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Abstract
Purpose – The purpose of this paper is to provide a comprehensive, yet concise, overview of the
considerations and metrics required for partial least squares structural equation modeling (PLS-SEM)
analysis and result reporting. Preliminary considerations are summarized first, including reasons for
choosing PLS-SEM, recommended sample size in selected contexts, distributional assumptions, use of
secondary data, statistical power and the need for goodness-of-fit testing. Next, the metrics as well as the rules
of thumb that should be applied to assess the PLS-SEM results are covered. Besides presenting established
PLS-SEM evaluation criteria, the overview includes the following new guidelines: PLSpredict (i.e., a novel
approach for assessing a model’s out-of-sample prediction), metrics for model comparisons, and several
complementarymethods for checking the results’ robustness.
Design/methodology/approach – This paper provides an overview of previously and recently proposed
metrics as well as rules of thumb for evaluating the research results based on the application of PLS-SEM.
Findings – Most of the previously applied metrics for evaluating PLS-SEM results are still relevant.
Nevertheless, scholars need to be knowledgeable about recently proposed metrics (e.g. model comparison
criteria) and methods (e.g. endogeneity assessment, latent class analysis and PLSpredict), and when and how
to apply them to extend their analyses.
Research limitations/implications – Methodological developments associated with PLS-SEM are
rapidly emerging. The metrics reported in this paper are useful for current applications, but must always be
up to date with the latest developments in the PLS-SEMmethod.
Originality/value – In light of more recent research and methodological developments in the PLS-SEM
domain, guidelines for the method’s use need to be continuously extended and updated. This paper is the
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most current and comprehensive summary of the PLS-SEM method and the metrics applied to assess its
solutions.

Keywords Structural equation modeling, Partial least squares, PLS-SEM, Model comparisons,
PLSpredict

Paper type General review

Introduction
For many years, covariance-based structural equation modeling (CB-SEM) was the dominant
method for analyzing complex interrelationships between observed and latent variables. In fact,
until around 2010, there were far more articles published in social science journals that used CB-
SEM instead of partial least squares structural equationmodeling (PLS-SEM). In recent years, the
number of published articles using PLS-SEM increased significantly relative to CB-SEM (Hair
et al., 2017b). In fact, PLS-SEM is nowwidely applied inmany social science disciplines, including
organizational management (Sosik et al., 2009), international management (Richter et al., 2015),
human resourcemanagement (Ringle et al., 2019), management information systems (Ringle et al.,
2012), operations management (Peng and Lai, 2012), marketing management (Hair et al., 2012b),
management accounting (Nitzl, 2016), strategic management (Hair et al., 2012a), hospitality
management (Ali et al., 2018b) and supply chain management (Kaufmann and Gaeckler, 2015).
Several textbooks (e.g., Garson, 2016; Ramayah et al., 2016), edited volumes (e.g., Avkiran and
Ringle, 2018; Ali et al., 2018a), and special issues of scholarly journals (e.g., Rasoolimanesh and
Ali, 2018; Shiau et al., 2019) illustrate PLS-SEMor proposemethodological extensions.

The PLS-SEM method is very appealing to many researchers as it enables them to estimate
complex models with many constructs, indicator variables and structural paths without
imposing distributional assumptions on the data. More importantly, however, PLS-SEM is a
causal-predictive approach to SEM that emphasizes prediction in estimating statistical models,
whose structures are designed to provide causal explanations (Wold, 1982; Sarstedt et al., 2017a).
The technique thereby overcomes the apparent dichotomy between explanation – as typically
emphasized in academic research – and prediction, which is the basis for developing managerial
implications (Hair et al., 2019). Additionally, user-friendly software packages are available that
generally require little technical knowledge about the method, such as PLS-Graph (Chin, 2003)
and SmartPLS (Ringle et al., 2015; Ringle et al., 2005), while more complex packages for statistical
computing software environments, such as R, can also execute PLS-SEM (e.g. semPLS; Monecke
and Leisch, 2012). Authors such as Richter et al. (2016), Rigdon (2016) and Sarstedt et al. (2017a)
providemore detailed arguments and discussions onwhen to use and not to use PLS-SEM.

The objective of this paper is to explain the procedures and metrics that are applied by
editors and journal review boards to assess the reporting quality of PLS-SEM findings. We
first summarize several initial considerations when choosing to use PLS-SEM and cover
aspects such as sample sizes, distributional assumptions and goodness-of-fit testing. Then,
we discuss model evaluation, including rules of thumb and introduce important advanced
options that can be used. Our discussion also covers PLSpredict, a newmethod for assessing
a model’s out-of-sample predictive power (Shmueli et al., 2016; Shmueli et al., 2019), which
researchers should routinely apply, especially when drawing conclusions that affect
business practices and have managerial implications. Next, we introduce several
complementary methods for assessing the results’ robustness when it comes to
measurement model specification, nonlinear structural model effects, endogeneity and
unobserved heterogeneity (Hair et al., 2018; Latan, 2018). Figure 1 illustrates the various
aspects that we discuss in the following sections.
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Preliminary considerations
The Swedish econometrician Herman O. A. Wold (1975, 1982, 1985) developed the statistical
underpinnings of PLS-SEM. The method was initially known and is sometimes still referred to
as PLS path modeling (Hair et al., 2011). PLS-SEM estimates partial model structures by
combining principal components analysis with ordinary least squares regressions (Mateos-
Aparicio, 2011). This method is typically viewed as an alternative to Jöreskog’s (1973) CB-SEM,
which has numerous – typically very restrictive – assumptions (Hair et al., 2011).

