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1.1. Abstract 

The collection of all transcripts in a cell, a tissue, and organisms is called its transcriptome, or meta-
transcriptome when dealing with the transcripts of a community of different organisms. Nowadays we have a vast 
array of technologies that allow us to assess the (meta-)transcriptome regarding its composition (which transcripts 
are produced) and the abundance of its components (what are the expression levels of each transcript), and we can 
do this across several samples, conditions, and time-points, at costs that are decreasing year after year, allowing 
experimental designs with ever increasing complexity. Here we will present the current state of the art regarding 
the technologies that can be applied to the study of plant transcriptomes and their applications, including 
differential gene expression and co-expression analyses, identification of sequence polymorphisms, and the 
application of machine learning for the identification of alternative splicing and ncRNA, the ranking of candidate 
genes. We continue with a collection of examples of these approaches in a diverse array of plant species to generate 
gene/transcript catalogues/atlases, population mapping, identification of genes related to stress phenotypes and 
phylogenomics. We finalize the chapter with some of our ideas about the future of this dynamic field in plant 
physiology. 

1.2. Introduction 

The transcriptome is the collection of all RNA molecules found at a given time in an organism, in a tissue or 
in a cell. Researchers today can study the full transcriptome, or a targeted transcriptome (a defined subset of 
transcripts under a certain condition) using an array of different technologies, like microarrays, quantitative real 
time PCR (qRT-PCR) and nucleic acid sequencing. In most approaches the population of RNA molecules should 
be first converted into the more stable cDNA, but recent advances and the development of new sequencing 
platforms are allowing the direct sequencing of the RNA molecules, removing biases that could be introduced by 
the synthesis of cDNA (Garalde et al. 2018; Keller et al. 2018). Assessing the transcriptome offers an overview 
of the functional component of a genome, and of the genes that must be active in order to achieve a given 
transcriptional state. Transcriptomics studies have been employed to develop catalogues of expressed sequences, 
by the identification of mRNAs, small-RNAs (miRNA, snoRNAs), long-non-coding RNAs (lncRNAs) among 
others. Also, to aid in the annotation of newly sequenced genomes, improving the inference and definition of gene 
structure, like start and end of the transcription, position of introns and exons and alternative splicing patterns. 
Perhaps the most prevalent use of transcriptomics is the quantification of gene expression levels under different 
conditions aiming at revealing the molecular mechanisms underlying the establishment of phenotypes and 
responses to stresses. Transcriptomics is increasingly being used to infer the function of genes, by exploiting co-
expression, under the assumption of “guilt-by-association", and for the identification of coordinated expression 
modules. The rapidly decreasing costs and wide availability of the diverse transcriptomics technologies is 
allowing studies in diverse groups of plants and addressing evolutionary questions about the evolution of 
expression patterns and gene expression and regulation networks, at a scale without precedent.  

The earliest approaches that can be called transcriptomics studies relied on sequencing expressed sequence 
tags (ESTs) using the low-throughput Sanger chain-termination sequencing technology and started in the 1980s 
(See Figure 1). EST sequencing projects were expensive and laborious but allowed assessing the functional 
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fraction of a genome sequence at a fraction of the effort and cost. The wealth of sequence information generated 
in these projects could be leveraged with the development of array-based hybridization technologies (macroarrays 
used nylon membranes, and microarrays used glass slides), which offered higher throughput and have lower 
application costs than EST projects, once the development of the membranes/slides had been deduced. The first 
use of the words microarray or macroarray in the scientific literature dates back to 1996, but their use really takes 
off in the 2000s (Figure 1). The use of ESTs and array-based technologies was superseded by high-throughput 
sequencing-based methods, first exploiting small transcript signatures (tags) and later the sequencing of complete 
or close to complete transcripts. 

 
Figure 1. Number of publications in the last four decades for different transcriptome technologies 

 
In this chapter we will introduce you to the basics of transcriptome studies, applications, and some examples 

in non-model plants. 

1.3. Transcriptomics approaches 

1.3.1. Array based approaches 

Large-scale characterization of transcriptomes was made possible with the use of microarrays. In this 
technology, an array of oligonucleotide probes that are complementary to known transcripts is immobilized on a 
glass slide. Next, cDNA molecules synthesized from RNA are hybridized with the probes and signal intensities 
are assessed to provide a measure of transcript abundance. This provides an economical way of analyzing 
transcriptomes on a genome-wide scale. Microarrays are used nowadays for model species and economically 
important crops, primarily due to low cost and laboratory routine. 

However, this approach presents a number of disadvantages that have relevant practical implications. First, 
previous knowledge about the transcripts of interest is required for designing the array chip, which hinders 
application for non-model species. This may introduce bias towards the specific sequences used to obtain the 
probes, which is particularly important for genes with multiple isoforms. Second, transcript abundance estimation 
is not accurate for lowly expressed genes, owing to background noise from non-specific hybridization, or for very 
highly expressed genes, due to probe saturation. The dynamic range of detection is thus limited. Third, cross-
hybridization of transcripts with similar sequence can adversely affect expression estimates. Finally, intrinsic 
differences in hybridization exist between probes because of their sequence content (Marioni et al. 2008; Wang 
et al. 2009; Zhao et al. 2014).  

Sequencing-based approaches resolve many of these issues and are now the method of choice for large-scale 
transcriptome profiling in a variety of scenarios. From now on we will focus on these more recent strategies. 

1.3.2. Sequencing based approaches 

In-depth knowledge and understanding of a plant genome, or any organism for that matter, involves the 
elaboration of a catalogue of the genes present in the genome and information about the expression levels of the 
transcripts derived from these genes under a wide array of conditions. In both cases one requires sequence data.  

The most widely used technology in early genome projects was Expressed Sequence Tag (EST) sequencing 
(reviewed by Parkinson and Blaxter 2009). EST sequencing was employed to generate gene catalogues, both in 
model plants (Delseny et al. 1997; Weng et al. 2005; Asamizu et al. 1999; Banks et al. 2011), and in crops (e.g., 
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Yamamoto and Sasaki 1997; Vettore et al. 2003; Ma et al. 2004; Pavy et al. 2005). In many cases, ESTs also 
served as a basis for the development of cDNA microarrays to query gene expression under different plant 
conditions or developmental stages (Lembke et al. 2012; Pavy et al. 2008). In most projects, ESTs were derived 
from normalized libraries, which meant that all transcripts have approx. the same probability to be sequenced This 
readily reduces costs for gene discovery, but the gene expression levels and the dynamics of transcription 
regulation cannot be assessed.  

With the creation and advance of high-throughput sequencing (HTS) technologies towards the end of the 1990s 
and in the early 2000s, new approaches were applied to discover plant genes and transcripts and to assess the 
dynamics of transcription, and its regulation, like alternative transcription starting site (TSS) and alternative 
splicing form usage. Among these approaches one could mention Cap Analysis of Gene Expression – CAGE (de 
Hoon and Hayashizaki 2008) and Serial Analysis of Gene Expression – SAGE (Velculescu et al. 1995; Matsumura 
et al. 2005), to name just a few; which are collectively known as tag sequencing approaches (Harbers and Carninci 
2005)(See “Tags” in Figure 1). These technologies started by exploiting the traditional Sanger DNA sequencing 
method to assess transcription, but moved soon to exploit the newer, highly parallel and HTS technologies, and 
thus gained suffixes like –deep or –seq and prefixes like ultra–, to differentiate them from their older lower 
throughput versions. Briefly, tag sequencing approaches aim to generate short sequence tags from the transcript 
ends, either the 5’ or the 3’ end. These short tags should unequivocally identify each transcript or genomic region, 
although it was not uncommon that a single tag could be mapped to more than one transcript/gene, particularly in 
cases of large gene families which are common in plants. In addition, the amount of tags sequenced for each 
transcript is directly related to the transcript abundance in the original sample. Being based on short sequence tags 
from the transcript ends, these approaches were better suited for organisms whose genomes were already 
sequenced. 

On the one hand, one of the main advantages of either EST and tag-sequencing approaches is the generation 
of a digital measure of gene expression, the number or count of a certain event, i.e., the sequencing of a complete, 
or part of a, RNA molecule. In contrast to an analogous measure, such as that offered by cDNA microarrays which 
is subject to probe saturation and thus has a low dynamic range. This kind of digital measure is not saturated in 
the case of highly abundant transcripts. For the case of lowly expressed transcripts, the trivial alternative is to 
continue counting events until a certain number of rare events (lowly expressed transcripts) have been achieved, 
although this could have an important impact on the overall cost of the experiment. If lowly expressed transcripts 
are the focus of the study, then alternative approaches can be employed, as targeted sequencing and quantitative 
reverse transcription PCR (RT-qPCR). On the other hand, the main drawback of both approaches (ESTs and tag-
sequencing), is that neither of them provides the full representation of the underlying transcripts. Additionally, 
tag-sequencing and microarray approaches require pre-existing knowledge about the transcript space of the 
species of interest, which impose serious limitations to its application in non-model organisms. 

1.3.2.1. RNASeq 

The sequencing of transcriptomes employing HTS technologies, without focus on any particular region of the 
mRNA, in contrast to CAGE or SAGE, is known as RNASeq. The first publications using the word RNASeq 
appeared between 2006 and 2008 applied to few organisms (Mortazavi et al. 2008; Nagalakshmi et al. 2008; 
Bainbridge et al. 2006; Wilhelm et al. 2008; Cloonan et al. 2008), also including Arabidopsis thaliana, the model 
land plant (Lister et al. 2008) (See “RNASeq” in Figure 1). 

The synthesis and maturation of transcripts is a finely regulated process, that allows the plant cell to produce 
the required gene products in the proper quantities and at the proper times and places. Within a single experiment, 
RNASeq allows the discovery of expression levels, splicing events (Marquez et al. 2012; Shang et al. 2017; Brown 
et al. 2017), RNA editing (Hackett and Lu 2017), and mutations (Peng et al. 2016; Serin et al. 2017). RNASeq 
paves the way for the understanding of the rules governing RNA regulation and the underlying regulatory 
networks, thus generating new insights on plant development and the response to biotic and abiotic (Imadi et al. 
2015) stresses at the cellular and molecular levels.  

The main steps in any RNASeq project are i) sample preparation, ii) library preparation and iii) sample 
sequencing.  

i) Sample preparation consists on the isolation of RNA from the biological samples of interest. Plant 
cells have different types of RNA molecules, like messenger RNA (mRNA), ribosomal RNA (rRNA), 
transfer RNA (tRNA) and other types of non-coding RNA (ncRNA). Over 95% of the transcript 
population in a cell consists of rRNA and tRNA species (Rosenow et al. 2001). Thus, to assess, via HTS 
technologies, the other transcript species, samples must be processed in special ways. For instance, if the 
objective of the project is to assess mRNAs transcribed by RNA pol II (which are mostly genes that will 
eventually undergo translation), one can exploit the fact that these eukaryotic mRNAs are 
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polyadenylated, by fishing for these transcripts using poly-dT oligonucleotides, effectively excluding the 
large fraction of rRNA and other ncRNAs. On the other hand, if one is interested in evaluating the whole 
transcriptome (mRNA + all types of ncRNAs, only excluding rRNA), then there are approaches to 
specifically remove rRNA from the sample, usually employing hybridization techniques, methods that 
are usually referred to as ribo-depletion (O'Neil et al. 2013). Additionally, the goal of the study could be 
to focus on small ncRNAs, in that case one would perform a size fractionation and selection step.  

