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Abstract
AMARAL, G. A. Analytical Assessment of the Mooring System Stiffness. 2020.
153p. Dissertation (Master of Sciences) – Escola Politécnica, University of São Paulo, São
Paulo, 2020.

The definition of the mooring systems is one of the most important stages on the design any
offshore unit. Some effects associated with it, on the responses of the floating body, are still
under investigation. In this context, the full nonlinear high-order hierarchical modeling and
the numerical integration of the resulting equations of motion might not be the most cost
effective approach for the evaluation of those effects during the early design process. Thus,
an expedite analytical formulation to assess the mooring system stiffness, a tool that could
help the initial design and analysis. Using classic approaches from Analytical Mechanics,
the nonlinear generalized restoring forces associated with the mooring acting on the vessel
due to the mooring lines are formulated. The six-degree-of-freedom (DoF) problem is
herein addressed. The stiffness matrix is obtained from the linearization of the generalized
forces around a generic position. Mooring line characteristic tension function is an input of
the method. The closed formulation does not requires a specific line model, although the
formulation for a multi-segment mooring line is also derived. The methodology is applied
taking the OC4-DeepCwind Floating Wind Turbine semi-submersible platform as a case
study. Two Spread Mooring Systems arrangements are studied, in order to demonstrate
the use of the presented formulation as a design tool. The calculated mooring system
stiffness matrix, evaluated at the trivial equilibrium position, exhibits good agreement
with numerical results found in the literature by high hierarchy models. Additionally, the
stiffness coefficients are evaluated for other positions than the trivial equilibrium one in the
form of colored maps. The natural periods of the motions on the horizontal plane are also
mapped. These maps help to understand the effects of the static vessel mean position on
the mooring system stiffness and, consequently, on the natural periods associated with the
motions on the horizontal plane. Considering the original OC4 mooring system, the effects
of the mooring line pre-tensioning are also investigated. Some conclusions on the axial
stiffness of catenary cables are also made. The main contributions of the present master
dissertation are: (i) the stiffness matrix analytical closed formulation and (ii) the use of
colored maps to evaluate the stiffness and the natural periods as functions of the mean
offset position. The present master dissertation brings then an innovative closed-form
formulation with important practical applications.

Keywords: Stiffness matrix, analytical formulation, mooring cables, mooring, anchoring.





Resumo
AMARAL, G. A. Avaliação Analítica da Rigidez de Sistemas de Amarração. 2020.
153p. Dissertação (Mestrado) – Escola Politécnica, Universidade de São Paulo, São Paulo,
2020.

O projeto do sistema de amarração é uma das etapas mais importantes para qualquer
unidade offshore e alguns efeitos associados a ele nas respostas do corpo flutuante ainda
estão sob investigação. Nesse contexto, a modelagem não linear de alta hierarquia e a
integração numérica das equações de movimento resultantes pode não ser a abordagem
mais eficiente computacionalmente para a investigação desses efeitos durante o projeto.
Assim, é proposta uma formulação analítica expedita para determinar a matriz de rigidez
devido ao sistema de amarração, ferramenta que pode auxiliar o projeto e a análise dos
sistemas, em particular em suas fases iniciais. Usando abordagens clássicas da mecânica
analítica, as forças generalizadas associadas ao sistema de amarração são formuladas. O
problema de seis graus de liberdade (GL) é abordado. A matriz de rigidez é obtida ao se
linearizar as forças generalizadas decorrentes do sistema de amarração em torno de uma
posição genérica. Embora a formulação fechada não necessite de nenhum modelo específico
de linha de amarração, ainda assim a formulação de uma linha com múltiplos segmentos é
apresentada. A metodologia é aplicada usando a plataforma semissubmerssível da turbina
eólica flutuante OC4-DeepCwind como um estudo de caso. Dois sistemas de amarração do
tipo Spread Mooring System são estudados, demonstrando o uso da formulação apresentada
como uma ferramenta para projeto. A matriz de rigidez associada ao sistema de amarração
avaliada na posição trivial de equilíbrio, calculada analiticamente utilizando a metodologia
proposta, apresenta aderência com aquelas obtidas na literatura via métodos numéricos
de alta hierarquia. Complementarmente, os coeficientes de rigidez são avaliados para
outras posições distintas daquela de equilíbrio trivial, com os resultados apresentados
na forma de mapas de cores. Os períodos naturais para os modos no plano horizontal
também são mapeados. Esses mapas auxiliam no entendimento dos efeitos da posição
estática média do corpo flutuante na rigidez do sistema de amarração e períodos naturais.
Para o sistema de amarração original da OC4, os efeitos da pré-tração são investigados.
Algumas conclusões sobre a rigidez axial em cabos em catenária também são realizadas.
As principais contribuições desta dissertação são: (i) a formulação analítica da matriz de
rigidez e (ii) o uso de mapas de cor para a avaliação da rigidez e dos períodos naturais
em função da posição média. Esta dissertação de mestrado apresenta, portanto, uma
formulação fechada com importantes aplicações práticas.

Palavras-chave: Matriz de rigidez, formulação analítica, cabo de amarração, amarração,
ancoragem.
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(êx, êy, êz) base Ex vectors
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1 Introduction

The seek for different and clean sources of energy is one of the major challenges of
the 21st century. In this context, oceans can be seen as important and still under-explored
scenarios for renewable energy. Even though the offshore Oil & Gas (O&G) industry is one
of the most competitive players in the world, many other possibilities of offshore energy
can be pointed out such as wind, wave and sea current energies.

Some of these alternative sources of energy are associated with structures installed
in intermediate and deep waters. This may lead to the need of mooring systems to provide
static positioning as well as to guarantee that the dynamic responses do not exceed
certain thresholds. The present master dissertation addresses this problem and aims at
contributing with the analysis and design of mooring systems.

The design of a mooring system is of crucial importance for any offshore floating
project. Not only operational requirements, but also financial demands impact the whole
process. A mooring system design has to be able to keep static and dynamic responses
of the structure under determined values and also be cost-efficient. It is important to
emphasize that this efficiency is even more important for offshore energy other than the
O&G industry.

Additionally, designing a mooring system involves numerous parameters: number,
orientation, pre-tensioning and properties of mooring lines, geometric arrangement of the
system, among others. The lack of basic understanding of the effects of these parameters
normally leads to a high number of nonlinear system simulations. Consequently, the project
cost increases.

Offshore renewable energy is highly cost-sensitive. On the one hand, Any overdesign
of the mooring system could determine the inappropriateness of offshore energy projects.
On the other hand, a complex modeling of the whole problem including the mooring system
can be expensive from a computational point-of-view, which also leads to a project cost
increase. In this scenario, a good understanding of the effects of mooring system parameters
in both static and dynamic responses of the floating units is of crucial importance for the
success of a project. Motivated by the context of offshore renewable energy1, this masters
dissertation proposes a six-degree-of-freedom (DoF) closed-form analytical formulation
to assess mooring system stiffness. The herein proposed formulation allows not only
to evaluate the matrix for a specific position faster than using numerical static offset
analysis, but also to easily map the stiffness coefficients for different offset positions

1 Even though the motivation is associated with renewable energy from the ocean, the methodology
herein developed can be applied for O&G activities as well.
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and parameters configurations. The stiffness matrix for the trivial equilibrium position
analytically calculated using this formulation shows an excellent agreement with numerical
results found in literature, as can be seen in Chapter 4.

The present chapter brings an initial overview on essential topics that contextualize
this master dissertation and clarify the motivation and contributions of this work. Finally,
the contents of following chapters are presented.

1.1 Contextualization

This section presents a brief introduction to important topics that are addressed
in this work. In order to better situate the reader, it brings forward an outlook on the
different configurations of mooring system and types of floating units nowadays employed.

1.1.1 Mooring System Configurations

During the project of a mooring system, the designer has to specify numerous
parameters of mooring lines including the number of lines and their materials as well as
the desired static configuration. It must also be specified aspects related to the system
such as position of anchors and fairleads (i.e. the points of the vessel in which the mooring
lines will be attached), among others. The aim of this subsection is to present part of
these important parameters, helping the reader to understand the subject’s complexity.

It is possible to classify the mooring system by the static profile configuration
of its lines: catenary, taut-leg, tension-leg and other variations. Figure 1 brings up four
classic configurations. The choice of a particular configuration is based on the water
depth, the anchorage radius and also on the vessel offset limit. It is important for future
discussions to notice that some of this configurations have a known analytical closed
formulations, relating water depth and anchorage radius with line tension – hereafter
named as force-displacement relation – while others do not.

It is also possible to classify the mooring system considering the line composition
and material. Three possibilities are most commonly found, namely, synthetic ropes, steel
wire ropes and steel chains. Different types of material for the synthetic ropes can be used
including nylon, polyester, polyethylene, polypropylene. It is also possible to have mixed
lines – mainly when the configuration is a semi-taut or intermediate buoy in deep waters.
Figure 2 presents examples of mooring lines composed of these materials. The choice is
normally based on weight, usage and mobility of the floating unit, but also on the total
line length which is, in turn, function of the anchorage radius and water depth.

Wang, Er and Iu (2019) brings a guide for selecting the proper mooring profile and
composition depending on the water depth d, as presented in Table 1.
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Figure 1 – Mooring line profile: (a) Catenary laying, (b) Taut-leg, (c) Tension-leg and (d)
Intermediate buoy.

Source: The Author

Figure 2 – Mooring line materials.

(a) Chain. Source: MacGregor (2017) (b) Synthetic rope. Source: Dyneema (2018)

(c) Steel wire rope. Source: SaemaH (2019)

Finally, another possible classification is related to system mooring lines arrange-
ment, i.e. the position of the fairleads. In this context, the O&G industry presents more
possibilities when compared to renewable energy sectors, at least at this moment. Figure 3
shows our classical mooring line arrangements used on the O&G scenario. In turn, floating
offshore wind turbines (FOWTs) are mainly characterized by spread mooring systems
(SMS), although new concepts are being studied throughtout the last years. The choice of
the arrangement can be based on the vessel characteristics and also on the predictability
of sea current, wind and wave incidence angles.

Following Figure 3, it is possible to define the difference between the system
arrangements:
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Table 1 – Guidance for mooring system profile and composition selection.

Water depth Mooring line profile Composition
d < 500 m Catenary All-chain

500 < d < 1000 m Catenary or Semi-taut All-chain or Chain-wire-chain
1000 < d < 2000 m Taut-leg or Semi-taut Chain-wire-chain or Chain-rope-chain

d > 2000 m Taut-leg or Semi-taut Chain-rope-chain

Source: Adapted from Wang, Er and Iu (2019)

Figure 3 – Mooring systems arrangement: (a) Spread Mooring System (SMS), (b) Internal
Turrent Mooring System, (c) External Turrent (box) Mooring System and (d)
Single Point Mooring (SPM).

Source: The Author

• Spread Mooring System (SMS): The fairleads are located along the vessel
and vessel rotations are restricted. A particular type of SMS is the differentiated
compliance anchoring systems (DICAS), where the stiffness at the bow and stern of
the ship are different (Kaster et al., 1997).

• Internal Turret Mooring System: The mooring lines are attached to an internal
tower named turret. This tower creates a pivot point for the rotation of the vessel.

• External Turret (Bow) Mooring System: the mooring lines are also attached
to a tower, but externally placed and connected to the vessel. Again, the tower
creates a pivot point around which the vessel can rotate.



1.1. Contextualization 31

• Single Point Mooring (SPM): the mooring line are attached to an external buoy.
In its turn, the buoy is connected to the vessel through another (and stiffer) mooring
line.

Considering SMS, it is also possible to classify the system with respect to mooring
patterns. Mooring lines may be all equally spread or grouped in number. In the latter
case, it is necessary to define the number of groups and lines, besides the spread angle
between them. Figure 4 shows three possibilities for a SMS of a semisubmersible. The 4×1
pattern normally is not a good choice due to the possibility of a one-line fail, although it
is normally used for renewable energy projects. Mooring systems with few lines, such as
4×2, need greater safety factors for the damaged condition. The increase of the number of
lines (and consequently, the redundancy) demands lower safety factors, as the impact of
loosing one line is much lower.

Figure 4 – Mooring systems patterns: (a) 4×1, (b) 4×2 and (c) 4×5.

Source: The Author

1.1.2 Types of Offshore Platforms

In the context of ocean energies exploration, platforms play an important role.
Indeed, since the initial fixed platforms of the O&G industry to the new, modern, prototypes
of FOWTs, the concept of different types of platforms was and still is a hot-topic of research.
In 2016, more than 9500 offshore platforms were installed worldwide (Dhanak and Xiros,
2016) with the corresponding water depths varying from few meters to 3 kilometers. These
large structures are responsible for the production of more than 100 million barrels of oil
per day, besides other new sources of offshore energy. Herein, some of the most important
concepts are presented in order to offer to the reader a clear overview on the theme.

Generally speaking, the offshore platforms can be divided into two main groups:
the fixed and compliant platforms, and the floating platforms. The former group is directly
attached to the seabed and its usage is defined by a maximum sea depth. The latter is
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used for greater sea depths and its stationkeeping is commonly due to mooring systems.
Figures 5 and 6 depict the most common types of offshore platforms for O&G exploration
and Wind Turbines, respectively.

Figure 5 – Offshore Oil & Gas Platforms: (a) fixed, (b) compliant, (c) Tension-leg, (d)
Spar, (e) Semi-submersible and (f) Floating Production Storage and Offloading
(FPSO).

Source: The Author

The focus of the present master dissertation is to study the stiffness of the mooring
systems of floating platforms. In this context, let us characterize and exemplify the main
types of floating units, as follows:

• Spar Platform: consists of a large vertical buoy cylinder where the majority of
the facility is installed above the sea water level, in order to increase the stability.
Examples: Devil’s Tower, operated by Eni (Dhanak and Xiros, 2016) (O&G) and
Hywind Norway, operated by Equinor (FOWT).

• Tension-leg platform: consists of a vertically moored floating structure. Examples:
Magnolia, operated by Conoco-Phillips (Dhanak and Xiros, 2016) (O&G) and Gicon-
SOF, not operating yet (GINCON-SOF, 2018) (FOWT).

• Semi-submersible platform: consists of a floating structure with a large deck.
The stiffness associated with angular motions on vertical plane arises from the
columns water plane area, located bellow the sea water level (SWL) and also from
the mooring system. Examples: NaKiKa, operated by Shell (Dhanak and Xiros, 2016)
(O&G) and OC4-DeepCwind, not operating yet (Robertson et al., 2014a) (FOWT).
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Figure 6 – Offshore Wind Turbines Platforms: (a) Gravity based, (b) Monopile, (c) Tripile,
(d) Tripod, (e) Jacket, (f) Spar, (g) Tension-leg and (h) Semi-submersible.

Source: Adapted from Wind Power Offshore (2013)

• Floating Production, Storage and Offloading unit (FPSO): consists of a
floating vessel designed to product and process hydrocarbons and to stock the
processed oil until offloading onto a tanker or a pipeline. Examples: Cidade de
Anchieta and Cidade de Angra dos Reis MV22, both operated by Petrobras (O&G).

1.2 Motivation and Contributions

As presented in the previous section, the design of mooring systems involves
numerous variables. In this context, during the early stages of an offshore energy project,
the designer has to choose among different mooring concepts in order to decide which
to use. At this moment, highly nonlinear high-hierarchical simulations and model tests
might not be the easiest way for iterative improvements on the design due to their high
computational and development costs. Thus, analytics and expedite tools can drive this
initial choice of parameters design.

This master dissertation brings a formulation that can help both the design and
the analysis of mooring systems. This methodology is based on the formulation of the
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generalized restoring forces associated with the mooring system and makes use of classic
Analytical Mechanics techniques. Thus, an analytic and explicit formulation for the stiffness
matrix of the mooring system considering the six DoFs that characterize a rigid-body
motion is provided.

The closed formulation herein proposed can be practical and useful for the design
and analysis of mooring systems. As it is deeply detailed in the next chapter, the stiffness
matrix of the mooring system is important for analytical, experimental and even numerical
studies, and there is a lack of expedite formulations for its evaluation.

1.3 Text Organization
The current text is structured as follows. Firstly, a literature review of mooring

systems design and analysis is presented, helping the reader to understand the main
scientific developments in the study of mooring systems. This literature reviews also
identifies open aspects, shedding light to the contributions of the research herein described
as state-of-art. Secondly, Chapter 3 brings the mathematical model for the mooring
system forces and the proposed formulation. A formulation for evaluating the mooring
tension for a multi-segment mooring line is also presented in this chapter. The focus
of Chapter 4 is to present real applications of the proposed tool in the form of case
studies. Chapter 5 summarizes this dissertation, presenting conclusions concerning the
applicability of the presented methodology. Finally, some Appendixes with important
aspects of the development of this text are included. In particular, Appendix B brings
another contribution of this work: a closed formulation for the static configuration of
multi-segment mooring lines.
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2 Literature Review

This chapter presents a review of the scientific literature considered important
for the development of this master dissertation. It is divided into four different sections,
one for each of the most relevant topics. Firstly, an overview on the design and analysis
procedures is presented in Section 2.1. Secondly, Section 2.2 brings proposals of design
tools to better choose the mooring system parameters. These tools are based on different
approaches, from analytical formulations to nonlinear numerical solutions (including Finite
Element, FE, analysis). Thirdly, Section 2.3 discusses mathematical models for calculating
loads (forces and moments) associated with the mooring lines. Last, Section 2.4 presents
some models available in the literature for dealing with the evaluation of the stiffness
matrix resulting from the mooring system. This section not only shows to the reader the
actual scenario of this topic, but also clarifies the need for an expedite closed-formulation,
the main contribution of the master dissertation.

Prior to the start of the literature review, an important aspect should be pointed
out. Some references herein presented contain important concepts used in more than just
one section. For example, Bernitsas and Garza-Rios (1996) present an inventive tool for
the mooring system design based on an analytical methodology. The authors also bring
up important considerations on the mooring restoring forces. In this scenario, Section 2.3
discusses the mooring forces model employed by the authors, while Section 2.2 presents
the general idea behind the design tool.

2.1 Mooring System Design and Analysis
The design of a mooring system is an iterative process and it is intrinsically related

to the analysis. Thus, systematic approaches and regulation codes should be used during
a mooring system project. This section aims at presenting an overview on this iterative
process, highlighting the main steps involved and the regulations, standards and rules
related to the design and analysis. Ma et al. (2019) bring an example of mooring design
and analysis workflow, reproduced in Figure 7.

Different international standards are available for design and analysis of mooring
systems. These codes indicate criteria and recommendations for good and safety design,
such as strength and fatigue design criteria. The most common design codes are:

• American Petroleum Institute (API, 2005) Recommended Practice 2SK “Recom-
mended Practice for Design and Analysis of Stationkeeping Systems for Floating
Structures”;
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Figure 7 – Typical mooring design and analysis workflow.

