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SUMMARY
The common approach to the multiplicity problem calls for controlling the familywise
error rate (FWER). This approach, though, has faults, and we point out a few. A different
approach to problems of multiple significance testing is presented. It calls for controlling
the expected proportion of falsely rejected hypotheses-the false discovery rate. This error
rate is equivalent to the FWER when all hypotheses are true but is smaller otherwise. There
fore, in problems where the control of the false discovery rate rather than that of the
FWER is desired, there is potential for a gain in power. A simple sequential Bonferroni
type procedure is proved to control the false discovery rate for independent test statistics,
and a simulation study shows that the gain in power is substantial. The use of the new
procedure and the appropriateness of the criterion are illustrated with examples.

Keywords: BONFERRONI-TYPE PROCEDURES; FAMILYWISE ERROR RATE; MULTIPLE·
COMPARISON PROCEDURES; p-VALUES

1. INTRODUCTION

When pursuing multiple inferences, researchers tend to select the (statistically) signif
icant ones for emphasis, discussion and support of conclusions. An unguarded use
of single-inference procedures results in a greatly increased false positive (signif
icance) rate. To control this multiplicity (selection) effect, classical multiple
comparison procedures (MCPs) aim to control the probability of committing any
type I error in families of comparisons under simultaneous consideration. The
control of this familywise error rate (FWER) is usually required in a strong sense,
i.e, under all configurations of the true and false hypotheses tested (see for example
Hochberg and Tamhane (1987».

Even though MCPs have been in use since the early 1950s, and in spite of the
advocacy for their use (e.g. being mandatory for some journals, as well as in some
institutions such as the Food and Drug Administration of the USA), researchers
have not yet widely adopted these procedures. In medical research, for example,
Godfrey (1985), Pocock et al. (1987) and Smith et al. (1987) examined samples of
reports of comparative studies from major medical journals. They found that
researchers overlook various kinds of multiplicity, and as a result reporting tends
to exaggerate treatment differences (Pocock et al., 1987).

Some of the difficulties with classical MCPs which cause their underutilization
in applied research are as follows.
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(a) Much of the methodology of FWER controlling MCPs concerns compari
sons of multiple treatments and families whose test statistics are multivariate
normal (or t). In practice, many of the problems encountered are not of the
multiple-treatments type, and test statistics are not multivariate normal. In
fact, families are often combined with statistics of different types.

(b) Classical procedures that control the FWER in the strong sense, at levels
conventional in single-comparison problems, tend to have substantially less
power than the per comparison procedure of the same levels.

(c) Often the control of the FWER is not quite needed. The control of the
FWER is important when a conclusion from the various individual infer
ences is likely to be erroneous when at least one of them is. This may be
the case, for example, when several new treatments are competing against
a standard, and a single treatment is chosen from the set of treatments which
are declared significantly better than the standard. However, a treatment
group and a control group are often compared by testing various aspects
of the effect (different end points in clinical trials terminology). The overall
conclusion that the treatment is superior need not be erroneous even if some
of the null hypotheses are falsely rejected.

The first difficulty has been partially addressed by the recent line of research
advancing Bonferroni-type procedures, which use the observed individual p-values,
while remaining faithful to FWER control: Simes (1986), Hommel (1988), Hochberg
(1988) and Rom (1990). The other two difficulties still present a serious problem.
This is probably why a per comparison error rate (PCER) approach, which amounts
to ignoring the multiplicity problem altogether, is still recommended by some (e.g.
Saville (1990».

In this work we suggest a new point of view on the problem of multiplicity. In
many multiplicity problems the number of erroneous rejections should be taken into
account and not only the question whether any error was made. Yet, at the same
time, the seriousness of the loss incurred by erroneous rejections is inversely related
to the number of hypotheses rejected. From this point of view, a desirable error
rate to control may be the expected proportion of errors among the rejected
hypotheses, which we term the false discovery rate (FDR). This criterion integrates
Spjetvoll's (1972) concern about the number of errors committed in multiple
comparison problems, with Soric's (1989) concern about the probability of a false
rejection given a rejection. We use the term FDR after Soric (1989), who identified
a rejected hypothesis with a 'statistical discovery'.