As part of ii) library preparation, for short-read HTS technologies (See below for long-read HTS 
technologies), the isolated RNA must be converted into double-stranded cDNA and fragmented. 
Fragments should be ligated to adapters to allow amplification and sequencing. At this point it is 
important to remember that a given message in the genome is encoded in one of the two strands of the 
DNA double helix, and thus it is important in most cases to keep the information of which strand was 
transcribed. In general, one can divide the library preparation methods in two groups, those that keep the 
strand information (strand-specific protocols), and those that do not (often called unstranded protocols). 
Today, most RNASeq datasets are still being generated using library preparation protocols that do not 
keep the strand information. For instance, from 219,832 green plant datasets using RNA as source in 
RNASeq experiments in the Short Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra/; July 2020), 
only 5,995 have strand-specific in their description.   

iii) Sample sequencing is carried out in massively parallel sequencing instruments, paying attention 
to the dependence between library preparation method and sequencing instrument. The most widely 
available technologies for RNASeq are those released by Illumina Inc, i.e., using reversible-terminators 
sequencing-by-synthesis technology (Bentley et al. 2008; Illumina 2010), within their sequencing 
instruments MiSeq, HiSeq, NextSeq or NovaSeq. Samples prepared with Illumina library construction 
methods are compatible with any of their instruments, the only difference being on the throughput 
obtained, e.g., number of sequenced fragments and number of samples that can be analyzed 
simultaneously. 

Before you start your RNAseq project you must develop the experimental design that will allow you to answer 
biologically relevant questions with a pre-defined level of certainty. Here we will only highlight two factors among 
the many that must be taken into account during the experimental design phase: 1) number of biological replicates 
and 2) number of sequenced fragments per sample. The number of replicates depends on your final goal. On one 
hand, if your goal is to make a catalogue of genes present in an organism’s genome, typical when sequencing a 
new genome and preparing for annotating it, then preparing a single, or few, library from a pool of tissues and/or 
conditions might be enough. On the other hand, if you plant to evaluate the statistically significant differences in 
gene expression values between different conditions then a higher number of replicates is required. Depending on 
the size of the effects that are desired to be detected, if only changes around 2 to 3-fold are sought, then a number 
of biological replicates around 5 should suffice in most cases; a higher number of replicates would be required to 
detect smaller changes in expression values (Schurch et al. 2016). Regarding the number of sequenced fragments, 
you should keep in mind that RNASeq is basically a random sampling process. If your goal is to assess statistical 
differences among conditions, you must check whether your sampling is deep enough to support your conclusions. 
A few approaches have been proposed to check for this, all of them are based on resampling your reads, and 
counting a feature of interest for each subsample for increasingly large subsamples. If the sequencing depth is 
high enough you would expect that the number of a given feature is close to saturation with increasing number of 
resampled reads. There are a few approaches to achieve this. First you could count the number of transcripts that 
are detected at different fractions of the original datasets, e.g., 5%, 10%, 20, etc. of the original reads; if sampling 
is deep enough you would expect to find a plateau (Garcia-Ortega and Martinez 2015). Similarly, instead of 
looking at the number of transcripts you can look at the number of exon-exon junctions detected with increasingly 
large samples of the reads; again you expect to achieve a plateau if you sequencing depth was saturated. This can 
be achieved with the junction-saturation.py script part of RSeQC (Wang et al. 2012). It is important to 
note that, despite sequencing depth being important, especially for lowly expressed genes, the number of 
biological replicates is much more important, and if you have to choose between more depth or more biological 
replicates, you should always choose the latter (Liu et al. 2014; Lamarre et al. 2018; Baccarella et al. 2018). 

Regarding the sequencing depth, it is important to keep in mind that under several conditions, a large fraction 
of the reads would originate from one or a few transcripts. For instance when doing sequencing of total RNA, you 
will have a large fraction of sequencing reads originating from rRNA transcripts, which can be up to 90% of the 
total RNA in the cell (Conesa et al. 2016). In these cases you should try to deplete your sample from rRNA 
transcripts, for which there are several options available in the market (Conesa et al. 2016; Hrdlickova et al. 2017; 
NuGen ; siTOOLsBiotech 2018). However, not only rRNA transcripts exhibit such high abundance. A recent 
study of the A. thaliana transcriptome identified over 4000 ubiquitously and extremely highly expressed 
transcripts (Sun et al. 2014). If your specific project aims at assessing the expression of lowly expressed and rare 
transcripts, it might be important to deplete these ubiquitous and highly expressed transcripts, for such case some 
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alternatives for library preparation are available, as the AnyDeplete or riboPools technologies (NuGen ; 
siTOOLsBiotech 2018). 

1.3.2.2. Strand-Specific RNASeq 

The existence of overlapping genes (genes whose transcripts are encoded – completely, or most frequently 
partially – in opposite strands of the same genomic region) in plants has been known for some years (Quesada et 
al. 1999; Xiao et al. 2005). Natural antisense transcripts (NATs) are RNA molecules that can have regions of 
sequence complementary to other RNAs, and that can regulate the expression level of their target genes. 
Particularly, cis-NATs are pairs of transcripts that overlap on the genome. Disambiguating the expression levels 
of the two overlapping transcripts requires data that keep the information about which strand was transcribed (See 
for Example: (Britto-Kido Sde et al. 2013; Li et al. 2013a; Jin et al. 2008; Riano-Pachon et al. 2016)). Between 
7% and 8% of genes in rice (Osato et al. 2003) and Arabidopsis (Wang et al. 2005; Jen et al. 2005), respectively, 
are cis-NATs, recent studies suggesting even higher rates of cis-NATs (Oono et al. 2017; Zhao et al. 2018). Figure 
2 illustrates the importance to have strand information for transcriptome analyses.  

 

Figure 2. Use of strand-specific information to disambiguate the expression of overlapping genes. Two overlapping genes 
g1 in the Watson strand and g2 in the Crick strand shown in two different experimental conditions, X and Y. The symbol * 
indicates that g2 is an unknown (unannotated gene). Short sequencing reads appear either above or below the DNA strands 
as short line, each line representing a sequencing fragment. A. The real case: g1 is expressed in both conditions X and Y, with 
similar or identical abundances, while g2 is only expressed in condition Y. B. Sequencing results obtained with a protocol that 
ignores (or losses during library preparation) the information about which strand generated the reads. Only reads that overlap 
with annotated features are counted (dashed line in condition Y). In condition Y many of the reads originated from the gene 
g2 will counted as if they were from gene g1 (reads shown in black). This will lead to the wrong conclusion that the expression 
of g1 in condition Y is higher than in condition X. C. Using a protocol that keep strand information (strand-specific), in 
condition Y only the reads in black will be assigned to g1, and the additional reads in gray will hint towards the existence of 
an additional gene in the same locus that is only expressed in condition Y. The abundances of g1 in condition X and Y will be 
similar, and will not lead to a differential expression call, as in B. 

Currently there are three technologies widely available that can maintain strand information: Illumina’s TruSeq 
Stranded library preparation kits, Pacific Biosciences’s IsoSeq, and Oxford Nanopore Technologies’s direct rRNA 
sequencing. Perhaps the most pervasive of the three in the market is the one commercialized by Illumina in their 
TruSeq Stranded library preparation kits, which use the deoxy-UTP strand-marking strategy. The Illumina 
instruments are capable of sequencing double stranded DNA molecules (dsDNA), but not single stranded RNA 
molecules (ssRNA), so transcript sequences, which are made of ssRNA, must be transformed into dsDNA 
molecules by a process called cDNA synthesis. Briefly, the RNA molecules are fragmented, and each resulting 
fragment will be used for the synthesis of dscDNA in a two-step process. The first step, called First Strand 
Synthesis (FSS), uses random primers, reverse transcriptase and all the four deoxy nucleotides (dATP, dTTP, 
dCTP and dGTP), resulting in a hybrid double stranded RNA-DNA molecule. After FSS the RNA molecule is 
degraded. In the second step, called Second Strand Synthesis, the dTTP is replaces with dUTP. At the end of SSS, 
there is a dsDNA molecule, in which the strand with dTTP is the reverse complement of the sequence that was 
transcribed, and the strand with dUTP corresponds to the transcribed sequence. At this stage, the information 
about which strand was transcribed is already encoded in the chemistry of the created dscDNA. In the following 
step the typical asymmetric Illumina Y-adapters are ligated to the dscDNA fragments. The incorporation of dUTP 
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will quench the synthesis of the second strand during downstream amplification steps (Illumina 2017) or could be 
selectively degraded by Uracil-DNA-Glycosylase (UDG) (Borodina et al. 2011). Deciding whether an RNASeq 
dataset is stranded or not, is quite easy, and can be achieved by visual inspection of the reads mapped to either the 
genome or the transcriptome. However, some packages can aid inferring this, and are very useful when dealing 
with tens or hundreds of samples, some examples are the infer_experiment.py module part of RSeQC 
(Wang et al. 2012), or the option --libType A in Salmon (Patro et al. 2017) , to name just a couple. 

Data obtained from sequencing libraries prepared in such a way, can be exploited either to map directly to a 
reference genome or transcriptome, or to build a de novo transcriptome assembly, in both cases exploiting the 
strand information and leading to correct directionality of the identified transcripts, with the potential for the 
identification of novel transcripts. 

1.3.2.3. Long read RNA sequencing 

Next-generation sequencing (NGS) technologies afforded the most widely tools for transcriptome analysis in 
the recent years and are likely to remain pervasively used for many years to come. Still, RNA-Seq is not devoid 
of biases and limitations, notably about transcript identification and isoform disambiguation, as well as expression 
level estimation. Short reads can be ambiguous, map to multiple locations and originate from low-complexity 
sequences that hamper alignment. 

The ability to sequence full-length transcripts, from the 5' end to the poly-A tail, in principle allows complete 
differentiation of isoforms, with no ambiguity in assigning fragments to transcripts. It also eliminates the need for 
(de novo) transcript assembly. Third-generation sequencing (TGS) technologies already provide the means for 
achieving this goal, at least for a large fraction of the transcripts, with long reads that completely cover molecules 
with lengths upwards of 10 kbp. Besides facilitating transcript identification, long reads boost transcriptome 
analyses through the discovery of novel genes, novel isoforms and detection of fusion transcripts (Rhoads and Au 
2015; Shi et al. 2016). Even previously annotated sequences can be enhanced with these technologies, through 
correction of existing gene models (Liu et al. 2017). Furthermore, PCR-free protocols get rid of amplification 
biases that affect expression quantification. 

One such technology is the Iso-Seq method (Rhoads and Au 2015) from Pacific Biosciences (PacBio). This 
isoform sequencing strategy has shown power to discriminate transcript isoforms in some important species 
(Abdel-Ghany et al. 2016; Li et al. 2017c), including some with very complex genomes, such as cotton (Wang et 
al. 2018b), coffee (Cheng et al. 2017) and even the highly polyploid sugarcane (Hoang et al. 2017; Piriyapongsa 
et al. 2018). These studies collectively show that RNA-Seq based exclusively on short reads renders a limited 
view of the transcriptome, because of partial isoform identification and inaccuracies in expression quantification. 