Jöreskog’s (1973) CB-SEM, which is often executed by software packages such as LISREL or
AMOS, uses the covariance matrix of the data and estimates the model parameters by only
considering common variance. In contrast, PLS-SEM is referred to as variance-based, as it accounts
for the total variance and uses the total variance to estimate parameters (Hair et al., 2017b).

In the past decade, there has been a considerable debate about which situations are more
or less appropriate for using PLS-SEM (Goodhue et al., 2012; Marcoulides et al., 2012;
Marcoulides and Saunders, 2006; Rigdon, 2014a; Henseler et al., 2014; Khan et al., 2019). In
the following sections, we summarize several initial considerations when to use PLS-SEM
(Hair et al., 2013). Furthermore, we compare the differences between CB-SEM and PLS-SEM
(Marcoulides and Chin, 2013; Rigdon, 2016). In doing so, we note that recent research has
moved beyond the CB-SEM versus PLS-SEM debate (Rigdon et al., 2017; Rigdon, 2012), by

Figure 1.
Aspects and statistics
to consider in a PLS-
SEM analysis
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establishing PLS-SEM as a distinct method for analyzing composite-based path models.
Nevertheless, applied research is still confronted with the choice between the two SEM
methods. Researchers should select PLS-SEM:

� when the analysis is concerned with testing a theoretical framework from a
prediction perspective;

� when the structural model is complex and includes many constructs, indicators and/
or model relationships;

� when the research objective is to better understand increasing complexity by
exploring theoretical extensions of established theories (exploratory research for
theory development);

� when the path model includes one or more formatively measured constructs;
� when the research consists of financial ratios or similar types of data artifacts;
� when the research is based on secondary/archival data, which may lack a

comprehensive substantiation on the grounds of measurement theory;
� when a small population restricts the sample size (e.g. business-to-business

research); but PLS-SEM also works very well with large sample sizes;
� when distribution issues are a concern, such as lack of normality; and
� when research requires latent variable scores for follow-up analyses.

The above list provides an overview of points to consider when deciding whether PLS is an
appropriate SEMmethod for a study.

Sample size
PLS-SEM offers solutions with small sample sizes whenmodels comprise many constructs and a
large number of items (Fornell and Bookstein, 1982; Willaby et al., 2015; Hair et al., 2017b).
Technically, the PLS-SEM algorithm makes this possible by computing measurement and
structural model relationships separately instead of simultaneously. In short, as its name implies,
the algorithm computes partial regression relationships in the measurement and structural
models by using separate ordinary least squares regressions. Reinartz et al. (2009), Henseler et al.
(2014) and Sarstedt et al. (2016b) summarize how PLS-SEM provides solutions when methods
such as CB-SEMdevelop inadmissible results or do not converge with complexmodels and small
sample sizes, regardless of whether the data originates from a common or composite model
population. Hair et al. (2013) indicate that certain scholars have falsely and misleadingly taken
advantage of these characteristics to generate solutions with extremely small sample sizes, even
when the population is large and accessible without much effort. This practice has unfortunately
damaged the reputation of PLS-SEM to some extent (Marcoulides et al., 2009). Like other
multivariate methods, PLS-SEM is not capable of turning a poor (e.g. non-representative) sample
into a proper one to obtain validmodel estimations.

PLS-SEM can certainly be used with smaller samples but the population’s nature
determines the situations in which small sample sizes are acceptable (Rigdon, 2016).
Assuming that other situational characteristics are equal, the more heterogeneous the
population, the larger the sample size needed to achieve an acceptable sampling error
(Cochran, 1977). If basic sampling theory guidelines are not considered (Sarstedt et al., 2018),
questionable results are produced. To determine the required sample size, researchers
should rely on power analyses that consider the model structure, the anticipated significance
level and the expected effect sizes (Marcoulides and Chin, 2013). Alternatively, Hair et al.
(2017a) have documented power tables indicating the required sample sizes for a variety of
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measurement and structural model characteristics. Finally, Kock and Hadaya (2018) suggest
the inverse square root method and the gamma-exponential method as two new approaches
for minimum sample size calculations.

Akter et al. (2017) note that most prior research on sample size requirements in PLS-SEM
overlooked the fact that the method also proves valuable for analyzing large data quantities.
In fact, PLS-SEM offers substantial potential for analyzing large data sets, including
secondary data, which often does not include comprehensive substantiation on the grounds
of measurement theory (Rigdon, 2013).

Distributional assumptions
Many scholars indicate that the absence of distributional assumptions is the main reason for
choosing PLS-SEM (Hair et al., 2012b; Nitzl, 2016; do Valle and Assaker, 2016). While this is
clearly an advantage of using PLS-SEM in social science studies, which almost always rely
on nonnormal data, on its own, it is not a sufficient justification.

Scholars have noted that maximum likelihood estimation with CB-SEM is robust against
violations of normality (Chou et al., 1991; Olsson et al., 2000), although it may require much
larger sample sizes (Boomsma and Hoogland, 2001). If the size of the data set is limited, CB-
SEM can produce abnormal results when data are nonnormal (Reinartz et al., 2009), while
PLS-SEM shows a higher robustness in these situations (Sarstedt et al., 2016b).

It is noteworthy that in a limited number of situations, nonnormal data can also affect
PLS-SEM results (Sarstedt et al., 2017a). For instance, bootstrapping with nonnormal data
can produce peaked and skewed distributions. The use of the bias-corrected and accelerated
(BCa) bootstrapping routine handles this issue to some extent, as it adjusts the confidence
intervals for skewness (Efron, 1987). Only choosing PLS-SEM for data distribution reasons
is, therefore, in most instances not sufficient, but it is definitely an advantage in combination
with other reasons for using PLS-SEM.

