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ARTICLE INFO ABSTRACT

Keywords: Confirmatory factor analysis (CFA) has historically been used to develop and improve reflectively measured
Confirmatory composite analysis constructs based on the domain sampling model. Compared to CFA, confirmatory composite analysis (CCA) is a
CCA recently proposed alternative approach applied to confirm measurement models when using partial least squares
PLS-SEM

Confirmatory factor analysis
CFA
Measurement model confirmation

structural equation modeling (PLS-SEM). CCA is a series of steps executed with PLS-SEM to confirm both re-
flective and formative measurement models of established measures that are being updated or adapted to a
different context. CCA is also useful for developing new measures. Finally, CCA offers several advantages over

other approaches for confirming measurement models consisting of linear composites.

1. Introduction

Social scientists have been examining measurement quality for
decades. The process of examining and assessing measurement quality
is generally associated with the field of psychometrics. This process was
initially referred to as item analysis and involved applying statistical
methods to select items to include in a psychological test. Guilford
(1936) is often identified as the first scholar to refer to the concept of
item analysis. The item analysis process varies depending on the con-
text or discipline, but the purpose of item analysis is to develop a re-
latively small number of items (indicators) that can be used to accu-
rately measure a concept (Crocker & Algina, 1986).

The purpose of this paper is to provide an initial overview of mea-
surement quality assessment, and then to focus on describing the method of
confirming measurement quality when applying partial least squares
structural equation modeling (PLS-SEM). Specifically, we discuss the
emerging process of confirmatory composite analysis (CCA), the mea-
surement model assessment steps in PLS-SEM, compare these steps to
confirmatory factor analysis (CFA), and then describe the steps to apply the
method, including rules of thumb to guide the researcher in interpreting
each stage of the analysis for both reflective and formative measurement
models. This research focuses on CCA as the initial step in PLS-SEM since
this method is the most popular composite method for estimating SEMs. It
should be noted, however, that CCA can be conducted using other com-
posite-based methods, such as generalized structured component analysis
(Hwang & Takane, 2004). While our recommendations are positioned in
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the context of PLS-SEM due to its statistical benefits, the current article and
CCA provide implications for the broader scope of composite-based
methods (Henseler et al., 2014; Schuberth et al., 2018).

2. Background

The assessment of measurement models was an outgrowth of clas-
sical test theory. One of the earliest concepts of classical test theory was
proposed by Charles Spearman (1904). He developed a method for
correcting a correlation coefficient for measurement error, referred to
as attenuation, as well as a reliability index used in making the cor-
rection. Other early social scientists contributing to the development of
classical test theory include the work by George Yule (1907, 1911),
Fritz Kuder (Hakel, 2000), Marion Richardson (Lorr & Heiser, 1965),
and Louis Guttman (Stouffer et al., 1950). More recently, in psycho-
metrics and related social sciences classical test theory has been su-
perseded by more sophisticated models such as item response theory
(IRT) (Hambleton, Swaminathan, & Rogers, 1991), and generalizability
theory (G-theory) (Brennan, 2001).

One method for developing and assessing the quality of measure-
ment — exploratory factor analysis (EFA) — was initially proposed by
Charles Spearman (1904). Researchers have often applied EFA for data
reduction and exploration of the theoretical structure of psychological
phenomena. The statistical objective of EFA is to identify a set of latent
constructs from a large number of individual variables (items), with the
result being reliable and valid measurement scales. The method is
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typically applied when there are no prior hypotheses about factors or
patterns of measured variables. Researchers start with a large number
of observed variables assumed to be related to a smaller number of
‘unobserved’ factors and expect to reduce the large number of variables
to a much smaller set of factors (Brown, 2014; Kline, 2014, 2015). For
example, a researcher may develop a customer satisfaction construct
consisting of ten items, and EFA could be used to determine whether a
single factor adequately explains the variance and covariance among
these ten items. The EFA could also determine whether each item suf-
ficiently relates to the emergent factor, or whether certain items should
be removed because they are not representative of the proposed factor.
Examples of constructs derived from measured variables in the social
and behavioral sciences could be trust, satisfaction, commitment, co-
ordination, performance, loyalty, and so forth. As a result, exploratory
factor analysis (EFA) has become an essential tool for research in the
social sciences, business, and beyond (Grimm & Yarnold, 1995; Hair,
Black, Anderson, & Babin, 2019; Howard, 2016; Kline, 2015; Rencher &
Christensen, 2012).

Early applications of EFA were based on the common factor model.
In the common factor model, measured variables are assumed to be a
function of common variance, specific variance, and error variance
(Brown, 2014; Hair, Black, et al., 2019). Common variance is the in-
dicator’s variance that is shared with all other indicators in the analysis.
Specific variance is the indicator’s variance that is only associated with
the indicator. Error variance is the indicator’s variance that is due to
unreliability, bias, or randomness. EFA assumes that any indicator/
measured variable may be associated with any factor. When developing
a measurement scale, researchers may use EFA first to examine the
underlying structure of multi-item scales (Brown, 2014; Hair, Black,
et al., 2019; Kline, 2014; Kline, 2015) before moving on to CFA.
However, EFA is not a required step in scale development, and only
needs to be applied when there is no established theory describing the
underlying factors/constructs for a set of measured variables.

EFA requires the researcher to make a number of important deci-
sions about how to execute the analysis. For example, how many factors
to extract to represent the underlying patterns, the size of the loadings,
and which type of rotation to apply? Perhaps most important, however,
is choosing which of two primary approaches should be applied, since
each of the approaches is applied in a different research context. One
approach is principal axis analysis, which extracts factors using only
common (shared) variance. The other approach is principal compo-
nents analysis (PCA), which extracts factors using total variance.

Common factor analysis uses only common variance and assumes
specific and error variance is unimportant in defining the factors
(Brown, 2014; Kline, 2014; Thompson, 2004). On the other hand,
principal components (composite) analysis is focused on explaining as
much of the total variance as possible, and results in factors that contain
primarily common variance, and also some specific and error variance
(Fabrigar, Wegener, MacCallum, & Strahan, 1999; Preacher &
MacCallum, 2003). Methodologists advocating PCA note that the
amount of error variance included when starting with total variance is
most often negligible (Bentler & Kano, 1990; Hair, Black, et al., 2019)
because the process of extracting factors removes most if not all of the
error variance. Some methodologists have argued that component
(composite) analysis is always more appropriate than common factor
analysis while others believe common factor analysis is always more
appropriate than component analysis. Based on our review it is most
likely neither side is entirely correct and both approaches are appro-
priate for specific research applications (Brown, 2014; Grimm &
Yarnold, 1995; Hair, Black, et al., 2019; Howard, 2016; Kline, 2014;
Kline, 2015; Thompson, 2004). It should also be noted that PCA and
principal axis analysis converge in many situations commonly en-
countered in applied research. The two types of approaches provide
very similar results when studying more than 30 indicators and/or
communalities exceed 0.60, whereas their differences are more pro-
nounced when studying less than 20 indicators and/or communalities
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are below 0.40 (Stevens, 2009)." Thus, the choice of analytical ap-
proach may have a small influence in many research scenarios.

More recently the concepts of exploratory factor/component ana-
lysis have been extended and applied to confirmation of theoretical
structures, particularly measurement models for psychological con-
structs/concepts. The emergence of covariance-based structural equa-
tion modeling (CB-SEM) in the early 1980’s included a process for as-
sessing measurement model quality referred to as confirmatory factor
analysis (CFA). CFA is both a qualitative and statistical process that
involves examining the reliability of the individual indicators (item
reliability), construct reliability, qualitative face and content validity,
quantitative measures of convergent and discriminant validity, and
Goodness of Fit.

The CFA process enabled researchers to evaluate multi-item con-
structs and scholars began referring to measurement model confirma-
tion as CFA because constructs were based on common variance and
referred to as factors — hence CFA. When researchers apply CFA, es-
tablished — or at minimum some — meaningful theory is available about
the relationships between the individual variables and how they relate
to theoretical concepts. In short, researchers are testing the hypothesis
that a proposed theoretical relationship exists between the observed
variables and their underlying latent construct(s). Moreover, the ob-
jective is to confirm the measurement properties of a set of variables
(indicators) for measuring a specified and operationally defined latent
construct.