Source: Adapted from Ma et al. (2019)

• International Organization for Standardization (ISO, 2013) 19901-7 “Petroleum and
Natural Gas Industries – Specific Requirements for Offshore Structures, Part 7:
Stationkeeping Systems for Floating Offshore Structures and Mobile Offshore Units”;

• Der Norske Veritas (DNV, 2010) DNV-OS-E301 “Position Mooring”;

• American Bureau of Shipping (ABS, 2014) “Rules for Building and Classing Floating
Production Installations”;

• Bureau Veritas (BV, 2015) NR 493 DT R03 E “Classification of Mooring Systems
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for Permanent and Mobile Offshore Units”.

The main information needed for the design of mooring systems are called design
basis, normally given by the mooring system contractor. It outlines the most important
factors to be considered for the mooring engineers during the project: environment, floater
characteristics and other issues. It also gives the mooring system design main objectives
such as: (i) the vessel offset limits and (ii) strength and fatigue life, under both normal
and extreme operation conditions.

The mooring design starts with the definition of a preliminary mooring system
configuration. In this context, it is common to refer to existing facilities. The first important
variable that guides the project is water depth. Not only the choice of the mooring line
profile and composition (see Table 1), but also the anchor radius is a function of it. Figure
8 shows the relation between anchor radius and water depth, based on the number of
existing facilities. Obviously, other variables affect the selection of the anchor location,
such as the seabed profile, location of subsea facilities, among others.

Figure 8 – Relation between anchor radius and water depth, based on the number of
existing facilities.

Source: Ma et al. (2019)

After choosing the proper mooring line profile and anchor radius for a given water
depth, it is time to define the number and size of lines for the system. Some existing projects
are normally used as reference for a initial configuration. Ma et al. (2019) emphasize that
the number of lines should be as low as possible, provided the cost associated with this
number. However, it is possible to increase the number of lines as the required line size
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becomes larger than the limit commercially available. The line pre-tensioning should also
be taken into account while determining the number of lines. The pre-tensioning should
be between 10% and 20% of minimum breaking load (MBL) and experimented mooring
engineers normally keep pre-tensioning as low as possible (of course meeting the vessel
offset requirement).

For SMS, other important variables to be determined include the grouping and
the spread angles. The choice is function of the mooring pattern constraints, such as
risers arrangement or the proximity of other installations. Grouped systems are preferred
whith high number of lines, since they allow more open space for risers and better load
distribution.

Ma et al. (2019) stress that at least four variables need to be tuned during the
design process: vessel offset, line tension, fatigue damage and clash avoidance. These
variables are evaluated during the mooring analysis stage. The authors propose some
options for a proper choice of the mooring systems. The variables and the respective
alternatives are presented below.

The main objective of the mooring system is the vessel stationkeeping. Risers and
umbilicals are structures very sensitive to offsets. Generally, taut-leg lines and choosing
line material of high tensile stiffness can help reducing the vessel offset. Some other
actions can be taken, such as: increase line pretension, increase the number of lines, use
lightweight materials to minimize the catenary effect, use clump weight or heavy chain
at the touch down zone for hybrid mooring lines, arrange line spread in the direction of
extreme environment.

A good mooring design should not result in high line tension. The line tension
can cause different kinds of integrity issues. Large line diameter and a proper mooring
line static configuration can help to make tension safety factor meet industry and classes
standards, i.e. the mooring line tension is kept within the design limit. Some alternatives
for minimizing the tension in the line include the choice of a proper mooring profile for the
water depth, the increase in the number mooring lines, consider the direction of extreme
environment for optimal line spread choice, and the choice of lighter and less-stiff line
material such as, for example, polyester.

Another important design parameter is the fatigue life. It should exceed the field
life, considering a proper fatigue safety factor since this has been one of the most important
mooring line failure modes. Among the most employed materials (as aforementioned, chain,
wire and rope), chain is the most susceptible to fatigue failures. In order to improve the
fatigue life, the designer can (Ma et al., 2019): reduce dynamic tension (by improving the
hull design), increase the line size, properly design the fairleads or choose other materials
than chain.



2.1. Mooring System Design and Analysis 39

Finally, the design should predict the avoidance of clash. The mooring system has
to accommodate different subsea infrastructures, without any interference. The line can
not collide with the hull either. Some actions to avoid clash include: change spread angles,
reduce anchor radius, change mooring line profile or include buoys.

As abovementioned, the design is intrinsically related to the analysis of a mooring
system. Indeed, as the design is an iterative process, the proposed mooring system should
always be verified during the analysis phase. In this scenario, Ma et al. (2019) list different
possibilities that can be used for a proper mooring analysis: quasi-static or dynamic
analysis, frequency domain or time domain analysis, uncoupled or coupled analysis among
others. These possibilities and the differences between then are presented in the following
paragraphs.

The authors indicate that the main difference between the quasi-static and the
dynamic analysis is the treatment of the wave frequency responses of the floater. Kwan and
Bruen (1991) state that the dynamic analysis takes into account the effects from the line
added mass and hydrodynamic damping. Furthermore, the quasi-static analysis ignores
these effects and the tension distribution is function of the fairlead position only. Ma et
al. (2019) say that, despite being less precise in terms of the hydrodynamic effects, the
quasi-static analysis is much simpler than the dynamic analysis. The authors affirm that
the latter is appropriate for computing mooring line responses due to both the mean offset
and the low frequency motions, while the former is needed for vessel responses to wave
frequencies. Figure 9 illustrates the difference between the quasi-static and the dynamic
analyses.

On the one hand, the frequency domain analysis is commonly employed due to its
efficiency (in the computational point-of-view) when compared to time domais analysis.
It assumes that the response can be written as static and frequency dependent, and
that superposition approach is valid. Thus, the vessel motions are divided into four
different components: mean, wave frequency, low frequency and high frequency, the latter
is normally neglected. Ma et al. (2019) point that the limitations of the frequency domain
analysis are: (i) the equations of motion are linearized, (ii) the extreme value distribution
is not directly achieved from the analysis and (iii) the combination of the wave and
low frequency responses is empirical. On the other hand, the time domain analysis is
more time-consuming, as it solves the floater and mooring system responses through
numerical integration. According to the same authors, this analysis is able to account
different nonlinearities, such as: (i) geometric nonlinearity, associated with a instantaneous
deformed configuration significantly distinct from the reference, (ii) contact between line
and seabed and (iii) fluid-structure interaction.

The mooring analysis can also be uncoupled or coupled. The latter is traditionally
the most common provided the former is more time-consuming. An uncoupled analysis
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Figure 9 – Quasi-static and dynamic mooring analyses.

Source: Ma et al. (2019)

computes the floater motion analysis and the mooring analysis separately. The motion
analysis considers simpler mooring line models – through its stiffness matrix, for example –
and the output is used as input for the mooring analysis. Webster (1995) says that the
mooring system dissipating forces can be linearized and translated as an induced damping,
also called mooring damping. Ma et al. (2019) claim that the uncoupled analysis yields
three important simplifications: (i) the mooring system dynamics does not affect the vessel
motion, (ii) the dynamic dissipating effects are linearized as a mooring-induced damping
and (iii) sea current forces on the mooring lines are neglected. For a coupled analysis, both
the vessel and mooring responses are simultaneously solved. Thus, all the dynamic effects
can be calculated. This approach is more necessary in deep and ultradeep waters, as the
coupling between vessel motions and mooring responses is more important. In the industry,
the uncoupled analysis is largely used and it is a valuable tool when well validated, mainly
for early stages of the design process. In turn, the coupled approach is more accurate and,
from the theoretical point-of-view, correct. Hence, it is normally used as design verification
for governing load cases.

Notice that many are the factors to be taken into account during a mooring system
design and analysis. Thus, the scientific community has been thoroughly engaged on the
study of this area. The next section brings some of the most recent advances.
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2.2 Mooring System Design Tools
Even though widely studied, some effects of the mooring system on the response

of the floating body are still under study. Additionally, due to the numerous variables
involving the project, analytic methods are of great value for understanding the relation
between the design parameters and the static and dynamic behavior of a moored system.
In this context, researchers have been proposing classic and innovative nonlinear dynamic
methods to investigate this interaction. The current section aims to present some of these
recent research efforts.

Triantafyllou (1982) brought an analytical inventive tool for preliminary design of
mooring systems based on an iterative procedure. The author proposed a flow-chart that
can help find the optimal design solution. The simple process starts with an assumption of
the cable properties. Under static forces such as sea current, the static solution is calculated.
The dynamic solution is then investigated, considering low-frequency oscillations caused
by the second-order wave forces. This whole process is repeated until the optimal solution
is found. Figure 10 brings this flow-chart.

Figure 10 – Overall design procedure.

Source: Triantafyllou (1982)

Pesce (1986) also proposed a preliminary analytical design tool. The author devel-
oped a linear analysis of the moored vessel around an static equilibrium position. In fact,
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the author proposed a stiffness matrix for the vessel planar degrees-of-freedom (DoF) in
order to calculate the response of the system to mean drift excitations.

Bernitsas and Garza-Rios (1996), Bernitsas and Kim (1998), Garza-Rios et al.
(2000) and Garza-Rios and Bernitsas (2001) proposed investigating the mooring design
parameters effects on the dynamic response of the moored system using a catastrophe
set methodology. This innovative powerful tool is of great value for a preliminary design,
once it helps the basic understanding of the relation between design parameters and the
stability of the system.

The catastrophe set methodology is based on the stability analysis of the equilibrium
points. The dynamics on the horizontal plane problem is initially a three-dimensional
configuration space, with the generalized coordinates being the two horizontal translation
motions and the rotation around the vertical axis. Then, the state space representation
is a six-dimension space for the autonomous problem or seven-dimension space for the
nonautonomous one. The stability of the equilibrium position is investigated when the
system is autonomous (i.e. not time dependent) by means of the Lyapunov’s indirect
method. For the nonautonomous systems (such as when the external forces are time
dependent), the stability is qualitatively investigated via numerical integration of the
nonlinear equations of motion. The systematic variation of some mooring system parameters
allows investigating the stability of the equilibrium points and bifurcations. The results of
this investigation are plotted in the form of catastrophe sets.

Bernitsas and Garza-Rios (1996) developed a parametric study to investigate the
influence of the SMS line position on the response of the moored vessel. The effects of
the pre-tensioning, the fairlead position with respect to the symmetry axis and angle of
each mooring line were investigated, as well as its immersed weight per unit length. It
was demonstrated that, depending on the configuration of the mooring lines, different
responses appear, namely, stable and unstable equilibrium positions, limit cycles and even
chaotic dynamics.

Bernitsas and Kim (1998) investigated the effect of the mooring system config-
uration on the response of the moored vessel under slow-drift excitation forces. Again,
the catastrophe set methodology was used to guide the designer to chose the geometric
parameters of the mooring system.

Garza-Rios et al. (2000) presented the effects of hybrid mooring lines. The authors
discussed that for deep water, the weight of chain mooring lines induces a vertical force
on the moored body. The proposed alternative is to consider hybrid synthetic rope-chain
line. Each mooring line is composed of a long synthetic rope connected to chain segments
on both extremities. The authors formulated the horizontal and vertical fairlead-anchor
distance as functions of the horizontal component of the tension at the fairlead and the
distance between the end of the bottom chain to the touchdown point (TDP). In order
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to illustrate the effect of the elastic-stiffness of the rope on the response, the parametric
study developed considers also three different synthetic ropes. The authors compared
different materials, namely nylon, polypropylene and polyester. Three mooring system
arrangements were under investigation: a turret single point mooring with four lines, a
four-line DICAS and a ten-line DICAS. The water depth was also parametrized in order
to evaluate its effect on the stability of the equilibrium of those systems. The catastrophe
sets were evaluated for different values of the rope angle and the pre-tensioning of the line.
The charts show that variations in mooring line angles and pre-tensioning could yield loss
of static stability for DICAS and dynamic loss of stability for turret single-point mooring
systems. In other words, the vessel’s horizontal plane dynamic response can be improved
by increasing the pre-tensioning and reducing the line inclination. However, the authors
remarked that an increasing of mooring tension can also affect the vertical motions. A
good mooring system project also has to consider the horizontal dynamics with the vertical
motions. In addition, the water depth seemed to have important effects on the dynamic
stability of single point mooring systems and static stability of DICAS.

It is important to remark that, considering synthetic rope moorings, Flory, Banfield
and Petruska (2004) explained that some important properties of a mooring line may
change with the elongation caused by the vessel motion. In this context, they proposed a
design analysis considering the maximum dynamic offset during storm conditions.

Garza-Rios and Bernitsas (2001) gave continuity to the previous works with
catastrophe sets, but investigating the effect of size and position of intermediate buoys
on the mooring system. Again a parametric study was developed, varying both the buoy
parameters and the water depth. A 4-SMS-2 was taken as a case study. The equations
of motion included each buoy motions, increasing the dimension of the state-space. The
authors demonstrated that variations in the buoy design parameter can also yield loss of
static and dynamic stability (and even lead to chaotic responses).

In order to exemplify the catastrophe set method, some results of Bernitsas and
Garza-Rios (1996) are presented. The charts are plotted for dimensionless position of the
fairleads with respect to the vessel length and full line length. Figure 11 presents the
nonlinear time domain response of a three-line SMS tanker without propeller whereas
Figure 12 brings the catastrophe set for this problem. The only external force is the
autonomous sea current force, acting on the direction of the length of the vessel. Figures
12(a) and 12(b) refer to points G6 and G7, respectively. The catastrophe set indicates how
the mooring parameters influence the response of the system. Between G6 and G7, the
only difference is the increase on the total length of the mooring lines, which decreases the
pre-tensioning of the lines. It is notable that the stable focus in Figure 11(a) is no longer
stable in Figure 11(b). This result is well recovered through the catastrophe set from
Figure 12. From the catastrophe sets, the authors concluded that the dynamic behavior of
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the moored system depends strongly on the design parameters, specially the mooring line
pre-tensioning.

Figure 11 – Nonlinear time domain response.

(a) Point G6. (b) Point G7.

Source: Bernitsas and Garza-Rios (1996)

Figure 12 – Catastrophe set.

Source: Bernitsas and Garza-Rios (1996)

Brommundt et al. (2012) proposed a tool for optimized mooring system design for
FOWTs based on a frequency domain analysis. This numerical analysis was applied to
determine the linear response of the six degrees-of-freedom motions. In this scenario, the
static equilibrium position of the platform was found considering the mean forces due to
wind and sea current and the linearized stiffness matrix around the trivial equilibrium
position. Then, the authors calculated the responses for dynamic loads from wind sea,
ocean swell and turbulent wind. The optimization tool takes advantage of this initial
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linearized results to indicate a good preliminary mooring system design. The tool is based
on the Nelder-Mead simplex algorithm to minimize the cost (related to the cables length)
with the following design constraints:

• The mooring system has to support the ultimate load conditions;

• The load at the anchors should be strictly horizontal, i.e. a portion of the mooring
lines have always to lay on the seabed;

• The motions of the platform have to stay within specified limits.

The process follows the same initial steps, considering primary design line parame-
ters such as radius to anchors, length and angle of mooring lines. These parameters are
determined by the optimization procedure. The direction of each environmental load is
taken into account. The final design might lead to an asymmetric mooring system. Then,
the proper definition of load cases and direction is crucial for the correct final design.

Montasir, Yenduri and Kurian (2015) investigated the effect of the mooring system
configurations on the dynamic responses of truss spar in surge, heave and pitch. Two line
arrangements were compared, considering the number of mooring lines groups and the
number of lines in each group: three groups with three mooring lines and four groups
with four lines. Different line angle scenarios were also considered. The responses were
evaluated through numerical time domain integration. The mooring lines were modeled on
a quasi-static scheme and the horizontal and vertical fairlead-anchor distances were defined
as functions of the horizontal tension component and the line angle related to horizontal at
the fairlead. The responses were evaluated in the form of Response Amplitude Operators
(RAO). After numerical studies, the authors drew conclusion on the effect of the number
and the symmetry-asymmetry of the mooring system on its static restoring capability and
the dynamic response of the platform.

Campanile, Piscopo and Scamardella (2018) proposed a tool for the mooring design
and selection for FOWTs in intermediate and deep waters. The process is based on ultimate
(ULS), accidental (ALS) and fatigue (FLS) limit state conditions. The six-DoF static and
dynamic offsets were determined in the frequency domain, considering first and second
order motions. It was considered that the maximum displacement had to be within an
admissible limit. The maximum displacement was the sum of the mean static and the
dynamic offset. The later was evaluated as a combination of significant and maximum
offsets caused by wave-frequency or low-frequency oscillations or both1. The significant
responses were calculated using classic frequency domain equations. Figure 13 presents the
flow-chart for the mooring system design. Finally, the authors proposed also a preliminary
1 These oscillations are caused by first and second order wave forces. For further details, see Journée

and Massie (2001)
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cost analysis considering both offshore and onshore maintenance inspections. Couple
recommendations are then made: redundant mooring systems (i.e. systems with more
than just one line in each direction) should be considered regarding potential failures; the
platform admissible offset has to be tuned to minimise mooring costs. The authors also
made comments on FOWT farms.

Figure 13 – Flow-chart of mooring system design.

Source: Campanile, Piscopo and Scamardella (2018)

2.3 Mooring Restoring Forces

The investigation of the mooring restoring forces is a classical and important research
topic. In fact, even though the classic inextensible catenary line solution is well known,
researchers have been proposing improvements in order to consider the line extensibility,
the contact with the seabed and other mooring line configurations. Additionally, a number
of contributions have proposed different (but not necessary incompatible) ways to compute
the mooring loads. The goal of this section is to discuss some of the mooring line and
system restoring forces available in scientific literature. This way, some of the formulations
are herein presented.
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In the early work of Yamamoto, Yoshida and Ijima (1980), the authors studied the
two-dimensional problem of a moored floating body. The mooring lines were considered as
linear springs, with an arbitrary defined spring stiffness Ki. Therefore, mooring forces are
just linear spring forces.

Oppenheim and Wilson (1982) presented a parametric study for the choice of
polynomial approximation for the restoring mooring systems forces on the horizontal
plane. First, the authors defined the relation of the horizontal component of the tension at
the fairlead and the fairlead-anchor horizontal distance for a multi-segmented mooring
line. Regarding force and displacement compatibility, they considered each segment as
catenary laying lines. Then, the effect of each mooring line was considered in order to
define generalized forces. The resultant restoring force was considered by projecting each
horizontal tension at generalized directions. Finally, the authors approximated each of the
restoring forces to third-order polynomials by using the least-square fit and the Monte-
Carlo method. The conclusion was that, in some cases, results with satisfactory accuracy
were achieved. Hence, it seems that for early design stages those approximations could
lead to more practical applications than using the full nonlinear mooring system forces.

