-dimensional spaces 
http://www.cscs.ch/~mvalle 
 
Principal component analysis: a natural approach to data exploration. 
Gewers et al. 2018  
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http://www.cscs.ch/%7Emvalle
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