PLS-SEM emerged at the same time as CB-SEM. PLS-SEM, also re-
ferred to as variance based SEM, was developed by Herman Wold
(1982) to offer a structural equation modeling approach with much
greater flexibility compared to CB-SEM. The evolution of both ap-
proaches was not parallel, however, mainly because of the lack of
software to execute PLS-SEM (Mateos-Aparicio, 2011). When applica-
tions of PLS-SEM began increasing around 2005, with the availability of
PLS Graph (Chin, 2003) and the SmartPLS 2 (Ringle, Wende, & Will,
2005) software, and more recently ADANCO (Henseler & Dijkstra,
2015) and SmartPLS 3 (Ringle, Wende, & Becker, 2014) methodologists
initially referred to measurement model confirmation using PLS-SEM as
a CFA, just as with CB-SEM. In those early years of PLS-SEM applica-
tions, confusion arose around referring to the process of confirming
measurement models for both CB-SEM and PLS-SEM as a CFA. As a
result, some scholars suggested that PLS methodologists adopt separate
terminology for PLS-SEM. In response to this, Ed Rigdon (2014) sug-
gested that PLS-SEM applications and terminology could be clarified if
measurement models/constructs are identified as “composites”, and
that terminology began to be adopted by PLS methodologists (Sarstedt,
Ringle, Henseler, & Hair, 2014). That same year Henseler et al. (2014)
proposed the concept of CCA as a process for confirming measurement
models in PLS-SEM. Next, Sarstedt, Hair, Ringle, Thiele, and Gudergan
(2016) published an article that referred extensively to the term com-
posites, even going so far as to suggest that CB-SEM constructs and PLS-
SEM constructs are both composites that estimate proxies for theore-
tical concepts/constructs.

The methods of EFA, CCA and CFA have similarities but many dif-
ferences. For example, the statistical objective of EFA is data reduction
through exploration of response patterns, while the statistical objective of
CCA and CFA is confirmation of measurement theory. Other primary
differences include the execution of EFA often ends with the identification
of factors, while CCA and CFA begin with proposing theoretical constructs
to be confirmed, and almost always moves on to structural modeling after
the composite measurement models have been confirmed. Further differ-
ences among the three methods are compared in Table 1.

Before executing a CCA, operational definitions of the multi-item
construct must be confirmed, including whether the appropriate mea-
surement model is reflective or formative, since the process for the two

! We thank an anonymous reviewer for raising this point.
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Table 1
Comparison of EFA, CCA and CFA.
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EFA
Exploratory Factor Analysis

CCA
Confirmatory Composite Analysis

CFA
Confirmatory Factor Analysis

® Principal Components Analysis (PCA) = Total Variance
® Common Factor Analysis = Common Variance
Exploratory Only
Analyzes Independent and Dependent Variables Separately

Objective is Data Reduction

Orthogonal Rotation produces Independent (uncorrelated)
Factors

Reliability Examined
Typically Cronbach’s Alpha

Face and Content Validity

Other Types of Validity typically not Assessed
Factor Scores and Sum Scores often used with Multiple

Total Variance

Both Exploratory and Confirmatory

Analyzes Independent and Dependent Variables Together, but
Focuses on Measurement Confirmation

Objective is Confirming Measurement Models and also Prediction
of Dependent Variables

Composites (constructs) are Correlated

Reliability Examined

Typically Composite Reliability

Reflective Measurement Models

Convergent Validity

Reflective Measurement Models

Discriminant Validity

Construct Composite Scores applied in Structural Modeling

Common Variance Only

Confirmatory Only

Analyzes All Variables Together as
Measurement Models

Objective is Confirming Measurement
Models

Composites (constructs) are Correlated

Reliability Examined

Typically Composite Reliability
Reflective Measurement Models
Convergent Validity

Reflective Measurement Models
Discriminant Validity

Construct Latent Factors applied in

Regression
Factor Scores are Indeterminant
are Determinant

Construct Composite Scores

Structural Modeling
Construct Factor Scores
are Indeterminant

types of measurement differs considerably. When the measurement
theory is less developed, these initial steps are followed by literature
reviews and qualitative research with expert panels to assess face va-
lidity and reduce the initial list of items (Goetz et al., 2013; Howard,
2018). Pilot testing for refinement and purification of the items pre-
pares the researcher for executing a CCA.

CCA differs from CFA in that the statistical objective is to maximize
variance extracted from the exogenous variables, but in doing so to
facilitate prediction of the endogenous constructs, and confirmation of
the measurement models. That is, CCA enables researchers to develop
and validate measures within a nomological network. Each composite,
therefore, must relate to at least one other composite. Hence, the va-
lidity of a composite depends on the nomological network in which it is
embedded. The method is an extension of principal components ana-
lysis because it is composite-based, and therefore produces composite
scores that are weighted linear combinations of indicators and can be
used in follow-up analyses. The resulting composites are correlated, as
they would be in an oblique rotation with an EFA and include variance
that maximizes prediction of the endogenous constructs. Note that the
composite correlations from the oblique rotation do not often result in
problems with multicollinearity, but this issue should always be ex-
amined (Hair, Hult, Ringle, & Sarstedt, 2017).

To achieve measurement confirmation objectives in developing or
adapting multi-item measures, researchers could use either CFA or CCA.
The results are different, however, and researchers need to understand
the implications of the distinct outcomes to make informed decisions.
CCA and CFA can both be used to improve item and scale reliability,
identify and provide an indication of items that need to be revised or in
some instances eliminated for content validity, facilitate achieving
convergent validity and discriminant validity, and to remove error
variance. Compared to CFA, CCA has several benefits, as follows: (1)
the number of items retained to measure constructs is higher with CCA,
thereby improving content coverage and construct validity, (2) de-
terminant construct scores are available (Rigdon, Becker, & Sarstedt,
2019), and (3) CCA can be applied to formative measurement models.

Further, one of the most important differences between a CCA and a
CFA is the application of so-called goodness-of-fit (GOF) indices. The
evaluation of goodness-of-fit is an essential component in completing a
CFA. GOF indices evaluate the difference between the variance—cov-
ariance matrix using an empirical sample and the estimated model
variance—covariance matrix based on the modeled construct measure-
ment (Benitez, Henseler, Castillo, & Schuberth, 2019). The discrepancy
between two matrices is measured by criteria like the squared
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Euclidean distance (dyys), the geodesic distance (dg), and the standar-
dized root mean squared residual (SRMR). A requirement of CFA so-
lutions is to minimize the difference between the empirical (observed)
and the estimated variance-covariance matrix, and minimum guidelines
must be achieved to move on to test the structural model.

One stream of research has suggested GOF indices, which are ty-
pically used in CFA, are also applicable in a CCA (Dijkstra & Henseler,
2015; Henseler et al., 2014; Schuberth, Henseler, & Dijkstra, 2018).
Schuberth et al. (2018) in a simulation study attempted to illustrate the
performance of bootstrap-based tests and discrepancy measures as one
approach to evaluate overall fit for CCA. However, instead of using a
PLS-SEM algorithm to construct a composite they used a generalized
canonical correlation analysis (GCCA) with maxvar option. Further-
more, the authors used normally distributed datasets in their simula-
tions whereas PLS-SEM does not assume normally distributed data.
Above that, Schuberth et al. (2018) stated that caution is also needed in
case of small sample sizes where misspecified models with the tested
GOF indices were not reliably detected. But most studies using PLS-SEM
are based on much smaller data sets (Hair, Sarstedt, Ringle, & Mena,
2012; Nitzl, 2016). These technical aspects make the transferability of
the results of the simulation regarding GOF indices highly questionable
in a PLS-SEM context.

There are also critical conceptual issues that make the transfer-
ability of GOF indices to a CCA in PLS-SEM questionable. PLS-SEM is
based on causal-predictive relations because it maximizes the amount
of explained variance of dependent variables founded in well-developed
explanations (Hair, Sarstedt, & Ringle, 2019; Joreskog & Wold, 1982).
Consequently, an estimated composite always depends on the nomo-
logical network in PLS-SEM.? This is true for both formative and re-
flective measurement models. In contrast, CFA facilitates a stand-alone
evaluation of factor measurements and it is not necessary for it to be
embedded in a nomological network. The need to validate composites
in a nomological network using PLS-SEM means the same composite
might fit well in one model but not in the other. In a situation where
GOF indices indicate a misspecification, the question of whether a re-
searcher should change the indicators of the composite or the nomo-
logical network is uncertain and debatable, and if indicators are
changed the results are likely to compromise validity and reliability
metrics.