Pesce (1986) proposed a formulation for generalized restoring forces for a symmetric
moored vessel in an equilibrium configuration. This model is generic for any mooring line
static configuration. The generalized forces are projections of the horizontal component
of the mooring tension at the fairlead. It is important to point out that the formulation
presented in Pesce (1986) deals with loads on the horizontal plane.

Bernitsas and Garza-Rios (1996) and Bernitsas and Kim (1998) considered in
their studies different mooring line forces, from classical catenary formulations to taut-leg
lines. The model was addressed for the horizontal-plane constrained problem. The authors
consider semi-empirical equations for taut-lines forces based on line average breaking
strength, rope length and working length. The investigated SMS is sketched in Figure 14.
The restoring mooring system forces are, once again, geometrical projections of the forces
on the fairlead.

In another work, Garza-Rios et al. (2000) presented a hybrid mooring line model
for a SMS, again for a problem on the horizontal plane. The model had three segments: a
bottom catenary laying chain, a synthetic rope taut line and a upper taut chain. Figure 15
brings a sketch of the mooring line configuration. In this context, the authors computed each
mooring line force through the compatibility of each segment’s forces and displacements.
The mooring system horizontal generalized forces were computed similarly to the previous
works of Bernitsas and Garza-Rios (1996) and Bernitsas and Kim (1998).

Garza-Rios and Bernitsas (2001) formulated the equations for a system with an
intermediate buoy. The authors computed the compatibility of forces and displacements,
considering both line segments as catenary laying lines. Figure 16 illustrates the geometry
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Figure 14 – Sketch of a four line SMS.

Source: Bernitsas and Garza-Rios (1996)

Figure 15 – Geometry of hybrid line.

Source: Garza-Rios et al. (2000)

of the buoy-supported lines. The SMS generalized forces on the horizontal plane were
calculated. It is important to remark that, in any of the aforementioned works, the effect
of the catenary laying line extensibility was not considered.

Agarwal and Jain (2003) studied a three-segment mooring line with a clump weight,
considering all possibilities for positioning the clump weight (i.e. completely laying on the
seabed, partially laying on the seabed or completely suspended). The authors investigated
the effects of the elasticity of the line to compute force-displacement relation. Figure 17
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Figure 16 – Geometry of buoy-supported line.

Source: Garza-Rios and Bernitsas (2001)

depicts the sketch of the line model. In order to consider the effects of the whole system
on the restoring forces, the authors took advantage of the studied platform’s symmetry to
model the horizontal forces only once (i.e. generalized forces in surge and sway directions
were modeled only once). Vertical force is presented, also. Controversially, the authors did
not presented any formulation for generalized moments. The SMS generalized forces at
the horizontal plane were calculated projecting the forces at generalized directions.

Figure 17 – Three segment mooring line with a clump weight.

Source: Agarwal and Jain (2003)

Umar and Datta (2003) have proposed a polynomial approximation for generalized
restoring forces. The line model was a classic inextensible catenary one. The authors
studied an one-DoF oscillator, considering only the translational response of a moored
buoy due to a external force in that direction, e.g. surge (x). The restoring force r(x) was



50 Chapter 2. Literature Review

calculated following the same proposal of Oppenheim and Wilson (1982), but it was a 5th
order polynomial approximation.

Loukogeorgaki and Angelides (2005) considered the effects of mooring lines on a
six-DoF system. Considering a classic catenary mooring line, the authors computed the
generalized restoring forces by projecting the tension at the fairlead on each generalized
coordinate direction. As shown in Chapter 3, the present master dissertation also brings a
formulation for the mooring system stiffness matrix. However, the latter is derived for any
generic position, using classical approaches from Analytical Mechanics.

Jonkman (2007) used an “extensible”-catenary2 mooring line. In this context,
the author re-formulated the classic catenary equations in order to compute both the
extensibility of the line and the friction between line and seabed. Restoring forces due to
the complete mooring system was calculated by transforming the tension in each line from
local mooring coordinate system to a global one and, then, computing all mooring lines’
tension.

Masciola, Jonkman and Robertson (2013) presented a multi-segment, quasi-static
cable model. This model takes into account a line that not necessarily lays on a vertical
plane. Indeed, the authors have considered lines with more than just one anchor. Figure 18
illustrates a generic geometry mooring line. This model is based on the extensible catenary
equations and allows to calculate force-displacement relations.

Al-Solihat and Nahon (2015) discussed three different formulations for mooring
lines: a suspended catenary line (without any portion in contact with the seabed), a
catenary line with a segment resting on the seabed and a taut line. For the three cases,
the six-DoF restoring forces were computed considering the geometric relations between
the mooring lines and the vessel elementary displacements.

Finally, Pesce, Amaral and Franzini (2018) proposed the evaluation of generalized
restoring forces of the mooring system for the horizontal-plane problem following classical
methods of Analytical Mechanics. The formulation took into account the horizontal
force-distance relation for each mooring line and local generalized directions.

In closing it is possible to make many different models of the mooring line horizontal
force-displacement relation, depending mainly on the line configuration. In general, mooring
line forces are modeled as functions of both horizontal and vertical anchor-fairlead distances.
Additionally, on the reviewed literature, generalized mooring system restoring forces are
computed by simply projecting the tension at the fairlead, in a geometric relation. In
Chapter 3 it is brought an expansion of Pesce, Amaral and Franzini (2018) methodology
for the six-DoF problem . The formulation allows to easily linearize the generalized forces
around any generic position, resulting in the stiffness matrix presented also in Chapter

2 The term “catenary” is commonly used for inextensible cables, i.e. the cable extensibility is neglected.
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Figure 18 – Generic geometry of a multi-segment mooring line.

Source: Masciola, Jonkman and Robertson (2013)

3, the main contribution of this work. Higher-order polynomial expansions can also be
developed. Although interesting, these nonlinear analysis is left for further work.

2.4 Mooring System Stiffness Matrix

The stiffness matrix due to the mooring system is a relevant information for any
successful moored floating unit design. Indeed, the stiffness coefficients are of great value
not only at initial stages but also for some case tests during the verification phase of the
design. For instance, knowing the mooring stiffness matrix is mandatory whenever slow
drift motions are concerned, either being the classical, on the horizontal plane (surge,
sway, yaw), or those that might occur in heaving, pitching and rolling motions. As it is
well known, slow drift motions are resonant responses of the system, at their low natural
frequencies, to the action of second-order wave forces in low frequencies, the action of wind
forces or even current induced forces, for which the mooring stiffness plays an important
role. The mooring system stiffness matrix may also influence calculating the motion
frequency response of the vessel to first-order wave forces, commonly named as RAOs. In
this context, the scientific community has lately been working on the evaluation of the
mooring system stiffness matrix. The present section brings a few relevant works on this
topic.

First of all, it seems interesting to refer to an international standard. BV (2015)



52 Chapter 2. Literature Review

brings the requirements for the classification of mooring systems of floating units among
others. According to the standard, the 6×6 stiffness matrix associates elementary dis-
placements applied to the floating unit with the elementary reaction loads resulted from
them, around a given position. It also stresses that the stiffness matrix can be obtained
by a regression of the mooring forces time series versus the unit motions time series at
low-frequency and wave frequency motions. Considering this, many authors have proposed
different ways to evaluate the mooring system stiffness matrix.

From the reviewed literature, it is remarkable that authors have been proposing
different partitions of the complete 6×6 stiffness matrix. Indeed, depending on their
needs, some authors prefer to study a two-dimensional problem either on horizontal or
vertical plane. Some others prefer to study only the stiffness matrix related to translational
displacements. These approaches are justifiable by the particular application of each study.
It is common to consider horizontal plane motions when the focus of the study is effects of
waves second-order forces on the vessel motion. In turn, couplings surge-pitch (or even
sway-roll) are only accessed via a two-dimensional vertical plane modeling. The use of the
translational partition can be justified for a iterative process in order to estimate mooring
system forces.

Yamamoto, Yoshida and Ijima (1980) have proposed a two-dimensional vertical
plane stiffness matrix. The mooring lines were considered as linear springs with arbitrary
spring constant and initial length, tension and angle with respect to the horizontal. The
generalized coordinates were the horizontal in-plane displacement, the vertical displacement
and the angular displacement with respect to the horizontal. Stiffness coefficients were
obtained for a given hydrostatic equilibrium, where the coordinates of the center of gravity
were known a priori. Then, for each mooring line, the stiffness coefficients were obtained
by elementary static procedures for the vessel’s motions. Figure 19 presents the sketch of
the problem investigated by Yamamoto, Yoshida and Ijima (1980).

Based on the author’s generalized restoring forces formulation, Pesce (1986) pro-
posed a mooring system stiffness matrix for the planar problem. In this context, the author
differentiated the forces with respect to the generalized coordinates, i.e. the horizontal
plane translations and rotation with respect to a vertical axis, with considerations on the
small displacements and rotations. Figure 20 brings up small displacement and rotations
sketchs. The author considered the effect of mooring lines pre-tensioning.

Faltinsen (1993) presented a mooring system stiffness matrix for a horizontal plane
motion. The author also formulated it from the differentiation of forces with respect to
generalized coordinates. The matrix is computed for a trivial equilibrium position. However,
the author did not take into account the effects of the mooring line pre-tensioning.

Sannasiraj, Sundar and Sundaravadivelu (1998) formulated the mooring stiffness
matrix for two-dimensional vertical plane motions, for a two-line mooring system. Figure
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Figure 19 – Sketch of the moored floating body.

Source: Yamamoto, Yoshida and Ijima (1980)

Figure 20 – Small horizontal displacements and rotations.

Source: Adapted from Pesce (1986)

21 sketches the problem. Taking advantage of each mooring line tension, the stiffness
matrix was calculated from the derivations of them with respects to the coordinates of the
problem.

Loukogeorgaki and Angelides (2005) brought an analytical formulation for the 6×6
mooring system stiffness matrix. Based on perturbation methods, the authors define the
coefficients by differentiating forces with respect to generalized coordinates.

Kim et al. (2013) applied prescribed static offset analysis on a FE model. The
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Figure 21 – Vertical plane view of a SMS.

Source: Sannasiraj, Sundar and Sundaravadivelu (1998)

restoring forces due to the mooring system are calculated for a prescribed offset at the
vessel. The stiffness coefficients were numerically calculated by the ratio between forces
and displacements around the equilibrium position.

In Robertson et al. (2014a), the mooring system stiffness was calculated with a
linearized analysis around an equilibrium position of the platform, i.e. the first derivative
of each mooring generalized force with respect to generalized directions. This analysis
involved a small perturbation in the platform DoFs, followed by measuring the resulting
mooring loads, via a numerical computation of forces-displacement curves. The stiffness
coefficients were calculated then using central-differences of these curves.

Similarly to Loukogeorgaki and Angelides (2005), Al-Solihat and Nahon (2015)
formulated a 6×6 stiffness matrix from perturbation methods, first for each mooring
line and then summing up the effects of all lines. The authors separated the stiffness
matrix according to the mooring line configuration. In this context, it is presented final
formulations for catenary and taut-leg mooring lines and tension leg systems. Figure
22 brings up one example of mooring system the author used in order to apply their
methodology.

Montasir, Yenduri and Kurian (2015) addressed the problem of two-dimensional
vertical plane motions. In this context, the authors present a 3×3 stiffness matrix. It was
considered a linear spring coefficient for the horizontal direction and the matrix is defined
from the geometry of the problem.

Gutiérrez-Romero et al. (2016) brought up a formulation of the stiffness matrix,
but considering translational motions only, i.e. both the two horizontal and the vertical
motions. The mooring system was modeled via FE method and force-displacement relations
for the system as a whole were computed. The stiffness coefficients were calculated from
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Figure 22 – Six-DoF moored system.

Source: Al-Solihat and Nahon (2015)

the ratio between forces and excursions.

Finally, Pesce, Amaral and Franzini (2018) proposed a 3×3 stiffness matrix for a
horizontal plane problem. Using classical approaches from analytic mechanics, the authors
derived the stiffness coefficients in a formal and proper way. For generic mooring line
configurations, it was presented a closed formulation for a generic vessel position. A sketch
of the investigated problem in Pesce, Amaral and Franzini (2018) is presented in Figure
23.

To better situate the present work, Table 2 summarizes the stiffness matrices found
in the literature, presenting which DoF are assessed and the methodology for obtaining
them. The present master dissertation brings then, in Section 3.3, an expedite and closed
formulation for the six-DoF mooring system stiffness matrix. It is an expansion of the
previous work of Pesce, Amaral and Franzini (2018). It differs from Loukogeorgaki and
Angelides (2005) and Al-Solihat and Nahon (2015) formulations for the use of Analytical
Mechanics, instead of dealing with the perturbation approach. Thus, the matrix is defined
in a more formal way. Additionally, generic closed formulation allows the evaluation of
the mooring system stiffness at any generic position (not only the trivial equilibrium one)
and for any mooring line configuration. Finally, the mooring system stiffness is presented
partitioned, proposing an easier way to evaluate all coefficients from the three translational
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Figure 23 – Sketch of a generic moored buoy as a generic position.

Source: Pesce, Amaral and Franzini (2018)

displacement DoFs (which helps to understand the effects of the vessel’s geometry and the
position of fairleads on the system’s stiffness).

This literature review is closed remarking that the proposed methodology by the
present master dissertation are addressed to actual problems on ocean engineering scenario.
Some important aspects worthy of investigation can be highlighted: (i) lack of a generic
analytic formulation to assess the stiffness of the mooring system, (ii) lack of a tool to
investigate effects of the mean vessel position on the stiffness coefficients and natural
periods and (iii) lack of understanding the importance of the mooring line axial stiffness
on the stiffness. This text aims to fill these gaps. As discussed earlier, an expedite closed
formulation for the mooring system stiffness matrix is presented and can be useful not
only for the design process but also for the analysis of mooring systems. The methodology
herein proposed can help fundamental understanding of the effects of a mooring system
parameters on the static (and also dynamic) responses of the moored system.
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Table 2 – Stiffness matrix models presented at the reviewed literature.

Authors DoF Methodology
Yamamoto, Yoshida and
Ijima (1980)

Vertical Plane
(3×3)

Analytical: Perturbation around the
equilibrium position

Pesce (1986) Horizontal Plane
(3×3)

Analytical: Perturbation around the
equilibrium position

Faltinsen (1993) Horizontal Plane
(3×3)

Analytical: Derivation the forces
with respect to the coordinates

Sannasiraj, Sundar and
Sundaravadivelu (1998)

Vertical Plane
(3×3)

Analytical: Derivation the forces
with respect to the coordinates

Loukogeorgaki and
Angelides (2005) All six (6×6) Analytical: Perturbation around the

equilibrium position

Kim et al. (2013) All six (6×6) Numerical: Finite Elements –
Prescribed static offset analysis

Robertson et al. (2014a) All six (6×6) Analytical: Prescribed static offset
analysis

Al-Solihat and Nahon
(2015) All six (6×6) Analytical: Perturbation around the

equilibrium position
Montasir, Yenduri and
Kurian (2015)

Vertical Plane
(3×3)

Analytical: Assumption of the surge
stiffness coefficient

Gutiérrez-Romero et al.
(2016)

Translational
(3×3) Numerical: Finite Elements

Pesce, Amaral and
Franzini (2018)

Horizontal Plane
(3×3) Analytical: Analytical Mechanics

Source: The Author
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3 Mathematical Models

The current chapter presents the mathematical models developed in this work.
Firstly, Section 3.1 shows the geometry of the body and the geometric relations for each
mooring line. Section 3.2 presents the development of a single mooring line restoring
force, and the decomposition of this force into the line’s two main directions: horizontal
and vertical. In turn, Section 3.3 brings a linearization of the problem around a generic
position1, in order to define the full mooring system stiffness matrix. The term “position
of the floating body” is herein understood in a generic sense, as the formulation treats
a six-DoF problem. The term “trivial equilibrium position” is reserved to that for the
externally unloaded system, i.e. under no current, wind or wave forces, nor any other
external one, as a towing force applied by a tug boat, for instance. If restricted to motions
on the horizontal plane, the term “generic position” may be interpreted as “offset” and
“heading”, regarding the trivial equilibrium one. Finally, Section 3.4 conducts a formulation
for a multi-segment mooring line tension as function of horizontal and vertical distances
between anchor and fairlead. Concluding, it is important to observe that the present
chapter summarizes the main contributions of this work.

3.1 Geometric Relations of Floating Unit and Mooring Lines
The current section aims to define geometric relations between a moored body and

its mooring lines. It is important to note that, for all the following development, it is not
defined any specific type of line configuration. Indeed, the mooring line model will only be
defined in Section 3.4, when the multi-segment mooring line is modeled, considered the
context of the case studies of Chapter 4.

Initially, it is important to define the generalized coordinates for the problem. Let
us consider a floating body on a generic position, moored by N mooring lines as sketched
in Figure 24. Let us Oxyz be an inertial reference frame, grounded to Earth. Its origin O
is defined at the center of mass of the body at equilibrium position of the autonomous
(or unloaded) system. This frame is defined by the orthonormal basis Ex = (êx, êy, êz).
In addition, let us Gξηζ be an orthonormal moving frame fixed to the body. The origin
of this frame is for convenience taken as the center of mass of the body, without losing
generalization. The basis that defines this frame is Eξ = (êξ, êη, êζ).

In order to define the relation between the two reference frames, one can define the
translational displacement of Gξηζ with respect to Oxyz as {−→r }Ex = r = [rx ry rz]t2,
1 The mooring system stiffness matrix is formulated for any given position.
2 For this master dissertation, the notation {−→}Ex denotes a physical vector while the letter in bold
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Figure 24 – Sketch of a generic floating body, moored by N mooring lines at: the equilibrium
position of the autonomous system (dashed) and a generic displaced position
(full lines).

Source: The Author

as presented in the Figure 25. Notice that, as the components of r are written with
respect to the fixed reference frame, one should not mistake these displacements with
classical Ocean Engineering surge, sway and heave motions, all defined on the body
reference frame. The rotation with respect to the reference frames is defined by the Euler’s

Figure 25 – Translational displacement between Gξηζ and Oxyz.

Source: The Author

angles θ = [φ θ ψ]t, as shown in Figure 26. In other words, the rotation angles of
the floating body are defined following the Ocean Engineering order: ψ is defined as the
rotation angle around the current ζ axis, then θ is defined around the current η axis, and
finally φ is the rotation angle around the current ξ axis. Then, it is possible to define

represents a first order tensor. Notice that the translational displacement can be defined in both
notations.
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q = [rx ry rz φ θ ψ]t as the generalized coordinate vector defining the floating unit
motions.