After some preliminaries, we present in Section 2.1 a formal definition of the
FDR. Two immediate but important consequences of controlling this error rate are
given: it implies weak control of FWER and it admits more powerful procedures.
In Section 2.2 we present some examples where the control of the FDR is desirable.
In Section 3 we present a simple Bonferroni-type FDR controlling procedure and
the rest of the section is devoted to a discussion and demonstration of its properties.
Section 4 presents a simulation study of the power of the procedure.

2. FALSE DISCOVERY RATE

Consider the problem of testing simultaneously m (null) hypotheses, of which
m., are true. R is the number of hypotheses rejected. Table 1 summarizes the
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TABLE 1
Number of errors committed when testing m null hypotheses

Declared Declared Total
non-significant significant

291

True null hypotheses
Non-true null hypotheses

U
T

m-R

V
S

R

mo
m-mo

m

situation in a traditional form. The specific m hypotheses are assumed to be known
in advance. R is an observable random variable; U, V, Sand T are unobservable
random variables. If each individual null hypothesis is tested separately at level a,
then R = R(a) is increasing in a. We use the equivalent lower case letters for their
realized values.

In terms of these random variables, the peER is E(V1m) and the FWER is
P(V ~ 1). Testing individually each hypothesis at levela guarantees thatE(V1m) ~ a.
Testing individually each hypothesis at level aim guarantees that P(V ~ 1) ~ a.

2.1. Definition of False Discovery Rate
The proportion of errors committed by falsely rejecting null hypotheses can be

viewed through the random variable Q = VI(V + S)- the proportion of the rejected
null hypotheses which are erroneously rejected. Naturally, we define Q = 0 when
V + S = 0, as no error of false rejection can be committed. Q is an unobserved
(unknown) random variable, as we do not know v or s, and thus q = vl(v + s),
even after experimentation and data analysis. We define the FDR Qe to be the
expectation of Q,

Qe = E(Q) = E{V/(V + S)} = E(V/R).

Two properties of this error rate are easily shown, yet are very important.

(a) If all null hypotheses are true, the FDR is equivalent to the FWER: in this
case s = 0 and v = r, so if v = 0 then Q = 0, and if v > 0 then Q = 1,
leading to P(V ~ 1) = E(Q) = Qe' Therefore control of the FDR implies
control of the FWER in the weak sense.

(b) When mo < m, the FDR is smaller than or equal to the FWER: in this
case, if v > 0 then vir ~ 1, leading to X(V ~ I) ~ Q. Taking expectations on
both sides we obtain P(V ~ 1) ~ Qe, and the two can be quite different. As
a result, any procedure that controls the FWER also controls the FOR.
However, if a procedure controls the FDR only, it can be less stringent, and
a gain in power may be expected. In particular, the larger the number of
the non-true null hypotheses is, the larger S tends to be, and so is the
difference between the error rates. As a result, the potential for increase in
power is larger when more of the hypotheses are non-true.
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2.2. Examples
The following examples show the relevance of FOR control in some typical situa

tions. In addition they indicate the desirability of a large number of rejections (dis
coveries). Both aspects are addressed by the procedure given later in Section 3.

One type of multiple-comparison problem involves an overall decision (conclu
sion, recommendation, etc.) which is based on multiple inferences. An example of
this type of problems is the 'multiple end points problem', which was used earlier
to show that FWER control is not always needed. In this example the overall
decision problem is whether to recommend a new treatment over a standard
treatment. Discoveries here are rejections of null hypotheses claiming that treatment
is no better than standard on specified end points. These conclusions about different
aspects of the benefit of the new treatment are of interest per se, but the set of
discoveries will be used to reach an overall decision regarding the new treatment.
We wish therefore to make as many discoveries as possible (which will enhance a
decision in favour of the new treatment), subject to control of the FDR. Control
of the probability of any error is unnecessarily stringent, as a small proportion of
errors will not change the overall validity of the conclusion.