Long reads can also be obtained with the Oxford Nanopore technology. In addition to sequencing cDNA 
molecules, this approach allows direct RNA sequencing (Garalde et al. 2018), an alternative that removes reverse 
transcription biases and helps in identifying other types of RNA molecules, such as long non-coding and antisense 
RNAs (Jenjaroenpun et al. 2018). These technologies can also be applied for characterizing transcriptomes of 
individual cells (Byrne et al. 2017). 

Despite these benefits, a series of practical concerns still limit the widespread application of third-generation 
sequencing technologies. Even though success in sequencing full-length transcripts is highly advantageous for 
cataloguing the transcriptome of cells, quantitation is a different matter. Although potentially less biased for 
transcript abundance estimation (Byrne et al. 2017), the current lower throughput of these approaches prevents 
accurate quantification of transcripts in the wide dynamic range of expression levels, with more pronounced 
effects on lowly expressed transcripts. Increasing sequencing depth can circumvent this issue, but this is presently 
limited by the higher cost of long reads, such that efforts in improving throughput and lowering costs are vital. 

Another obstacle is that sequencing errors rates are substantially higher for state-of-the-art long read 
technologies (Jenjaroenpun et al. 2018). Error rates in Iso-Seq reads can be greatly reduced by the so-called 
circular consensus sequence (CCS), in which the same molecule is repeatedly sequenced (Rhoads and Au 2015; 
Liu et al. 2017). However, this is not yet feasible for long, single pass transcripts, which still suffer from lower 
sequencing accuracy. Hybrid strategies that combine the transcript identification power of TGS with the massive 
read volume of NGS enable error correction and abundance estimation for a more complete and trustworthy 
transcriptome characterization (Li et al. 2017c; Jenjaroenpun et al. 2018). 
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1.3.3. Transcriptome assembly 

1.3.3.1. Genome-guided transcriptome assembly 

When the genome sequence of the species under study is available, one can choose to try assembling the 
transcriptome from raw data (short reads) using the genome as a guide. This procedure consists of mapping the 
RNASeq reads onto the reference genome sequence and then looking for clusters of sequencing reads representing 
putative isoform transcripts that should be assembled. During the mapping step, the read mapper employed must 
be aware of spliced-reads, that is reads that span exon-exon borders, like HiSAT2 (Kim et al. 2015; Kim et al. 
2019), START (Dobin et al. 2013) or GSNAP (Wu and Nacu 2010), among others.  After reads have been mapped 
and clustered long the genome sequence, these clusters of reads are usually represented as a graph (Florea and 
Salzberg 2013). The graph model could be a splice graph, where exons or parts of exons are represented as nodes 
and edges represent possible splice variants, implemented in the software Stringtie (Pertea et al. 2015), or an 
overlap graph, where nodes represent sequence fragments or reads (k-mers) and edges connect sequence 
fragments if they overlap and have a compatible splice pattern, implemented in software such as Cufflinks, 
Scripture and Trinity (Trapnell et al. 2010; Haas et al. 2013; Guttman et al. 2010). Alternatively the genome 
sequence could be just used to cluster reads together to be then de novo assembled, using software such as Trinity 
(Haas et al. 2013; Grabherr et al. 2011).  

Genome-guided transcriptome assembly is usually more precise than de novo transcriptome assembly (see 
below), as it is less sensitive to sequencing errors, polymorphisms, and paralogous loci (Ungaro et al. 2017; Zhao 
et al. 2011). It is important to note, though, that it could only help in recovering/assembling the transcripts that 
are present in the sequence used as reference, so variation between individual, ecotypes, cultivars, etc, would be 
missed, this has been highlighted in recent studies about the pan-transcriptome and pan-genome of diverse plant 
species (Gao et al. 2019; Ma et al. 2019). Also, if the genome sequence used as reference is fragmented, exons or 
whole transcripts could be located in sequencing gaps. An alternative to overcome these limitations would be the 
generation of a comprehensive, or non-redundant, transcriptome, that leverages the information of the genome-
guided transcript assembly and of de novo transcript assemblies (Visser et al. 2015; Jain et al. 2013). The PASA 
pipeline (Haas et al. 2003) and CD-HIT-EST (Fu et al. 2012) can generate such non-redundant transcriptome 
representations, by controlling the minimum fraction identity, and length aligned to create transcript clusters. 
Clustering at 100% identity would be the most basic level of clustering, and lower values, like 99% or 95% 
identity, could be useful to cluster transcripts originating from the same locus via alternative splicing, allelic 
versions, or closely related paralogous genes. GET-HOMOLOGUES-EST could enhance the generation of a 
comprehensive transcriptome, while taking into account coding potential, the presence of conserved protein 
domains, and information from closely related species or individuals within a polymorphic species (Contreras-
Moreira et al. 2017). 

1.3.3.2. De novo transcriptome assembly 

The availability of an annotated reference genome sequence eases the analysis of RNA-Seq data, by dividing 
the problem of transcript assembly and quantification into substantially smaller subsets. In this situation, sets of 
reads aligning against a particular genomic region can be analyzed independently of the remainder of the 
sequencing data. 

It is nevertheless possible to carry out a thorough transcriptome analysis for non-model plant species lacking a 
reference genome (Collins et al. 2008). When available, the genome sequence of a closely related species can be 
used as a reference. Alternatively, instead of aligning the reads against genomic sequences, a transcriptome 
reference can be assembled de novo based on the RNA-Seq reads alone. This provides a cost-effective means of 
applying functional genomics tools to less well studied organisms. It can also shorten the path to biological insight 
because any species can potentially be studied without the need for previous genomic knowledge. However, de 
novo transcript assembly is one of the most difficult tasks in bioinformatics (Garg and Jain 2013). 

The most widely used de novo transcriptome assemblers are based on a de Bruijn graph, a data structure that 
compactly represents the sequences of hundreds of millions of short sequencing reads. Construction of a de Bruijn 
graph involves parsing the collection of reads and extracting k-mers of a certain size. A k-mer is a subsequence 
of length k contained in any biological sequence segment, such as a read, a transcript or even an entire 
chromosome. In a standard de Bruijn graph, each existing k-mer is represented by a node, or vertex. If a suffix of 
length k – 1 of a given node matches the k – 1 prefix of another node, an edge connecting these vertices is used to 
represent this overlap. After obtaining this graph, assembly software packages usually perform several 
(combinations of) steps of error correction, graph simplification and collapsing, scaffolding and gap closure. 
Finally, graph traversal based on sequencing read information can be used to reconstruct contigs representing 
transcripts. 
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Contig assembly algorithms based on de Bruijn graphs were initially devised for genome assembly based on 
high depth sequencing data. Indeed, many of the currently available transcriptome assemblers were built relying 
on previously existing genome assemblers. For example, Oases (Schulz et al. 2012) is a pipeline built on top the 
Velvet genome assembler (Zerbino and Birney 2008). Similarly, Trans-ABySS (Robertson et al. 2010) is based 
on ABySS (Simpson et al. 2009) and SOAPdenovo-Trans (Xie et al. 2014) uses the de Bruijn graph from 
SOAPdenovo2 (Luo et al. 2012) as a starting point. Following a more widespread adoption of RNA sequencing 
studies, proper de novo assemblers such as Trinity (Grabherr et al. 2011; Haas et al. 2013), were also developed 
from scratch to tackle the challenges posed by these datasets. 

Despite using an underlying data structure similar to genome assemblers, these software packages take into 
account unique features of the RNA-Seq data to drive the assembly strategy and address several particular issues. 
While the goal in genome assembly is to produce a few large (chromosome-sized) sequences, transcriptome 
assembly aims to reconstruct tens of thousands of sequences, each representing a different transcript. Also, 
coverage depth in RNA sequencing is heavily dependent on gene expression levels, such that approaches for 
assembling lowly or highly expressed genes can differ. 

These de novo assembly methods can naturally handle alternative splicing arising from RNA processing after 
transcription. Ideally, a transcriptome assembly should contain full length transcripts accurately representing 
different isoforms, while also separating paralogs from large gene families. For polyploid species, the presence of 
multiple alleles and homoeologs adds another layer of complexity that make assembly an even harder exercise. 
In this context, it is noteworthy that long range information from paired-end and/or longer sequencing reads 
provide a valuable resource that can greatly enhance assembly quality by simplifying the recovery of full-length 
transcripts. 

Even though the current transcriptome assemblers are based on similar basic concepts and share many features, 
they differ widely in running time and required memory. They also stand apart in their ability to recover full-
length transcripts from datasets with varying sequencing depth, obtained from species with distinct transcriptome 
complexity. Comparisons among assemblers can reveal scenarios in which particular combinations of software 
and parameters show superior performance (Zhao et al. 2011). 

Finally, functional annotation of the assembled transcripts is commonly done to provide meaningful biological 
information about each resulting sequence. This usually entails adding gene ontology terms (Ashburner et al. 
2000; Gene Ontology Consortium 2017) and pathway information from KEGG (Kyoto Encyclopedia of Genes 
and Genomes) (Kanehisa and Goto 2000; Kanehisa et al. 2016), to the transcripts, as well as searching for protein 
domains. Pipelines for performing such annotation include Blast2GO (Conesa et al. 2005) and Trinotate (Bryant 
et al. 2017). 

1.3.3.3. Assessment of transcript assemblies 

The goal of transcriptome assembly, either genome-guided or de novo, is to generate a truly complete collection 
of all the transcripts produced by an organism. However, attaining that goal is in most real cases unlikely, due to, 
among other, the following reasons: 1. Sequencing depth is limiting, and low abundant transcripts are not 
represented in the sequencing data. 2. Biases of the sequencing depth limit the observation of certain transcripts, 
e.g., problems with high GC content sequences. 3. Not all possible transcripts are expressed at a given moment, a 
good transcriptome coverage should include a survey of samples from different developmental stages, growing 
conditions, tissues and organs. Thus we need tools to assess the quality and completeness of a generated 
transcriptome assembly (Honaas et al. 2016; Moreton et al. 2015; Li et al. 2014; Smith-Unna et al. 2016). In the 
following we describe some of the most important metrics to evaluate a transcriptome assembly. 

Evaluation of sequencing depth: There are two related questions that are often asked at the beginning of any 
transcriptome study using NGS. 1. How many reads should be generated to capture most/all of the transcripts? 2. 
Are the reads generated enough to make statistical inferences or to get a complete overview of the transcriptome? 
In order to answer these, one can evaluate the degree of read saturation present in the assembly as a function of 
sampling effort, using an approach analogous to that of species accumulation curves (rarefaction curves) in 
biodiversity studies.  This approach will allow to decide whether sequencing depth has been enough to capture all 
transcript in the sample (Hale et al. 2009). At the beginning of a study, before generating the data, one could carry 
out a pilot study with shallow sequencing depths, that could help estimating the depth required to capture all or 
most of the transcripts. Alternatively, and if a genome reference is available, one could evaluate the saturation of 
orthogonal features, for instance the number of exon-exon junction supported by the sequencing reads at different 
levels of sequencing effort, this approach has been implemented in the tool junction_saturation.py in 
the package RSeQC (Wang et al. 2012). 
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Percent reads mapped: The proportion of reads that map back to the assembly is also a measure of assembly 
and data quality. In principle one wants most of the original read data (after quality trimming) mapping to the 
transcriptome assembly. However, when using a genome as a reference (or the transcriptome derived from the 
genome sequence), a low percent of reads mapping could also be indicative of large diversity between the 
reference and the sample, or of contamination, and further analyses would be required. 