Figure 26 – Definition of the Euler Angles.
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Figure 27 – Generic floating body, moored by N mooring lines at a generic position.

Source: The Author

Now, focus is on defining the position of each mooring line fairlead P (i)3 and anchor
3 Throughout the text, the superscript (i) refers to the i-th mooring line.
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A(i) with respect to the fixed frame. Figure 27 brings the N-moored body at the displaced
position.

One can write P (i) with respect to the moving frame as:{−→
P (i)

}
Eξ

=
(
P (i) −G

)
=
[
p

(i)
ξ p(i)

η p
(i)
ζ

]t
(3.1)

Then, considering the Euler Angles defined in Figure 26, one can write the rotation
matrix [R]Ex|Eξ as follows:

[R]Ex|Eξ =


cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ


(3.2)

By composing the translational and rotational movements, it is possible to write{−→
P (i)

}
Ex
, as follows:{−→

P (i)
}
Ex

=
(
P (i) −O

)
=
[
p(i)
x p(i)

y p(i)
z

]t
= {−→r }Ex + [R]Ex|Eξ{

−→
P (i)}Eξ (3.3)

In turns, from Figure 27, one can define the position of each mooring line anchor
at the grounded reference frame:{−→

A (i)
}
Ex

=
(
A(i) −O

)
=
[
a(i)
x a(i)

y a(i)
z

]t
(3.4)

In this context, the horizontal and vertical distances between anchor and fairlead
(h(i) and v(i), respectively) are determined as:

h(i) =
√(

a
(i)
x − p(i)

x

)2
+
(
a

(i)
y − p(i)

y

)2
(3.5)

v(i) = p(i)
z − a(i)

z (3.6)

These two distances are associated with two directional vectors that defines the
fixed reference frame,

{
ê

(i)
h

}
Ex

and
{
ê(i)
v

}
Ex
. In order to define them, it is important to first

define the projection of both fairlead and anchor into the horizontal and vertical planes.
Firstly, let us define the horizontal plane πh as the one characterized by the unit vectors
(êx, êy), containing the fairlead P (i).

The projection of
{−→
A (i)

}
Ex

onto πh is:{−→
A (i)

}πh
Ex

= projπh
{−→
A (i)

}
Ex

= a(i)
x {êx}Ex + a(i)

y {êy}Ex (3.7)

Thus, it is possible to define the horizontal directional unit vector, for each mooring
line as following:

{
ê

(i)
h

}
Ex

=

({−→
A (i)

}πh
Ex
−
{−→
P (i)

}
Ex

)
∣∣∣∣{−→A (i)

}πh
Ex
−
{−→
P (i)

}
Ex

∣∣∣∣ = cosα(i)êx + sinα(i)êy (3.8)
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where:

cosα(i) = a(i)
x − p(i)

x

h(i) (3.9)

sinα(i) =
a(i)
y − p(i)

y

h(i) (3.10)

In turn, the vertical plane πv is perpendicular to πh plane which normal is
{
ê

(i)
h

}
Ex
,

also containing the fairlead P (i). The projection of
{−→
A (i)

}
Ex

onto πv is as follows:{−→
A (i)

}πv
Ex

= projπv
{−→
A (i)

}
Ex

= a(i)
z {êz}Ex (3.11)

Then, the vertical directional unit vector for each mooring line becomes:

{
ê(i)
v

}
Ex

=

({−→
A (i)

}πv
Ex
−
{−→
P (i)

}
Ex

)
∣∣∣∣{−→A (i)

}πv
Ex
−
{−→
P (i)

}
Ex

∣∣∣∣ = a(i)
z − p(i)

z

v(i) êz = −êz (3.12)

Figure 28 illustrates these two planes and the directional unit vectors.

Figure 28 – Mooring line planes and directional unit vectors.
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Finally, it is important to notice that h(i), v(i),
{
ê(i)
v

}
Ex
,
{
ê(i)
v

}
Ex

and α(i) are
functions of the generalized coordinates, since they depend on the position of the fairlead
with respect to the fixed frame,

{−→
P (i)

}
Ex
.

From the next section onward, as a matter of practicality, vectors’ basis are omitted
whenever there is no doubt which reference frame is used. For example, the two directional
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vectors are represented now on as ê(i)
h and ê(i)

v , since they are always expressed on the fixed
reference frame.

Next section brings forward the relation between the aforementioned geometric
quantities and the forces each mooring line imposes on the floating unit.

3.2 Mooring System Restoring Forces
Figure 29 presents the force that a mooring line imposes on the vessel a the i-th

fairlead. It also shows the decomposition of this force into the vertical and horizontal
directions. Notice that the horizontal and vertical components are referred to the directional
unit vectors defined in Equations 3.8 and 3.12.

Figure 29 – i-th mooring line tension at the fairlead.
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A strong but justified hypothesis is taken into account: one may neglect any possible
effect of friction with the seabed. Additionally, the effect of sea current on the mooring line
is not considered. Therefore, the mooring lines are supposed to be subjected only to gravity
and to elastic effects due to extensibility of the line, besides reaction forces applied to their
extremities, fairleads and anchors, here considered as holonomic constraints. In summary,
the system is considered conservative, mooring lines remaining in vertical planes. It is also
worth mentioning that the present model does not consider the dynamics of the mooring
lines and may be considered quasi-static in this sense. These hypotheses guarantee that
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the direction of the tension at the fairlead remains at the plane of the line, as presented
in the following developments. Thus, the tension can be written as function of h(i) and
v(i). This relation can be called the characteristic tension function of the mooring line.
Equation 3.13 recovers this discussion.

−→
T (i)(h(i), v(i)) = F

(i)
H (h(i), v(i))ê(i)

h + F
(i)
V (r(i), h(i))ê(i)

v (3.13)

It is noteworthy that the development made until this point is general, i.e. it is not
restrict to a single type of mooring line configuration. However, the functions F (i)

H and F (i)
V

should be known a priori. The way to obtain these curves may vary. On the one hand,
for a simple catenary laying curve, analytical formulations are well-known. On the other
hand, for more sophisticated mooring line arrangements, it might be necessary to evaluate
them numerically (e.g. by finite elements method). An example of analytical formulations
for multi-segment mooring line is presented in Section 3.4. Once again, notice that since
F

(i)
H and F (i)

V are functions of h(i) and v(i), they are consequently functions of q.

Considering the effect of every mooring line, the restoring generalized force vector,
Q can be defined with respect to each generalized coordinate qj, j = 1, ..., 6.

Q =
[
Qrx Qry Qrz Qφ Qθ Qψ

]t
(3.14)

where, from Analytical Mechanics:

Qj =
N∑
i=1

Q
(i)
j =

N∑
i=1

−→
T (i) · ∂

−→
P (i)

∂qj
=

N∑
i=1

(
F

(i)
H ê

(i)
h + F

(i)
V ê(i)

v

)
· ∂
−→
P (i)

∂qj
(3.15)

where Q(i)
j is the generalized restoring force associated with the i-th line.

In order to evaluate the generalized restoring forces, it is needed to develop local
generalized directions ∂−→P (i)/∂qj and their projections onto the horizontal and vertical
planes. These developments are presented in Appendix C.

Hence, it is possible to write the generalized restoring forces from each mooring
line as follows:

Q(i)
rx = F

(i)
H cosα(i) (3.16)

Q(i)
ry = F

(i)
H sinα(i) (3.17)

Q(i)
rz = −F (i)

V (3.18)

Q
(i)
φ = F

(i)
H

(
cosα(i)∂p

(i)
x

∂φ
+ sinα(i)∂p

(i)
y

∂φ

)
− F (i)

V

∂p(i)
z

∂φ
(3.19)

Q
(i)
θ = F

(i)
H

(
cosα(i)∂p

(i)
x

∂θ
+ sinα(i)∂p

(i)
y

∂θ

)
− F (i)

V

∂p(i)
z

∂θ
(3.20)

Q
(i)
ψ = F

(i)
H

(
cosα(i)∂p

(i)
x

∂ψ
+ sinα(i)∂p

(i)
y

∂ψ

)
(3.21)
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Notice that with an easy algebraic manipulation it is possible to write Q(i)
φ , Q(i)

θ

and Q(i)
ψ as combinations of Q(i)

rx , Q(i)
ry and Q(i)

rz . The restoring moments become:

Q
(i)
φ = Q(i)

rx

∂px
∂φ

+Q(i)
ry

∂py
∂φ

+Q(i)
rz

∂pz
∂φ

(3.22)

Q
(i)
θ = Q(i)

rx

∂px
∂θ

+Q(i)
ry

∂py
∂θ

+Q(i)
rz

∂pz
∂θ

(3.23)

Q
(i)
ψ = Q(i)

rx

∂px
∂ψ

+Q(i)
ry

∂py
∂ψ

(3.24)

The definition of the generalized restoring forces made in Equations 3.16 to 3.18
and 3.22 to 3.24 are crucial for the following steps of this master thesis. Next section brings
forward a linearization of these forces around a supposed known equilibrium position in
order to define the mooring system stiffness matrix.

3.3 Mooring System Stiffness Matrix

The hypothesis of neglecting friction effects, adopted for describing the mooring
line restoring forces as functions of the position only, allows us to see them as conservative
forces. In this case, the generalized forces can be seen as potential forces, i.e. forces arisen
from a potential functional. From Analytical Mechanics, one can write:

Qj = −∂V
∂qj

(3.25)

where V = V (q,Π) is the potential energy and Π =
{ (
A(i), P (i), F

(i)
H , F

(i)
V

) ∣∣∣i = 1, ..., N
}

is the set of geometric parameters of the mooring system and vessel.

Then, locally, around any pre-stated equilibrium configuration, the mooring system
stiffness matrix K(q) may be defined as the Hessian of V (q,Π):

K(q) =
[
∂2V

∂qj∂qk

]
= −

[
∂Qj

∂qk

]
(3.26)

Generically, from Equation 3.15, follows that:

Kjk = −∂Qj

∂qk
= − ∂

∂qk

 N∑
i=1

−→
T (i) · ∂

−→
P (i)

∂qj

 =

−
N∑
i=1

∂

∂qk

(F (i)
H ê

(i)
h + F

(i)
V ê(i)

v

)
· ∂
−→
P (i)

∂qj

 (3.27)
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Recalling that F (i)
H = F

(i)
H (h(i), v(i)) and F

(i)
H = F

(i)
H (h(i), v(i)), Equation 3.27 be-

comes:

Kjk =
N∑
i=1

K
(i)
jk = −

N∑
i=1

∂F (i)
H

∂h(i)
∂h(i)

∂qk
+ ∂F

(i)
H

∂v(i)
∂v(i)

∂qk

 ê(i)
h ·

∂
−→
P (i)

∂qj
+

−
N∑
i=1

∂F (i)
V

∂h(i)
∂h(i)

∂qk
+ ∂F

(i)
V

∂v(i)
∂v(i)

∂qk

 ê(i)
v ·

∂
−→
P (i)

∂qj
+

−
N∑
i=1

F (i)
H

∂

∂qk

ê(i)
h ·

∂
−→
P (i)

∂qj

+ F
(i)
V

∂

∂qk

ê(i)
v ·

∂
−→
P (i)

∂qj

 (3.28)

with K(i)
jk being the stiffness coefficient associated with the i-th mooring line.

In order to simplify the notation, it is possible to identify the terms ∂F (i)
H /∂h(i) =

kHH and ∂F (i)
V /∂v(i) = kV V as the local horizontal and vertical stiffness, respectively. It can

be defined two coupled local stiffness as well: ∂F (i)
H /∂v(i) = kHV and ∂F (i)

V /∂h(i) = kV H . It
can be shown that the two coupled terms are equal. Appendix A shows this demonstration
for a multi-segment mooring line.

Then, for each mooring line:

K
(i)
jk = −

(
k

(i)
HH

∂h(i)

∂qk
+ k

(i)
HV

∂v(i)

∂qk

)
ê

(i)
h ·

∂
−→
P (i)

∂qj
− F (i)

H

∂

∂qk

ê(i)
h ·

∂
−→
P (i)

∂qj


−
(
k

(i)
V H

∂h(i)

∂qk
+ k

(i)
V V

∂v(i)

∂qk

)
ê(i)
v ·

∂
−→
P (i)

∂qj
− F (i)

V

∂

∂qk

ê(i)
v ·

∂
−→
P (i)

∂qj

 (3.29)

For the sake of the text’s conciseness, the intermediate developments such as the
derivative of ê(i)

h and ê(i)
v are left for Appendix D. Finally, it is possible to write the

stiffness coefficients due to the mooring system. Before this, it is still necessary to define
another stiffness term k̄HH(h(i)) = F

(i)
H /h(i), as the “string stiffness” associated with the

pre-tensioning of each mooring line as function of q. This “string stiffnes” was introduced
by Pesce, Amaral and Franzini (2018). The authors state that its effect is crucial, mainly
for some symmetric mooring arrangements. They have presented an example using the OC4
semi-submersible to illustrate its importance. In the present work, the same case study is
taken into account in Section 4, where the effect of k̄HH(r(i)) is once again highlighted.

Thereafter, it is possible to rewrite the stiffness coefficients given by Equation 3.29,
as follows:
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• First line coefficients – coefficients associated with a displacement rx:

K
(i)
11 = k

(i)
HH cos2 α(i) + k̄

(i)
HH sin2 α(i) (3.30)

K
(i)
12 =

(
k

(i)
HH − k̄

(i)
HH

)
cosα(i) sinα(i) (3.31)

K
(i)
13 = −k(i)

HV cosα(i) (3.32)

K
(i)
14 = ∂p(i)

x

∂φ
K

(i)
11 +

∂p(i)
y

∂φ
K

(i)
12 + ∂p(i)

z

∂φ
K

(i)
13 (3.33)

K
(i)
15 = ∂p(i)

x

∂θ
K

(i)
11 +

∂p(i)
y

∂θ
K

(i)
12 + ∂p(i)

z

∂θ
K

(i)
13 (3.34)

K
(i)
16 = ∂p(i)

x

∂ψ
K

(i)
11 +

∂p(i)
y

∂ψ
K

(i)
12 (3.35)

• Second line coefficients – coefficients associated with a displacement ry:

K
(i)
21 =

N∑
i=1

(
k

(i)
HH − k̄

(i)
HH

)
sinα(i) cosα(i) (3.36)

K
(i)
22 = k

(i)
HH sin2 α(i) + k̄

(i)
HH cos2 α(i) (3.37)

K
(i)
23 = −k(i)

HV sinα(i) (3.38)

K
(i)
24 = ∂p(i)

x

∂φ
K

(i)
21 +

∂p(i)
y

∂φ
K

(i)
22 + ∂p(i)

z

∂φ
K

(i)
23 (3.39)

K
(i)
25 = ∂p(i)

x

∂θ
K

(i)
21 +

∂p(i)
y

∂θ
K

(i)
22 + ∂p(i)

z

∂θ
K

(i)
23 (3.40)

K
(i)
26 = ∂p(i)

x

∂ψ
K

(i)
21 +

∂p(i)
y

∂ψ
K

(i)
22 (3.41)

• Third line coefficients – coefficients associated with a displacement rz:

K
(i)
31 = −k(i)

V H cosα(i) (3.42)

K
(i)
32 = −k(i)

V H sinα(i) (3.43)

K
(i)
33 = k

(i)
V V (3.44)

K
(i)
34 = ∂p(i)

x

∂φ
K

(i)
31 +

∂p(i)
y

∂φ
K

(i)
32 + ∂p(i)

z

∂φ
K

(i)
33 (3.45)

K
(i)
35 = ∂p(i)

x

∂θ
K

(i)
31 +

∂p(i)
y

∂θ
K

(i)
32 + ∂p(i)

z

∂θ
K

(i)
33 (3.46)

K
(i)
36 = ∂p(i)

x

∂ψ
K

(i)
31 +

∂p(i)
y

∂ψ
K

(i)
32 (3.47)
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• Fourth line coefficients – coefficients associated with a displacement φ:

K
(i)
41 = ∂p(i)

x

∂φ
K

(i)
11 +

∂p(i)
y

∂φ
K

(i)
12 + ∂p(i)

z

∂φ
K

(i)
13 (3.48)

K
(i)
42 = ∂p(i)

x

∂φ
K

(i)
21 +

∂p(i)
y

∂φ
K

(i)
22 + ∂p(i)

z

∂φ
K

(i)
23 (3.49)

K
(i)
43 = ∂p(i)

x

∂φ
K

(i)
31 +

∂p(i)
y

∂φ
K

(i)
32 + ∂p(i)

z

∂φ
K

(i)
33 (3.50)

K
(i)
44 = ∂p(i)

x

∂φ
K

(i)
14 +

∂p(i)
y

∂φ
K

(i)
24 + ∂p(i)

z

∂φ
K

(i)
34

− ∂2p(i)
x

∂φ2 F
(i)
H cosα(i) −

∂2p(i)
y

∂φ2 F
(i)
H sinα(i) + ∂2p(i)

z

∂φ2 F
(i)
V (3.51)

K
(i)
45 = ∂p(i)

x

∂φ
K

(i)
15 +

∂p(i)
y

∂φ
K

(i)
25 + ∂p(i)

z

∂φ
K

(i)
35

− ∂2p(i)
x

∂φ∂θ
F

(i)
H cosα(i) −

∂2p(i)
y

∂φ∂θ
F

(i)
H sinα(i) + ∂2p(i)

z

∂φ∂θ
F

(i)
V (3.52)

K
(i)
46 = ∂p(i)

x

∂φ
K

(i)
16 +

∂p(i)
y

∂φ
K

(i)
26 + ∂p(i)

z

∂φ
K

(i)
36

− ∂2p(i)
x

∂φ∂ψ
F

(i)
H cosα(i) −

∂2p(i)
y

∂φ∂ψ
F

(i)
H sinα(i) + ∂2p(i)

z

∂φ∂ψ
F

(i)
V (3.53)

• Fifth line coefficients – coefficients associated with a displacement θ:

K
(i)
51 = ∂p(i)

x

∂θ
K

(i)
11 +

∂p(i)
y

∂θ
K

(i)
12 + ∂p(i)

z

∂θ
K

(i)
13 (3.54)

K
(i)
52 = ∂p(i)

x

∂θ
K

(i)
21 +

∂p(i)
y

∂θ
K

(i)
22 + ∂p(i)

z

∂θ
K

(i)
23 (3.55)

K
(i)
53 = ∂p(i)

x

∂θ
K

(i)
31 +

∂p(i)
y

∂θ
K

(i)
32 + ∂p(i)

z

∂θ
K

(i)
33 (3.56)