Another type of problems involves multiple separate decisions without an overall
decision being required. An example of this type is the multiple-subgroups problem,
where two treatments are compared in multiple subgroups, and separate recommen
dations on the preferred treatments must be made for all subgroups. As usual
we wish to discover as many as possible significant differences, thereby reaching
operational decisions, but would be willing to admit a prespecified proportion of
misses, i.e. willing to use an FOR controlling procedure.

The third type involves screening problems, where multiple potential effects are
screened to weed out the null effects. One example is screening of various chemicals
for potential drug development. Another example is testing multiple factors in
an experimental (2k say) design. In such examples we want to obtain as many as
possible discoveries (candidates for drug developments, factors that affect the
quality of a product) but again wish to control the FOR, because too large a fraction
of false leads would burden the second phase of the confirmatory analysis.

2.3. Alternative Formulations
We have suggested to capture the error rate vaguely described as 'the proportion

of false discoveries' using the FOR. At this point it might be illuminating to discuss
alternative formulations of this concept, and thus to motivate our choice of FOR
further.

Undoubtedly, controlling the random variable Q at each realization is most desir
able. This is impossible, for if m., = m and even if a single hypothesis is rejected
vir = 1 and Q cannot then be controlled. Controlling (VIR IR > 0) has the same
problem - it is identically 1 in the above configuration. Therefore E(VIR IR > 0)
cannot be controlled. The FOR, instead, is P(R > 0) E(VIR IR > 0), and, as will
be shown later, this is possible to control.

Second, consider the formulation that Soric (1989) gave to 'the proportion of
false discoveries among the discoveries' as Q' = E(V)lr. This quotient is neither
the random variable Q nor its expectation but is a mixture of expectations and
realizations. It is not even the conditional expectation of Q, namely E(Q IR = r)
= E(V IR = r)lr, which has again the problem of control for m., = m.
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Third, consider E(V)/E(R). When all hypotheses are true it is identically 1, and
again impossible to control. A remedy may be given by either adding 1 to the
denominator, a somewhat artificial solution, or by changing the denominator to
E(R IR > 0). Modifying both numerator and denominator in the same way will
again run into problems of control when m., = m.

3. FALSE DISCOVERY RATE CONTROLLING PROCEDURE

3.1. The Procedure
Consider testing H" Hz, , H m based on the corresponding p-values P"

Pz, ... , Pm· Let p(l) ~ p(z) ~ ~ p(m) be the orderedp-values, and denote by
R U) the null hypothesis corresponding to P U). Define the following Bonferroni
type multiple-testing procedure:

let k be the largest i for which P U) ~ .i q*;
m

then reject all H U) i = 1, 2, ... , k. (1)

Theorem 1. For independent test statistics and for any configuration of false
null hypotheses, the above procedure controls the FDR at q*.

Proof. The theorem follows from the following lemma, whose proof is given
in Appendix A.

Lemma. For any 0 ~ mo ~ m independent p-values corresponding to true null
hypotheses, and for any values that the m, = m - mo p-values corresponding to
the false null hypotheses can take, the multiple-testing procedure defined by
procedure (1) above satisfies the inequality

E(QIPmo+' = PI' ... , Pm = Pm,) ~ mOq*. (2)m
Now, suppose that m, = m - mo of the hypotheses are false. Whatever the joint
distribution of P{', ..., P;:" which corresponds to these false hypotheses is,
integrating inequality (2) above we obtain

E(Q) ~ mOq* ~ q*,
m

and the FDR is controlled.

Remark. Note that the independence of the test statistics corresponding to the
false null hypotheses is not needed for the proof of the theorem.