Additionally, using GOF indices in CCA means that a researcher

2 This is also true in the application of GOF for the CCA approach described by
Schuberth et al. (2018).
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focus only on the explanation characteristics of PLS-SEM and ignore the
predictive characteristics in evaluating the model results (Evermann &
Tate, 2016; Hair, Sarstedt, et al., 2019; Shmueli, Ray, Velasquez
Estrada, & Chatla, 2016). Testing GOF for PLS-SEM is only useful for
studies that follow a purely confirmatory approach, whereas PLS-SEM
requires consideration of confirmation, explanation, and prediction.
The question arises why such a benchmark for evaluation based on a
purely confirmatory viewpoint should be used when it is not the main
objective of the analysis? Application of GOF indices in such a context is
questionable in the best case, and in the worst case applying GOF in-
dices could even reduce the predictive power of a CCA (Hair, Hult,
et al.,, 2017; Lohmoller, 1989; Rigdon, 2012). The logical and more
promising approach should rely on criteria that emphasize the con-
firmation, explanation and predictive characteristics of PLS-SEM. One
possibility would be information theoretic model selection criteria that
build on a tradeoff between model fit and predictive power (Sharma,
Sarstedt, Shmueli, Kim, & Thiele, 2019; Sharma, Shmueli, Sarstedt,
Danks, & Ray, 2019). Their use is restricted thus far, however, to model
comparisons.

The methods of EFA and CFA are well established in the literature
(Hair, Risher, Sarstedt, & Ringle, 2019). In contrast, CCA as a separate
approach to confirming linear composite constructs in measurement
models is just emerging (Hair, Black, et al., 2019; Hair, Page, &
Brunsveld, 2020; Henseler, Hubona, & Pauline, 2016; Schuberth et al.,
2018). The remaining focus of this article will therefore be on ex-
plaining the steps followed to apply CCA.

3. Confirmatory composite analysis

In recent years researchers have begun referring to the measure-
ment model assessment step in PLS-SEM as CCA (Henseler et al., 2014;
Schuberth et al., 2018). CCA is a systematic methodological process for
confirming measurement models in PLS-SEM.

3.1. Reflective measurement models

When conducting a CCA, it is important for researchers to under-
stand that reflective measurement models are composite latent con-
structs whose indicators (measured variables) are assumed to be in-
fluenced, affected, or caused by the underlying latent variable (Sarstedt
et al., 2016). A change in the latent construct will be reflected in a
change in all of its indicators. The indicators are seen as a manifestation
of the empirical surrogates (proxy variables) for the latent variable. In
contrast, the indicators of a formative composite latent construct are
viewed as causing rather than being caused by the underlying latent
construct. With formative measurement models, a change in the latent
construct is not necessarily accompanied by a change in all of the in-
dicators. But if any one of the indicators is removed, or if a new in-
dicator is added, then the definition of the latent construct would
change.

A researcher should be aware the above description of reflective and
formative measurements refers to the epistemic relationship between
indicators and constructs as assumed from measurement theory
(Sarstedt et al., 2016). PLS-SEM, including the CCA approach, computes
composites from linear combinations of sets of indicators to represent
the concepts in the statistical model. If correlation weights are used for
estimating a composite, the arrows typically point away from a con-
struct to the indicators. This is often referred to as a reflective mea-
surement model. However, if regression weights are used for compo-
siting a composite, the arrows typically point from the indicators to
their construct. This is often referred to as a formative measurement
(Nitzl & Chin, 2017).

The steps listed in Table 2 should be followed to execute a CCA with
reflective measurement models. These steps are described in detail
below:

Step 1: Assessing the indicator loadings and their significance. The
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Table 2
Steps in Confirmatory Composite Analysis with Reflective Measurement
Models.

Assessing Reflective Measurement Models Using Confirmatory Composite Analysis
(CCA)

. Estimate of Loadings and Significance
. Indicator Reliability (items)

. Composite Reliability (construct)

. Average Variance Extracted (AVE)

. Discriminant Validity - HTMT

. Nomological Validity

. Predictive Validity

NO A WN =

standardized loadings should have a value of at least 0.708 and an
associated t-statistic above +1.96 to be significant for a two-tailed test
at the 5% level (Hair, Ringle, & Sarstedt, 2011). T-statistics in PLS-SEM
are obtained by executing a bootstrapping procedure (Hair, Sarstedt,
et al., 2012). Alternatively, Wood (2005) introduced the use of con-
fidence intervals with PLS-SEM. Indicator loadings confidence intervals
can be used in a manner similar to t-statistics and intervals excluding
zero are statistically significant. A benefit of confidence intervals is the
dichotomous approach of significance testing is avoided and authors
are able to consider other methods to identify practically significant
indicator loadings when using confidence intervals (Cohen, 1994).

Step 2: Squaring the individual indicator loadings provides a mea-
sure of the amount of variance shared between the individual indicator
variable and its associated construct. This is referred to as indicator
reliability (Hair, Black, et al., 2019).

Step 3: The reliability of the construct can be measured in two ways
— Cronbach’s alpha (a) and composite reliability (CR). The rule of
thumb for both reliability criteria is they need to be above 0.70.
Because indicators are not equally reliable, composite reliability, which
is weighted, is more accurate then Cronbach alpha (unweighted), and
therefore CR should be assessed and reported (Hair et al., 2019). Note
that internal consistency reliability, including both Cronbach alpha and
composite reliability, can be too high. If reliability is 0.95 or higher, the
individual items are measuring the same concept, and are therefore
redundant. In short, redundancy indicates the indicators are measuring
the same concept and therefore do not include the required diversity to
ensure the validity of multi-item constructs (Hair, Risher, et al., 2019).

Step 4: Convergent validity can be measured by the Average
Variance Extracted (AVE). The AVE is obtained by averaging the in-
dicator reliabilities of a construct. This metric measures the average
variance shared between the construct and its individual indicators.
The criterion for AVE is the value should be 0.5 (50%) or higher.

Step 5: Discriminant validity measures the distinctiveness of a
construct. Discriminant validity is demonstrated when the shared var-
iance within a construct (AVE) exceeds the shared variance between the
constructs. The method that should be used is the heterotrait-monotrait
ratio of correlations (HTMT) (Henseler, Ringle, & Sarstedt, 2015). Re-
searchers can apply cutoff scores such as 0.85 and 0.90 to interpret
their HTMT results. Additionally, Franke and Sarstedt (2019) recently
recommended additional significance testing that includes confidence
intervals to further assess HTMT ratios and discriminant validity.

Step 6: Nomological validity is an additional method of assessing
construct validity. The process for measuring nomological validity is to
correlate the construct score of each construct with one or more other
constructs (concepts) in the nomological network. The nomological
network (or nomological net) is a representation of the concepts (con-
structs) that are the focus of a study as well as the interrelationships
between the concepts (Cronbach & Meehl, 1955). The other constructs
represent key relationships and are often classification variables such as
employee age, years of experience, part-time versus full-time workers,
and so forth. The other constructs may also be concepts not included in
the theoretical model being tested. Previous research results are used to
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identify whether the theoretical relationship with the other constructs
is positive or negative, as theory would suggest.

To further clarify nomological validity, assume you are examining a
structural model consisting of an exogenous variable job satisfaction
and an endogenous construct job performance. For this theoretical
model, data is also collected on organizational commitment and job
type (full-time versus part-time), constructs that are in the nomological
net of job satisfaction and job performance. Nomological validity can be
assessed by correlating the construct scores of job satisfaction and job
performance with organizational commitment and job type to de-
termine if the results are consistent with the theoretical direction as
well as the size and significance of the correlations.

Step 7: Predictive validity assesses the extent to which a construct
score predicts scores on some criterion measure. Predictive validity is
similar to concurrent validity since both types are measured in terms of
the correlation between a construct score and some other criterion
measure. The difference is that predictive validity involves using the
construct score to predict the score of a criterion variable that is col-
lected at a later point in time, while concurrent validity assesses the
correlation between the scores of two variables when the data is col-
lected at the same time. For example, if job satisfaction and organiza-
tional commitment data are collected at the same time, and the scores
are correlated and the results are consistent with theory (direction and
significance are as expected), then concurrent validity is established.
Using the same constructs, if data on job satisfaction is collected first,
and organizational commitment data is collected six months later, then
the two construct scores could be correlated, and the result would as-
sess predictive validity.

Although not technically a method of predictive validity, construct
invariance in PLS-SEM measurement models can be tested by applying
the MICOM procedure (Henseler, Ringle, & Sarstedt, 2016). Construct
invariance (equivalence) is most often applied with cross-cultural stu-
dies and can be assessed with MICOM. But application of invariance by
comparing measures over time is also possible. Applying MICOM to
longitudinal and/or casual effects ensures that observed changes, if any,
are due to substantive relationships of the constructs rather than
changes in the nature of the constructs themselves (Vandenberg &
Lance, 2000). Assessment of longitudinal measurement invariance is
not a required portion of CCA or other PLS-SEM analyses (Hair, Ringle,
& Sarstedt, 2012; Hair, Sarstedt, Ringle, & Gudergan, 2018), unless
cross-cultural studies are a characteristic of the research design.