K
(i)
54 = ∂p(i)

x

∂θ
K

(i)
14 +

∂p(i)
y

∂θ
K

(i)
24 + ∂p(i)

z

∂θ
K

(i)
34

− ∂2p(i)
x

∂θ∂φ
F

(i)
H cosα(i) −

∂2p(i)
y

∂θ∂φ
F

(i)
H sinα(i) + ∂2p(i)

z

∂θ∂φ
F

(i)
V (3.57)

K
(i)
55 = ∂p(i)

x

∂θ
K

(i)
15 +

∂p(i)
y

∂θ
K

(i)
25 + ∂p(i)

z

∂θ
K

(i)
35

− ∂2p(i)
x

∂θ2 F
(i)
H cosα(i) −

∂2p(i)
y

∂θ2 F
(i)
H sinα(i) + ∂2p(i)

z

∂θ2 F
(i)
V (3.58)

K
(i)
56 = ∂p(i)

x

∂θ
K

(i)
16 +

∂p(i)
y

∂θ
K

(i)
26 + ∂p(i)

z

∂θ
K

(i)
36

− ∂2p(i)
x

∂θ∂ψ
F

(i)
H cosα(i) −

∂2p(i)
y

∂θ∂ψ
F

(i)
H sinα(i) + ∂2p(i)

z

∂θ∂ψ
F

(i)
V (3.59)
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• Sixth line coefficients – coefficients associated with a displacement ψ:

K
(i)
61 = ∂p(i)

x

∂ψ
K

(i)
11 +

∂p(i)
y

∂ψ
K

(i)
12 (3.60)

K
(i)
62 = ∂p(i)

x

∂ψ
K

(i)
21 +

∂p(i)
y

∂ψ
K

(i)
22 (3.61)

K
(i)
63 = ∂p(i)

x

∂ψ
K

(i)
31 +

∂p(i)
y

∂ψ
K

(i)
32 (3.62)

K
(i)
64 = ∂p(i)

x

∂ψ
K

(i)
14 +

∂p(i)
y

∂ψ
K

(i)
24 −

∂2p(i)
x

∂ψ∂φ
F

(i)
H cosα(i) −

∂2p(i)
y

∂ψ∂φ
F

(i)
H sinα(i) (3.63)

K
(i)
65 = ∂p(i)

x

∂ψ
K

(i)
15 +

∂p(i)
y

∂ψ
K

(i)
25 −

∂2p(i)
x

∂ψ∂θ
F

(i)
H cosα(i) −

∂2p(i)
y

∂ψ∂θ
F

(i)
H sinα(i) (3.64)

K
(i)
66 = ∂p(i)

x

∂ψ
K

(i)
14 +

∂p(i)
y

∂ψ
K

(i)
24 −

∂2p(i)
x

∂ψ2 F
(i)
H cosα(i) −

∂2p(i)
y

∂ψ2 F
(i)
H sinα(i) (3.65)

Notice that some coefficients are expressed as functions of others. The algebraic
manipulations that yielded this formulation are presented in Appendix E.

Summing up the contributions of all mooring lines, the stiffness matrix of the
complete mooring system is:

K =
N∑
i=1

K(i) (3.66)

Looking the stiffness coefficients previously presented, it is interesting to notice
some important aspects. Firstly, as it was expected, the stiffness matrix is symmetric,
since forces are considered purely conservative. Indeed, as it can be seen from Eqs. 3.30
to 3.65, coefficients Kjk = Kkj as ∂F (i)

H /∂v
(i)
f = ∂F

(i)
V /∂h

(i)
f . In addition, it is crucial to

understand that the given stiffness matrix is not defined with respect to the moving frame
Eξ, fixed to the body. If the reader intents to work on this reference frame, one should
rotate the result. Equation 3.67 presents this operation.

KEξ = R∗tKExR∗ (3.67)

where:

R∗ =
 REx|Eξ 0

0 I

 (3.68)

with I being the 3× 3 identity matrix.

Considering that some coefficients as combinations of others, it is possible to rewrite
the stiffness matrix in a more elegant way. Let us firstly define the partitions of the matrix,
defining the partition representing only the translational degrees of freedom as K(i)

TT , the
partition representing the coupling between translational and rotational motions as K(i)

TR
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and the one associated with the rotational DoFs only as K(i)
RR. It is obvious that once the

stiffness matrix is symmetric, K(i)
RT = K(i)

TR

t
, as follows:

K(i) =
 K(i)

TT K(i)
TR

K(i)
RT K(i)

RR

 (3.69)

Considering coefficients from partition K(i)
TR, it is possible – as showed at the

respective equations – to rewrite them as:

K(i)
TR = K(i)

TT · {∇}
(
REx|Eξ · {

−−→
P (i)}Eξ

)
(3.70)

with:

∇[ ](φ, θ, ψ) =
(
∂[ ]
∂φ

(φ, θ, ψ), ∂[ ]
∂θ

(φ, θ, ψ), ∂[ ]
∂ψ

(φ, θ, ψ)
)

(3.71)

Now, let us focus on the partition [KRR]. From the aforementioned coefficients, one
can write:

K(i)
RR = K(i)

RR

∗
− K̄(i)

RR (3.72)

with:

K(i)
RR

∗
= ∇t

(
REx|Eξ · {

−−→
P (i)}Eξ

)
·K(i)

TR =

∇t
(
REx|Eξ · {

−−→
P (i)}Eξ

)
·
[
K(i)
TT ·∇

(
REx|Eξ · {

−−→
P (i)}Eξ

)]
(3.73)

and

K̄(i)
RR = ∂2p(i)

x

∂θ2 F
(i)
H cosα(i) +

∂2p(i)
y

∂θ2 F
(i)
H sinα(i) − ∂2p(i)

z

∂θ2 F
(i)
V (3.74)

remembering that θ = [φ θ ψ]t.

Thus, one may conclude that the stiffness coefficients associated with the translation-
rotation and rotation only motions are functions of the stiffness coefficients associated
with the translational DoFs.

As a particular but important case, let us consider a perfect polar symmetric
mooring system. A polar symmetry, in the unloaded condition, is herein defined by taking
a vertical axis passing through the pole G with all fairleads equidistant to it. All mooring
lines are identical and their planes intercept the symmetry axis. In other words, it is a
regular polygonal arrangement. This is the case of the OC4 platform, studied in Chapter 4;
see Fig. 36. In this scenario, it is possible to show that the only non-null mooring stiffness
coefficients for a N -line symmetric arrangement becomes:

K11 = N

2 (kHH + k̄HH) (3.75)



72 Chapter 3. Mathematical Models

K15 = K51 = N

2 (kV HRf + kHHpζ + k̄HHpζ) (3.76)

K22 = N

2 (kHH + k̄HH) (3.77)

K24 = K42 = −N2 (kV HRf + kHHpζ + k̄HHpζ) (3.78)

K33 = NkV V (3.79)

K44 = N

2 (p2
ζkHH + p2

ζ k̄HH + 2pζRfkHV +R2
fkV V +RfFH − 2pζFV ) (3.80)

K55 = N

2 (p2
ζkHH + p2

ζ k̄HH + 2pζRfkHV +R2
fkV V +RfFH − 2pζFV ) (3.81)

K66 = Nk̄HHR
2
f

(
1 + h

Rf

)
(3.82)

where Rf radius from the platform center to fairleads.

Notice that the “string stiffness” is indeed significant for this scenario. Pesce,
Amaral and Franzini (2018) point out that when the pre-tensioning of the mooring lines is
high, as for example in a taut-leg mooring system, it becomes even more relevant.

Finally, one last remark must be made. The presented methodology can be compared
with the stiffness matrix proposed by Pesce, Amaral and Franzini (2018). Adopting the
same hypothesis that the motion is restricted to the horizontal plane, the stiffness matrix
herein proposed is equal to the other. Hence, the present work is an extension of the
previous findings of Pesce, Amaral and Franzini (2018). This comparison is presented in
Appendix F.

3.4 Multi-segment mooring line model
This current section proposes a model for the tension-displacement relation for a

generic multi-segment (MS) mooring line. Thus, the so-called characteristic tension curves
(from Equation 3.13) are introduced for this model. Once more, it is important to remark
that the stiffness matrix formulation presented in Section 2.4 is general, i.e. it does not
depend on the model presented at this section. Indeed, the mooring line can have any
possible profile, only being necessary to know its characteristic tension function. However,
looking forward for immediate applications at the case studies, it is important to have a
close formulation.

Let us define a MS mooring line as a combination of multiple extensible catenary
mooring segments connected. Figure 30 brings a sketch of the mooring line profile. Let
us define a local coordinate system Ahv, with h and v being the horizontal and vertical
axes, oriented as in Figure 30. The horizontal and vertical distances between anchor A
and fairlead P are hf and vf , respectively. In their turns, the projections of each segment
onto both axes are hj and vj. Each segment is composed by a linear elastic material with
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unstretched suspended length lsj 4, axial stiffness EAj and equivalent immersed weight per
unit length γj. For the present work, it is considered the case in which a portion of the
first segment might rest at the seabed, i.e. there is a touchdown point (TDP). Then, the
total unstretched length of the first segment is:

l1 = lr1 + ls1 (3.83)

where lr1 is the unstretched length of the portion of the first segment that rests at the
seabed.

Figure 30 – Multi-segment mooring line profile.
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Let us now consider an infinitesimal element of the segment sj, as presented at
Figure 31. Considering the linear elasticity of the material, it is possible to relate the
stretched and the unstretched lengths of the element (ds̃ and ds, respectively):

ds̃j
dsj

= 1 + T

EAj
(3.84)

From the horizontal equilibrium of the forces and after some algebraic manipulations,
it is derived:

dT

T
= tan θdθ (3.85)

4 In this context, unstretched length can be seen as the nominal unloaded length.
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Figure 31 – Forces acting on an infinitesimal mooring element.
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Then, one may find the horizontal component of the tension is constant:

FH = T cos θ (3.86)

On the other hand, the vertical equilibrium of the forces leads to:

γjdsj = dT sin θ + T cos θdθ (3.87)

Considering Equation 3.85 and with a simple algebraic work, Equation 3.87 becomes:

γjdsj = FH
cos2 θ

dθ (3.88)

From Figure 31, the geometric relations are written:

dhj
ds̃j

= cos θ (3.89)

dvj
ds̃j

= sin θ (3.90)

A classic result from extensible catenary laying cables can be obtained by combining
Equation 3.84 and Equations 3.89 and 3.90, respectively:

dhj
dsj

= cos θ + FH
EAj

(3.91)

dvj
dsj

= sin θ + T sin θ
EAj

(3.92)

where: FH is the horizontal projection of the tension at the fairlead. Also, from classical
catenary formulations, FH can be shown to be constant along the cable (Faltinsen, 1993).
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Now, the distances hj and vj are calculated by integrating, respectively, Equations
3.91 and 3.92 considering Equation 3.88:

hj = FH
γj

 ln
FVm +

√
F 2
H + F 2

Vm

FH

− ln
FVm−1 +

√
F 2
H + F 2

Vm−1

FH

+ FH
EAj

lsj

(3.93)

vj = 1
γj

(√
F 2
H + F 2

Vm −
√
F 2
H + F 2

Vm−1

)
+ FVm
EAj

lsj −
1
2
l2sjγj

EAj
(3.94)

where: FVm−1 and FVm are the vertical component of the tension at the lower and upper
extremities of the segment, respectively, as presented at Figure 32.

Figure 32 – Free-body diagram for s1 and sj.
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Figure 32 illustrates the free-body diagram of segments s1 and sj. Notice that the
equilibrium at the horizontal direction brings FHm = FHm−1 = ... = FH , i.e. the horizontal
component of the tension is constant along the segment, as demonstrated in Equation
3.86. Here, as aforementioned, two hypotheses are taken into consideration: the friction
between the line and the seabed is neglected, and there is no sea current loading. The
portion resting is then submitted to a constant axial tension FH . Nevertheless, from the
vertical equilibrium, it is trivial to notice that5:

FVm = FVm−1 + γjlsj (3.95)

By the action-reaction principle and taking into consideration the above force
relations, it is clear to see that the vertical force acting at the vessel fairlead can be written
5 Notice that for the case where there is an TDP, i.e. a portion of the first segment lays at the seabed,

FV0 = 0.



76 Chapter 3. Mathematical Models

as function of the vertical component of the forces at the upper ends of each segment. At
the same time, as the horizontal component is constant along the line, it follows that:

FH = FHN (3.96)

FV = FVN = FVN−1 + lsNγN (3.97)

Then, the vertical force FVm can be expressed as:

FVm = FV −
N∑

k=j+1
lskγk (3.98)

From Equations 3.95 and 3.98, it is possible to obtain the unstretched suspended
length of the first segment:

ls1 = 1
γ1

(
FV −

N∑
k=2

lskγk

)
(3.99)

Now, it is possible to rewrite Equations 3.93 and 3.94, as functions of the forces at
the fairlead:

hj = FH
γj

 ln
FV −∑N

k=j+1 lskγk +
√
F 2
H + (FV −

∑N
k=j+1 lskγk)2

FH


− ln

FV −∑N
k=j lskγk +

√
F 2
H + (FV −

∑N
k=j lskγk)2

FH

+ FH
EAj

lsj (3.100)

vj = 1
γj


√√√√√F 2

H + (FV −
N∑

k=j+1
lskγk)2 −

√√√√√F 2
H + (FV −

N∑
k=j

lskγk)2


+
FV −

∑N
k=j+1 lskγk

EAj
lsj −

1
2
l2sjγj

EAj
(3.101)

For the case where the line touches the seabed, the vertical projection of the first
segment is given considering the relation from Equation 3.99:

v1 = 1
γ1

√√√√F 2
H + (FV −

N∑
k=2

lskγk)2 + 1
2

(FV −
∑N
k=2 lskγk)2

EA1γ1
(3.102)

Again, for the case with TDP, the remaining term to be defined is the horizontal
projection of the portion resting at the seabed of the first segment. Firstly, the unstretched
length can be obtained by combining Equations 3.83 and 3.98.

lr1 = l1 −
1
γ1

(
FV −

N∑
k=2

lskγk

)
(3.103)
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Then, from the linear elasticity, the projection of the portion resting at the seabed6

is:

hr1 =
[
l1 −

1
γ1

(
FV −

N∑
k=2

lskγk

)](
1 + FH

EA1

)
(3.104)

Finally, the horizontal projection of the first segment as a whole is:

h1 = l1 −
1
γ1

(
FV −

N∑
k=2

lskγk

)
+ FH
EA1

l1

+ FH
γ1

ln
FV −∑N

k=2 lskγk +
√
F 2
H + (FV −

∑N
k=2 lskγk)2

FH

 (3.105)

Concluding, one may write the expressions of the horizontal and vertical projections
of the anchor-fairlead distance as functions of the horizontal and vertical components
of the tension at the fairlead, as in Equations 3.106 and 3.107. These equations are the
so-called characteristic tension function for each multi-segment mooring line.

hf (FH , FV ) =
N∑
j=1

hj (3.106)

vf (FH , FV ) =
N∑
j=1

vj (3.107)

Some important considerations must be made. In case of modelling a one-segment
extensible catenary mooring line, i.e. considering N = 1, one may reduce the model above
to only the first segment. The resulting formulation is exactly the classic one founded, for
example, in Jonkman (2007). In turn, the classical (non-extensible) catenary line model
can be obtained by considering the EA1 →∞. The terms related to the linear elasticity
will be reduced to zero, and final distances become functions of the tension only. It is easy
to notice that this scenario makes the line “stiffer”, and this effect is deeper discussed at
Chapter 4.

6 Notice that the horizontal projection of this portion is numerically equal to its stretched length.
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4 Analyses of Spread Mooring Systems

The present chapter aims to illustrate and discuss the application of the proposed
methodologies in this master dissertation. In this context, the OC4-DeepCwind semisub-
mersible platform is taken as a case study. Two SMS arrangements are considered: (i) an
one-segment all-chain catenary mooring system with three lines and (ii) a three-segment
chain-wire-chain catenary mooring system with six lines. The first case study follows the
original arrangement proposed in Robertson et al. (2014). For this case study, the influence
of the mooring line pre-tensioning is investigated by considering different pre-tensioning
scenarios. The effect of the line axial stiffness is also studied. On the second case study,
the concept proposed in the second case study allows to understand the use of the multi-
segment mooring line model, illustrating the application of the formulation as a design
tool.

Different analyses are herein derived for both cases. Firstly, the stiffness matrix
for the trivial equilibrium position1 is calculated. Secondly, the natural periods and the
equivalent modes of oscillation for the horizontal plane motions ([rx ry ψ]) are evaluated
by simply solving the corresponding linear eigenvalue problem. Thirdly, the effect of the
vessel offset and heading on the results is discussed by plotting colored maps, justifying
the importance of a formulation for a generic position different from the trivial equilibrium
one. Now, the OC4 project is briefly described, with focus on the relevant parts for this
work. More details are available in Robertson et al. (2014a).

Figure 33 presents the OC4 floating unit and tower. The semisubmersible-type
floating unit is composed of three large columns disposed on the form of an equilateral
triangle and a central column in which the tower is attached. This configuration yields a
centralized center of mass. The connection between the columns is made by means of a
set of pontoons and cross members. The base of the columns are enlarged. Table 3 brings
both the floating unit structural and hydrodynamic properties. Notice that only the planar
motions properties are presented, since only they are investigated in the linear eigenvalue
problem. The asymptotic limit of zero-frequency was adopted for a first estimation of
the added masses and moments of inertia for those motions. This hypothesis is justified
as the periods of oscillation for the planar modes are typically higher then 100 s, and
considering that for this range of periods the added masses tend to be constant, as it can
be seen in Figure 34. The values have been determined through the worldwide-recognized
panel method-based software WAMIT R©. These values were obtained from Robertson et
al. (2014a).

1 Here, the trivial equilibrium position means the position when no external force acts at the system, i.e.
the design configuration.
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Figure 33 – The OC4-DeepCwind floating wind system design.

Source: Robertson et al. (2014a)

Before going to the case studies themselves, Figure 35 brings the step-by-step
procedure for evaluating the stiffness matrix using the formulation herein proposed. In
the figure, keypoints denote the position of the mooring lines anchors and fairleads, with
respect to the global and local references frames, respectively. The second step can be

Table 3 – Platform structural and hydrodynamic properties.

Type Semisub.
Mass (m) 1.3473E+7 kg
Platform yaw inertia about CM (Iψψ) 1.226E+10 kgm2

Surge-Surge added mass (Maξξ) 8.47E+6 kg
Sway-Sway added mass (Maηη) 8.47E+6 kg
Yaw-Yaw added mass (Maψψ) 6.44E+9 kgm2

Source: Adapted from (Robertson et al., 2014a)
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Figure 34 – The OC4-DeepCwind floating wind added masses and moment of inertia for
the planar motions. Determined with WAMIT R©.