This procedure was mentioned by Simes (1986) as an exploratory extension to
his procedure for rejection of the intersection hypothesis that all null hypotheses
are true if, for some i, P U) ~ ia/m, Whereas Simes (1986) showed that his proce
dure controls the FWER under the intersection null hypothesis, Hommel (1988)
showed that the extended procedure for inference on individual hypotheses does not
control the FWER in the strong sense: for some configuration of the false null
hypotheses, the probability of an erroneous rejection is greater than a.

Hochberg (1988) has suggested a different way to utilize Simes's procedure so that
it does control the FWER in the strong sense, by offering the following procedure:
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let k be the largest i for which P(i) ~ i
1

. a;
m + -1

then reject all H(i) i = 1, 2, ... , k.

[No.1,

Note the relationship between Hochberg's procedure and the FDR controlling
procedure when q* is chosen to equal a. Both Hochberg's procedure and the FDR
controlling procedure are step-down procedures, which start by comparing P(m)

with a, and if smaller all hypotheses are rejected - as if a PCER approach had been
taken. If P(m) > a, proceed to smaller p-values until one satisfies the condition.
The procedures end, if not terminated earlier, by comparing PO) with aim, as in
a pure Bonferroni comparison. At the two ends the procedures are similar, but, in
between, the sequence of p(i)s is compared with {I - (i - 1)lm}a in the current
procedure, rather than with {1/(m + 1 - i)}a in Hochberg's procedure. The series
of linearly decreasing constants of the FDR controlling method is always larger than
the hyperbolically decreasing constants of Hochberg, and the extreme ratio is as
large as 4ml(m + 1)2 at i = (m + 1)12. This shows that the suggested procedure
rejects samplewise at least as many hypotheses as Hochberg's method and therefore
has also greater power than other FWER controlling methods such as Holm's
(1979).

3.2. Example oj False Discovery Rate Controlling Procedure
Thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) and

anisoylated plasminogen streptokinase activator (APSAC) in myocardial infarction
has been proved to reduce mortality. Neuhaus et al. (1992) investigated the effects
of a new front-loaded administration of rt-PA versus those obtained with a standard
regimen of APSAC, in a randomized multi centre trial in 421 patients with acute
myocardial infarction. Four families of hypotheses can be identified in the study:

(a) base-line comparisons (11 hypotheses), where the problem is of showing
equivalence;

(b) patency of infarct-related artery (eight hypotheses);
(c) reocclusion rates of patent infarct-related artery (six hypotheses);
(d) cardiac and other events after the start of thrombolitic treatment (15

hypotheses) .

In this last family FDR control may be desired: we do not wish to conclude that the
front-loaded treatment is better if it is merely equivalent to the previous treatment
in all respects.

In the paper, however, there is no attention to the problem of multiplicity (the
only exception being the division of the end points into primary and secondary).
The individual p-values are reported as they are, with no word of warning regarding
their interpretation. The authors conclude that

'Compared to APSAC treatment, despite more early reocclusions, the clinical course with
rt-PA treatment is more favorable with fewer bleeding complications and a substantially
lower in-hospital mortality rate, presumably due to improved early patency of the infarct
related artery'.
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The statement about the mortality is based on a p-value of 0.0095.
Consider now the fourth family, which contains the comparison of mortality and

14 other comparisons. The ordered p(i)s for the 15 comparisons made are

0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344,

0.0459, 0.3240, 0.4262, 0.5719, 0.6528, 0.7590, 1.000.

Controlling the FWER at 0.05, the Bonferroni approach, using 0.05/15 = 0.0033,
rejects the three hypotheses corresponding to the smallest p-values. These hy
potheses correspond to reduced allergic reaction, and to two different aspects of
bleeding; they do not include the comparison of mortality. Using Hochberg's
procedure leaves us with the same three hypotheses rejected. Thus the statement
about a significant reduction in mortality is unjustified from the classical point
of view.