Identification of sets of conserved genes: Gene that appear in all of the best-known genomes can be exploited 
to evaluate the completeness of a transcriptome assembly. The tool Benchmarking Universal Single-Copy 
Ortholog (BUSCO), has currently a set of 1440 conserved single-copy orthologous genes present in viridiplantae 
(green plants) (Waterhouse et al. 2017). A transcriptome that was assembled from samples representing different 
developmental stages, growth conditions, tissues and organs, should have a good representation of these conserved 
single-copy gene sets. On the other hand, a transcriptome representing a single condition, could have a low value 
for this metric, corroborating its specificity. Alternatively one could also compare the assembled transcripts to the 
transcripts (or proteins) of a related species, these are usually called reference-based or comparative metrics, and 
are implemented in tools such as TransRate (Smith-Unna et al. 2016) or Detonate’s REF-EVAL (Li et al. 2014). 

Contamination screening and filtration: NGS data can easily be contaminated, but it is important to note that 
there are different sources of contaminant. There can be internal contaminants, for instance mitochondrial and 
plastid sequences, or ribosomal RNA sequences. Or there could be external contaminants, genetic material from 
other organism present in the sample, e.g., symbionts, pests, fungi or bacteria. In general, contamination should 
be removed as early as possible, in order to reduce computational costs, fragmentation of the assembly and the 
chance to generate chimeric transcripts (Zhou et al. 2018). For example, BBDuk (https://jgi.doe.gov/data-and-
tools/bbtools/) can be used to efficiently remove rRNA reads by comparing them against the SILVA database 
(Quast et al. 2013). A similar approach could be followed to eliminate reads from other contaminants if they have 
been previously identified. The presence of rRNA could be exploited to identify which contaminants (if any) are 
present in the sample.  

1.3.4. Transcript quantification 

1.3.4.1. Alignment/mapping based approaches 

Transcriptome characterization via RNA-Seq not only provides a catalog of transcripts present in a particular 
sample of cells, but also yields quantitative information that allows expression levels to be assessed. This is true 
both for species with and without a reference genome. A major step for obtaining expression estimates is to assign 
sequencing reads to genes or transcripts, which is commonly accomplished by first aligning them to a reference 
genome or transcriptome sequence. 

Development and application of alignment algorithms has been one of the most active research areas in 
bioinformatics, and consequently there is a wide range of tools available for various purposes. The majority of 
alignment algorithms tailored for short reads use indexing strategies that can be categorized into two main 
approaches: a seed-and-extend strategy based on hash tables or alignment based on a Burrows-Wheeler transform 
(Flicek and Birney 2009; Trapnell and Salzberg 2009; Li and Homer 2010). 

Short read sequence aligners were initially developed for aligning genomic reads against a reference genome. 
In this situation, reads are expected to align contiguously against the reference, except for minor gaps which may 
stem from small indels or sequencing errors. Reads from RNA-Seq libraries, on the other hand, originate from 
cDNA molecules synthesized from mature mRNA templates, from which introns have been stripped off. Aligning 
RNA-Seq reads against a reference genome then requires splice-aware aligners, which appropriately handle reads 
that span exon junctions, without penalizing long gaps corresponding to introns. This class of aligners includes 
TopHat2 (Trapnell et al. 2009; Kim et al. 2013), which has been superseded by HISAT2 (Kim et al. 2015) and 
STAR (Dobin et al. 2013). An interesting quality of these aligners is that not only can they use previously 
annotated splice junctions, but also discover novel junctions and isoforms. 

Following alignment, mapped reads can be assigned to annotated features in the genome. A simple and widely 
used way to measure expression levels is to count the number of reads overlapping a feature of interest. This is 
the approach implemented in programs such as HTSeq (Anders et al. 2015) and the featureCounts (Liao et 
al. 2014) component of the Subread package (Liao et al. 2013). 

Reflecting the nature of gene expression, feature annotation follows a hierarchy of terms, with a gene frequently 
corresponding to the highest-level term. Any given gene may originate one or more transcripts, which in turn may 
contain one or more exons and compose one or more coding sequences. Read counts can be obtained for features 
at any level desired, but it is frequent to count reads overlapping exons. Depending on the goals of the study, 
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features may then be grouped to obtain expression levels for meta-features. For instance, counts for all exons of 
a given transcript may be combined to get a transcript-level expression estimate, or all exons of all transcripts of 
a gene may be used to yield a gene-level read count. It is important to realize that, when working with paired-end 
read information, both reads of a pair come from a single molecule fragment, such that they should contribute 
only once to the expression count. 

It is not always possible to uniquely assign a read to a feature or meta-feature. In some cases, there are 
overlapping features in an annotated genome reference, as a consequence of the structural organization of genes 
in the species of interest. Reads that align to a genomic region covered by two or more genes may not 
unequivocally be assigned to any one of them. Much of this ambiguity can be worked out by using stranded RNA-
Seq library preparation, because overlapping genes may be transcribed in opposing directions. 

Additionally, different gene isoforms can share a common exon, such that reads overlapping this exon are 
ambiguous. Lastly, the aligner may report multiple possible mappings for some reads, due to sequence similarity 
between members of a gene family, conserved protein domains and sequencing errors. The researcher can decide 
whether to simply discard multimapping or ambiguous reads, count them for all overlapping features or assign 
them heuristically. It should be noted that ambiguities at a given annotation level may not represent ambiguities 
at a higher level (e.g., a read mapping to an exon shared by multiple isoforms is ambiguous at the transcript level, 
but not at the gene level). 

When using a de novo assembled transcriptome, introns are virtually absent from the reference and therefore 
one may use standard sequence aligners, such as BWA-MEM (Li and Durbin 2009; Li 2013) and Bowtie2 
(Langmead et al. 2009; Langmead and Salzberg 2012). Splice-aware aligners also have modes for aligning reads 
against a splice junction-free reference sequence. For expression level quantification, in this case each contig can 
independently be treated as a feature. In fact, some assemblers such as Trans-ABySS may internally leverage the 
alignment of reads to contigs and automatically provide a measure of the per-contig expression level. The 
simplicity of the feature annotation in an assembled transcriptome does not mean that alignment and quantification 
are an easier endeavor. In fact, the issue of multiply aligned reads can be even more challenging in this situation, 
as it can be hard to distinguish between paralogs of the same gene. 

These ambiguity issues have prompted alternative approaches for obtaining expression estimates to be devised. 
Because of the uncertainty in determining the transcript of origin of sequencing reads, one such possibility is to 
use mixture-model procedures that probabilistically assign reads to features, instead of simply counting 
overlapped fragments. As an example, the RSEM method (Li et al. 2010; Li and Dewey 2011) generates maximum 
likelihood or Bayesian expression estimates based on several variables of the annotated feature set and of the 
aligned reads, such as length, orientation and quality scores. The main underlying principle is that uniquely aligned 
reads can also provide information for the (probabilistic) assignment of ambiguous reads. For example, suppose 
that two isoforms of a gene share one common exon, but also contain one exclusive exon each. If a large number 
of fragments align to one of the exclusive exons, while the other shows no overlapping reads, it is likely that 
fragments overlapping the common exon also originate from the isoform with a higher expression level based on 
the uniquely aligned reads. 

Similarly, the Stringtie package formulates the simultaneous estimation of isoform assembly and abundance 
as a maximum network flow problem (Kovaka et al. 2019; Pertea et al. 2015). This maximum flow approach has 
been shown to be as accurate as the maximum likelihood approach in cufflinks (Trapnell et al. 2010), but it is able 
to recover a larger fraction of bona fide transcripts (Kovaka et al. 2019). In the maximum flow approach a path in 
the splice graph with the heaviest coverage is used to build a flow network, this path represents a transcript, which 
is then removed from the splice graph, and a new path with the heavies coverage is sought, until no more 
transcripts are assembled. The coverage for each assembled transcript, is used to represent expression values as 
FPKM (Fragments Per Kilobase Million) and TPM (Transcripts Per Million). 

These difficulties in estimating expression levels are substantial enough for diploid model species. The 
situation may be considerably harder for researchers dealing with polyploid organisms, because of the added 
complexity from homeologs and multiple alleles. It is reasonable to assume that probabilistic strategies for read 
assignment may provide more accurate estimates of transcript abundance in this case. 

Finally, a brief comment on expression level normalization is needed. Transcript read counts are influenced by 
the length of the transcript and the size of the sequenced library, i.e., the number of fragments obtained from a 
given sample. Read counts are expected to be higher for longer transcripts and larger libraries. Many downstream 
application packages directly handle raw read counts, but it is not always straightforward to interpret raw values. 
For reporting expression levels, for instance, it is useful to used normalized values, such as the TPM (transcripts 
per million) value (Li et al. 2010; Wagner et al. 2012). It represents the number of transcripts of a certain type 
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present in a total of one million sequenced transcripts from a given sample, and thus estimates the fraction of that 
transcript in a pool of RNA molecules. The TPM is normalized by the length of the transcript, the sequencing 
depth and the mean transcript length in the sample. Relative expression levels represented by TPM values do not 
depend on the expression levels of other genes in the transcriptome, and appropriately measure the fraction of 
fragments from a given gene or isoform. Other measure of gene expression includes the RPKM (Reads Per 
Kilobase Million) and FPKM (Fragments Per Kilobase Million), but they have been largely superseded by the 
TPM. 

1.3.4.2. Alignment-free approaches 

Recent methods have tried to let go of the traditional strategy of mapping reads to a reference and then count, 
to arrive at estimates of gene expression levels, approach described above. The main reason for this is that these 
traditional approaches require large computational resources, and do not scale well with the amount of available 
data. These newer approaches implement what they call as pseudo-alignment, lightweight mapping or quasi-
mapping (Patro et al. 2017; Bray et al. 2016; Patro et al. 2014), and are known as alignment-free methods. Another 
important difference to the traditional approach, is that instead of using reference genomes, these approaches use 
reference and well annotated transcriptomes, including transcript isoforms, allowing the accurate estimation of 
isoform expression levels. Expression level estimates at the level of isoforms are important given that most plant 
genes are interrupted (i.e., they have introns), and the removal of introns is a regulated process that can generate 
alternative splicing forms, which can have different, even antagonistic functions (Shang et al. 2017). In order to 
estimate isoform expression levels, tools like Kallisto or Salmon, let go of the idea of knowing where a read aligns 
in a given transcript, with base-to-base correspondence, and instead try to identify a transcript, or a set of 
transcripts, that could have originated such read, without keeping track of base-to-base correspondences. Such 
approaches have been shown to be extremely fast and accurate (Zhang et al. 2017). Some of these methods, besides 
their speed, can model different sources of sample-specific biases that can affect transcript quantification, like 
sequence-specific, fragment GC-content and positional biases (Patro et al. 2017; Bray et al. 2016). Refinement of 
the initial lightweight mapping of reads to the transcriptome, using Selective Alignment, allows the elimination 
of most mapping errors, by providing alignment scores that allow to distinguish alternative mapping locations that 
otherwise would appear the same (Srivastava et al. 2019). 