Secondary data
Secondary (or archival) data are increasingly available to explore real-world phenomena
(Avkiran and Ringle, 2018). Research which is based on secondary data typically focuses on
a different objective than in a standard CB-SEM analysis, which is strictly confirmatory in
nature. More precisely, secondary data are mainly used in exploratory research to propose
causal relationships in situations which have little clearly defined theory (Hair et al., 2017a,
2017b). Such settings require researchers to put greater emphasis on examining all possible
relationships rather than achieving model fit (Nitzl, 2016). By its nature, this process creates
large complex models that cannot be analyzed with the full information CB-SEMmethod. In
contrast, the iterative approach of PLS-SEM uses limited information, making the method
more robust and not constrained by the requirements of CB-SEM (Hair et al., 2014). Thus,
PLS-SEM is very suitable for exploratory research with secondary data, because it offers the
flexibility needed for the interplay between theory and data (Nitzl, 2016) or, as Wold (1982
p. 29) notes, “soft modeling is primarily designed for research contexts that are
simultaneously data-rich and theory-skeletal.” Furthermore, the increasing popularity of
secondary data analysis (e.g. by using data that stem from company databases, social
media, customer tracking, national statistical bureaus or publicly available survey data)
shifts the research focus from strictly confirmatory to predictive and causal-predictive
modeling. Such research settings are a perfect fit for the prediction-oriented PLS-SEM
approach.

PLS-SEM also proves valuable for analyzing secondary data from a measurement theory
perspective. Unlike survey measures, which are usually crafted to confirm a well-developed
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theory, measures used in secondary data sources are typically not created and refined over
time for confirmatory analyses (Sarstedt and Mooi, 2019). Thus, achieving model fit with
secondary data measures is unlikely in most research situations when using CB-SEM.
Furthermore, researchers who use secondary data do not have the opportunity to revise or
refine the measurement model to achieve fit. Another major advantage of PLS-SEM in this
context is that it permits the unrestricted use of single-item and formative measures (Hair
et al., 2014). This is extremely valuable for archival research, because many measures are
actually artifacts found in corporate databases, such as financial ratios and other firm-fixed
factors (Richter et al., 2016). Often, several types of financial data may be used to create an
index as a measure of performance (Sarstedt et al., 2017a, 2017b). For instance, Ittner et al.
(1997) operationalized strategy with four indicators as follows: the ratio of research and
development to sales, the market-to-book ratio, the ratio of employees to sales and the
number of new product or service introductions. Similarly, secondary data could be used to
form an index of a company’s communication activities, covering aspects such as online
advertising, sponsoring or product placement (Sarstedt and Mooi, 2019). PLS-SEM should
always be the preferred approach in situations with formatively measured constructs,
because a MIMIC approach in CB-SEM imposes constraints on the model that often
contradict the theoretical assumptions (Sarstedt et al., 2016b).

Statistical power
When using PLS-SEM, researchers benefit from the method’s high degree of statistical
power compared to CB-SEM (Reinartz et al., 2009; Hair et al., 2017b). This characteristic
holds even when estimating common factor model data as assumed by CB-SEM (Sarstedt
et al., 2016b). Greater statistical power means that PLS-SEM is more likely to identify
relationships as significant when they are indeed present in the population (Sarstedt and
Mooi, 2019).

The PLS-SEM characteristic of higher statistical power is quite useful for exploratory
research that examines less developed or still developing theory. Wold (1985, p. 590)
describes the use of PLS-SEM as “a dialogue between the investigator and the computer.
Tentative improvements of the model–such as the introduction of a new latent variable, an
indicator, or an inner relation, or the omission of such an element–are tested for predictive
relevance [. . .] and the various pilot studies are a speedy and low-cost matter.” Of particular
importance, however, is that PLS-SEM is not only appropriate for exploratory research but
also for confirmatory research (Hair et al., 2017a).

Goodness-of-fit
While CB-SEM strongly relies on the concept of model fit, this is much less the case with
PLS-SEM (Hair et al., 2019). Consequently, some researchers incorrectly conclude that PLS-
SEM is not useful for theory testing and confirmation (Westland, 2015). A couple of
methodologists have endorsed model fit measures for PLS-SEM (Henseler et al., 2016a), but
researchers should be very cautious when considering the applicability of these measures
for PLS-SEM (Henseler and Sarstedt, 2013; Hair et al., 2019). First, a comprehensive
assessment of these measures has not been conducted so far. Therefore, any thresholds
(guidelines) advocated in the literature should be considered as very tentative. Second, as the
algorithm for obtaining PLS-SEM solutions is not based on minimizing the divergence
between observed and estimated covariance matrices, the concept of Chi-square-based
model fit measures and their extentions – as used in CB-SEM – are not applicable. Hence,
even bootstrap-based model fit assessments on the grounds of, for example, some distance
measure or the SRMR (Henseler et al., 2016a; Henseler et al., 2017), which quantify the
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divergence between the observed and estimated covariance matrices, should be considered
with extreme caution. Third, scholars have questioned whether the concept of model fit, as
applied in the context of CB-SEM research, is of value to PLS-SEM applications in general
(Hair et al., 2017a; Rigdon, 2012; Lohmöller, 1989).

PLS-SEM primarily focuses on the interplay between prediction and theory testing and
results should be validated accordingly (Shmueli, 2010). In this context, scholars have
recently proposed new evaluation procedures that are designed specifically for PLS-SEM’s
prediction-oriented nature (Shmueli et al., 2016).