3.2. Formative measurement models

When executing CCA with formative composite measurement
models, researchers must remember that formative measurement
models differ from reflective measurement models. Formative compo-
site measurement models are linear combinations of a set of indicators
that form the construct. That is, the indicators point from the measured
variables to the composite construct, are considered causal, and do not
necessarily covary. As a result, the underlying internal consistency
concepts associated with reflective measurement models cannot be
applied to formative measurement models. Formative indicators cannot
be evaluated using composite reliability or AVE (Chin, 1998), and in-
dicator loadings in formative models must be interpreted in a different
manner than those in reflective models (described below). This char-
acteristic is particularly applicable to PLS-SEM because the method
assumes formative composite indicators completely capture the entire
domain of the construct under consideration (Hair, Hult, et al., 2017;
Sarstedt et al., 2016).

As noted above, composite reliability and AVE are not appropriate
metrics to evaluate formative measurement models. In addition, as with
the evaluation of reflective measurement models, goodness of fit mea-
sures are not required when executing CCA with formative measure-
ment models (Hair, Hult, et al., 2017; Hair, Matthews, Matthews, &
Sarstedt, 2017; Hair, Sarstedt, et al., 2019). The steps listed in Table 3
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Table 3
Steps in Confirmatory Composite Analysis with Formative Measurement
Models.

Assessing Formative Measurement Models Using Confirmatory Composite Analysis
(CcA)

1. Convergent Validity — redundancy

2. Indicator Multicollinearity

3. Size and Significance of Indicator Weights

4. Contribution of Indicators (size & significance of loadings)
5. Assess Predictive Validity

should be followed to execute a CCA with formative measurement
models.

Step 1: Convergent validity with formative measurement models is
the extent to which the formative construct is positively correlated with
a reflective measure(s) of the same construct using different indicators
(Hair, Hult, et al., 2017). The relationship between the multi-item
formative construct and the reflective measure of the same construct is
typically examined using correlation or regression. The reflective
measure is often a single item, but as in other situations when mea-
suring ambiguous concepts multi-item reflective measures are pre-
ferred. Cheah, Sarstedt, Ringle, Ramayah, and Ting (2018) note when
the sample size is small a single item measure exhibits higher degrees of
convergent validity than a reflective multi-item construct does. But for
larger sample sizes the differences are marginal. Hence, the use of a
global, reflectively measured single item in PLS-SEM-based redundancy
analyses is sufficient.

When the research involves survey data, the reflective measure for
testing convergent validity must be included in the research design as
part of the data collection process. If the theoretical SEM is based on
secondary data, the researcher should identify another secondary
measure of the same construct, which could be either reflective or
formatively measured, to use as a proxy variable for testing the con-
vergent validity of formative constructs. Acceptable endogenous re-
flectively measured constructs to use as proxy variables in testing
convergent validity can be identified by reviewing established scales
from previously published research. Another option is to develop a
more general global item that summarizes the essential concepts of the
formative construct (Hair, Hult, et al., 2017).

Demonstration of convergent validity is based on the size of the path
coefficient between the two constructs. The formative construct is the
exogenous variable and the reflective measure is the endogenous vari-
able. As a guideline, we recommend a minimum path coefficient of
0.70, and the larger the size of the coefficient the stronger the indica-
tion of convergent validity (Hair, Hult, et al., 2017). If convergent va-
lidity is unable to be established using this criterion, the researcher
should determine if revision of the definition of the theoretical for-
mative construct is possible by removing, revising, or adding one or
more indicators. The process of examining convergent validity with
formative measurement models is also referred to as redundancy ana-
lysis (Chin, 1998).

Step 2: Indicator multicollinearity is the extent to which the for-
mative items are correlated. Recall that reflective indicators are often
considered to be interchangeable and thus high correlations are an-
ticipated. But high correlations between formative indicators create
problems with multicollinearity. Calculation of formative construct
scores is based on a multiple regression model, with the dependent
variable being the construct score and the formative indicators the in-
dependent variables. Just as high multicollinearity creates problems
with multiple regression models, it also creates problems with for-
mative measurement models, such as distorting the size of the beta
coefficients (weights) and/or changing the sign of these same coeffi-
cients.

To determine if multicollinearity is a problem, researchers must
assess whether it is present. To do so, the VIF (variance inflation factor)
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available in most statistical software is examined. If the VIF is 3.0 or
lower, then multicollinearity is unlikely to be a problem. Note that in
previous publications the acceptable VIF level was thought to be 5.0,
but subsequent research indicates this level is too high (Hair, Black,
et al.,, 2019; Hair et al., 2020). An alternative approach to examining
the level of multicollinearity is to calculate bivariate correlations be-
tween the formative indicators. If the bivariate correlations between
formative indicators are 0.50 or higher that is an indication the levels of
multicollinearity are too high and will create problems.

When multicollinearity is high among formative indicators, the re-
searcher can evaluate whether one or more indicators can be removed.
But recall that removing formative indicators often changes the op-
erational definition of the construct, so researchers must consider this
possibility as well. Another option to resolve high multicollinearity
among formative indicators is to develop higher-order constructs
(HOCs) that are supported by measurement theory (Becker, Klein, &
Wetzels, 2012; Kuppelwieser & Sarstedt, 2014; Ringle, Sarstedt, &
Straub, 2012). For additional information on the topic of creating
higher-order constructs, see Hair et al. (2018) and Sarstedt, Hair,
Cheah, Becker, and Ringle (2019).

Step 3: If the metrics obtained in the previous CCA steps indicate the
formative measurement model meets recommended guidelines, the
researcher next examines the size and significance of the indicator
weights. The purpose of this step is to determine the extent to which the
formative indicators contribute to the construct score. The amount of
contribution (relevance) of the indicators is interpreted based on the
size of the outer model weights, with larger weights indicating a higher
contribution. The weights are calculated using a multiple regression
model and are equivalent to beta coefficients. They represent the re-
lative contribution of each formative indicator in forming the construct.
Therefore, the values of the outer weights are almost always smaller
than the outer loadings on reflectively measured constructs.

In addition to the sizes of the outer weights, the values of the for-
mative indicator weights must be statistically significant. PLS-SEM is a
nonparametric statistical method, so significance is determined using
bootstrapping. In general, the level of statistical significance required is
=<0.05. But when PLS models are tested using small sample sizes, it may
be justifiable to lower the acceptable level of significance to <0.10.

An important issue to consider when evaluating formative mea-
surement models is the number of indicators. As the number of in-
dicators increases, the likelihood of one or more indicators having low
or even non-significant outer weights also increases. When faced with
this situation, the recommended solution is the same as when high
multicollinearity is present — to create higher-order constructs by
combining the formative indicators into conceptually similar and the-
oretically supportable lower-order constructs (Cenfetelli & Bassellier,
2009). For more guidance on this approach see Hair, Hult, et al. (2017),
and Sarstedt, Hair, et al. (2019). Since creating higher-order constructs
is not always possible, an alternative approach is outlined in Step 4 for
moving ahead with a formative construct CCA when the outer weights
are small and not significant.

Step 4: Assessing the absolute contribution of formative indicators
can also be applied to justify retaining formative indicators. The ab-
solute contribution of a formative indicator is the amount of informa-
tion contributed by the indicator in forming the construct, if no other
indicators are considered in the calculation. The absolute contribution
is derived from the formative indicator’s outer loading. The outer
loading is equivalent to the bivariate correlation between each in-
dicator separately and the construct. The loading is considered abso-
lutely important in forming the formative construct when it is =0.50
and statistically significant. But the outer loading is not an indication of
importance. As a final note, in conducting a CCA researchers occa-
sionally encounter a situation with a formative indicator whose abso-
lute contribution is lower than <0.50 and not significant. In such si-
tuations, the researcher can remove or retain the formative indicator
based on a theoretical assessment of its relevance obtained from
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Table 4
Steps in Structural Model Assessment.

Assessing Structural Model Results

. Evaluate structural model collinearity

. Examine size and Significance of Path Coefficients

. R? of Endogenous Variables (in-sample prediction)

. {2 Effect Size (in-sample prediction)

. Predictive Relevance Q? (primarily in-sample prediction)
. PLSpredict (out-of-sample prediction)

U WN -

knowledgeable experts (Cenfetelli & Bassellier, 2009). In sum, a for-
mative indicator should never be eliminated based solely on statistical
criteria.