1.4. Applications 

Figure 3 shows some of the paths that can be followed in RNASeq studies. Table 1, lists some of the main 
software packages to carry out the operations shown in Figure 3. 

 
Figure 3. General steps in an RNASeq analysis pipeline. Not all steps/paths are taken in a given study. 

1.4.1. Differential Gene Expression 

RNA sequencing is frequently done with the goal of detecting differences in expression levels between two or 
more contrasting groups of samples. One may be interested in evaluating the effect of different experimental 
treatments, genotypes or stress conditions, for instance, on the transcriptome of particular cells. Gene or isoform 
expression measures are thus often used for identifying transcripts that are significantly up or downregulated in a 
condition of interest, in comparison to a distinct condition. 

Differences in the expression levels of two (groups of) samples can be represented by the fold change, which 
is simply the ratio of the expression levels estimated for both cases. Usually the expression estimate of a control 
or reference condition is used in the denominator, whereas the expression level of the treatment group is used in 



  
 

12 
 

the numerator. As a result, genes that are upregulated in the treatment samples show a fold change greater than 
one (with no upper boundary), while downregulated genes display a fold change between zero and one. This 
discrepancy in scale led to the representation of these ratios in the log2 scale, such that fold changes in both 
directions are symmetric around zero. 

Several methodologies are available for testing whether an observed fold change is statistically significant. 
Many of these methods use read count data directly, which calls for modeling of the expression levels with discrete 
distributions. The first statistical approaches proposed for such tests used the Poisson distribution to model read 
counts, assuming that the variance in the estimates was directly proportional to the mean expression level (Wang 
et al. 2010). This proved to be appropriate for technical replicates of the same sample (Marioni et al. 2008), but 
variance for biological replicates was shown to be higher than expected based on the mean alone (Robinson and 
Smyth 2008). 

An alternative to the Poisson distribution is the Negative Binomial, which adds a second parameter (often 
denoted dispersion), allowing the sample variance to be different from the mean; hence, it corresponds to a Poisson 
distribution with overdispersion. This is the approach taken by most of the modern differential expression analysis 
packages (Wang et al. 2010; Robinson et al. 2010; Trapnell et al. 2013; Love et al. 2014). 

The need to estimate sample variances makes it clear that biological replication is necessary in RNA-Seq 
experiments. Appropriate design planning is required, and all treatment combinations should be replicated, as 
alternatives devised for data without replicates are far from ideal. Yet, despite continual reduction in sequencing 
costs, RNA-Seq for large numbers of samples may still be impractical for many research goals. In order to increase 
reliability of variance estimates obtained from small numbers of replicates, techniques that share information 
between genes were proposed and implemented (Robinson and Smyth 2007). 

Software packages edgeR (Robinson et al. 2010), DESeq (Anders and Huber 2010; Love et al. 2014) and 
Cuffdiff (Trapnell et al. 2010; Trapnell et al. 2013) are among the most extensively used tools for differential 
expression analyses. In more detail, edgeR uses raw read counts and models sample variation in terms of the 
biological coefficient of variation, which corresponds to the square root of the dispersion. It allows estimating a 
common dispersion for all genes, or a trended dispersion via a locally weighted adjusted profile likelihood for 
genes with similar average read count. It further allows moderated gene-wise dispersion estimates to be obtained 
by a weighted likelihood method combining individual and trended or common estimates (Trapnell et al. 2013). 
Normalization is carried out with a trimmed mean of log2 fold changes (Robinson and Oshlack 2010). 

Similarly, the DESeq2 package uses size factors estimated based on the median of ratios of observed read 
counts to normalize expression levels. It empirically estimates the relationship between mean and variance of the 
negative binomial distribution, fitting a smooth curve of the dispersion as a function of the average expression of 
genes with similar means. Finally, it employs empirical Bayes approaches to shrink gene-wise dispersion 
estimates and also the fold changes, which is particularly relevant for lowly expressed genes and/or those with 
highly variable expression levels. Both edgeR and DESeq were initially designed for performing differential 
expression analyses of simple experiments, commonly involving pairwise comparisons of contrasting conditions. 
More recent implementations of edgeR and DESeq2 allow fitting generalized linear models for analysis of more 
complex designs, with the inclusion of experimental blocking factors and modeling of interactions, for example. 

Cuffdiff 2 was developed for testing differential expression both at the isoform and gene levels. Instead of 
using raw read counts, it models variability across replicated expression estimates by jointly considering 
overdispersion and uncertainty in the assignment of reads to their possible originating transcripts. Because of 
differences in the normalization procedures and model assumptions, these methods differ in their statistical power 
to detect differential expression over the range of expression values, as well as in the occurrence of false positives. 
Note also that conducting differential expression analyses at the transcript level may have important implications 
for statistical power. Greater uncertainty in expression estimates, because of more ambiguously mapped reads, 
negatively influences statistical power. Differential isoform expression analyses may require higher coverage 
depth, as more reads are needed to provide accurate estimates of individual isoform expression levels, especially 
for genes with many isoform variants and many shared exons. On the other hand, failure to adequately model 
uncertainty in read to transcript assignment can result in higher rates of false positives, even at the gene level. 

RNA-Seq is a high throughput screen that yields quantitative information for tens of thousands of genes (or 
hundreds of thousands of transcripts). Consequently, statistical tests are applied for multiple comparisons, which 
can result in many false positives if liberal significance levels are used for individual tests. Multiple testing 
correction is generally used to control for the occurrence of such false positives. One of most well-known 
corrections is the Benjamini and Hochberg (Benjamini and Hochberg 1995) false discovery rate (FDR) correction, 
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aimed at controlling the proportion of false discoveries among the rejected hypotheses, while minimizing the drop 
in statistical power. 

The output of these analyses is a list of significantly differentially expressed genes. Because of the large number 
of genes studied, this list may be quite long, which complicates summarization and reporting of the results. More 
easily interpretable biological meaning can be extracted from such lists through functional enrichment analyses, 
that look for over-represented groups of genes among the statistically significant ones. Groupings of interest are 
usually obtained by categorizing genes according to their functional annotation, including gene ontology terms 
and/or biological pathways. Each functional group is tested for over-representation in the gene list against a 
background set, which includes all (expressed) genes in the transcriptome. 

1.4.2. Co-expression networks 

Networks have recently emerged as a robust and holistic approach to understand complex cellular processes 
that comprise multiple and parallel interactions between cellular constituents such as DNA, RNA, and proteins. 
The network approach allows analyzing components and interactions as a system instead of analyzing them as 
separate entities. In a general way, a network, or graph, is defined as a set of elements called nodes, which are 
related through connections called edges. When edges have a direction, that is, they have source and target nodes, 
the network is called directed; otherwise, the network is undirected. These simple definitions are used to create 
biological networks that model cellular processes by taking nodes to represent molecules such as genes, proteins, 
or metabolites, and edges to represent physical, functional, or chemical interactions (Barabasi and Oltvai 2004). 
Depending on the molecules and interactions used, biological networks can be gene co-expression networks 
(GCN), genetic interaction networks, gene regulatory networks, protein-protein interaction (PPI) networks, 
metabolic networks, and signaling networks (Serin et al. 2016; Vital-Lopez et al. 2012). This section will focus 
on gene co-expression networks, in which each node corresponds to a gene, and edges represent co-expression 
relationships. 

An advantageous feature of GCNs is the ability to reduce data complexity drastically. Nodes in a GCN, rather 
than solely representing a gene per se, represent its whole expression profile when the studied organism is under 
a condition, such as a treatment or biotic/abiotic stress. Edges in a GCN represent associations between gene 
expression profiles and can be interpreted as the simultaneous and coordinated expression of two or more genes 
under the studied perturbations. Thus, GCNs reduce the complexity of expression data of multiple samples from 
one or multiple experiments. 

GCNs can be constructed from expression data derived from DNA microarrays and RNA-seq. Traditionally 
DNA microarrays were the primary source of data expression for constructing GCNs, as this technology has been 
used intensively for almost two decades in gene expression studies. Recently, with the advent of Next Generation 
Sequencing (NGS) technologies, RNA-seq have turned in a natural source for constructing GCNs. Among the 
advantages that microarrays had over RNA-seq for the reconstruction of GCNs we can name the considerable 
amount of information available in public databases, the well-established and mature data normalization 
approaches, and data homogeneity.  Although RNA-seq was shown as a promising source of data for GCNs (Iancu 
et al. 2012), some limitations related to normalization methods used for this technology were also demonstrated 
(Giorgi et al. 2013). However, with the increased number of RNA-seq samples publicly available, more recent 
studies have shown that bigger datasets can overcome those caveats (Ballouz et al. 2015; Huang et al. 2017a), and 
highlight multiple advantages of RNA-seq over microarrays for GCNs. 

GCN inference comprises three main steps: similarity calculation, filtering, and edges construction (Serin et 
al. 2016). In the first step, a measure of similarity (or relatedness) is computed for each pair of genes. Multiple 
measures can be used in this step, such as mutual information (MI) (Meyer et al. 2008; Meyer et al. 2007), or the 
prevalent correlation coefficients. The latter category includes the Pearson Correlation Coefficient (PCC), 
Spearman’s Correlation Coefficient (SCC), and biweight midcorrelation (bicor) (Langfelder and Horvath 2008). 
Although MI is useful for finding non-linear relationships between genes (Langfelder and Horvath 2008), it has 
been shown that it has several caveats and can be outperformed in many situations by correlation measures 
(Liesecke et al. 2018; Song et al. 2012). In the second step, the pairs of genes (edges) are either filtered based on 
a relatedness threshold that specifies the minimum level of similarity between expression profiles to define if a 
pair of genes is connected, or weighted. When using a threshold, it can be defined as a simple cutoff (hard 
threshold) (Tsaparas et al. 2006; Qiao et al. 2017), or as a result of more elaborated approaches. Some of these 
approaches include selecting a subset of the most positive/negative correlations (Lee et al. 2004), relying on 
topological features of co-expression networks like the clustering coefficient (Elo et al. 2007) or a power law 
distribution of the number of edges per node (Zhang and Horvath 2005), or applying models such as the Random 
Matrix Theory (Luo et al. 2007). Finally, in the third step, edges of the GCN are defined based on the resultant 
list of genes after filtering. 
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Depending on the type of connection between nodes, GCNs can be unweighted and weighted. In the 
unweighted networks, edges indicate whether there is an association between a pair of nodes.  They are derived 
from applying a hard threshold, i.e., an edge is present if the similarity measure between nodes is above the cutoff 
value. In the weighted networks, the degree of association between nodes is quantified by an attribute called 
weight, which commonly corresponds to a value in the range [0, 1]. This weight can result from applying a soft 
similarity threshold (Langfelder and Horvath 2008; Zhang and Horvath 2005), or from assigning a value derived 
from correlations such as the coefficient rank (Ballouz et al. 2015). 

After constructing a GCN, a wide repertoire of analyses from graph theory, computer science, and engineering 
can be applied for elucidating valuable information hidden in the expression data. For example, by applying 
clustering algorithms like the hierarchical clustering (Langfelder and Horvath 2008), or the Markov Cluster 
(Zhang et al. 2012), it is possible to identify groups of highly co-expressed nodes (modules) with similar functions 
or involved in common biological processes. Modules are annotated with functional and metabolic information 
publicly available in databases such as Gene Ontology (GO, http://www.geneontology.org), Reactome 
(https://reactome.org/), and the Kyoto Encyclopedia of Genes and Genomes (KEGG, 
http://www.genome.jp/kegg/).  