Evaluation of partial least squares-structural equation modeling results
The first step in evaluating PLS-SEM results involves examining the measurement
models. The relevant criteria differ for reflective and formative constructs. If the
measurement models meet all the required criteria, researchers then need to assess the
structural model (Hair et al., 2017a). As with most statistical methods, PLS-SEM has
rules of thumb that serve as guidelines to evaluate model results (Chin, 2010; Götz et al.,
2010; Henseler et al., 2009; Chin, 1998; Tenenhaus et al., 2005; Roldán and Sánchez-
Franco, 2012; Hair et al., 2017a). Rules of thumb – by their very nature – are broad
guidelines that suggest how to interpret the results, and they typically vary depending
on the context. As an example, reliability for exploratory research should be a
minimum of 0.60, while reliability for research that depends on established measures
should be 0.70 or higher. The final step in interpreting PLS-SEM results, therefore,
involves running one or more robustness checks to support the stability of results. The
relevance of these robustness checks depends on the research context, such as the aim
of the analysis and the availability of data.

Assessing reflective measurement models
The first step in reflective measurement model assessment involves examining the indicator
loadings. Loadings above 0.708 are recommended, as they indicate that the construct
explains more than 50 per cent of the indicator’s variance, thus providing acceptable item
reliability.

The second step is assessing internal consistency reliability, most often using Jöreskog’s
(1971) composite reliability. Higher values generally indicate higher levels of reliability. For
example, reliability values between 0.60 and 0.70 are considered “acceptable in exploratory
research,” values between 0.70 and 0.90 range from “satisfactory to good.” Values of 0.95
and higher are problematic, as they indicate that the items are redundant, thereby reducing
construct validity (Diamantopoulos et al., 2012; Drolet and Morrison, 2001). Reliability
values of 0.95 and above also suggest the possibility of undesirable response patterns (e.g.
straight lining), thereby triggering inflated correlations among the indicators’ error terms.
Cronbach’s alpha is another measure of internal consistency reliability that assumes similar
thresholds, but produces lower values than composite reliability. Specifically, Cronbach’s
alpha is a less precise measure of reliability, as the items are unweighted. In contrast, with
composite reliability, the items are weighted based on the construct indicators’ individual
loadings and, hence, this reliability is higher than Cronbach’s alpha. While Cronbach’s alpha
may be too conservative, the composite reliability may be too liberal, and the construct’s
true reliability is typically viewed as within these two extreme values. As an alternative,
Dijkstra and Henseler (2015) proposed rA as an approximately exact measure of construct
reliability, which usually lies between Cronbach’s alpha and the composite reliability. Hence,
rAmay represent a good compromise if one assumes that the factor model is correct.

EBR
31,1

8



In addition, researchers can use bootstrap confidence intervals to test if the construct
reliability is significantly higher than the recommended minimum threshold (e.g. the lower
bound of the 95 per cent confidence interval of the construct reliability is higher than 0.70).
Similarly, they can test if construct reliability is significantly lower than the recommended
maximum threshold (e.g. the upper bound of the 95 per cent confidence interval of the
construct reliability is lower than 0.95). To obtain the bootstrap confidence intervals, in line
with Aguirre-Urreta and Rönkkö (2018), researchers should generally use the percentile
method. However, when the reliability coefficient’s bootstrap distribution is skewed, the BCa
method should be preferred to obtain bootstrap confidence intervals.

The third step of the reflective measurement model assessment addresses the convergent
validity of each construct measure. Convergent validity is the extent to which the construct
converges to explain the variance of its items. The metric used for evaluating a construct’s
convergent validity is the average variance extracted (AVE) for all items on each construct.
To calculate the AVE, one has to square the loading of each indicator on a construct and
compute the mean value. An acceptable AVE is 0.50 or higher indicating that the construct
explains at least 50 per cent of the variance of its items.

The fourth step is to assess discriminant validity, which is the extent to which a
construct is empirically distinct from other constructs in the structural model. Fornell and
Larcker (1981) proposed the traditional metric and suggested that each construct’s AVE
should be compared to the squared inter-construct correlation (as a measure of shared
variance) of that same construct and all other reflectively measured constructs in the
structural model. The shared variance for all model constructs should not be larger than
their AVEs. Recent research indicates, however, that this metric is not suitable for
discriminant validity assessment. For example, Henseler et al. (2015) show that the Fornell-
Larcker criterion does not perform well, particularly when the indicator loadings on a
construct differ only slightly (e.g. all the indicator loadings are between 0.65 and 0.85).

As a replacement, Henseler et al. (2015) proposed the heterotrait-monotrait (HTMT) ratio
of the correlations (Voorhees et al., 2016). The HTMT is defined as the mean value of the
item correlations across constructs relative to the (geometric) mean of the average
correlations for the items measuring the same construct. Discriminant validity problems are
present when HTMT values are high. Henseler et al. (2015) propose a threshold value of 0.90
for structural models with constructs that are conceptually very similar, for instance
cognitive satisfaction, affective satisfaction and loyalty. In such a setting, an HTMT value
above 0.90 would suggest that discriminant validity is not present. But when constructs are
conceptually more distinct, a lower, more conservative, threshold value is suggested, such as
0.85 (Henseler et al., 2015). In addition to these guidelines, bootstrapping can be applied to
test whether the HTMT value is significantly different from 1.00 (Henseler et al., 2015) or a
lower threshold value such as 0.85 or 0.90, which should be defined based on the study
context (Franke and Sarstedt, 2019). More specifically, the researcher can examine if the
upper bound of the 95 per cent confidence interval of HTMT is lower than 0.90 or 0.85.

Assessing formative measurement models
PLS-SEM is the preferred approach when formative constructs are included in the structural
model (Hair et al., 2019). Formative measurement models are evaluated based on the
following: convergent validity, indicator collinearity, statistical significance, and relevance
of the indicator weights (Hair et al., 2017a).