Using the FDR controlling procedure with q* = 0.05, we now compare sequen
tially each P(i) with 0.05i/I5, starting with P(l5). The first p-value to satisfy the
constraint is P(4) as

4
P(4) = 0.0095 ~ 150.05 = 0.013.

Thus we reject the four hypotheses having p-values which are less than or equal
to 0.013. We may support now with appropriate confidence the statements about
mortality decrease, of which we did not have sufficiently strong evidence before.

3.3. Another Look at False Discovery Rate Controlling Procedure
The above FOR controlling procedure can be viewed as a post hoc maximizing

procedure, as the following theorem suggests.

Theorem 2. The FOR controlling procedure given by expression (1) is the
solution of the following constrained maximization problem:

choose a that maximizes the number of rejections at this level, r(a),

subject to the constraint am/r(a) ~ q*. (3)

Proof. Observe that, for each a, if P(i) ~ a < P(i+I)' then r(a) = i, Further
more, as the ratio on the left-hand side of constraint (3) increases in a over the range
on which r(a) is constant, it is enough to investigate as which are equal to one of
the P(i)s. This a = P(k) satisfies the constraint because a/r(a) = p(k/k ~ q*/m.
By considering the largest potential as (largest P(i)s) first, the procedure yields the
a with the largest r(a) satisfying the constraint.

Thus the procedure has also the appearance of a simultaneous maximization of
R and FOR control being attempted after experimentation. When each hypothesis
is tested individually at level a, the expected number of wrong rejections satisfies
E(V) ~ am. So, after observing the outcome of the experiment, an upper bound
estimate of Qe is om/ria), In view of the observed p-values, the level a can now
be chosen, by maximizing the observed number of rejections r(a) subject to the
constraint on the implied FOR-like bound. As noted in the examples of Section 2.2
this aspect of the procedure is desirable.
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4. SOME POWER COMPARISONS

We compare the power of our FDR controlling procedure with some other
Bonferroni-type procedures which control the FWER. Under the overall null
hypothesis the proposed method controls the FWER at level q*. We take the FWER
controlling methods and the FDR controlling method to control the FWER weakly
at the same level, using q* = a, and compare the power of the methods from the
two different approaches under different configurations. It is clear from the
comment in Section 2.1, property (b), that a method which controls the FDR is
generally more powerful than its counterpart which controls the FWER (in the
strong sense). The magnitude of the difference remains to be investigated.

4.1. The Setting
We studied this question by using a large simulation study, where the family of

hypotheses is the expectations of m independent normally distributed random
variables being equal to O. Each individual hypothesis is tested by a z-test, and the
test statistics are independent. We use q* = a = 0.05. The configurations of the
hypotheses involve m = 4, 8, 16, 32 and 64 hypotheses, and the number of truly
null hypotheses being 3m/4, ml2, m/4 and O. The non-zero expectations were
divided into four groups and placed at L/4, LI2, 3L/4 and L in the following three
ways:

(a) linearly decreasing (D) number of hypotheses away from 0 in each group;
(b) equal (E) number of hypotheses in each group;
(c) linearly increasing (I) number of hypotheses away from 0 in each group.

These expectations were fixed (per configuration) throughout the experiment.
The variance of all variables was set to 1, and L was chosen at two levels- 5 and

to-thereby varying the signal-to-noise ratio.
Each simulation involved 20000 repetitions. The estimated standard errors of the

power are about 0.0008-0.0016. As the same normal deviates were used in a single
repetition across all configurations with the same number of hypotheses, and the
alternatives in different configurations were monotonically related, a positive
correlation was induced. This correlation reduces the variance of a comparison
between two methods or two configurations to below twice the variance of a single
method.

4.2. Results
Fig. 1 presents the estimates of the average power (the proportion of the false

hypotheses which are correctly rejected) for three methods. The two FWER
controlling methods, the Bonferroni (dotted curves) and Hochberg's (1988) method
(broken curves), are compared with the new FDR controlling procedure (full
curves). The following observations can be made from the results displayed.