Another example of methods applied to GCNs are the topological analyses that examine the structural 
properties of networks. One of the most used topological properties is the node degree, which indicates how many 
connections each node has. It has been suggested that some biological networks are scale-free, which means that 
their degree distribution P(k) approximates a power law P(k) ~ k-γ (Barabasi and Oltvai 2004). However, in many 
cases, proper statistical tests have revealed otherwise (Arita 2005; Broido and Clauset 2019; Lima-Mendez and 
van Helden 2009; Khanin and Wit 2006; Stumpf and Ingram 2005), and methods that strongly rely on the power-
law distribution of the node degree must be assessed critically.  In general, biological networks, including co-
expression networks, exhibit many nodes poorly connected (low degree) and a relatively small number of nodes 
with many connections. Highly connected nodes (hubs) are usually representative of the biological function 
associated with a module, and also have been associated to interesting processes like regulation (Hollender et al. 
2014), and evolution (Masalia et al. 2017). Another biologically relevant topological property is the betweenness 
centrality that indicates the level to which a node works as a bridge between other nodes and allows to detect 
bottlenecks (genes with high centrality). Since high connectivity and betweenness centrality tend to be related to 
essentiality in functional processes (Carlson et al. 2006), they can be used to identify key genes with biological 
relevance. Other topological properties with biological relevance, including clustering coefficient, density, 
centralization and heterogeneity, have also been explored (Dong and Horvath 2007; Horvath and Dong 2008). 

GCNs have been used mainly for two purposes, gene function prediction, and the selection and prioritization 
of genes associated with specific phenotypes like diseases or traits. The first application is derived from module 
identification and annotation, which infer functions for uncharacterized genes following the “guilt by association” 
principle (Oliver 2000). For instance, functions for unknown genes have been predicted in yeast (Luo et al. 2007) 
and grapevine (Liang et al. 2014) using GCNs. The second application is perhaps the most popular of GCNs, and 
it is derived from exploiting network centrality properties (e.g., degree and betweenness) combined with module 
information. For example, several studies have used GCNs to identify genes associated with traits of interest in 
plants, such as heat shock recovery in grapevine (Liang et al. 2014), aluminum stress response in soybean (Das et 
al. 2017), sugar/acid ratio in sweet orange (Qiao et al. 2017), regulation of cell wall biosynthesis in sugarcane and 
bamboo (Ferreira et al. 2016; Ma et al. 2018), wood formation in Populus trichocarpa (Shi et al. 2017), the 
regulation of catechins, theanine and caffeine metabolism in the tea plant Camellia sinensis (Tai et al. 2018) and 
plant height in maize (Wang et al. 2018a). 

GCNs also have some caveats that are worth mentioning. GCNs provide only direct information for co-
expression and not for direct interactions between its components like in PPIs. Additional information such as 
functional-related or the essentiality of genes is elucidated by applying analyses that can be prone to biases, for 
example clustering or annotation methods. Significant biology conclusions are only supported by reliable 
networks that sometimes are difficult to obtain due to multiple factors in the construction like the amount and 
quality of the expression data, or the appropriate selection of similarity measures, parametrization (e.g. thresholds) 
and clustering methods.  

Despite of the caveats and difficulties in their inference, it has been shown that GCNs remain to be useful tools 
in gene expression analysis. They allow to reduce the complexity of the currently growing expression data, suggest 
functions of unknown genes, and identify essential genes involved in biological processes of interest. 
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1.4.3. Polymorphisms 

Sequencing reads from RNA-seq studies are often used for identifying polymorphisms is the expressed regions 
of the genome. The principles of variant identification from transcriptomic data are similar to those involved in 
variant calling from DNA sequencing and many important applications are possible. Briefly, software such as 
GATK (McKenna et al. 2010; DePristo et al. 2011) and BCFtools (Li et al. 2009; Li 2011) traverse genomic 
positions from a reference sequence and compare the aligned reads to identify single nucleotide polymorphisms 
(SNPs) and insertions and deletions (indels). However, there are important particularities when working with 
RNA-seq data and care must be taken when interpreting the results. 

If these aligned reads are originated from transcriptomics data sets, polymorphic sites can only be identified 
between expressed transcripts. This is useful, for instance, if the goal is to search for imbalance of expression 
levels among different alleles of the same gene, or allele-specific expression (Pham et al. 2017; Shao et al. 2019). 
Notably, accuracy for detecting polymorphisms and estimating allele expression ratios depends on the depth of 
coverage. This can be improved by increasing the sequencing depth, but also depends on the expression level of 
each gene (Castel et al. 2015). Highly expressed genes naturally draw on a larger proportion of the sequencing 
data and thus offer more power to identify variants and higher accuracy of allelic expression estimates. On the 
other hand, lowly expressed genes are more prone to false negatives and require deeper sequencing to accurately 
identify polymorphisms. 

Also, the fact that identified variants are constrained to expressed exons can limit the scope of the study. 
Polymorphic sites in introns, regulatory and intergenic sequences, which can be more numerous and may have 
key biological significance, cannot be identified from RNA-seq data alone (Cubillos et al. 2012; Magalhaes et al. 
2007). Genomic variants located in alleles that are not expressed in a given transcriptome will also be missed. 
Finally, many possible post-transcriptional modifications may negatively impact variant calling results and lead 
to flawed conclusions (Lee et al. 2013). 

Variant calling efforts and studies of allelic imbalance are even more complicated in polyploid organisms, 
where more than two different alleles can be found (Cai et al. 2020). First, for allopolyploids it can be difficult to 
differentiate between true alleles and homoeologous sequences, which may not be polymorphic within each sub 
genome (Yang et al. 2018a). Additionally, it is important to note that allele ratio information from RNA-seq data 
is not appropriate for quantitative genotyping (estimating genomic dosage) in autopolyploids, because of 
differences in the expression levels of different alleles. In other words, while the variation in allelic expression 
levels does provide valuable biological information, these ratios are affected by expression control mechanisms 
and do not necessarily reflect allele dosage at the DNA level (Pham et al. 2017). 

Considering these complications and limitations, in most scenarios a combination of variant calling with other 
strategies is more valuable, such as identifying polymorphisms from both RNA-seq and whole genome sequencing 
(WGS) data, for instance. 

1.4.4. Machine Learning Technologies for Transcriptomics 

The advent of high throughput technologies like microarrays and Next Generation Sequencing has caused 
Biology to face the challenges of analyzing large amounts of data. These challenges include heterogeneity, high 
dimensionality, noisiness, incompleteness, and computational expensiveness, among others. Machine learning 
(ML) has emerged as a suitable solution for analyzing massive data while dealing well with its challenges. ML 
has been extensively applied for large-scale data analysis in fields such as genetics (Libbrecht and Noble 2015), 
biomedicine (Mamoshina et al. 2016; Leung et al. 2016), genomics, transcriptomics, proteomics and systems 
biology (Larranaga et al. 2006; Min et al. 2017). This section presents an overview of ML that includes basic 
concepts and applications on transcriptomics in plants. 

ML can be defined as the computational process of automatically learning from experience to make predictions 
on new data (Murphy 2012). The process of learning is carried out by extracting knowledge from exemplary data 
by identifying hidden patterns. ML methods are classified into two main groups, supervised and unsupervised 
learning. Supervised learning is a predictive approach that comprises data examples with inputs and outputs. This 
approach uses evidence from the example data to make a model that generates reasonable predictions for new 
unseen datasets. More formally, the example data corresponds to a set of inputs-outputs pairs D called training set 
and defined as, 

, 
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where xi is a training input of the set x, yi is the response variable that represents an output from the set y, and 
N is the number of training examples. Hence, the model is trained to learn how to map each xi to a corresponding 
output yi. 

Supervised learning methods can be subdivided into two categories according to the nature of predictions. 
When the response variable is discrete or categorical, e.g., male or female, healthy or diseased, the method falls 
into the classification category. General applications of classification algorithms are voice and handwriting 
recognition, and document and image classification. Common algorithms of this category include support vector 
machines (SVM), k-nearest neighbor (KNN), decision trees, logistic regression and neural networks. When the 
response variable is continuous, e.g., the height of a person, or a temperature, the method corresponds to the 
regression category. Regression algorithms include linear and nonlinear models, neural networks, and 
regularization. A variation of the late category is the ordinal regression, which comprises methods whose response 
variable has a natural ordering. 

The second main group of ML, unsupervised learning, uses data examples with just inputs, i.e., the set 

. 

This type of ML tries to elucidate hidden patterns in data, which can be considered “interesting” for the 
researcher. In this case there is no information about the exact kind of patterns that are expected to find from the 
data. Unsupervised learning, also called knowledge discovery, is more commonly used than supervised 
techniques. Two notorious categories within supervised learning are clustering and dimensionality reduction. 
Clustering algorithms are intended to group data by looking for similarities among the features of each element 
from the input. Standard clustering algorithms include k-means, self-organized maps (SOM), hierarchical 
clustering, and hidden Markov models. Dimensionality reduction algorithms try to extract the “essence” of data 
(Murphy 2012) by selecting a subset of features that represents better the dataset (feature selection) or by 
transforming the high dimensional space of the original data into a lower one (feature extraction). Usual algorithms 
for dimensionality reduction are principal component analysis (PCA), linear discriminant analysis (LDA), and 
generalized discriminant analysis (GDA). 

Supervised ML techniques have been applied in transcriptomics-related tasks such as assembly, identification 
and abundance estimation of transcripts, splicing sites/events detection, non-coding RNAs identification, and gene 
selection. Transcriptome assembly is one of the essential tasks in RNA-seq based studies as is required for 
subsequent analysis like gene expression. IsoLasso is a reference-based RNA-seq transcriptome assembler that 
uses an ML regression algorithm called Least Absolute Shrinkage and Selection Operator (LASSO) and has the 
interesting feature of identifying and quantifying novel isoforms (Li et al. 2011b). Another ML based tool for 
transcript identification and abundance estimation is SLIDE, which uses a linear model that models the sampling 
probability of RNA-seq reads from mRNA isoforms, and a modified LASSO algorithm for estimating parameters 
(Li et al. 2011a). Unlike IsoLasso, SLIDE requires the coordinates of transcripts and exons previously assembled 
with other tools.  

Identifying splicing sites and splicing events is crucial for determining isoforms and, thus, for estimating the 
abundance of transcripts. TrueSight is a tool developed for detecting splice junctions (SJs) based on an iterative 
regression algorithm that uses RNA-Seq mapping information and splicing signals from the DNA sequence of a 
reference genome (Li et al. 2013b). TrueSight was tested using simulated and real datasets from humans, D. 
melanogaster, C. elegans, and A. thaliana, and showed better specificity and sensitivity compared to other SJs 
detection applications. A recently developed tool called DeepBound also uses alignment information to determine 
SJs and infer boundaries of expressed transcripts from RNA-seq data (Shao et al. 2017). DeepBound utilizes deep 
convolutional neural fields (DeepCNF), a technique that belongs to an emerging ML branch  referred to as deep 
learning (Mamoshina et al. 2016; Min et al. 2017; Angermueller et al. 2016). All the described applications for 
transcript abundance and SJ detection can be used in plant. However, except for SLIDE, these tools are not suitable 
for being applied directly to non-model species, as they depend on a reference genome. 