For formatively measured constructs, convergent validity is assessed by the
correlation of the construct with an alternative measure of the same concept. Originally
proposed by Chin (1998), the procedure is referred to as redundancy analysis. To
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execute this procedure for determining convergent validity, researchers must plan
already in the research design stage to include alternative reflectively measured
indicators of the same concept in their questionnaire. Cheah et al. (2018) show that a
single-item, which captures the essence of the construct under consideration, is
generally sufficient as an alternative measure – despite limitations with regard to
criterion validity (Sarstedt et al., 2016a). When the model is based on secondary data, a
variable measuring a similar concept would be used (Houston, 2004). Hair et al. (2017a)
suggest that the correlation of the formatively measured construct with the single-item
construct, measuring the same concept, should be 0.70 or higher.

The variance inflation factor (VIF) is often used to evaluate collinearity of the formative
indicators. VIF values of 5 or above indicate critical collinearity issues among the indicators of
formatively measured constructs. However, collinearity issues can also occur at lower VIF values
of 3 (Mason and Perreault, 1991; Becker et al., 2015). Ideally, the VIF values should be close to 3
and lower.

In the third and final step, researchers need to assess the indicator weights’ statistical
significance and relevance (i.e. size). PLS-SEM is a nonparametric method and therefore,
bootstrapping is used to determine statistical significance (Chin, 1998). Hair et al. (2017a) suggest
using BCa bootstrap confidence intervals for significance testing in case the bootstrap
distribution of the indicator weights is skewed. Otherwise, researchers should use the percentile
method to construct bootstrap-based confidence intervals (Aguirre-Urreta and Rönkkö, 2018). If
the confidence interval of an indicator weight includes zero, this indicates that the weight is not
statistically significant and the indicator should be considered for removal from themeasurement
model. However, if an indicator weight is not significant, it is not necessarily interpreted as
evidence of poor measurement model quality. Instead, the indicator’s absolute contribution to the
construct is considered (Cenfetelli and Bassellier, 2009), as defined by its outer loading (i.e. the
bivariate correlation between the indicator and its construct). According to Hair et al. (2017a),
indicators with a nonsignificant weight should definitely be eliminated if the loading is also not
significant. A low but significant loading of 0.50 and below suggests that one should consider
deleting the indicator, unless there is strong support for its inclusion on the grounds of
measurement theory.

When deciding whether to delete formative indicators based on statistical outcomes,
researchers need to be cautious for the following reasons. First, formative indicator
weights are a function of the number of indicators used to measure a construct. The
greater the number of indicators, the lower their average weight. Formative measurement
models are, therefore, inherently limited in the number of indicator weights that can be
statistically significant (Cenfetelli and Bassellier, 2009). Second, indicators should seldom
be removed from formative measurement models, as formative measurement theory
requires the indicators to fully capture the entire domain of a construct, as defined by the
researcher in the conceptualization stage. In contrast to reflective measurement models,
formative indicators are not interchangeable and removing even a single indicator can
therefore, reduce the measurement model’s content validity (Diamantopoulos and
Winklhofer, 2001).

After assessing the statistical significance of the indicator weights, researchers need to
examine each indicator’s relevance. The indicator weights are standardized to values
between �1 andþ1, but, in rare cases can also take values lower or higher than this, which
indicates an abnormal result (e.g. due to collinearity issues and/or small sample sizes). A
weight close to 0 indicates a weak relationship, whereas weights close toþ1 (or�1) indicate
strong positive (or negative) relationships.
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Assessing structural models
When the measurement model assessment is satisfactory, the next step in evaluating PLS-
SEM results is assessing the structural model. Standard assessment criteria, which should
be considered, include the coefficient of determination (R2), the blindfolding-based cross-
validated redundancy measure Q2, and the statistical significance and relevance of the path
coefficients. In addition, researchers should assess their model’s out-of-sample predictive
power by using the PLSpredict procedure (Shmueli et al., 2016).

Structural model coefficients for the relationships between the constructs are derived
from estimating a series of regression equations. Before assessing the structural
relationships, collinearity must be examined to make sure it does not bias the regression
results. This process is similar to assessing formative measurement models, but the latent
variable scores of the predictor constructs in a partial regression are used to calculate the
VIF values. VIF values above 5 are indicative of probable collinearity issues among the
predictor constructs, but collinearity problems can also occur at lower VIF values of 3-5
(Mason and Perreault, 1991; Becker et al., 2015). Ideally, the VIF values should be close to 3
and lower. If collinearity is a problem, a frequently used option is to create higher-order
models that can be supported by theory (Hair et al., 2017a).

If collinearity is not an issue, the next step is examining the R2 value of the endogenous
construct(s). The R2 measures the variance, which is explained in each of the endogenous
constructs and is therefore a measure of the model’s explanatory power (Shmueli and
Koppius, 2011). The R2 is also referred to as in-sample predictive power (Rigdon, 2012). The
R2 ranges from 0 to 1, with higher values indicating a greater explanatory power. As a
guideline, R2 values of 0.75, 0.50 and 0.25 can be considered substantial, moderate and weak
(Henseler et al., 2009; Hair et al., 2011). Acceptable R2 values are based on the context and in
some disciplines an R2 value as low as 0.10 is considered satisfactory, for example, when
predicting stock returns (Raithel et al., 2012). More importantly, the R2 is a function of the
number of predictor constructs – the greater the number of predictor constructs, the higher
the R2. Therefore, the R2 should always be interpreted in relation to the context of the study,
based on the R2 values from related studies and models of similar complexity. R2 values can
also be too high when the model overfits the data. That is, the partial regression model is too
complex, which results in fitting the random noise inherent in the sample rather than
reflecting the overall population. The same model would likely not fit on another sample
drawn from the same population (Sharma et al., 2019a). When measuring a concept that is
inherently predictable, such as physical processes, R2 values of 0.90 might be plausible.
Similar R2 value levels in a model that predicts human attitudes, perceptions and intentions
likely indicate an overfit.