(a) The power of all the methods decreases when the number of hypotheses
tested increases - this is the cost of multiplicity control.

(b) The power is smallest for the D-configuration, where the non-null hypoth
eses are closer to the null, and is largest for I (which is obvious but
mentioned for completeness).



1995] CONTROLLING FALSE DISCOVERY RATE 297

(a) (b) (e)

1.0 r--------,

0.8

~ 0.6

0.2 '-r--,...---.--.----,-I

1.0

0.8

0.6

0.2 L,---,...-~-~-,J

1.0

0.8

..,..." .
0.2 L,---,...---.--.----,-I

1.0

0.8

"'-.
..........

......~~::.::.;::.::::.

~............
" ...~ ....~ 0,6

~.~
a 0.4 ...•~.~.~.~.':~ _

...••~.--=.':':..':.:,-"".~.

0.2 '-.---,...---.--.----,-1

8 16 32 64 16 32 64 8 16 32 64

Number of Tested Hypotheses

Fig. 1. Simulation-based estimates of the average power (the proportion of the false null hypotheses
which are correctly rejected) for two FWER controlling methods, the Bonferroni ( ) and
Hochberg's (1988) (-----) methods, and the FDR controlling procedure (--): (a) decreasing;
(b) equally spread; (c) increasing

(c) The power of the FDR controlling method is uniformly larger than that of
the other methods.

(d) The advantage increases with the number of non-null hypotheses.
(e) The advantage increases in m. Therefore, the loss of power as m increases

is relatively small for the FDR controlling method in the E- and
I-configurations.
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(f) The advantage in some situations is extremely large. For example, testing
32 hypotheses, equally spread in four clusters from 1.25 to 5 so that none
is true, the power of the Bonferroni method is 0.42. The procedure suggested
increases the power to 0.65; testing as few as four hypotheses, half of which
are true, the values are 0.62 and 0.70 respectively.

(g) It is known that Hochberg's method offers a more powerful alternative to
the traditional Bonferroni method. Nevertheless, it is important to note that
the gain in power due to the control of the FDR rather than the FWER is
much larger than the gain of the FWER controlling method over the Bonfer
roni method.

Casting these results into a different form, it may be seen that in some configura
tions up to half the non-null hypotheses which were not rejected by the Bonferroni
procedure are now rejected by the FDR controlling method, when at least half of
the tested hypotheses are non-null. Even when only 250/0 of the hypotheses are non
null, the gain in power is such that about a quarter of the equally spaced hypotheses
which were not rejected before are now rejected.

Fig. 1 allows us also to answer a question raised by a referee, about how
E(V/mo) is controlled by the FDR controlling method. This error rate is 0 when
mo = 0 and otherwise can be approximated by the average level aave at which the
individual hypotheses are tested. Obviously aave is always less than q*, but for m.,
away from m more can be said: let Rave be the average number of rejections and
lave be the average power (displayed in Fig. 1). It follows that maave ~ Raveq* ==
(moaave + ml/ave)q*, so

.. * ml
aave ~ Javeq m, + mo(1 _ q*) .

Therefore E(V/mo) looks as in Fig. 1 but is smaller by a factor of q* or even less.
For m = mo the error is much closer to q*/mo than to q*: 0.0132, 0.0063, 0.0033,
0.0017 and 0.0009 for the four, eight, 16, 32 and 64 hypotheses tested respectively.

5. CONCLUSION

The approach to multiple significance testing in this paper is philosophically
different from the classical approaches. The classical approach requires the control
of the FWER in the strong sense, a conservative type I error rate control against
any configuration of the hypotheses tested. The new approach calls for the control
of the FDR instead, and thereby also the control of the FWER in the weak sense.
In many applications this is the desirable control against errors originating from
multiplicity.