Step 5: As with reflectively measured constructs, predictive validity
assesses the extent to which a construct score predicts scores on some
criterion measure. As noted earlier, predictive validity involves using
the construct score to predict the score of a criterion variable that is
collected at a later point in time. For example, if data using formative
constructs is collected first, and data on the criterion constructs is
collected six months later, then the two construct scores could be cor-
related, and the result would assess predictive validity.

4. Structural model assessment

The primary focus of this article is to introduce and explain the
process of CCA. Major recent developments in PLS-SEM lead us to also
include a brief summary of the steps in assessing the structural model,
with particular emphasis on the latest methodological improvement —
PLSpredict. Recall that before assessing structural model results, the
measurement models must first be confirmed using the CCA process.
The steps listed in Table 4 should be followed to assess the structural
model.

Step 1: Evaluation of the structural model results relies heavily on
the concepts and characteristics underlying multiple regression ana-
lysis. As a result, the first step is to evaluate the structural model con-
structs to determine if high multicollinearity is a problem. Structural
models characterized by high multicollinearity can affect the size of the
beta coefficients (weights) by increasing or decreasing them and/or
changing the signs of these same coefficients. As with indicators on
formative constructs, the VIF values can be examined and if they are
below 3.0, then multicollinearity is unlikely to be a problem. An al-
ternative approach is to examine the bivariate correlations between the
construct scores. If the bivariate correlations are higher than 0.50
multicollinearity could influence the size and/or signs of the path
coefficients. When multicollinearity appears to be a problem, the re-
commended solution is to create higher-order constructs by combining
the separate constructs into conceptually similar and theoretically
supportable lower-order constructs (Cenfetelli & Bassellier, 2009).

Step 2: If multicollinearity is not a problem, the second step is to
examine the size and significance of the path coefficients. This process
enables the researcher to test the hypothesized relationships among the
constructs. The path coefficients are standardized values that may range
from +1 to —1, but they seldom approach +1 or —1. This is parti-
cularly true with complex models having multiple independent con-
structs in the structural model. The closer the path coefficient values are
to 0 the weaker they are in predicting dependent (endogenous) con-
structs, and the closer the values are to the absolute value of 1 the
stronger they are in predicting dependent constructs.

Note that as the final step in CCA the researcher should examine the
predictive ability of the structural model. Steps 3 through 6 below re-
present the four metrics to apply in examining structural model pre-
diction.

Step 3: As with multiple regression models, the most often used
metric to assess structural model prediction is R% Referred to as the
coefficient of determination, it is a measure of in-sample prediction of
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all endogenous constructs. That means the prediction is a measure of
the predictive ability only for the sample of data used in calculating the
results, and R? should not be inferred to the population (Rigdon, 2012;
Sarstedt et al., 2014). The minimum R? value is 0 but it would almost
never be that low. As with multiple regression, the more independent
variables (constructs) in the structural model the higher the R?, as-
suming the independent variables are in fact related to the dependent
variable constructs. The maximum R? value is 1 but values this high
very seldom occur. In evaluating the size of the structural model R?, the
researcher should review similar research in relevant empirical re-
search and use those results as a guideline, assuming the context of the
research is not too different. Finally, some disciplines also examine the
adjusted R?, which systematically adjusts the R? value downward based
on the sample size and the number predictive constructs. As with
multiple regression, the adjusted R? is useful when researchers include
too many nonsignificant predictor constructs in the structural model
(Hair, Hult, et al., 2017).

Step 4: A second measure of the predictive ability of the structural
model is the effect size, which provides an estimate of the predictive
ability of each independent construct in the model. To calculate this
value, each predictor construct is systematically removed from the
model (SmartPLS does this automatically) and a new R? is calculated
without the predictor. Next the R? with the predictor in the model is
compared to the R? without the predictor in the model, and the dif-
ference in the two R? values indicates whether the omitted construct is
a meaningful predictor of the dependent construct (Hair, Hult, et al.,
2017). The effect size, referred to as an fz, is ranked as small, medium
and large. Values above 0.02 and up to 0.15 are considered small; va-
lues of 0.15 and up to 0.35 are medium; and values 0.35 and above are
large effects (Cohen, 1988). The effect size is also considered an in-
sample predictive metric.

Step 5: A third metric used to assess prediction is the Q2 value, also
referred to as blindfolding (Geisser, 1974; Stone, 1974). Some scholars
consider this metric to be an assessment of out-of-sample predictive
power, and to some extent it is. But it clearly is not as strong a model
prediction metric as is PLSpredict, described in the next step. When
interpreting Q2 values larger than zero are meaningful whereas values
below 0 indicate a lack of predictive relevance. In addition, Q? values
larger than 0.25 and 0.50 represent medium and large predictive re-
levance of the PLS-SEM model.

Step 6: For some types of research in-sample prediction is sufficient.
But in other situations, researchers need a robust method to assess out-
of-sample prediction. The above-mentioned criteria for evaluating
predictive validity, including R2, 2 and to some extent Q2 are useful in
evaluating the predictive power of a model based on in-sample
(Sarstedt et al., 2014). In-sample prediction uses the same sample to
estimate the model and to predict responses, which is likely to overstate
the model’s predictive ability. This is typically referred to as an over-
fitting problem (a higher prediction than is realistic), and indicates the
model may have limited value in predicting observations not in the
original sample. Shmueli et al. (2016) recently proposed an approach to
assess out-of-sample prediction when using PLS-SEM. The approach
involves first estimating the model on an analysis (training) sample and
using the results of that model to predict other data in a second separate
holdout sample.

The PLSpredict method (Shmueli et al., 2019) generates holdout-
based sample predictions in PLS-SEM and is an option in standard PLS-
SEM software so researchers can apply the method. For example,
SmartPLS (Ringle et al., 2014) and open source software such as R
(https://github.com/ISS-Analytics/pls-predict) include PLSpredict.
PLSpredict first randomly splits the total sample into subgroups that are
equal in size. Each subgroup is called a fold and the number of sub-
groups is k. If you divide the total sample into 10 groups (folds) then
k = 10. The method then selects nine subgroups (k-1) and combines
them into a single analysis sample. The remaining subgroup becomes
the holdout sample that the analysis sample attempts to predict. The
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process of predicting one of the subgroups rotates through all of the
original 10 subgroups so that each of the 10 subgroups is used by itself
as a holdout sample, and the other 9 subgroups are combined to predict
that holdout sample. When this process is completed, the data for every
respondent in the total sample has been predicted by an analysis sample
that did not include that respondent’s data to estimate the model re-
sults.

An important consideration is the size of the holdout sample must
be sufficient to produce a robust estimate. If the number of subgroups
chosen when running PLSpredict is too large, the size of holdout sample
may be too small. For example, if the total sample size is 100, and the
number of subgroups is 10, then the holdout sample size would be
N = 10, which in most circumstances would be considered too small.
Shmueli et al. (2019) recommend setting k = 10 subgroups, but if the
holdout sample is too small with k = 10 then a smaller number of
subgroups can be selected. For example, k = 5 subgroups with a total
sample of N = 100 would result in a holdout sample size of N = 20.

In general, the recommended minimum size for the holdout sample
would be N = 30. But analytical methods such as logistic regression,
discriminant analysis, and MANOVA have produced robust results with
group sizes as small as N = 20 (Hair, Black, et al., 2019) so there is
some flexibility in determining the minimum sample size of the holdout
sample subgroup. If the holdout sample size is <30 researchers should
interpret the findings cautiously.

For the assessment of a model’s predictive power when using
PLSpredict, researchers can draw on several prediction statistics that
quantify the amount of prediction error. For example, the mean abso-
lute error (MAE) measures the average magnitude of the errors in a set
of predictions without considering their direction (over or under).
Another popular prediction metric is the root mean squared error
(RMSE), which is defined as the square root of the average of the
squared differences between the predictions and the actual observa-
tions.

When interpreting PLSpredict results, the focus should be on the
theoretical model’s primary endogenous construct, and not the pre-
diction errors for all endogenous constructs. When the primary en-
dogenous construct has been selected, the Qf,redicl statistic should be
evaluated first to verify that the predictions outperform the most naive
benchmark. The naive value is produced when the indicator means
from the analysis sample are used to predict the holdout sample
(Shmueli et al., 2019). If the prediction results are better than the naive
value (above 0), researchers can then examine the other prediction
statistics.