Researchers can also assess how the removal of a certain predictor construct affects an
endogenous construct’s R2 value. This metric is the f2 effect size and is somewhat redundant
to the size of the path coefficients. More precisely, the rank order of the predictor constructs’
relevance in explaining a dependent construct in the structural model is often the same when
comparing the size of the path coefficients and the f2 effect sizes. In such situations, the f2

effect size should only be reported if requested by editors or reviewers. If the rank order of
the constructs’ relevance, when explaining a dependent construct in the structural model,
differs when comparing the size of the path coefficients and the f2 effect sizes, the researcher
may report the f2 effect size to explain the presence of, for example, partial or full mediation
(Nitzl et al., 2016). As a rule of thumb, values higher than 0.02, 0.15 and 0.35 depict small,
medium and large f2 effect sizes (Cohen, 1988).

Another means to assess the PLS path model’s predictive accuracy is by calculating the
Q2 value (Geisser, 1974; Stone, 1974). This metric is based on the blindfolding procedure that
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removes single points in the data matrix, imputes the removed points with the mean and
estimates the model parameters (Rigdon, 2014b; Sarstedt et al., 2014). As such, theQ2 is not a
measure of out-of-sample prediction, but rather combines aspects of out-of-sample
prediction and in-sample explanatory power (Shmueli et al., 2016; Sarstedt et al., 2017a).
Using these estimates as input, the blindfolding procedure predicts the data points that were
removed for all variables. Small differences between the predicted and the original values
translate into a higher Q2 value, thereby indicating a higher predictive accuracy. As a
guideline, Q2 values should be larger than zero for a specific endogenous construct to
indicate predictive accuracy of the structural model for that construct. As a rule of thumb,
Q2 values higher than 0, 0.25 and 0.50 depict small, medium and large predictive relevance
of the PLS-path model. Similar to the f2 effect sizes, it is possible to compute and interpret
the q2 effect sizes.

Many researchers interpret the R2 statistic as a measure of their model’s predictive
power. This interpretation is not entirely correct, however, as the R2 only indicates the
model’s in-sample explanatory power – it says nothing about the model’s out-of-sample
predictive power (Shmueli, 2010; Shmueli and Koppius, 2011; Dolce et al., 2017). Addressing
this concern, Shmueli et al. (2016) proposed a set of procedures for out-of-sample prediction
that involves estimating the model on an analysis (i.e. training) sample and evaluating its
predictive performance on data other than the analysis sample, referred to as a holdout
sample. Their PLSpredict procedure generates holdout sample-based predictions in PLS-
SEM and is an option in PLS-SEM software, such as SmartPLS (Ringle et al., 2015) and open
source environments such as R (https://github.com/ISS-Analytics/pls-predict), so that
researchers can easily apply the procedure.

PLSpredict executes k-fold cross-validation. A fold is a subgroup of the total
sample and k is the number of subgroups. That is, the total data set is randomly split
into k equally sized subsets of data. For example, a cross-validation based on k = 5
folds splits the sample into five equally sized data subsets (i.e. groups of data).
PLSpredict then combines k � 1 subsets into a single analysis sample that is used to
predict the remaining fifth data subset. The fifth data subset is the holdout sample for
the first cross-validation run. This cross-validation process is then repeated k times
(in this example, five times), with each of the five subsets used once as the holdout
sample. Thus, each case in every holdout sample has a predicted value estimated with
a sample in which that case was not used to estimate the model parameters. Shmueli
et al. (2019) recommend setting k = 10, but researchers need to make sure the analysis
sample for each subset (fold) meets minimum sample size guidelines. Also, other
criteria to assess out-of-sample prediction without using a holdout sample are
available, such as the Bayesian information criterion (BIC) and Geweke and Meese
(GM) criterion (discussed later in this paper).

The generation of the k subgroups is a random process and can sometimes result in
extreme partitions that potentially lead to abnormal solutions. To avoid such abnormal
solutions, researchers should run PLSpredict multiple times. Shmueli et al. (2019)
recommend to generally run the procedure ten times. However, when the objective is to
duplicate how the PLS model will eventually be used to predict a new observation by using
a single model (estimated from the entire data set), PLSpredict should be run only once (i.e.
without repetitions).

For the PLSpredict based assessment of a model’s predictive power, researchers can
draw on several prediction statistics that quantify the amount of prediction error. For
example, the mean absolute error (MAE) measures the average magnitude of the errors in a
set of predictions without considering their direction (over or under). The MAE is thus the
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average absolute differences between the predictions and the actual observations, with all
the individual differences having equal weight. Another popular prediction metric is the root
mean squared error (RMSE), which is defined as the square root of the average of the
squared differences between the predictions and the actual observations. As the RMSE
squares the errors before averaging, the statistic assigns a greater weight to larger errors,
which makes it particularly useful when large errors are undesirable – as is typically the
case in business research applications.