Within the framework suggested, other procedures may be developed, including
procedures which utilize the structure of specific problems such as pairwise com
parisons in analysis of variance. A different direction, which we have already
pursued, is to develop an adaptive method which incorporates the ideas of Hochberg
and Benjamini (1990). In this paper, however, we have only focused on presenting
and motivating the new approach that calls for controlling the FDR, and we have
demonstrated that it can be developed into a simple and powerful procedure. Thus
the cost paid for the control of multiplicity need not be large. This might contribute
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considerably to the proliferation of a greater awareness of multiple-comparison
problems, and of cases where something is done about it.
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APPENDIX A: PROOF OF LEMMA

The proof of the lemma is by induction on m. As the case m = 1 is immediate, we proceed
by assuming that the lemma is true for any m' :s;; m, and showing it to hold for m + 1.

If mo = 0, all null hypotheses are false, Q is identically 0 and

mo
E(QIPI = p" ... , Pm = Pm) = O:S;; --q*.

m + 1

If mO > 0, denote by Pi, i = 1, 2, ... , mo, the p-values corresponding to the true null
hypotheses, and the largest of these by p(mo)' These are U(O, 1) independent random vari
ables. For ease of notation assume that the ml p-values that the false null hypotheses take
are ordered PI :s;; P2 :S;; ••• :s;; Pm,. Finally, define jo to be the largest 0 :s;; j :s;; ml satisfying

mo+j
Pj:S;; m + 1 q*,

and denote the right-hand side of inequality (4) at jo by p".
Conditioning on p(mo) = P,

rp '
E(QIPmo+ 1 =p""" Pm = Pm) = Jo E(QIP(mo) =P, Pmo+ 1 =p"""

Pm = Pm,)!P(mo)(P) dp

+ rl
E(QIP(mo) =P, Pmo+ 1 =PI,···,Jp'

Pm = Pm)!P(mo)(P)dp

(4)

(5)

with !P{mo)(p) = mop(mo-I).

In the first partp :s;; p". Thus all mo + jo hypotheses are rejected, and Q ;: mo/(mo + jo).
Evaluating the integral first, and then using inequality (4), we obtain

mo . (p,,)mo:s;; mo. mo + h q*(p,,)mo-I = ~q*(p,,)mo-I. (6)
mo + Jo mo + Jo m + 1 m + 1

In the second part of equation (5), consider separately each Ph < Pj:S;; P[mo) = P < Pj+I'
along with Ph :s;; P" < p(mo) = P < Pjo+ I' It is important to note that, because of the
way by which jo and P" are defined, no hypothesis can be rejected as a result of the
values of P, Pj+l, Pj+2' ... , Pm,. Therefore, when all hypotheses-true and false-are
considered together, and their p-values thus ordered, a hypothesis H(i) can be rejected
only if there exists k, i :s;; k s; mo + j - 1, for whichp(k) :s;; {k/(m +I)}q*, or equivalently
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P(k) ~ k mO + j - 1 *
P "" mO + j - 1 (m + l)p q

When conditioning on P[mo) = P, the Pjlp for i = 1, 2, ... , mo - 1 are distributed as
mo - 1 independent U(O, 1) random variables, and the pi/p for i = I, 2, ... , j are
numbers corresponding to false null hypotheses between 0 and 1. Using inequality (7) to
test the mo + j - 1 = m' ~ m hypotheses is equivalent to using procedure (l), with the
constant {(mo + j - 1)/(m + l)p}q* taking the role of q*. Applying now the induction
hypothesis, we have

300

mo - I mo + j - 1 mo - I
E(QIP[mo) = p, Pmo+ 1 = Ph ... , Pm = Pm) ~ mo + j _ I -(--'m-+-l)-ip-q*= (m + I)p q*

(8).

The bound in inequality (8) depends on p, but not on the segment Pj < P < Pj+1 for which
it was evaluated, so

mo)1 2 mo= --q* (mo - I)p(mo- )dp = --q* {I _ pH(mo-I)}.
m + 1 p" m + 1

Adding inequalities (6) and (9) completes the proof of the lemma.

(9)
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