In most instances, researchers should use RMSE as the prediction
statistic. But the MAE should be applied if the prediction error dis-
tribution is highly non-symmetrical (Shmueli et al., 2019). To assess the
prediction error of a PLS-SEM analysis, the RMSE values are compared
to a naive value obtained by a linear regression model (LM) that gen-
erates predictions for the measured variables (indicators). The LM
process applies a linear regression model that predicts each of the en-
dogenous construct’s indicators from all indicators of the exogenous
latent variables in the PLS path model. But the LM process does not
include the specified model structure represented by the measurement
and structural theory (Danks & Ray, 2018).

The RMSE and MAE values are both acceptable prediction bench-
marks, depending on the symmetry of the prediction error distribution.
When interpreting the RMSE and MAE statistics, the values should be
compared to the LM benchmark values. The following guidelines should
be applied (Hair, Risher, et al., 2019; Shmueli et al., 2019):

® When the RMSE or MAE have higher prediction errors for all de-
pendent variable indicators compared to the naive LM benchmark,
the model lacks predictive power.

e When the majority of the dependent construct indicators have
higher prediction errors compared to the naive LM benchmark, the
model has low predictive power.
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e When an equal or a minority of the dependent construct indicators
have greater prediction errors compared to the naive LM bench-
mark, the model has medium predictive power.

e When none of the dependent construct indicators have higher RMSE
or MAE prediction errors compared to the naive LM benchmark, the
model has high predictive power.

Step 7: There are many options for advanced analysis when ap-
plying PLS-SEM. The advanced options include, for example, media-
tion, moderation, both categorical and continuous variables, multi-
group analysis, invariance, unobserved heterogeneity, nonlinear effects,
and endogeneity. These advanced analyses are beyond the scope of this
article, and we refer you to Hair, Hult, et al. (2017) and Hair et al.
(2018) for an extended discussion of these topics. We recommend,
however, that researchers strongly consider performing these types of
robustness checks on their analyses. Robustness checks evaluate the
manner in which PLS-SEM results differ when analysis decisions are
altered, similar to sensitivity checks in meta-analyses (Hair et al., 2018;
Sarstedt, Ringle, et al., 2019), and they can be used to support the
validity of statistical conclusions. Examples of robustness checks in-
clude adding or removing variables, moderation, modeling nonlinear
relationships, and assessing endogeneity as well as unobserved het-
erogeneity. Sarstedt, Ringle, et al. (2019) recently reviewed methods to
perform three of these robustness checks that can aid future re-
searchers.

5. Conclusions and implications

To achieve the objectives of measurement model confirmation in
developing or adapting multi-item measures, researchers could use ei-
ther CCA or CFA. The results are different, however, and researchers
need to understand the implications of the distinct outcomes so they
can make informed decisions. CCA and CFA can both be used to im-
prove individual item and scale reliability, identify and provide an in-
dication of items that need to be revised or in some instances eliminated
for content validity, facilitate achieving convergent validity and dis-
criminant validity, and remove error variance. Compared to CFA, CCA
has several benefits, including the following: (1) the number of items
retained to measure constructs is higher with CCA, thereby improving
construct validity, (2) determinant construct scores are available
(Rigdon et al., 2019), (3) CCA can be applied to formative measurement
models, and (4) when prediction is the statistical objective of the re-
search, CCA as a component of PLS-SEM is the preferred method (Hair,
Matthews, et al., 2017). Given these notable benefits, certain con-
siderations of CCA should be emphasized.

CCA provides valuable implications beyond EFA, for both principal
components analysis and common factor analysis. First, EFA is ex-
ploratory whereas CCA is confirmatory. While exploratory research is
needed in certain circumstances, such as early in the scale development
process, researchers utilizing the PLS-SEM approach can perform con-
firmatory analyses of reflective and formative composite structures via
CCA, which broadens the applicability of both PLS-SEM and CCA.
Second, CCA can move researchers beyond investigations of factor
structures, and the analysis can assess the reliability, convergent va-
lidity, discriminant validity, and predictive validity of the measures.
CCA thereby provides a more holistic perspective of measurement
properties than EFA, and it can identify a wider range of measurement
concerns when assessing the applicability of measures. Third, CCA can
facilitate the assessment of reflective as well as formative measurement
models, which is not easily achieved, and likely not possible, with
traditional EFA approaches. A growing body of research is beginning to
conceptualize and operationalize formative measures (Diamantopoulos,
Riefler, & Roth, 2008; Fassott & Henseler, 2015), and CCA can play a
pivotal role in this continued research growth. Lastly, variance ex-
tracted from exogenous constructs in CCA is specifically focused on the
prediction of endogenous constructs, which poses important
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implications for model development and revision, as detailed above.

CCA also provides further alternatives regarding prediction. OLS
regression is perhaps the most common method for examining causal
relationships between exogenous and endogenous variables in the so-
cial sciences, but CCA is a superior approach when assessing prediction.
The multi-item composites are weighted when CCA is applied as part of
PLS-SEM, and the approach is therefore an improvement over using
unweighted sum scores for independent variables in a multiple re-
gression model. Indicators that are more strongly representative of
composites are weighted more strongly when creating composite scores
and assessing composite relationships, which provides a more accurate
understanding of the underlying constructs of interest than traditional
regression and EFA techniques. Finally, researchers should always use
SEM methods, particularly PLS-SEM with CCA, when the measurement
models are indirectly measured conceptual concepts and when ex-
amining mediation effects (Hair & Sarstedt, 2019; Nitzl, Roldan, &
Cepeda, 2016). Therefore, CCA should always be considered as a
technique when the focus of research is prediction.

We want to clarify that CCA and CFA are both acceptable ap-
proaches to develop and assess multi-item constructs. But researchers
need to understand the differences between the two approaches and
apply each technique when they are most appropriate. If researchers
are focused on the content validity of constructs, whether reflective or
formative measurement models are assumed, then CCA is a superior
approach. CCA produces larger indicator loadings because the basis of
developing solutions for PLS-SEM and CCA is total variance rather than
common variance alone. These larger loadings result in the retention of
a larger number of indicators, which produces more valid constructs. In
conducting these analyses, researchers should also be aware that the
guidelines and requirements regarding CFA do not necessarily apply to
CCA - and vice versa. Notably, the execution of CCA within a PLS path
model does not require the assessment of fit. CCA and PLS-SEM in
general should be assessed based on the metrics unique to variance-
based SEM, and goodness of fit is not a required metric. As discussed
above, we recommend solutions developed using CCA and PLS-SEM
should be evaluated based on predictive validity, particularly out-of-
sample prediction obtained from PLSpredict.

The choice of CCA or CFA is deeply intertwined with the choice of
PLS-SEM or CB-SEM. Guidelines are provided, therefore, relative to the
application of these two structural modeling approaches. First, some
researchers may simply prefer the study of composites, whereas others
may prefer the study of factors. The ramifications of studying compo-
sites or factors are summarized above, and researchers can determine
which approach is most appropriate. Second, PLS-SEM is often asso-
ciated with exploration and development of theory, whereas CB-SEM is
most often associated with confirming theory (Hair, Black, et al., 2019;
Hair et al., 2018). PLS-SEM is more useful in the earlier phases of theory
development, while CB-SEM may be more useful in the latter phases,
assuming prediction is not the objective of the research. Third, PLS-SEM
provides more accurate estimates with small sample sizes, and it should
therefore be applied in such instances (Hair & Sarstedt, 2019). Fourth,
PLS-SEM is more likely to result in model convergence when studying a
large number of observed and/or latent variables, and it is more ap-
propriate when models are complex (Hair, Black, et al., 2019; Hair
et al., 2018). Fifth, PLS-SEM should be chosen when prediction is a
primary focus of the research (Shmueli et al., 2016, 2019). CB-SEM is
not the most effective structural modeling method for predictive
models. Sixth, CB-SEM provides traditional indicators of model fit, and
should be applied when such indicators are needed. Seventh, re-
searchers should be aware a variety of statistical questions were pre-
viously only possible to be addressed via CB-SEM. But recent ad-
vancements enable PLS-SEM to likewise address these questions. For
instance, endogeneity and measurement invariance are easily assessed
with PLS-SEM. Finally, other options not possible or at minimum dif-
ficult with CB-SEM are easily executed with PLS-SEM, such as con-
tinuous moderators, mediation and multi-group analysis. Thus,



J.F. Hair, et al.

researchers should regularly review new publications regarding PLS-
SEM to apply the most appropriate method for their research questions.