In plants, supervised learning methods have also been used for detecting alternative splicing (AS) events. SVM 
classifiers were employed to detect two types of AS events, exon skips and intron retentions, in A. thaliana from 
tiling arrays data (Eichner et al. 2011). EST and cDNA data were used for training with two SVM layers: one for 
classifying sequence segments as introns or exons, assigning probabilities of being included in mature mRNA, 
and a second layer to predict AS events by using the probabilities from the first layer. In addition to SVM, Random 
Forest (RF) has been used to detect intron retention in A. thaliana, the most common type of alternative splicing 
in this species. These RF were created using a hybrid approach that combines essential features (i.e., length, 
nucleotide occurrence probabilities, AT and GC content) with additional features (i.e., common motifs, splice 
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sites, and flanking sequences) to differentiate retained introns from constitutively spliced introns. These RFs had 
a better classification performance than SVM (Mao et al. 2014). 

Non-coding RNAs (ncRNAs) are determinant in cellular processes like regulation and alternative splicing. 
Several ML methods have been applied to discover ncRNAs, including micro RNAs (miRNA) and long non-
coding RNAs (lncRNA), using NGS datasets. In the case of miRNAs, decision trees (based on the C4.5 algorithm) 
combined with genetic algorithms, allowed the prediction of miRNAs targets in humans from datasets that 
comprise genomic and transcriptomic information (Rabiee-Ghahfarrokhi et al. 2015). miRNAs were predicted in 
18 different plant species from data extracted from either RNA-seq, chromosome sequences or ESTs, exploiting 
decision trees (C5.0 algorithm) (Williams et al. 2012). Am SVM approach was employed to identify miRNAs 
associated with cold stress in A. thaliana (Zhou et al. 2008). Multiple Kernel Learning has been applied to the 
identification of circularRNA, a type of lncRNA, in humans, which can identify them with high accuracy in de 
novo assembled transcriptomes (Pan and Xiong 2015). 

Gene selection from expression data is a problem in which ML methods can be used naturally. Given an 
expression dataset that usually comprises thousands of genes, the goal here is to select a handful of relevant genes 
associated with a specific condition of interest, e.g., a disease or a treatment. A common ML-based approach for 
gene selection from expression datasets is variable ranking, in which genes (variables) are prioritized according 
to a value derived from the applied classification algorithm. This value is a proxy for the importance or relevance 
of each gene among the whole dataset. In this way, genes at the top of the rank are more relevant to the condition 
of interest, e.g., healthy/diseased tissue, treated/untreated tissue, and genes at the lower positions are redundant 
and less relevant. Following this approach, ML algorithms such as RFs, SVMs, and decision trees, have been used 
with microarray data to select subsets of cancer–related genes which can be used as markers in diagnosis (Diaz-
Uriarte and Alvarez de Andres 2006; Horng et al. 2009; Guyon et al. 2002). 

Although most of the proposed ML-based gene selection methods are tested in cancer expression datasets, 
some studies have applied similar approaches to plants using gene expression data from microarrays. An SVM 
with Recursive Feature Elimination (SVM-RFE) and a Radial Basis Function (RBF) was used to identify four 
genes related to resistance to tungro disease in rice (Ren et al. 2010), this was a modification of the application of 
the same technique to cancer (Guyon et al. 2002).  A caveat in this study is the small data set used (21 samples), 
as the amount of data for training is a decisive factor to get revealing results in ML. A further study, refined the 
same SVM-RFE approach to identify genes related to drought resistance in A. thaliana (Liang et al. 2011). 
Although authors of this study used a dataset with only 22 samples, they mitigated the small sample size effect by 
implementing a Leave One Out Cross Validation (LOOCV) scheme to select the training dataset and  
bootstrapping strategy to iterate the variable ranking process. In such a way a subset of 10 genes were identified, 
seven of which have previous biological information that links them to processes involved in drought-resistance. 
ML and GCN were combined into the R package “machine learning-based differential network analysis” 
(mlDNA), which implements a two-phase ML method for selecting genes from expression data. In the first phase, 
the method identifies and discards irrelevant genes from the dataset using an RF classifier with the Positive Sample 
only Learning algorithm (PSoL), a technique that discriminates positive from negative data after using only 
positive samples for training. The second phase involves the construction of GCNs from the filtered genes, the 
extraction of topological features from the GCNs, and an RF algorithm to select the candidate genes based on the 
extracted features. This approach proved to successfully select candidate genes in A. thaliana responding to 
drought, cold, heat, wound, and genotoxic stress conditions (Huang et al. 2011). 

1.5. Case/Examples of transcriptomics in non-model plants 

Perhaps the most notable quality of transcriptomics is the possibility of producing robust amounts of data for 
a reduced representation of the genome, which is of importance in non-model plant species, and species with 
complex genomes. This quality allows for a diverse series of biological questions to be asked and for which 
answers can be obtained. In this section we will exemplify the most relevant uses of recent transcriptomics studies. 

1.5.1. Construction of improved transcripts catalogues 

Although, in principle, transcriptomic studies derived from RNASeq, do not require any prior genetic 
information, it is true that having a high-quality reference transcriptome undoubtedly favors high quality research. 
Current assembly tools and sequencing technologies have advanced our capacity to produce de novo assemblies. 
In constructing high quality transcriptomes for polyploid (allopolyploid) species, where two or more sub-genomes 
are present, one particular challenge is the identification of homoeologous copies of the same genes which tend 
to be highly similar and difficult to separate in a de novo assembly. Classical assemblers such as SOAPdenovo-
Trans Trinity and TransAByss have been tested for this task. This is exemplified in the study by (Chopra et al. 
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2014) aiming at reconstructing the transcriptome of tetraploid and diploid peanut species, using RNA-seq data. 
After examining several variables including contig length and number, results showed that Trinity and 
TransAByss performed in a similar way for the diploid species, while Trinity performed better for the tetraploid 
genotype. In addition, the transcriptome produced for the tetraploid genotype almost doubled in amount of contigs, 
total size, transcript N50 compared to the existing resources. It also produced at least 40% more full length 
sequences. 

Others have searched to develop specific software to tackle the problem. Such is the case of the software 
HomeoSplitter which takes into consideration the elevated rates of heterozygosity of certain contigs (alleles) to 
target possible homeoalleles. Once identified, the software uses a likelihood model-based method to disentangle 
the mixed alleles taking into consideration their expression levels. For durum wheat (Tritichum turgidum) 
HomeoSplitter showed capacity to separate homeologous sequences, as assessed by comparison to the diploid 
progenitors, and allowed to recover a greater number of polymorphic SNPs for the population genotyped (Ranwez 
et al. 2013). 

From the sequencing-and-assembly point of view this issue has been approached through the use of normalized 
libraries, which increases the likelihood of seeing rare or less abundant transcript, and the use of single-molecule 
long read sequencing technologies, which can produce near complete transcript sequences represented in a single 
sequencing read. The protocol called Iso-Seq has been applied to several crop species, including sorghum (Abdel-
Ghany et al. 2016), maize (Wang et al. 2016), cotton (Wang et al. 2018b), coffee (Cheng et al. 2017), Salvia 
miltiorrhiza (Xu et al. 2015), grape wine (Minio et al. 2019), the Chinese herb Astragalus membranaceus (Li et 
al. 2017a), Arabidopsis pumila (Yang et al. 2018b), the shrub Zanthoxylum bungeanum (Tian et al. 2018), the 
giant timber bamboo native to China (Zhang et al. 2018), wild strawberry (Li et al. 2017b) and the highly complex 
sugarcane (Hoang et al. 2017). Iso-Seq has been shown to recover full length isoforms, which was not possible 
with short-read technologies, but also it has allowed the detection of alternative start sites, alternative splicing and 
alternative polyadenylation (Zhao et al. 2019). In the case of sugarcane, Iso-seq was further complemented with 
short RNA-Seq reads in order to correct errors present in long reads. The same dataset also served to compare the 
transcriptomes created by the hybrid approach and a de novo approach based solely on RNA-Seq reads. The 
hybrid transcriptome recovered more full-length transcripts, with a longer N50, more ORFs and predicted 
transcripts; and higher average length of the largest 1,000 proteins, compared to the de novo contigs. Importantly, 
RNA-Seq covered more gene content, and more RNA classes than Iso-Seq, which was attributed to the greater 
sequencing depth (Hoang et al. 2017). 

Oxford Nanopore Technologies (ONT) have a platform option that allows for the direct sequencing of RNA 
molecules, which in addition to producing full length transcript sequences, study of alternative polyadenylation 
and splice and start sites, reveals the status of RNA modifications, and could revolutionize the transcriptomics 
field (Hussain 2018). This approach is still very recent and has not yet been applied to many plant species. Direct 
RNA sequencing was performed on seeds of soybean to quantify transcript degradation as a proxy of seed viability 
(Fleming et al. 2018). Eukaryotic transcripts are usually modified on their 5’-end by the addition of a 7-
methylguanylate (m7G) cap which protects mRNA form decay and have several implications for mRNA-
downstream processes. However a recent study, using direct RNA sequencing, showed that in A. thaliana, up to 
5% of the transcripts of several thousand genes have instead a NAD+ cap (Zhang et al. 2019a), an RNA 
modification that had been reported before in bacteria (Chen et al. 2009), yeast (Walters et al. 2017) and humans 
(Jiao et al. 2017). 

Overall, despite current advances in the construction of de novo transcriptomes, there is still room for 
improvement in assemblers tailored to polyploid genomes. Also, given the current rate of innovation in high-
throughput sequencing, and provided a decrease in costs, the construction of novel transcriptomes through the use 
of long RNA molecules are expected to increase rapidly. 

1.5.2. Populations mapping 

Transcriptomics can also be used to identify polymorphisms to map populations of interest. Two alternative 
strategies are often followed: In the first, the genetic variants are identified from transcriptomic data, from a 
diverse group of individuals. The variants identified are then used to design probes to test DNA samples from the 
same or an alternative, bigger, population. Contrary to the classic DNA mapping studies, this strategy increases 
the probability of identifying causal mutations given that the majority of the selected variants will be located 
within coding sequences. This is specially the case in species with big genomes and a high percentage of repetitive 
sequences which, for mapping studies, require a considerable number of markers to increase the probability of 
having a significant association. Markers, particularly SNP and SSR, derived from transcriptomic data have been 
produced for different crops including, but not limited to: soybean (Guo et al. 2018), sugarcane (Bundock et al. 
2009), grasspea (Hao et al. 2017), peanut (Chopra et al. 2015) and oilseed rape (Trick et al. 2009). More recently, 
and through the implementation of the Bulk Segregant RNA-seq analyses (BSR-seq) principle, which requires the 
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formation of pooled samples contrasting for the phenotype of interest, markers linked to traits of interest have 
been mapped in crop species such as wheat (Wang et al. 2017; Ramirez-Gonzalez et al. 2015; Wu et al. 2018) and 
Chinese cabbage (Huang et al. 2017b). 