Source: The Author

1. Mooring system definition: keypoints, number of lines, line composition

2. Position to be evaluated: 𝒓 = 𝑟𝑥 𝑟𝑦 𝑟𝑧 𝑡 and 𝜽 = 𝜙 𝜃 𝜓 𝑡

3. For the 𝑖-th mooring line

i. Compute ℎ𝑓
(𝑖)

, 𝑣𝑓
(𝑖)

and 𝛼(𝑖);

ii. Compute 𝐹𝐻
(𝑖)

, 𝐹𝑉
(𝑖)

, 𝐾𝐻𝐻
(𝑖)

, 𝐾𝐻𝑉
(𝑖)

, 𝐾𝑉𝐻
(𝑖)

and 𝐾𝑉𝑉
(𝑖)

;

iii. Compute K(𝑖), such as:

K
(𝑖) =

K𝑇𝑇
𝑖

K𝑇𝑅
𝑖

K𝑅𝑇
𝑖

K𝑇𝑇
𝑖

Figure 35 – Step-by-step procedure for the mooring system stiffness calculation.

used in a recursive way, allowing users to determine the colormaps presented in Sections
4.1 and 4.2, or just evaluating the stiffness matrix at an specific position (being the trivial
equilibrium position or not). Finally, it is important to highlight once more that to compute
the i-th mooring line contribution for the whole system stiffness matrix, its characteristic
tension functions (F (i)

H (h(i)
f , v

(i)
f ) and F

(i)
V (h(i)

f , v
(i)
f )) have to be known a priori, seen as

inputs of the problem. For some cases, such as catenary-laying cables, the analytical
formulation is known. When not, the characteristic tension functions might be determined
using numerical methods, e.g. FE modeling.

Once the vessel parameters are defined and the procedure is recapitulated, the
proposed methodology is applied considering two different mooring line configurations.
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Section 4.1 uses the original all-chain catenary mooring line defined by Robertson et
al. (2014a). In turn, in Section 4.2 an alternative three-segment hybrid mooring line is
proposed, considering an hypothetical case of deep water installation. In both cases, a
simple linear modal analysis is done, in order to investigate the effects of the mooring
system parameters on the natural modes and periods of the system.

4.1 All-chain catenary mooring line

The original OC4-DeepCwind mooring arrangement proposed by Robertson et al.
(2014a) is a equidistant 3×1 spread mooring system. Figure 36 brings its top view. In turn,
the mooring line profile is an one-segment mooring chain, represented in Figure 37. Table
4 brings the mooring system’s relevant data.

Figure 36 – Top view of the OC4-DeepCwind floating wind original mooring system.

𝑦

𝑥
𝑂 ≡ 𝐺

Source: Robertson et al. (2014a)

The trivial equilibrium position, i.e. the one for a system under no external
excitation, is obviously q = [0 0 0 0 0 0]t. Notice that the system is perfectly polar
symmetric. Hence, the stiffness coefficients can be written from Equations 3.75 to 3.82. It
follows that the only non-null coefficients are:

K11 = 3
2(kHH + k̄HH) (4.1)

K15 = K51 = 3
2(kV HRf + kHHpζ + k̄HHpζ) (4.2)

K22 = 3
2(kHH + k̄HH) (4.3)
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Figure 37 – One-segment all-chain mooring line profile of the OC4-DeepCwind floating
wind original mooring system.
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Table 4 – The OC4-DeepCwind original mooring system parameters.

Number of mooring lines 3
System type Spread system
Line profile One-segment
Line composition Chain
Water depth 200 m
Fairlead depth 14 m
Radius from center to anchors 837.6 m
Radius from center to fairleads 40.9 m
Unstretched lenght 835.35 m
Mass per unit length 113.35 kg/m
Equivalent diameter 76.6 mm
Axial Stiffness 753.6 MN

Source: Adapted from (Robertson et al., 2014a)

K24 = K42 = −3
2(kV HRf + kHHpζ + k̄HHpζ) (4.4)

K33 = 3kV V (4.5)

K44 = 3
2(p2

ζkHH + p2
ζ k̄HH + 2pζRfkHV +R2

fkV V +RfFH − 2pζFV ) (4.6)

K55 = 3
2(p2

ζkHH + p2
ζ k̄HH + 2pζRfkHV +R2

fkV V +RfFH − 2pζFV ) (4.7)

K66 = 3k̄HHR2
f

(
1 + h

Rf

)
(4.8)

Aiming at numerically evaluating the stiffness matrix, it is necessary to solve the
catenary problem. As aforementioned, for a one-segment mooring line the characteristic
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tension functions from Equations 3.106 and 3.107 have N = 1, thereafter, becomes known
the extensible catenary equations:

hf = l − 1
γ
FV + FH

EA
l + FH

γ
ln
FV +

√
F 2
H + F 2

V

FH

 (4.9)

vf = 1
γ

√
F 2
H + F 2

V + 1
2
F 2
V

EAγ
(4.10)

Notice that Equations 4.9 and 4.10 are written in the inverted form, i.e. the
distances as function of the forces at the fairlead. For the development herein proposed,
it is necessary to numerically evaluate forces as well as the tangent (in the plane of the
line) and “string” (perpendicular to the line) stiffness. This can be done by using the
Newton-Raphson method for instance (see Appendix A for details). Table 5 brings the
values for the trivial equilibrium position.

Table 5 – The OC4-DeepCwind original mooring line forces and stiffness.

Pre-tensioning 1.16E+3 kN
Horizontal force (FH) 9.63E+2 kN
Vertical force (FV ) 6.49E+2 kN
Horizontal-Horizontal local stiffness (kHH) 5.29E+1 kN/m
Vertical-Vertical local stiffness (kV V ) 6.84 kN/m
Horizontal-Vertical local stiffness (kHV ) 1.62E+1 kN/m
Horizontal-Horizontal “string stiffness” (k̄HH) 1.21 kN/m

Source: The Author

Finally, the analytical mooring system stiffness K for the trivial equilibrium position
becomes (values in kN, m and rad):

K =



7.09E+1 0 0 0 −1.07E+2 0
0 7.09E+1 0 1.07E+2 0 0
0 0 1.91E+1 0 0 0
0 1.07E+2 0 8.73E+4 0 0

−1.07E+2 0 0 0 8.73E+4 0
0 0 0 0 0 1.17E+5


(4.11)

In the literature, Robertson et al. (2014a) calculated the stiffness matrix using the
applied prescribed static offset analysis. Stiffness coefficients were calculated via central-
differences of the force-displacement curves. These curves were obtained by imposing small
perturbations around the trivial equilibrium position of the platform in its DoFs resulting
in restoring forces. Then, Equation 4.12 brings the resulting stiffness matrix KNREL (values
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in kN, m and rad). It is easy to note that the the results obtained analytically are in
excellent agreement with those found in (Robertson et al., 2014a).

KNREL =



7.08E+1 0 0 0 −1.08E+2 0
0 7.08E+1 0 1.08E+2 0 0
0 0 1.91E+1 0 0 0
0 1.07E+2 0 8.73E+4 0 0

−1.07E+2 0 0 0 8.73E+4 0
0 0 0 0 0 1.17E+5


(4.12)

The analytical formulation also allows investigating the effect of considering the
axial stiffness in the stiffness matrix. To illustrate this, the classic (non-extensible) mooring
model is taken into consideration, i.e. the axial stiffness EA is taken at the limit EA→∞.
In other words, it neglects the effects of the catenary line axial extension. Recovering the
catenary equations, one will have:

hf = L− FV
γ

+ FH
γ

ln
FV +

√
F 2
V + F 2

H

FH

 (4.13)

vf = 1
γ

(√
F 2
V + F 2

H − FV
)

(4.14)

The stiffness matrix K∞ for this case becomes (values in kN, m and rad):

K∞ =



8.12E+1 0 0 0 −1.46E+2 0
0 8.12E+1 0 1.46E+2 0 0
0 0 2.05E+1 0 0 0
0 1.46E+2 0 9.16E+4 0 0

−1.46E+2 0 0 0 9.16E+4 0
0 0 0 0 0 1.24E+5


(4.15)

As one could expect, increasing the axial stiffness of the mooring line increases also the
absolute value of the stiffness coefficients of the mooring system. Indeed, the mooring line
stiffness can be seen as an association of two springs in series2: one related to the geometric
stiffness (the terms from the right-hand-side of Equations 4.9 and 4.10 not related to EA)
and the other to the elastic one. By taking EA→∞, the elastic stiffness tends also to
infinity, what makes the line – and the whole system – stiffer. To illustrates this, Figure
38 shows the characteristic tension function for the extensible catenary model. Notice that
for the trivial equilibrium position, where (hf , vf ) = (796.732, 186) m, the mooring tension
functions are highly nonlinear.

Following, Figure 39 shows the comparison between the characteristic curves
for both scenarios: the extensible and the non-extensible catenary models. Here, it is
2 Notice that the total displacement of the equivalent spring can be seem as the sum of the displacement

of the two equivalent springs.
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Figure 38 – The OC4-DeepCwind chain mooring line characteristic curves. Unities: N and
m.

Source: The Author

remarkable the effects of the linear axial stiffness on the whole system stiffness coefficients.
Notice that the derivative of the curves are higher for the curve associated with the classic
non-extensible catenary. Concluding, the effect of the material extensibility is as relevant
as is the geometric (catenary) stiffness. Thus, the non-consideration of the axial stiffness,
following the classic (non-extensible) catenary formulation, yields an incorrect evaluation
of the stiffness coefficients of the system. It is important to point out that this verification
would be difficult to execute using numerical methods such as FE models. A new case
study, using different properties should be modeled. Additionally, the use of models with
higher stiffness (tending to infinity) might present convergence issues.

The methodology herein proposed allows also to define the vessel natural periods
of oscillation, for planar motions. Table 6 brings the values for the unloaded equilibrium
position and the comparison with values achieved by Robertson et al. (2014b). The natural
periods are calculated by solving the classic linear eigenvalue problem. This can be done for
motions on horizontal plane only, by taking the asymptotic limit at zero frequency for the
values of their respective added mass coefficients. In this scenario, the corresponding 3×3
stiffness matrix recovers the one obtained in Pesce, Amaral and Franzini (2018). Notice
that in the presented table, the natural periods are numerate following a crescent order
and do not recovers the generalized coordinate directions.
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Figure 39 – Comparison between the characteristic curves for the extensible and the
non-extensible catenary mooring models. Unities: N and m.

Source: The Author

Table 6 – Natural periods of oscillation for the trivial position. Unities: s.

Extensible catenary Robertson et al. (2014b) Non-extensible catenary
T1 76.02 76.03 73.82
T2 105.48 105.53 98.57
T3 105.48 105.53 98.57

Source: The Author

As expected, the results considering the correct extensible catenary model show a
good agreement with the literature. However, the classic catenary model results in lower
periods, since it is stiffer than the extensible catenary model. This demonstrates again the
importance of a proper line model for the analysis. In addition, note that as the periods
are, indeed, high enough to consider the added masses to be constant and equal to the
asymptotic limit of zero-frequency.

The modes of oscillation for the planar motions analytically obtained are sketched
in Figure 40. Only the extensible catenary result is presented, since the mooring line
stiffness does not affect the schematic representation of the mode shapes. Notice that
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they are “pure”-modes, i.e. there is no coupling between motions. This was expected, as
the stiffness matrix considering only these motions is diagonal, for the trivial equilibrium
position. In this context, it is possible to recover the ocean engineering classification, from
left to right: yaw, sway and yaw.

Figure 40 – The OC4-DeepCwind modes of oscillation for the trivial position, correspond-
ing to natural periods Tj, j = 1, 2, 3.

Source: The Author

Besides presenting excellent agreement with the literature results, the practical
aspect of the analytical model is noteworthy. It can be used as a design tool in order
to evaluate different effects of the mooring system parameters on its stiffness – the pre-
tensioning of the mooring lines, the materials, the mooring system configuration, mooring
line profile, among others. In other words, the mooring system defining parameters can
be easily changed in order not only to qualify, but also quantify their effect on the whole
mooring system stiffness. To illustrate this, besides the line profile changing (as presented
in the next case study, in Section 4.2), let us study the effects of the mooring line pre-
tensioning. Three scenarios are proposed: the design base case and the line being 10%
less/more tensioned. Table 7 presents the important parameters for each case. In the
table, f ∗ is the pre-tensioning ratio with respect to the design base case. Notice that the
pre-tensioning is assessed by varying the line total length.

Table 7 – Pre-tensioning cases: total length, mooring line forces and stiffness.

Pre-tensioning condition Low Design High
f ∗ 0.9 1.0 1.1
Length (m) 837.95 835.35 833.15
Pre-tensioning (kN) 9.96E+2 1.11E+3 1.22E+3
Horizontal force (kN) 7.98E+2 9.08E+2 1.02E+3
Vertical force (kN) 5.96E+2 6.31E+2 6.65E+2
Horizontal-Horizontal local stiffness (kN/m) 3.88E+1 4.61E+1 5.37E+1
Vertical-Vertical local stiffness (kN/m) 6.05 6.38 6.69
Horizontal-Vertical local stiffness (kN/m) 1.29E+1 1.44E+1 1.60E+1
Horizontal-Horizontal “string stiffness” (kN/m) 1.00 1.14 1.28

Source: The Author
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The stiffness matrix for the lower pre-tensioning condition (f ∗ = 0.9) case becomes
(values in kN, m and rad):

Kf∗=0.9 =



5.97E+1 0 0 0 −4.66E+1 0
0 5.97E+1 0 4.66E+1 0 0
0 0 1.81E+1 0 0 0
0 4.66E+1 0 7.87E+4 0 0

−4.66E+1 0 0 0 7.87E+4 0
0 0 0 0 0 1.03E+5


(4.16)

Furthermore, the higher pre-tensioning condition (f ∗ = 1.1) has the following
stiffness matrix (values in kN, m and rad):

Kf∗=1.1 =



8.24E+1 0 0 0 −1.76E+2 0
0 8.24E+1 0 1.76E+2 0 0
0 0 2.01E+1 0 0 0
0 1.76E+2 0 9.58E+4 0 0

−1.76E+2 0 0 0 9.58E+4 0
0 0 0 0 0 1.31E+5


(4.17)

The natural periods for the planar modes can also be calculated. Table 8 brings
these results.

Table 8 – Study of the pre-tensioning effect on the natural periods of oscillation for the
trivial position. Unity: s.

f ∗ 0.9 1.0 1.1
T1 81.10 76.02 71.81
T2 114.97 105.48 97.78
T3 114.97 105.48 97.78

Source: The Author

By comparing the results with the design pre-tensioning condition, it is clear
the influence of the line pre-tensioning on the stiffness coefficients and on the natural
periods of the planar modes. Indeed, it is significant that the pre-tensioning plays an
important role on the whole mooring system stiffness. Even with a small variation on
these parameters, the resulting stiffness matrix presents a substantial fluctuation. For
example, notice that horizontal plane motions3 present a sensitive variation on the mooring
system stiffness, mainly for the yaw motion. Among other things, the loss of yaw stiffness
3 For the trivial position, the motions on the horizontal plane matches with the naval engineering “surge”,

“sway” and “yaw” motions, since the rotation matrix for that point is the 6×6 identity matrix.
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can cause instability of the trivial equilibrium due to external forces. This demonstrates
the importance of the pre-tensioning effect, as previewed on Chapter 3. Analogously, the
natural periods vary largely. The results from Table 8 show that the methodology herein
proposed can indeed be used as a design tool, once it facilitates the calculation of a first
estimative of natural periods for different design conditions.

Other important benefit of the methodology is that it allows us not only to
easily evaluate the values of the mooring system stiffness at the trivial position, but
also to map the values of the stiffness coefficients for different positions of the platform.
As an example of this application, it is possible to vary the offset of the platform rx

and ry within the interval of ±20% of the radius from platform center to fairleads
Rf – i.e. r∗x = r∗y = [−20%Rf ; 20%Rf ], being (r∗x, r∗y) = (rx/Rf , ry/Rf) – keeping the
other generalized coordinate equal to zero. In other words, one can evaluate the stiffness
matrix for q = [rx ry 0 0 0 0]. Figures 41 to 43 exhibit these maps, presenting the
partitions KTT , KTR and KRR, considering the design pre-tensioning case. Notice that due
to the symmetry of the stiffness matrix, only the upper-triangular matrix is shown – then
KTR = KRT . It is notable that this way of presenting the results is also innovative.

One should interpret these colored maps as follows: Suppose that a constant external
excitation changes the position from the unloaded equilibrium. Obviously, the stiffness
matrix due to the mooring system is no longer that calculated at the initial position.
This justifies the use of the presented methodology, allowing the designer to evaluate the
stiffness at any point in an easy way. Some stability studies may also be done from the
maps, but this is left for a further work.

From these maps, it is possible to see that stiffness coefficients largely vary, even if
the offset is within operational limits. It is peculiar that some degrees of freedom that are
not coupled at the trivial position, become coupled at certain offsets. For example, notice
the stiffness coefficient K12 for an offset along the coordinate ry: a coupling between the
motions in directions rx and ry can be observed. This demonstrates the high nonlinear
characteristic of the mooring system and justifies the use of an analytical model for rapidly
evaluating the stiffness at that position – and not considering only the stiffness matrix at
the trivial equilibrium position.

Some symmetric and anti-symmetric patterns are also possible to be seen. For
instance, notice the symmetry of the elements in the diagonal with respect to the displace-
ment ry, as expected following the symmetry of the mooring system at the trivial position.
Considering the planar DoFs, i.e. rx, ry and ψ, the symmetric-anti-symmetric pattern is
even more pronounced. K12 is anti-symmetric with respect to ry while K26 is symmetric
to both, rx and ry.
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Figure 41 – Partition KTT of the stiffness matrix as function of the offset. Unities: kN/m.

Source: The Author
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Figure 42 – Partitions KTR and KRT of the stiffness matrix as function of the offset.
Unities: kN/rad (KTR) or kNm/m (KRT ).

Source: The Author
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Figure 43 – Partition KRR of the stiffness matrix as function of the offset. Unities:
kNm/rad.

Source: The Author
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Again, the mean position of the vessel may influence the natural periods of oscilla-
tions. In this context, the linear eigenvalue problem is solved within the same intervals and
the corresponding colored maps are presented in Figure 44, considering only the design
pre-tensioning case. However, Figure 45 rearranges the natural periods considering the
predominant direction of the motion: surge, sway and yaw4.

Figure 44 – The OC4-DeepCwind natural periods as function of the offset. Unity: s.