When interpreting PLSpredict results, the focus should be on the model’s key
endogenous construct, as opposed to examining the prediction errors for all endogenous
constructs’ indicators. When the key target construct has been selected, the Q2

predict statistic
should be evaluated first to verify if the predictions outperform the most naïve benchmark,
defined as the indicator means from the analysis sample (Shmueli et al., 2019). Then,
researchers need to examine the prediction statistics. In most instances, researchers should
use the RMSE. If the prediction error distribution is highly non-symmetric, the MAE is the
more appropriate prediction statistic (Shmueli et al., 2019). The prediction statistics depend
on the indicators’ measurement scales and their raw values do not carry much meaning.
Therefore, researchers need to compare the RMSE (or MAE) values with a naïve benchmark.
The recommended naïve benchmark (produced by the PLSpredict method) uses a linear
regression model (LM) to generate predictions for the manifest variables, by running a linear
regression of each of the dependent construct’s indicators on the indicators of the exogenous
latent variables in the PLS path model (Danks and Ray, 2018). When comparing the RMSE
(or MAE) values with the LM values, the following guidelines apply (Shmueli et al., 2019):

� If the PLS-SEM analysis, compared to the naïve LM benchmark, yields higher
prediction errors in terms of RMSE (or MAE) for all indicators, this indicates that
the model lacks predictive power.

� If the majority of the dependent construct indicators in the PLS-SEM analysis
produce higher prediction errors compared to the naïve LM benchmark, this
indicates that the model has a low predictive power.

� If the minority (or the same number) of indicators in the PLS-SEM analysis yields
higher prediction errors compared to the naïve LM benchmark, this indicates a
medium predictive power.

� If none of the indicators in the PLS-SEM analysis has higher RMSE (or MAE) values
compared to the naïve LM benchmark, the model has high predictive power.

Having substantiated the model’s explanatory power and predictive power, the final step is
to assess the statistical significance and relevance of the path coefficients. The interpretation
of the path coefficients parallels that of the formative indicator weights. That is, researchers
need to run bootstrapping to assess the path coefficients’ significance and evaluate their
values, which typically fall in the range of�1 andþ1. Also, they can interpret a construct’s
indirect effect on a certain target construct via one or more intervening constructs. This
effect type is particularly relevant in the assessment of mediating effects (Nitzl, 2016).

Similarly, researchers can interpret a construct’s total effect, defined as the sum of the
direct and all indirect effects. A model’s total effects also serve as input for the importance-
performance map analysis (IPMA) and extend the standard PLS-SEM results reporting of
path coefficient estimates by adding a dimension to the analysis that considers the average
values of the latent variable scores. More precisely, the IPMA compares the structural
model’s total effects on a specific target construct with the average latent variable scores of
this construct’s predecessors (Ringle and Sarstedt, 2016).
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Finally, researchers may be interested in comparing different model configurations
resulting from different theories or research contexts. Sharma et al. (2019b, 2019a) recently
compared the efficacy of various metrics for model comparison tasks and found that
Schwarz’s (1978) BIC and Geweke and Meese’s (1981) GM achieve a sound trade-off between
model fit and predictive power in the estimation of PLS path models. Their research
facilitates assessing out-of-sample prediction without using a holdout sample, and is
particularly useful with PLS-SEM applications based on a sample that is too small to divide
it into useful analysis and holdout samples. Specifically, researchers should estimate each
model separately and select the model that minimizes the value in BIC or GM for a certain
target construct. For example, a model that produces a BIC value of �270 should be
preferred over a model that produces a BIC value of �150. Table I summarizes the metrics
that need to be applied when interpreting and reporting PLS-SEM results.

Robustness checks
Recent research has proposed complementary methods for assessing the robustness of PLS-
SEM results (Hair et al., 2018; Latan, 2018). These methods address either the measurement
model or the structural model (Table I).

In terms of measurement models, Gudergan et al. (2008) have proposed the confirmatory
tetrad analysis (CTA-PLS), which enables empirically substantiating the specification of
measurement models (i.e. reflective versus formative). The CTA-PLS relies on the concept of
tetrads that describe the difference of the product of one pair of covariances and the product
of another pair of covariances (Bollen and Ting, 2000). In a reflective measurement model,
these tetrads should vanish (i.e. they become zero) as the indicators are assumed to stem
from the same domain. If one of a construct’s tetrads is significantly different from 0, one
rejects the null hypothesis and assumes a formative instead of a reflective measurement
model specification. It should be noted, however, that CTA-PLS is an empirical test of
measurement models and the primary method to determine reflective or formative model
specification is theoretical reasoning (Hair et al., 2017a).

In terms of the structural model, Sarstedt et al. (2019) suggest that researchers should
consider nonlinear effects, endogeneity and unobserved heterogeneity. First, to test whether
relationships are nonlinear, researchers can run Ramsey’s (1969) regression equation
specification error test on the latent variable scores in the path model’s partial regressions. A
significant test statistic in any of the partial regressions indicates a potential nonlinear
effect. In addition, researchers can establish an interaction term to map a nonlinear effect in
the model and test its statistical significance using bootstrapping (Svensson et al., 2018).

Second, when the research perspective is primarily explanatory in a PLS-SEM analysis,
researchers should test for endogeneity. Endogeneity typically occurs when researchers
have omitted a construct that correlates with one or more predictor constructs and the
dependent construct in a partial regression of the PLS path model. To assess and treat
endogeneity, researchers should follow Hult et al.’s (2018) systematic procedure, starting
with the application of Park and Gupta’s (2012) Gaussian copula approach. If the approach
indicates an endogeneity issue, researchers should implement instrumental variables that
are highly correlated with the independent constructs, but are uncorrelated with the
dependent construct’s error term to explain the sources of endogeneity (Bascle, 2008).
Importantly, however, endogeneity assessment is only relevant when the researcher’s focus
is on explanation and rather not when following causal-predictive goals.