This article summarizes important new concepts for researchers to
consider when developing and evaluating the quality of measurement
models. The concepts are also important for reviewers and journal
editors to ensure the latest approaches are applied in published PLS-
SEM studies. We summarize an emerging role for CCA, an alternative to
the application of CFA in the development, adaptation and confirma-
tion of measurement scales. Finally, while a few articles have been
published that are negative about the use of PLS-SEM, more recently
several prominent researchers have acknowledged the value of PLS as
an SEM technique (Petter, 2018). We believe that social science scho-
lars would be remiss if they did not apply all statistical methods at their
disposal to explore and better understand the phenomena they are re-
searching.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jbusres.2019.11.069.

References

Becker, J.-M., Klein, K., & Wetzels, M. (2012). Hierarchical latent variable models in PLS-
SEM: Guidelines for using reflective-formative type models. Long Range Planning,
45(5-6), 359-394.

Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2019). How to perform and report
an impactful analysis using partial least squares: Guidelines for confirmatory and
explanatory IS research. Information & Management. https://doi.org/10.1016/j.im.
2019.05.003.

Bentler, P. M., & Kano, Y. (1990). On the equivalence of factors and components.
Multivariate Behavioral Research, 25(1), 67-74.

Brennan, R. L. (2001). Generalizability theory. New York: Springer.

Brown, T. A. (2014). Confirmatory factor analysis for applied research. New York, NY:
Guilford Publications.

Cenfetelli, R. T., & Bassellier, G. (2009). Interpretation of formative measurement in in-
formation systems research. MIS Quarterly, 33(4), 689-708.

Cheah, J.-H., Sarstedt, M., Ringle, C. M., Ramayah, T., & Ting, H. (2018). Convergent
validity assessment of formatively measured constructs in PLS-SEM: On using single-
item versus multi-item measures in redundancy analyses. International Journal of
Contemporary Hospitality Management, 30(11), 3192-3210.

Chin, W. W. (1998). The partial least squares approach to structural equation modeling.
In G. A. Marcoulides (Ed.). Modern Methods for Business Research (pp. 295-358).
Mahwah: Erlbaum.

Chin, W. W. (2003). PLS graph 3.0. Houston: Soft Modeling Inc.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale:
Lawrence Erlbaum Associates.

Cohen, J. (1994). The world is round (p <. 05). American Psychologist, 49(12), 997-1003.

Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. Orlando,
Florida: Holt, Rinehart and Winston.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests.
Psychological Bulletin, 52(4), 281-302.

Danks, N. P., & Ray, S. (2018). Predictions from partial least squares models. In F. Ali, S.
Rasoolimanesh, & C. Cobanoglu (Eds.). Applying partial least squares in tourism and
hospitality research (pp. 35-52). Bingley: Emerald Publishing Limited.

Diamantopoulos, A., Riefler, P., & Roth, K. P. (2008). Advancing formative measurement
models. Journal of Business Research, 61(12), 1203-1218.

Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS esti-
mators for linear structural equations. Computational Statistics & Data Analysis, 81(1),
10-23.

Evermann, J., & Tate, M. (2016). Assessing the predictive performance of structural
equation model estimators. Journal of Business Research, 69(10), 4565-4582.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the
use of exploratory factor analysis in psychological research. Psychological methods,
4(3), 272-299.

Fassott, G., & Henseler, J. (2015). Formative (measurement) Wiley Encyclopedia of
Management, Vol. 9. Wiley.

Franke, G., & Sarstedt, M. (2019). Heuristics versus statistics in discriminant validity
testing: A comparison of four procedures. Internet Research, 29(3), 430-447.

Geisser, S. (1974). A predictive approach to the random effects model. Biometrika, 61(1),
101-107.

Goetz, C., Coste, J., Lemetayer, F., Rat, A.-C., Montel, S., Recchia, S., ... Guillemin, F.
(2013). Item reduction based on rigorous methodological guidelines is necessary to
maintain validity when shortening composite measurement scales. Journal of Clinical
Epidemiology, 66(7), 710-718.

Grimm, L. G., & Yarnold, P. R. (1995). Reading and understanding multivariate statistics.
Washington, DC: American Psychological Association.

Guilford, J. P. (1936). Psychometric methods. New York: McGraw-Hill.

Hair, J. F., Black, W. C., Anderson, R. E., & Babin, B. J. (2019). Multivariate data analysis

109

Journal of Business Research 109 (2020) 101-110

(8th ed.). London: Cengage Learning.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least
squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks: Sage.
Hair, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM:
Updated guidelines on which method to use. International Journal of Multivariate Data

Analysis, 1(2), 107-123.

Hair, J. F., Page, M., & Brunsveld, N. (2020). Essentials of business research methods (4th
ed.). New York, NY: Routledge.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of
Marketing Theory and Practice, 19(2), 139-151.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2012). Partial least squares: The better approach
to structural equation modeling? Long Range Planning, 45(5-6), 312-319.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to
report the results of PLS-SEM. European Business Review, 31(1), 2-24.

Hair, J. F., & Sarstedt, M. (2019). Factors vs. Composites: guidelines for choosing the right
structural equation modeling method. Project Management Journal Forthcoming.

Hair, J. F., Sarstedt, M., & Ringle, C. M. (2019). Rethinking some of the rethinking of
partial least squares. European Journal of Marketing, 53(4), 566-584.

Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial
least squares structural equation modeling. Thousand Oaks: SAGE Publications.

Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of
partial least squares structural equation modeling in marketing research. Journal of
the Academy of Marketing Science, 40(3), 414-433.

Hakel, M. D. (2000). Dr. G. Frederic Kuder 1903-2000. Personnel Psychology, 53(2),
273-274.

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response
theory. Newbury Park, CA: Sage Press.

Henseler, J., & Dijkstra, T. K. (2015). ADANKO 2.0. Composite Modeling. Kleve,
Germany.

Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W.,
... Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on
Ronkko & Evermann (2013). Organizational Research Methods, 17(2), 182-209.

Henseler, J., Hubona, G. S., & Pauline, A. R. (2016). Using PLS path modeling in new
technology research: Updated guidelines. Industrial Management & Data Systems,
116(1), 2-20.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing dis-
criminant validity in variance-based structural equation modeling. Journal of the
Academy of Marketing Science, 43(1), 115-135.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of
composites using partial least squares. International Marketing Review, 33 forth-
coming.

Howard, M. C. (2016). A review of exploratory factor analysis decisions and overview of
current practices: What we are doing and how can we improve? International Journal
of Human-Computer Interaction, 32(1), 51-62.

Howard, M. C. (2018). Scale pretesting. Practical Assessment, Research & Evaluation, 23(5).

Hwang, H., & Takane, Y. (2004). Generalized structured component analysis.
Psychometrika, 69(1), 81-99.

Joreskog, K. G., & Wold, H. (1982). The ML and PLS techniques for modeling with latent
variables: historical and comparative aspects. In H. Wold, & K. G. Jéreskog (Eds.).
Systems under indirect observation, Part I (pp. 263-270). Amsterdam: North-Holland.

Kline, P. (2014). An easy guide to factor analysis. London: Routledge.

Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). New
York, NY: Guilford Publications.

Kuppelwieser, V. G., & Sarstedt, M. (2014). Applying the future time perspective scale to
advertising research. International Journal of Advertising, 33(1), 113-136.

Lohmoller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg:
Physica.

Lorr, M., & Heiser, R. B. (1965). Marion webster Richardson (1896-1965). Psychometrika,
30(3), 235-237.

Mateos-Aparicio, G. (2011). Partial least squares (PLS) methods: Origins, evolution, and
application to social sciences. Communications in Statistics - Theory and Methods,
40(13), 2305-2317.

Nitzl, C. (2016). The use of partial least squares structural equation modelling (PLS-SEM)
in management accounting research: Directions for future theory development.
Journal of Accounting Literature, 39, 19-35.

Nitzl, C., & Chin, W. W. (2017). The case of partial least squares (PLS) path modeling in
managerial accounting research. Journal of Management Control, 28(2-3), 137-156.

Nitzl, C., Roldan, J. L., & Cepeda, G. (2016). Mediation analyses in partial least squares
structural equation modeling: Helping researchers to discuss more sophisticated
models. Industrial Management & Data Systems, 116(9), 1849-1864.

Petter, S. (2018). “Haters Gonna Hate”: PLS and information systems research. ACM
SIGMIS Database: The DATABASE for Advances in Information Systems, 49(2), 10-13.

Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift's electric factor analysis
machine. Understanding Statistics: Statistical Issues in Psychology, Education, and the
Social Sciences, 2(1), 13-43.

Rencher, A. C., & Christensen, W. F. (2012). Methods of multivariate analysis. New Jersey,
NJ: Wiley.