Source: The Author

Figure 45 – The OC4-DeepCwind natural periods as function of the offset: preponderant
directions. Unity: s.

Source: The Author

It is noticeable that the periods largely vary due to vessel offset. This demonstrates
once more the applicability of the presented tool. Once the designer usually aims to
desynchronize the natural periods of motion with external forces, these maps indicates in
an uncomplicated way the natural periods values for a shifted offset position. In turn, the
maps from Figure 45 present an interesting pattern. Depending on the shifted position, the
mode with higher period changes from being a surge-predominant to a sway-predominant.
Regard that the yaw-predominant mode is exactly mode 1. Again, these maps can be of
importance for the design of mooring systems.
4 Notice that at the drifted positions, motions along directions rx and ry can still be confound with the

ocean engineering motions “surge” and “sway”, as the rotation remains ψ = 0◦.
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The shifted position can also lead to a coupling of the motions on the vibration
modes. Figure 46 brings the natural periods and modes for the trivial and for four shifted
positions: (r∗x, r∗y) = (±0.20,±0.20). Notice that the aforementioned coupling is even more
pronounced for horizontal motions. For example, modes 2 and 3 were initially pure sway
and surge modes, but when presented for the shifted position there is a coupling between
them. In other words, it is notable a composition of modes. In turn, mode 1, that for the
trivial was an only yaw mode, became a surge-sway-yaw mode for all shifted positions
presented. The symmetry of the mooring system arrangement with respect to Ox axis is
reproduced on the periods, but it produces an antisymmetric pattern for the modes (e.g.,
for shifted positions (r∗x,r∗y) = (0.20, 0.20) and (r∗x,r∗y) = (0.20, -0.20), notice that mode 2
and mode 3 are mirrored with respect to surge and sway motions, respectively.

The symmetric / antisymmetric patterns can not be seen with respect to Oy axis.
Finally, it is notable that the mode with the higher period (mode 3) can be either a
surge-predominant or a sway-predominant mode, depending on the shifted position with
respect to Oy axis (e.g., mode 3 for shifted positions (r∗x,r∗y) = (0.20, 0.20) and (r∗x,r∗y) =
(-0.20, 0.20) are a sway-predominant and surge-predominant modes, respectively). This is
the same conclusion obtained from Figure 45.

Figure 46 – The OC4-DeepCwind modes of oscillation for the trivial and shifted equilibrium
positions, corresponding to natural periods Tj, j = 1, 2, 3.
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Source: The Author

Besides the vessel offset, its heading also presents an interesting influence on the
stiffness coefficients. In fact, for the same case represented in Figures 41 to 43, let us
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suppose that the mean yaw position, no longer the trivial one, but at an initial heading
angle ψ̄ = 5◦, with all other generalized coordinates null. In other words, let us map the
stiffness coefficients for q = [rx ry 0 0 0 ψ̄]. Figures 47 to 49 bring these results,
again presenting all the partitions.

Notice that the terms from the first partition, KTT , remain almost the same. In
other words, the effect of an initial heading angle does not impact drastically the stiffness
coefficients for the translation-only motions. This could be previewed just by considering
the stiffness coefficients from Equations 3.30 to 3.32, 3.36 to 3.38 and 3.32 to 3.44.

However, the coefficients from partition KTR are the most influenced by the heading
condition. It is interesting that some symmetric/antisymmetric patterns from Figure 42
are broken in Figure 48. For instance, coefficient K15 has its point of major stiffness
shifted from r∗y = 0 to somewhere near to r∗y = 10%. Indeed, the whole map seems to
rotate. The heading angle degenerates the double antisymmetric pattern from coefficient
K16, which presents an antisymmetric pattern with respect to r∗x only, and symmetry
with respect to r∗y. Almost similarly, coefficient K26 has its double symmetry degenerated
to an antisymmetry with respect to r∗y, only. In both cases K16 and K26, the stiffness
greatly increased. Coefficient K14 is no longer null at the (r∗x, r∗y) = (0, 0) and the whole
map is reduced by ∼ 80kN/rad, keeping the same format. It is interesting to notice that
coefficient K36, initially null, presents a significant gain of stiffness. In other words, ψ̄
plays an important role in the coupling rz − ψ. The other coefficients (K24, K34 and K35)
slightly vary.

Finally, coefficients from partition KRR are also influenced by the initial heading
angle. The effect is in order to increase the stiffness of the terms from the mean diagonal,
mainly. This can be seen as a gain of stiffness in rotation motions of the vessel.
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Figure 47 – Partition KTT of the stiffness matrix as function of the offset. Heading =
ψ̄ = 5◦. Unities: kN/m.

Source: The Author
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Figure 48 – Partitions KTR and KRT of the stiffness matrix as function of the offset.
Heading = ψ̄ = 5◦. Unities: kN/rad (KTR) or kNm/m (KRT ).

Source: The Author
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Figure 49 – Partition KRR of the stiffness matrix as function of the offset. Heading =
ψ̄ = 5◦. Unities: kNm/rad.

Source: The Author
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Now, the stiffness coefficients and natural periods can be evaluated as function of
both the pre-tensioning and the vessel offset. Figures 50 to 58 present the partitions of
the stiffness matrix for the three pre-tensioning cases. The color scales are the same in all
cases for each stiffness coefficient. Notice that Figures 53 to 55 are the same as Figures
41 to 43 presented earlier, but with a different color scale in order to allow the reader
to better compare the effects of the pre-tensioning on the stiffness coefficient. In turn,
Figure 59 presents the periods as function of the mean offset position also for the three
pre-tensioning cases.

Again, it is significant that the pre-tensioning plays an important role on the
stiffness of the system. Notice that all the coefficients of the main diagonal (Kjj, j = 1, ..6)
are strongly affected by the pre-tensioning variation. The pre-tensioning increase reflects
in an increase of those stiffness coefficients. Additionally, the surge-pitch and sway-roll5

coefficients (i. e. K15 and K24, respectively) also vary with the pre-tensioning. However,
while the K24 increases, K15 decreases. However, one may say that K15 increases in absolute
value. In other words, the non-null coefficients at the trivial position are the most sensitive
to pre-tensioning variation and they experiment an absolute increase of stiffness. Once
more, these colored maps demonstrate the importance of a proper generic analytical tool
to evaluate stiffness coefficients.

In turn, as the increase of pre-tension results in an increase of stiffness of the
system, it is natural to expect that the natural periods reduce, as presented in Figure 59.
A practical result can be extracted from this: changing the total length of the line during
a mooring operation can be an easy alternative in order to desynchronize the system
natural periods from those of the external forces. Also, the colored maps from Figure 59
can be employed during the early stages of the project to investigate the range of the
natural periods for different design configurations. Thus, the presented methodology can
be an useful tool not only to evaluate the stiffness and natural periods for different offset
conditions but also during design and operation of moored systems.

5 Notice that for the present study, the rotation angles remain the same, and rx, ry and rz motions can
be confounded with the ocean engineering classical surge, sway and heave motions, respectively
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Figure 50 – Partition KTT of the stiffness matrix as function of the offset. Low pre-
tensioning case. Pre-tensioning ratio: f ∗ = 0.9. Unities: kN/m.

Source: The Author
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Figure 51 – Partitions KTR and KRT of the stiffness matrix as function of the offset. Low
pre-tensioning case. Pre-tensioning ratio: f ∗ = 0.9. Unities: kN/rad (KTR) or
kNm/m (KRT ).

Source: The Author
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Figure 52 – Partition KRR of the stiffness matrix as function of the offset. Low pre-
tensioning case. Pre-tensioning ratio: f ∗ = 0.9. Unities: kNm/rad.

Source: The Author
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Figure 53 – Partition KTT of the stiffness matrix as function of the offset. Design pre-
tensioning case. Pre-tensioning ratio: f ∗ = 1.0. Unities: kN/m.

Source: The Author
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Figure 54 – Partitions KTR and KRT of the stiffness matrix as function of the offset. Design
pre-tensioning case. Pre-tensioning ratio: f ∗ = 1.0. Unities: kN/rad (KTR) or
kNm/m (KRT ).

Source: The Author
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Figure 55 – Partition KRR of the stiffness matrix as function of the offset. Design pre-
tensioning case. Pre-tensioning ratio: f ∗ = 1.0. Unities: kNm/rad.

Source: The Author
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Figure 56 – Partition KTT of the stiffness matrix as function of the offset. High pre-
tensioning case. Pre-tensioning ratio: f ∗ = 1.1. Unities: kN/m.

Source: The Author
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Figure 57 – Partitions KTR and KRT of the stiffness matrix as function of the offset. High
pre-tensioning case. Pre-tensioning ratio: f ∗ = 1.1. Unities: kN/rad (KTR) or
kNm/m (KRT ).

Source: The Author
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Figure 58 – Partition KRR of the stiffness matrix as function of the offset. High pre-
tensioning case. Pre-tensioning ratio: f ∗ = 1.1. Unities: kNm/rad.

Source: The Author
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Figure 59 – The OC4-DeepCwind natural periods as function of the offset and the pre-
tensioning. Unities: s.

𝑓∗ = 0.9

𝑓∗ = 1.0

𝑓∗ = 1.1

Source: The Author
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4.2 Chain-wire-chain catenary mooring line

An alternative mooring system is proposed for the OC4-DeepCwind platform. A
3×2 symmetric spread mooring system is evaluated. The the lines are spaced of β = 5◦

inside the cluster. Figure 61(a) shows its top view. All six mooring lines are equal with
a three-segment chain-wire-chain profile, as represented in Figure 61(b). Table 9 brings
the details of the mooring system parameters. This system aims to give the same vertical
restoring force as the original one, but with a smaller anchor radius. The parameters of
the line were calculated using the estimation presented in Ma et al. (2019).

Figure 60 – The OC4-DeepCwind floating wind alternative mooring system: (a) Top view
and (b) Chain-wire-chain mooring line profile.
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Source: The Author

The mooring line forces and stiffness should be evaluated as presented in Equations
3.106 and 3.107, taking N = 3 and considering the case where a portion of the first segment
rests at the seabed. Once more, the stiffness coefficients were numerically calculated using
the Newton-Raphson algorithm, as presented in Appendix A. Table 10 brings these values
for the trivial equilibrium point.

The analytical mooring system stiffness KALT at trivial equilibrium position is
calculated and presented in Equation 4.18 (values in kN, m and rad). Comparing it with
the stiffness matrix K given by Equation 4.11, it is clear that the alternative mooring
system is stiffer than the original one, since all diagonal terms increase. The off-diagonal
terms present an inversion of signal, what could lead to changes on amplitudes and phases
of coupled motions. The proposed arrangement was easily evaluated, demonstrating the
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Table 9 – The OC4-DeepCwind alternative mooring system parameters.

Number of mooring lines 6
System type Spread system
Line profile Three-segment
Line composition Chain-wire-chain
Water depth 200 m
Fairlead depth 14 m
Radius from center to anchors 596 m
Radius from center to fairleads 40.9 m
Segments 1 unstretched length 400 m
Segment 2 unstretched length 227.35 m
Segments 3 unstretched length 10 m
Segments 1 and 3 mass per unit length 111.85 kg/m
Segment 2 mass per unit length 7.01 kg/m
Segments 1 and 3 equivalent diameter 76.6 mm
Segment 2 equivalent diameter 40 mm
Segments 1 and 3 Axial Stiffness 592.6 MN
Segment 2 Axial Stiffness 141.9 MN

Source: The Author

Table 10 – The OC4-DeepCwind alternative mooring line forces and stiffness.

Pre-tensioning 6.25E+2 kN
Horizontal force (FH) 5.36E+2 kN
Vertical force (FV ) 3.21E+2 kN
Horizontal local stiffness (kHH) 3.34E+1 kN/m
Vertical local stiffness (kV V ) 6.15 kN/m
Coupled local stiffness (kHV ) 1.26E+1 kN/m
Horizontal “string stiffness” (k̄HH) 0.90 kN/m

Source: The Author

use of the methodology as a design tool allowing to compare different alternatives.

K =



1.03E+2 0 0 0 1.10E+2 0
0 1.03E+2 0 −1.10E+2 0 0
0 0 3.69E+1 0 0 0
0 −1.10E+2 0 1.00E+5 0 0

1.10E+2 0 0 0 1.00E+5 0
0 0 0 0 0 1.41E+5


(4.18)

Again, it is possible to calculate the natural periods of oscillation for motions
which take place on the horizontal plane. Table 11 brings these periods together with a
comparison to those from the original OC4-DeepCwind mooring concept.
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Table 11 – The OC4-DeepCwind natural periods of oscillation for the trivial position:
comparison between original and alternative mooring systems. Unities: s.

Original Alternative
T1 76.02 69.39
T2 105.48 87.49
T3 105.48 87.49

Source: The Author

It is worthy of attention that the alternative mooring system herein proposed
reduces natural periods. This could have been anticipated by considering that it is stiffer
than the original one.

Finally, the stiffness coefficients and natural periods for the alternative mooring
system can be mapped as functions of the mean offset position. Figures 61 to 61 show
the partitions of the stiffness matrix for the same range as used before, r∗x = r∗y =
[−20%Rf ; 20%Rf ]. In this sense, Figure 64 presents the natural periods as function of the
position.

As the alternative mooring system is symmetric and similar to the original one
(SMS with three equidistant fairleads), the colored maps’ disposition are also similar to
those presented in Figures 41 to 43. In other words, it is the same symmetric/antisymmetric
patterns for stiffness coefficients in the new system. However, as the proposed mooring
system is stiffer than the original one, the range of the coefficients in Figures 61 to 63 is
larger than in Figures 41 to 43. Indeed, all coefficients except K14 and K25 present higher
differences between extremum, for the offset limit proposed. An interesting result comes
from coefficients K15 and K24. Once more, these coefficients present an inversion of signal,
as the trivial position in Equation 4.18. It is notable that for some offset conditions both
coefficients can present the same signal, although they have opposite signals at unloaded
equilibrium position.

Similarly to what happened to the trivial equilibrium position, the natural periods
for other offset mean positions for the alternative mooring system are lower than for
the original one. However, differently to the colored maps for the natural periods from
the OC4-DeepCwind system, presented in Figure 44, the ranges from the T1 and T2 are
overlaid. Indeed, notice that in Figure 44 all three colored maps present different ranges,
while in Figure 64 they are not. This can indicate that the preponderant motion in the
modes are different for each position – or even the presence of truly coupled modes –,
including for the first mode.

Once more, all these analyses could only be made with the help of an analytical
closed formulation, a practical and easy tool. High-hierarchical nonlinear models are too
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time-consuming, which makes unfeasible to run such analyses. Thus, the analytical tool
herein proposed shows to be of great value in different stages of any offshore project, from
early design steps to operation.
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Figure 61 – Partition KTT of the stiffness matrix as function of the offset. Alternative
mooring system. Unities: kN/m.

Source: The Author
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Figure 62 – Partitions KTR and KRT of the stiffness matrix as function of the offset.
Alternative mooring system. Unities: kN/rad (KTR) or kNm/m (KRT ).

Source: The Author
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Figure 63 – Partition KRR of the stiffness matrix as function of the offset. Alternative
mooring system. Unities: kNm/rad.

Source: The Author
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Figure 64 – The OC4-DeepCwind natural periods as function of the offset. Alternative
mooring system. Unities: s.

Source: The Author
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5 Conclusions

The design of mooring systems is essential for many offshore energy structure
projects. A good design regarding its cost effectiveness is even more important for renewable
energies. The designer always has to balance the cost – including initial, operational and
maintenance ones – and the static and dynamics operational criteria. Additionally, the
mooring system design involves multiple variables and their effect on the response is not
trivial to be predicted. In this context, analytic expedite tools are of great value provided
they can help the designer predict the system response quicker. Consequently, it results in
being less expensive, from a computational point-of-view, than the usual high-hierarchical
nonlinear time-domain integration scheme. Analytical expedite tools allow to easily change
mooring system parameters and analyze their effects on the system stiffness. In this context,
the current master dissertation proposed an analytical closed-formulation to assess the
mooring system stiffness, regarding the evaluation of effects of the design parameters on a
mooring system project.

Initially, the mooring generalized forces were defined. These forces correspond to
the restoring ones acting on the vessel and associated with the six generalized coordinates:
three translational along x, y and z axes (rx, ry and rz) and three rotational ones (φ, θ and
ψ). Then, a local linearization of these forces was proposed and the stiffness matrix due
to the mooring system was defined. The obtained stiffness matrix is completely analytic.
The importance of this proposal is to have an initial approximation for the stiffness of the
system without complex high-hierarchical numerical modeling, as recommended in many
international codes. The methodology was submitted to some case studies, concerning
the OC4-DeepCwind semissubmersible platform. Two mooring system arrangements were
analyzed: (i) the original OC4 3×1 all-chain mooring system and (ii) an alternative 3×1
all-chain mooring system. The generic and analytical character of the formulation allowed
not only to obtain the stiffness coefficients at the trivial equilibrium position, but also to
map them as function of the vessel mean offset and heading. The results for the original
mooring system at the trivial equilibrium position were compared with the literature and
demosntrated excellent accordance. Subsequently natural periods were also assessed, by
simply solving the corresponding linear eigenvalue problem for the planar motions (i. e. rx,
ry and ψ). Thus, the methodology have been demonstrated as an important and easy tool
to evaluate the resonance excitation range. The effects of the pre-tensioning of mooring
lines on the system stiffness was evaluated, demonstrating its power for iterative designs.

We conclude that the methodologies herein proposed may be of great value for
the design of mooring system projects. The analytic and expedite formulations allow
the designer to easily vary the parameters of the mooring system in order to evaluate



120 Chapter 5. Conclusions

their impact on the response of the whole system. This can help more advanced and
sophisticated numerical analyses, contributing for the viability of the project. Additionally,
it can also be used as an operation in loco tool, as some operations need as adjustment
in the mooring system stiffness in order to desynchronize the vessel natural periods from
external forces.

Further work might include reviewing the adopted hypothesis in order to consider
the seabed-line interaction and the sea current effect. Keeping the quasi-static modeling,
these effects could be considered both in line plane and out-of-plane directions. The
eventual 3D final line shape yields fairlead forces defined not only in h and v, but also
with a component perpendicular to them. Additionally, the analytical model could be
used in order to quantify line effects such as the loss of axial stiffness due to creep or
even the rupture of one or more lines. Stability analysis, using for example catastrophe
sets, and the improvement of the mathematical model considering the line dynamics and
hydrodynamics are also possible.
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APPENDIX A – Numerical evaluation of the
mooring lines forces and stiffness

The present Appendix brings a numerical iterative procedure based on the Newton-
Raphson algorithm for determining horizontal and vertical forces, as well as the associated
stiffness for a multi-segment mooring line in a given configuration, i.e., for a given fairlead
position (hf , vf ).