In the second strategy, transcriptomics data is produced for a biparental population and the markers identified 
(SNP markers) are directly used for construction of genetic maps. The value of these maps lies in the fact that 
“unlike sequence assembly, linkage analysis is essentially unaffected by allopolyploidy and repeated sequences 
as long as homoeologous recombi-nation is rare and genome-specific alleles can be identified” (reviewed in 
McKay and Leach 2011). This strategy, to the best of our knowledge, has been only used in the tetraploid Brassica 
napus (oilseed rape) (Bancroft et al. 2011). In this case, twin genetic maps were constructed for the two progenitor 
species (B. oleracea and B. rapa) of the modern B. napus genotypes, which also served as parents for the 
population tested. These genetic maps were next aligned to the existing genome of B. napus and that of A. thaliana. 
The whole strategy allowed to identify genome rearrangements between B. oleracea and B. rapa, and therefore 
helped to refine the existing assemblies for these species. Likewise, it helped to pinpoint genomic regions involved 
in the recent breeding history of the crop.  Considering these implications and the urgent necessity of genomic 
tools to tackle polyploid genomes it is expected that linkage maps derived from transcriptomic data will be on the 
rise.  

1.5.3. Stress-related studies 

As sessile organisms, plants must deal with a variety of environmental conditions that can impact on their 
potential for growth and reproduction. In order to study the molecular mechanisms underlying the response to 
such conditions plant transcriptomics is being widely used. The most common approach consists of comparing 
gene expression levels of a specific genotype under a control and a stress-induced treatment. Oftentimes, 
contrasting genotypes (tolerant and susceptible) for the trait of interest are used. By identifying the changes in 
gene expression between control and treatment conditions it is possible to determine the mRNAs activated by the 
stress under consideration. This in turn allows for exploring the mRNAs that are differentially expressed among 
the genotypes selected (tolerant vs susceptible). Following this approach it has been possible to study the 
molecular regulation of salt stress tolerance in cotton (Zhang et al. 2016a), the roles of the photosynthetic system 
during drought in upland rice (Zhang et al. 2016b), the molecular mechanisms driving copper stress tolerance in 
grapevine (Leng et al. 2015), the mechanisms for lipid accumulation in response to nitrogen deprivation in the 
green algae Chlamydomonas reinhardtii (Park et al. 2015), the molecular responses underlying drought tolerance 
in sugarcane (Pereira-Santana et al. 2017; Belesini et al. 2017), just to mention a few.  

Perhaps, one of the most studied traits through comparative transcriptomic is drought. When “drought” and 
“RNASeq” are used as keywords in PubMed, 217 different titles, excluding reviews, show up as a result.  Studies 
have been performed on nearly every major crop (Zhang et al. 2014; Chen et al. 2016; Divya Bhanu et al. 2016; 
Mofatto et al. 2016), but also on non-major crops and other plants whose original habitat are water deprived 
locations and thus can contribute to better understanding the physiological bases of this condition (Gross et al. 
2013; Yang et al. 2015; Li et al. 2015). In polyploids the challenge resides on having a high-quality reference 
transcriptome that allows to distinguish among isoforms derived from different sub-genomes. In fact, in hexaploid 
wheat, where different genomic resources have been recently developed (Pearce et al. 2015), it has been found 
that a large proportion of wheat homeologs exhibited expression partitioning under normal and abiotic stresses 
indicating a specialized gene expression coordination among genomes.  

1.5.4. Phylogenomics 

Phylogenomics is a new biological discipline focusing on the resolution of relationships among taxa and the 
reconstruction of evolutionary histories through the use of genomic data. It involves the analysis of entire 
genomes, transcriptomes or specific sequences that can be targeted (Yu et al. 2018) through the mining of already 
published information (Washburn et al. 2017). 

In order to resolve relationships among species, phylogenomics relies heavily on the identification of single-
copy genes to reduce the possibility of paralogy and thus limiting to conclusions based solely on orthologous 
genes. However, information on single-copy genes is difficult to obtain especially for non-model, polyploid 
species, where the entire genome is expected to be duplicated. Chloroplast genes are often targeted for 
phylogenomics, however this part of the plant genome has its own problems such as low recombinant nature, and 
thus low polymorphism levels, exclusive maternal inheritance and these genes are subject to processes such as 
chloroplast capture and hybrid speciation which reduce its resolution capacity. Still, due to its high-throughput 
nature, transcriptomics offers the possibility to mine for nuclear single-copy markers in a rich set of genic sources. 
This is even possible in the case of polyploids and despite their repetitive nature. Due to evolutionary mechanisms 
such as gene conversion and loss, the number of retained duplicates in polyploids decreases over the time, allowing 
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single-copy signals (coding and non-coding sequences) to arise (Wen et al. 2015). In the case of ferns, for example, 
which have a long history of polyploidy, 20 new nuclear regions spanning 10 coding sequences have been 
identified by comparative transcriptomics which has increased significantly the taxonomic resolution across these 
group of plants (Rothfels et al. 2013). 

Comparative transcriptomics can also contribute to detect and characterize polyploidy speciation. Although 
ancient polyploidy could be reconstructed through the comparison of high quality, chromosome level genomes, 
the lack of high-quality assemblies for the vast majority of polyploid species has position transcriptomics as a 
viable alternative. For this purpose, the rate of synonymous substitution (Ks), in coding sequences, derived from 
transcriptomics is widely used. This is possible because whole-genome duplications produce peaks in the 
cumulative distributions of pairwise Ks between paralogs within a genome. By evaluating the distribution of Ks 
among evolutionary lineages it has been possible to better understand polyploidy speciation in the flax genus 
(Sveinsson et al. 2014), the evolution of gene families like CYP75 after the events of whole-genome duplication 
(Zhang et al. 2019b), the redistribution of the seed plants in phylogenetic trees explaining the origin of 
angiosperms (Ran et al. 2018), the evolutionary patterns of agricultural traits in strawberry (Qiao et al. 2016) or 
the origin and early diversification of green (One Thousand Plant Transcriptomes Initiative 2019) and land plants 
(Wickett et al. 2014), among others. 

1.6. Future directions in the field 

Over the past decades transcriptomics has seen a revolution. The technologies employed to produce expression 
data are nowadays much more efficient and with their regular decrease in costs, a realistic possibility even for 
small labs, and so it has become practical to be applied to non-model exotic plant species, and to perform more 
complex experimental designs. Nonetheless, the cost of sequencing is still not at reach for projects in which 
hundreds to thousands of samples need to be sequenced in a more routinely manner. This level of sequencing 
capacity is a reality for consortiums and greater collaborative efforts but not for smaller groups, which commonly 
have the possibility of greater access to genetically diverse samples but smaller budgets. Further decrease in library 
preparation and sequencing costs will ameliorate this though. 

Technical advances have made it possible to directly sequence RNA molecules, and together with PCR-free 
protocols, they aid in eliminating potential sources of bias, that could be introduced during library preparation. In 
addition to building comprehensive transcript catalogues, these advances will allow more reliable estimation of 
transcript abundances when it becomes affordable to sequence at higher depths of coverage. Also, recently 
published genome assemblies often include (partial) information about haplotype sequences, such that long read 
RNA sequencing will allow studies of allele-specific expression with unprecedented levels of detail. 

Along with this new technological capacity to produce data, the questions that may be answered with 
transcriptomics-based strategies have also matured. However, for many of these questions their answers are 
limited by the available bioinformatic software. For example, all the efforts that have been made to confidently 
identify orthologous genes and in general to filter out the noise caused by polyploidy are encouraging because, 
among other reasons, this has increased our understanding of complex genomes. Nonetheless, only a handful of 
genes or a small portion of the transcriptomes are used for these purposes. It is then reasonable to believe that 
more efforts from software development are necessary to truly take advantage of the level of information being 
produced in transcriptomics studies. A similar situation happens with all the studies aiming a better understanding 
of specific phenomena (e.g., stress-related studies) that after producing high quality, robust data are still left with 
lists of hundreds to thousands of differentially expressed genes, from which it is difficult to define the key players 
for the process under study. Perhaps this type of studies could benefit by the integration of different OMICs 
approaches to the same problems, with a more integrative approach which requires further advances in tool 
development, for instance including machine learning algorithms, necessary to mine for the most relevant 
transcripts. 

Overall, we can confidently say that the last decade has been a defining one for plant transcriptomics thanks to 
the greater access to sequencing data. However, the same breakthrough has yet to impact data analyses and 
storage. Our data processing capabilities are being surpassed by our capacity to produce data and it is imperative 
to face this challenge if we want to further increase our ability to address the challenges posed by climate change, 
speed up the efforts to breed crop plants and deepen our understanding of the history of evolution of plants. 
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Table 1. Some of the software packages for different steps in RNASeq analysis pipelines. 

Activity Software Reference 

Read pre-processing 

Sequencing 
diagnostics 

FastQC bioinformatics.babraham.ac.uk/projects/fastqc 

RSeQC (Wang et al. 2012) 

RNA-SeQC (DeLuca et al. 2012) 

Removal of 
adapters and low-
quality bases 

Trimmomatic (Bolger et al. 2014) 

Atropos (Didion et al. 2017) 

BBDuk sourceforge.net/projects/bbmap/ 

Removal of 
ribosomal RNA 

SortMeRNA (Kopylova et al. 2012) 

BBDuk sourceforge.net/projects/bbmap/ 

Identification of 
duplication 
artefacts 

dupRadar (Sayols et al. 2016) 

De novo 
transcriptome 
assembly 

 

Trinity (Grabherr et al. 2011) 

Trans-ABySS (Robertson et al. 2010) 

Velvet/Oases (Schulz et al. 2012) 

Genome-guided 
transcriptome 
assembly 

 Trinity (Grabherr et al. 2011) 

 Stringtie (Kovaka et al. 2019) 

 PASA (Haas et al. 2003) 

Assessment of 
transcriptome 
assembly 

 BUSCO (Waterhouse et al. 2017) 

 DETONATE (Li et al. 2014) 

 Transrate (Smith-Unna et al. 2016) 

Functional 
Annotation 

 Trinotate (Bryant et al. 2017) 

 Blast2GO (Conesa et al. 2005) 

Read mapping 

 STAR (Dobin et al. 2013) 

 GSNAP (Wu and Nacu 2010) 

 HISAT2 (Kim et al. 2015; Kim et al. 2019) 

Transcript/Gene 
expression level 
quantitation 

 Stringtie (Kovaka et al. 2019) 

 featureCounts (Liao et al. 2014) 

 kallisto (Bray et al. 2016) 

 Salmon (Patro et al. 2017) 

Differential 
expression analyses 

 Limma (Ritchie et al. 2015) 

 edgeR (Robinson et al. 2010) 

 Ballgown (Frazee et al. 2015) 

 Sleuth (Pimentel et al. 2017) 

 DESeq2 (Love et al. 2014) 

Co-expression 
network inference 

 

WGCNA 

HRR 

HCCA 

(Langfelder and Horvath 2008) 

(Liesecke et al. 2018) 

(Mutwil et al. 2010) 
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Polymorphism 
analyses 

 
GATK 

NGSEP V4.0 

(DePristo et al. 2011; McKenna et al. 2010) 

sourceforge.net/p/ngsep/ 

Functional 
enrichment 

 goseq (Young et al. 2010) 

 topGO (Alexa et al. 2006) 

 Blast2GO (Conesa et al. 2005)  
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