Rigdon, E. E. (2012). Rethinking partial least squares path modeling. In praise of simple
methods. Long Range Planning, 45(5-6), 341-358.

Rigdon, E. E. (2014). Rethinking partial least squares path modeling: Breaking chains and
forging ahead. Long Range Planning, 47, 161-167.

Rigdon, E. E., Becker, J.-M., & Sarstedt, M. (2019). Factor indeterminacy as metrological
uncertainty: Implications for advancing psychological measurement. Multivariate
Behavioral Research forthcoming.

Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A critical look at the use of PLS-SEM in
MIS quarterly. MIS Quarterly, 36(1), iii—xiv.


https://doi.org/10.1016/j.jbusres.2019.11.069
https://doi.org/10.1016/j.jbusres.2019.11.069
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0005
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0005
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0005
https://doi.org/10.1016/j.im.2019.05.003
https://doi.org/10.1016/j.im.2019.05.003
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0015
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0015
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0020
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0025
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0025
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0030
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0030
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0035
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0035
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0035
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0035
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0040
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0040
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0040
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0045
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0050
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0050
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0055
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0060
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0060
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0065
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0065
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0070
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0070
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0070
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0075
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0075
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0080
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0080
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0080
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0085
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0085
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0090
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0090
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0090
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0095
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0095
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0100
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0100
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0105
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0105
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0110
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0110
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0110
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0110
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0115
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0115
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0120
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0125
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0125
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0130
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0130
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0135
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0135
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0135
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0140
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0140
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0145
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0145
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0150
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0150
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0155
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0155
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0160
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0160
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0165
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0165
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0170
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0170
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0175
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0175
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0175
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0180
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0180
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0185
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0185
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0190
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0190
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0190
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0195
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0195
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0195
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0200
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0200
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0200
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0205
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0205
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0205
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0210
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0210
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0210
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0215
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0220
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0220
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0225
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0225
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0225
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0230
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0235
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0235
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0240
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0240
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0245
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0245
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0250
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0250
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0255
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0255
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0255
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0260
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0260
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0260
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0265
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0265
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0270
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0270
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0270
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0275
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0275
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0280
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0280
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0280
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0285
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0285
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0290
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0290
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0295
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0295
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0300
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0300
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0300
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0305
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0305

J.F. Hair, et al.

Ringle, C. M., Wende, S., & Becker, J.-M. (2014). SmartPLS 3: www.smartpls.de.

Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0. Hamburg: www.smartpls.de.

Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estimation
issues with PLS and CBSEM: Where the bias lies!. Journal of Business Research, 69(10),
3998-4010.

Sarstedt, M., Hair, J. F., Jr, Cheah, J.-H., Becker, J.-M., & Ringle, C. M. (2019). How to
specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian
Marketing Journal in press.

Sarstedt, M., Ringle, C. M., Cheah, J.-H., Ting, H., Moisescu, O. 1., & Radomir, L. (2019).
Structural model robustness checks in PLS-SEM. Tourism Economics
1354816618823921.

Sarstedt, M., Ringle, C. M., Henseler, J., & Hair, J. F. (2014). On the Emancipation of PLS-
SEM: A commentary on Rigdon (2012). Long Range Planning, 47(3), 154-160.

Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis.
Frontiers in Psychology, 9, 2541.

Sharma, P., Sarstedt, M., Shmueli, G., Kim, K. H., & Thiele, K. O. (2019). PLS-based model
selection: The role of alternative explanations in information systems research.
Journal of the Association for Information Systems, 20(4).

Sharma, P., Shmueli, G., Sarstedt, M., Danks, N., & Ray, S. (2019). Prediction-oriented
model selection in partial least squares path modeling. Decision Sciences, in press..
https://doi.org/10.1111/deci.12329.

Shmueli, G., Ray, S., Velasquez Estrada, J. M., & Chatla, S. B. (2016). The elephant in the
room: Predictive performance of PLS models. Journal of Business Research, 69(10),
4552-4564.

Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C.
M. (2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict.
European Journal of Marketing. https://doi.org/10.1108/EJM-02-2019-0189.

Spearman, C. (1904). General intelligence: Objectively determined and measured.
American Journal of Psychology, 15(2), 201-293.

Stevens, J. (2009). Applied multivariate statistics for the social sciences. Taylor & Francis US.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society, 36(2), 111-147.

Stouffer, S. A., Guttman, L., Suchman, E. A., Lazarsfeld, P. F., Star, S. A., & Clausen, J. A.
(1950). Measurement and prediction, Vol. 4. Princeton, NJ: Princeton University Press.

Thompson, B. (2004). Exploratory and confirmatory factor analysis: understanding concepts
and applications. Washington, DC: American Psychological Association.

Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement
invariance literature: Suggestions, practices, and recommendations for organizational
research. Organizational Research Methods, 3(1), 4-70.

Wold, H. (1982). Soft modeling: The basic design and some extensions. In K. G. Joreskog,
& H. Wold (Eds.). Systems under indirect observations: Part II (pp. 1-54). Amsterdam:
North-Holland.

110

Journal of Business Research 109 (2020) 101-110

Wood, M. (2005). Bootstrapped confidence intervals as an approach to statistical in-
ference. Organizational Research Methods, 8(4), 454-470.

Yule, G. U. (1907). On the theory of correlation for any number of variables, treated by a
new system of notation. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 79(529), 182-193.

Yule, G. U. (1911). An introduction to the theory of statistics. London: Griffin.

Joe Hair is Director of the PhD Program and Cleverdon Chair of Business, Mitchell
College of Business, the University of South Alabama, Mobile, Alabama. Clarivate
Analytics recently recognized him for being in the top 1% globally of all Business and
Economics professors based on his citations and scholarly accomplishments, which for his
career exceed 196,000. He has authored over 80 book editions, including Multivariate
Data Analysis, Cengage Learning, U.K., 8™ edition, 2019 (cited 118,000+ times and one
of the top five all time social sciences research methods textbooks); MKTG, Cengage
Learning, 13™ edition, 2020; Essentials of Business Research Methods, Routledge, 4™ edi-
tion 2020; Essentials of Marketing Research, McGraw-Hill, 5™ edition 2020; and A Primer on
Partial Least Squares Structural Equation Modeling, Sage, 2" edition 2017. He also has
published numerous articles in scholarly journals such as the Journal of Marketing
Research, Journal of Academy of Marketing Science, Organizational Research Methods,
Journal of Advertising Research, Journal of Business Research, Journal of Long Range
Planning, Industrial Marketing Management, European Journal of Marketing, European
Journal of Management, Journal of Retailing, and others. He is writing a new book on
Marketing Analytics, forthcoming in 2020 (McGraw-Hill).

Matt C. Howard is Assistant Professor, Mitchell College of Business, at the University of
South Alabama, Mobile, Alabama. His research typically focuses on (a) statistics and
research methodologies, (b) employee-computer interactions, (¢) training and develop-
ment, and (d) personality. His research has appeared in the Journal of Applied Psychology,
Organizational Research Methods, Journal of Organizational Behavior, Information &
M Comp Interaction, and the Journal of Business Research.

j2? -
g , Human-

Christian Nitzl is on the faculty of the Center for Intelligence and Security Studies,
University of the German Federal Armed Forces, Munich. Germany. His research interests
include PLS path modelling, with a special focus on the application of PLS-SEM in ac-
counting, trust research, and accounting change in the governmental area. He has pub-
lished in Financial Accountability & Management, Journal of Accounting Literature,
Journal of Accounting & Organizational Change, Journal of Banking & Finance, Journal of
Public and Nonprofit Management, Public Management Review, and Die
Betriebswirtschaft, among others. He has served many times as a reviewer for journals.
Furthermore, he regularly coaches researchers and practitioners about the application
and interpretation of PLS-SEM.


http://www.smartpls.de
http://www.smartpls.de
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0320
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0320
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0320
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0325
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0325
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0325
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0330
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0330
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0330
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0335
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0335
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0340
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0340
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0345
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0345
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0345
https://doi.org/10.1111/deci.12329
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0355
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0355
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0355
https://doi.org/10.1108/EJM-02-2019-0189
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0365
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0365
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0370
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0375
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0375
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0380
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0380
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0385
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0385
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0390
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0390
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0390
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0395
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0395
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0395
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0400
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0400
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0405
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0405
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0405
http://refhub.elsevier.com/S0148-2963(19)30744-1/h0410

	Assessing measurement model quality in PLS-SEM using confirmatory composite analysis
	Introduction
	Background
	Confirmatory composite analysis
	Reflective measurement models
	Formative measurement models

	Structural model assessment
	Conclusions and implications
	Supplementary material
	References