Third, unobserved heterogeneity occurs when subgroups of data exist that produce
substantially different model estimates. If this is the case, estimating the model based on the
entire data set is very likely to produce misleading results (Becker et al., 2013). Hence, any
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Reflective measurement models
Reflective indicator loadings �0.708
Internal consistency reliability Cronbach’s alpha is the lower bound, the composite reliability is the

upper bound for internal consistency reliability. rA usually lies
between these bounds and may serve as a good representation of a
construct’s internal consistency reliability, assuming that the factor
model is correct
Minimum 0.70 (or 0.60 in exploratory research)
Maximum of 0.95 to avoid indicator redundancy, which would
compromise content validity
Recommended 0.70-0.90
Test if the internal consistency reliability is significantly higher
(lower) than the recommended minimum (maximum) thresholds. Use
the percentile method to construct the bootstrap-based confidence
interval; in case of a skewed bootstrap distribution, use the BCa
method

Convergent validity AVE� 0.50
Discriminant validity For conceptually similar constructs: HTMT< 0.90

For conceptually different constructs: HTMT< 0.85
Test if the HTMT is significantly lower than the threshold value

Formative measurement models
Convergent validity
(redundancy analysis)

�0.70 correlation

Collinearity (VIF) Probable (i.e. critical) collinearity issues when VIF� 5
Possible collinearity issues when VIF� 3-5
Ideally show that VIF< 3

Statistical significance of
weights

p-value< 0.05 or the 95% confidence interval (based on the percentile
method or, in case of a skewed bootstrap distribution, the BCa method)
does not include zero

Relevance of indicators with a
significant weight

Larger significant weights are more relevant (contribute more)

Relevance of indicators with a
non-significant weight

Loadings of�0.50 that are statistically significant are considered
relevant

Structural model
Collinearity (VIF) Probable (i.e. critical) collinearity issues when VIF� 5

Possible collinearity issues when VIF� 3-5
Ideally show that VIF< 3

R2 value R2 values of 0.75, 0.50 and 0.25 are considered substantial, moderate
and weak. R2 values of 0.90 and higher are typical indicative of overfit

Q2 value Values larger than zero are meaningful
Values higher than 0, 0.25 and 0.50 depict small, medium and large
predictive accuracy of the PLS path model

PLSpredict Set k = 10, assuming each subgroup meets the minimum required
sample size
Use ten repetitions, assuming the sample size is large enough
Q2
predict values> 0 indicate that the model outperforms the most naïve

benchmark (i.e. the indicator means from the analysis sample)
Compare the MAE (or the RMSE) value with the LM value of each

(continued )

Table I.
Guidelines when
using PLS-SEM
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PLS-SEM analysis should include a routine check for unobserved heterogeneity to ascertain
whether or not the analysis of the entire data set is reasonable or not. Sarstedt et al. (2017b)
proposed a systematic procedure for identifying and treating unobserved heterogeneity.
Using information criteria derived from a finite mixture PLS (Hahn et al., 2002; Sarstedt
et al., 2011), researchers can identify the number of segments to be extracted from the data (if
any) (Hair et al., 2016; Matthews et al., 2016). If heterogeneity is present at a critical level, the
next step involves running the PLSprediction-oriented segmentation procedure (Becker
et al., 2013) to disclose the data’s segment structure. Finally, researchers should attempt to
identify suitable explanatory variables that characterize the uncovered segments (e.g. by
using contingency table or exhaustive CHAID analyses; Ringle et al., 2010). If suitable
explanatory variables are available, a moderator (Henseler and Fassott, 2010; Becker et al.,
2018) or multigroup analysis (Chin and Dibbern, 2010; Matthews, 2017), in combination with
a measurement invariance assessment (Henseler et al., 2016b), offers further particularized
findings, conclusions and implications.

Concluding observations
PLS-SEM is increasingly being applied to estimate structural equation models (Hair et al.,
2014). Scholars need a comprehensive, yet concise, overview of the considerations and
metrics needed to ensure their analysis and reporting of PLS-SEM results is complete –
before submitting their article for review. Prior research has provided such reporting
guidelines (Hair et al., 2011; Hair et al., 2013; Hair et al., 2012b; Chin, 2010; Tenenhaus et al.,
2005; Henseler et al., 2009), which, in light of more recent research and methodological
developments in the PLS-SEM domain, need to be continuously extended and updated. We
hope this paper achieves this goal.

For researchers who have not used PLS-SEM in the past, this article is a good point of
orientation on when preparing and finalizing their manuscripts. Moreover, for
researchers experienced in applying PLS-SEM, this is a good overview and reminder of
how to prepare PLS-SEM manuscripts. This knowledge is also important for reviewers
and journal editors to ensure the rigor of published PLS-SEM studies. We provide an
overview of several recently proposed improvements (PLSpredict and model comparison
metrics), as well as complementary methods for robustness checks (e.g. endogeneity
assessment and latent class procedures), which we recommend should be applied – if
appropriate – when using PLS-SEM. Finally, while a few researchers have published

indicator. Check if the PLS-SEM analysis (compared to the LM) yields
higher prediction errors in terms of RMSE (or MAE) for all (no
predictive power), the majority (low predictive power), the minority or
the same number (medium predictive power) or none of the indicators
(high predictive power)

Model comparisons Select the model that minimizes the value in BIC or GM compared to
the other models in the set

Robustness checks
Measurement models CTA-PLS
Structural model Nonlinear effects

Endogeneity
Unobserved heterogeneityTable I.
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articles that are negative about the use of PLS-SEM, more recently several prominent
researchers have acknowledged the value of PLS as an SEM technique (Petter, 2018). We
believe that social science scholars would be remiss if they did not apply all statistical
methods at their disposal to explore and better understand the phenomena they are
researching.
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