First, let us rewrite the characteristic tension functions as a system of nonlinear
equations: e1(FH , FV )

e2(FH , FV )

 =
N∑
j=1

 hj(FH , FV )
vj(FH , FV )

−
 hf

vf

 (A.1)

This procedure aims to find the roots (F ∗H , F ∗V ) of the nonlinear equation system.
In this scenario, the Jacobian matrix of the system is:

J =
N∑
j=1

Jj =
N∑
j=1

 ∂hj
∂FH

∂hj
∂FV

∂vj
∂FH

∂vj
∂FV

 (A.2)

with1:

∂h1

∂FH
= l1
EA1

− FV 1

γ1

1√
F 2
H + FV

2
1

+ 1
γ1

ln
FV 1 +

√
F 2
H + FV

2
1

FH

 (A.3)

∂h1

∂FV
= − 1

γ1

FH√
F 2
H + FV

2
1

= ∂v1

∂FH
(A.4)

∂v1

∂FV
= FV 1

EA1γ1
+ FV 1

γ1

√
F 2
H + FV

2
1

(A.5)

and

∂hj
∂FH

= lj
EAj

−
FV j
γj

1√
F 2
H + FV

2
j

+ FV j−1

γj

1√
F 2
H + FV

2
j−1

+ 1
γjln

FV j +
√
F 2
H + FV

2
j

FH

− ln
FV j−1 +

√
F 2
H + FV

2
j−1

FH

 (A.6)

∂hj
∂FV

= FH
γ1

 1√
F 2
H + FV

2
j

− 1√
F 2
H + FV

2
j−1

 = ∂vj
∂FH

(A.7)

1 For the case where there is no portion of the first segment laying at the seabed, one should consider
Equations A.6 to A.8, for j = 1.
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∂vj
∂FV

= lj
EAj

+ 1
γ1

 FV j√
F 2
H + FV

2
j

−
FV j−1√

F 2
H + FV

2
j−1

 (A.8)

Then, it is possible to approximate A.1 around the roots (F ∗H , F ∗V ), such as: e1(FH , FV )
e2(FH , FV )

 ≈
N∑
j=1

Jj

 F ∗H

F ∗V

 (A.9)

Or, in matrix form:

{E} ≈
N∑
j=1

Jj {F ∗} (A.10)

Then, an iterative procedure is proposed based on the Newton-Raphson’s method:

{F (k+1)} = {F (k)} − J(k)−1{E(k)} (A.11)

When the answer is achieved, i.e. when |{F (k)} − {F (k+1)}| < ε, the forces at the
fairlead are obtained. The local tangential stiffness coefficients (i.e. kHH , kV V , kHV and
kV H) are obtained as follow: kHH kHV

kV H kV V

 =
 ∂FH

∂h
∂FH
∂v

∂FV
∂h

∂FV
∂v

 = J(k)−1 (A.12)

Notice that as the Jacobian is symmetric, the stiffness matrix also is.
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APPENDIX B – Multi-segment mooring line
static configuration

The present Appendix aims to present a closed formulation to determine the static
configuration of a multi-segment mooring line. First of all, it is necessary to determine
the mooring line forces, following the methodology proposed in Appendix A. With these
forces at hand, it is mandatory to investigate the existence of a portion of the first segment
laying at the seabed, i.e. if the vertical component of the mooring force at seabed is null.
The following presents a way to confirm or not its existence.

Let us suppose that the whole first segment is suspended. In this case, the vertical
component of the mooring line force at the anchor FV0 (since there is no TDP) is not null
and can be calculated, from Equation 3.98 as:

FV0 = FV −
N∑
k=1

lkγk (B.1)

Hence, the minimum length that makes the whole first segment be suspended is:

l1min = 1
γ1

(
FV −

N∑
k=2

lkγk

)
= FV 1

γ1
(B.2)

Then, for the case where there is a TDP (i.e. l1 > l1min), the suspended length is
the minimum length l1min itself.

Now, focus is placed on the definition of the static configuration of the multi-
segment mooring line. The line configuration can be written as function of the curvilinear
coordinate s, presented in Figure 65. It is possible to define three different positions: (i)
s < lr1 , (ii) lr1 < s < l1 and (iii) ∑k−1

j=1 < s <
∑k
j=1. It follows:

(i) s < lr1 (s belongs to the first segment laying at the seabed portion):

h(s) = s(1 + FH
EA1

) (B.3)

v(s) = 0 (B.4)

(ii) lr1 < s < l1 (s belongs to the suspended portion of the first segment):

h(s) = l(r1) + FH
γ1

ln
FV (s) +

√
F 2
H + F 2

V (s)
FH

+ FH
EA1

s (B.5)

v (s) = 1
γ1

(√
F 2
H + F 2

V (s)− FH
)

+ F 2
V (s)

2γ1EA1
(B.6)
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Figure 65 – Multi-segment mooring line profile.

𝐴

𝑃

𝑠

Source: The Author

where the vertical component of the tension at the curvilinear coordinate s is:

FV (s) = γ1 [s− lr1 ] (B.7)

(iii) ∑k−1
j=1 < s <

∑k
j=1 (s belongs to segment j):

h (s) =
k−1∑
j=1

hj + FH
γ1

ln
F 2

V (s) +
√
F 2
H + F 2

V (s)
FH

− ln
FVk−1 +

√
F 2
H + F

2
Vk−1

FH


+ FH
EAk

s− k−1∑
j=1

lj

 (B.8)

v (s) =
k−1∑
j=1

vj + 1
γk

(√
F 2
H + F 2

V (s)−
√
F 2
H + F

2
Vk−1

)
+ FV (s)

EAk

s− k−1∑
j=1

lj


− γk
EAk

s− k−1∑
j=1

lj

2

(B.9)

where:

FV (s) = FVj−1 + γj

s− j−1∑
j=1

lj

 (B.10)

Finally, the angle between the vector tangent to the section and the horizontal (θ)
at coordinate s is given by the relation:

θ(s) = arctan
(
FV (s)
FH

)
(B.11)
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APPENDIX C – The local mooring line
generalized directions and their projections

onto horizontal and vertical planes

This appendix presents the necessary developments of the local generalized direc-
tions ∂−→P (i)/∂qj and the inner products ê(i)

h · ∂
−→
P (i)/∂qj and ê(i)

v · ∂
−→
P (i)/∂qj to define the

generalized restoring forces from Section 3.2.

• The local generalized directions, ∂{P (i)}Ex/∂qj:

∂
−→
P (i)

∂rx
= êx (C.1)

∂
−→
P (i)

∂ry
= êy (C.2)

∂
−→
P (i)

∂rz
= êz (C.3)

∂
−→
P (i)

∂φ
=
∂[R]Ex|Eξ

∂φ

{−→
P (i)

}
Eξ

(C.4)

∂
−→
P (i)

∂θ
=
∂[R]Ex|Eξ

∂θ

{−→
P (i)

}
Eξ

(C.5)

∂
−→
P (i)

∂ψ
=
∂[R]Ex|Eξ

∂ψ

{−→
P (i)

}
Eξ

(C.6)

• The inner products ê(i)
h · ∂

−→
P (i)/∂qj:

ê
(i)
h ·

∂
−→
P (i)

∂rx
= cosα(i) (C.7)

ê
(i)
h ·

∂
−→
P (i)

∂ry
= sinα(i) (C.8)



132
APPENDIX C. The local mooring line generalized directions and their projections onto horizontal and

vertical planes

ê
(i)
h ·

∂
−→
P (i)

∂rz
= 0 (C.9)

ê
(i)
h ·

∂
−→
P (i)

∂φ
= cosα(i)∂p

(i)
x

∂φ
+ sinα(i)∂p

(i)
y

∂φ
(C.10)

ê
(i)
h ·

∂
−→
P (i)

∂θ
= cosα(i)∂p

(i)
x

∂θ
+ sinα(i)∂p

(i)
y

∂θ
(C.11)

ê
(i)
h ·

∂
−→
P (i)

∂ψ
= cosα(i)∂p

(i)
x

∂ψ
+ sinα(i)∂p

(i)
y

∂ψ
(C.12)

• The inner products ê(i)
v · ∂

−→
P (i)/∂qj becomes:

ê(i)
v ·

∂
−→
P (i)

∂rx
= 0 (C.13)

ê(i)
v ·

∂
−→
P (i)

∂ry
= 0 (C.14)

ê(i)
v ·

∂
−→
P (i)

∂rz
= −1 (C.15)

ê(i)
v ·

∂
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= −∂p

(i)
z
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(C.16)

ê(i)
v ·

∂
−→
P (i)

∂θ
= −∂p

(i)
z

∂θ
(C.17)

ê(i)
v ·

∂
−→
P (i)

∂ψ
= 0 (C.18)
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APPENDIX D – Intermediate developments
for the mooring system stiffness coefficients

This appendix brings the intermediate developments needed to define the mooring
system stiffness matrix: partial derivatives of the distances h(i) and v(i) as well as the inner
products ê(i)

h · ∂
−→
P (i)/∂qj and ê(i)

v · ∂
−→
P (i)/∂qj with respect to q.

• The partial derivatives of h(i) with respect to qj:

∂h(i)

∂rx
= − cosα(i) (D.1)

∂h(i)

∂ry
= − sinα(i) (D.2)

∂h(i)

∂rz
= 0 (D.3)

∂h(i)

∂φ
= − cosα(i)∂p

(i)
x

∂φ
− sinα(i)∂p

(i)
y

∂φ
(D.4)

∂h(i)

∂θ
= − cosα(i)∂p

(i)
x

∂θ
− sinα(i)∂p

(i)
y

∂θ
(D.5)

∂h(i)

∂ψ
= − cosα(i)∂p

(i)
x

∂ψ
− sinα(i)∂p

(i)
y

∂ψ
(D.6)

• The partial derivatives of v(i) with respect to qj:

∂v(i)

∂rx
= 0 (D.7)

∂v(i)

∂ry
= 0 (D.8)

∂v(i)

∂rz
= 1 (D.9)
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∂v(i)

∂φ
= ∂p(i)

z

∂φ
(D.10)
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z

∂θ
(D.11)

∂v(i)

∂ψ
= ∂p(i)

z

∂ψ
= 0 (D.12)

• Partial derivatives of the inner products ê(i)
h · ∂

−→
P (i)

∂qj
:

◦ Partial derivatives of ê(i)
h · ∂
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∂rx
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◦ Partial derivatives of ê(i)
h · ∂

−→
P (i)

∂ry
:

∂

∂rx

ê(i)
h ·

∂
−→
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∂ry
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◦ Partial derivatives of ê(i)
h · ∂

−→
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◦ Partial derivatives of ê(i)
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∂

∂ry
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∂
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◦ Partial derivatives of ê(i)
h · ∂
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◦ Partial derivatives of ê(i)
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−→
P (i)

∂ψ
:

∂

∂rx
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ê(i)
h ·

∂
−→
P (i)

∂ψ

 = 0 (D.45)

∂

∂φ
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∂

∂θ
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• Partial derivatives of the inner products ê(i)
v · ∂

−→
P (i)

∂qj
:

◦ Partial derivatives of ê(i)
v · ∂
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ê(i)
v ·

∂
−→
P (i)

∂rx

 = 0 (D.52)

∂

∂θ
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◦ Partial derivatives of ê(i)
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◦ Partial derivatives of ê(i)
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◦ Partial derivatives of ê(i)
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◦ Partial derivatives of ê(i)
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ê(i)
v ·

∂
−→
P (i)

∂θ

 = −∂
2p(i)
z

∂θ2 (D.77)



141

∂

∂ψ
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◦ Partial derivatives of ê(i)
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ê(i)
v ·

∂
−→
P (i)

∂ψ

 = 0 (D.79)

∂

∂ry

ê(i)
v ·

∂
−→
P (i)

∂ψ

 = 0 (D.80)

∂

∂rz
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ê(i)
v ·

∂
−→
P (i)

∂ψ

 = 0 (D.82)

∂

∂θ
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APPENDIX E – Algebraic manipulation of
the stiffness coefficients

• First line coefficients – coefficients associated with a displacement rx:

K
(i)
14 = ∂p(i)

x

∂φ

(
k
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• Second line coefficients – coefficients associated with a displacement ry:
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• Third line coefficients – coefficients associated with a displacement rz:
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• Fourth line coefficients – coefficients associated with a displacement φ:
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• Fifth line coefficients – coefficients associated with a displacement θ:
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• Sixth line coefficients – coefficients associated with a displacement ψ:
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APPENDIX F – Stiffness matrix for the
planar problem

Sometimes, specially during early stages of the mooring system design, the designer
may be interested only on the problem related to motions on the horizontal plane Oxy.
This could be justified by the fact that natural periods of motions on the horizontal plane
– rx, ry and ψ – have values of a different order of magnitude compared to those obtained
by others DoFs. The objective of the present Appendix is to simplify the obtained stiffness
matrix in order to determine the horizontal-plane problem. In this scenario, results are
compared with those published in Pesce, Amaral and Franzini (2018).

Consider then a moored floating body in a generic offset position and heading. Figure
66 recovers the sketch presented in Pesce, Amaral and Franzini (2018). The projection of
the anchors and fairleads position onto the plane πh is detailed for a particular mooring
line i = 1, ..., N .

Figure 66 – Sketch of the projection of a moored floating body in a generic offset position
and heading onto the horizontal plane π.

Source: Pesce, Amaral and Franzini (2018)

By defining β(i) as the angle formed by ({−→Pi}πEξ − G) with respect to the axis
Gξ and l(i) and the distance between {−→Pi}πhEξ and G (as in Pesce, Amaral and Franzini
(2018)) and considering, without losing generalizations, that p(i)

ζ = 0, the position {−→Pi}πEξ
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is written as:

{
−→
Pi}πhEξ = (p(i)

ξ p(i)
η p

(i)
ζ )t = (l(i) cosα(i) l(i) sinα(i) 0)t (F.1)

Let us consider now that the vessel describes a motion only on plane πh. In other
words, one can consider that generalized translation rz and generalized rotations φ and θ
are null. In this case, it is possible to rewrite the rotation matrix [R]Ex|Eξ as:

[R]πEx|Eξ =


cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (F.2)

Consequently, the position of each fairlead with respect to the fixed frame Ex
becomes:

{
−→
Pi}Exπh =

(
rx + p

(i)
ξ cosψ − p(i)

η sinψ ry + p
(i)
ξ sinψ + p(i)

η cosψ 0
)t

=(
rx + l(i) cos(ψ + β(i)) ry + l(i) sin(ψ + β(i)) 0

)t
(F.3)

Thus, the horizontal anchor-fairlead distance is rewritten:

r(i) =
√[
a

(i)
x − (rx + l(i) cos(ψ + β(i)))

]2
+
[
a

(i)
y − (ry + l(i) sin(ψ + β(i)))

]2
(F.4)

Then, the directional angle α(i) that defines the directional unity vector ê(i)
h reads:

cosα(i) =
a(i)
x −

(
rx + l(i) cos(ψ + β(i))

)
r(i) (F.5)

sinα(i) =
a(i)
y −

(
ry + l(i) sin(ψ + β(i))

)
r(i) (F.6)

Now, it is easy to notice that the stiffness coefficients associated with the transla-
tional displacements proposed in Pesce, Amaral and Franzini (2018) define a particular
case of the methodology herein proposed, when the planar problem is considered.

Before verifying how the translation-rotation and rotation-rotation coefficients of
the stiffness matrix are turned, it is necessary to determine the derivatives of {−→Pi}πEx with
respect to ψ and the respective second derivatives, also with respect to ψ.

∂p(i)
x

∂ψ
= −l(i) sin(ψ + β(i)) (F.7)

∂p(i)
y

∂ψ
= l(i) cos(ψ + β(i)) (F.8)

∂2p(i)
x

∂ψ2 = −l(i) cos(ψ + β(i)) (F.9)

∂2p(i)
y

∂ψ2 = −l(i) sin(ψ + β(i)) (F.10)
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Now, it is possible to rewrite the lacking planar stiffness coefficients, i.e., K16, K26,
K61, K62 and K66. Additionally, due to the aforementioned symmetry of the stiffness
matrix, K16 = K61 and K26 = K62

K16 =
N∑
i=1

(
∂p(i)

x

∂ψ
K11 +

∂p(i)
y

∂ψ
K11

)
=

− l(i) sin(ψ + β(i))K11 + l(i) cos(ψ + β(i))K12 =

− l(i) sin(ψ + β(i))
(
k

(i)
HH cos2 α(i) + k̄

(i)
HH sin2 α(i)

)
+

l(i) cos(ψ + β(i))
(
k

(i)
HH − k̄

(i)
HH

)
cosα(i) sinα(i) =

kHH l
(i) cosα(i) sin

(
α(i) − β(i) − ψ

)
− k̄HH l(i) sinα(i) cos

(
α(i) − β(i) − ψ

)
(F.11)

K26 =
N∑
i=1

(
∂p(i)

x

∂ψ
K21 +

∂p(i)
y

∂ψ
K22

)
=

− l(i) sin(ψ + β(i))K21 + l(i) cos(ψ + β(i))K22 =

− l(i) sin(ψ + β(i))
(
k

(i)
HH − k̄

(i)
HH

)
cosα(i) sinα(i)+

l(i) cos(ψ + β(i))
(
k

(i)
HH cos2 α(i) + k̄

(i)
HH sin2 α(i)

)
=

kHH l
(i) sinα(i) sin

(
α(i) − β(i) − ψ

)
+ k̄HH l

(i) cosα(i) cos
(
α(i) − β(i) − ψ

)
(F.12)

and finally:

K66 =
N∑
i=1

(∂p(i)
x

∂ψ

)2

K11 + 2∂p
(i)
x

∂ψ

∂p(i)
y

∂ψ
K12 +

(
∂p(i)

x

∂ψ

)2

K22


− ∂2p(i)

x

∂ψ2 FH cosα(i) −
∂2p(i)

y

∂ψ2 FH sinα(i) =

(−l(i) sin(ψ + β(i)))2K11 + 2(−l(i) sin(ψ + β(i))l(i) cos(ψ + β(i)))K12+

(l(i) cos(ψ + β(i)))2K22 + l(i) cos(ψ + β(i))FH cosα(i) + l(i) sin(ψ + β(i))FH sinα(i) =

kHH l
(i)2 sin2(α(i)−β(i)−ψ)+k̄HH l(i)

2 (cos2(α(i) − β(i) − ψ) + r(i)/l(i) cos(α(i) − β(i) − ψ)
)

(F.13)

As it is easy to see, the results from Equations F.11 to F.13 retrieve the coefficients
presented by Pesce, Amaral and Franzini (2018).
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