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ABSTRACT

This paper presents the results of an exten­
siv~ experimental investigation of the in-line
and transverse forces acting on smooth and rough
circular cylinders placed in oscillatory flow at
Reynolds numbers up to 700,000, Keulegan-Carpentet
numbers up to 150, and relative roughnesses from
0.002 to 0.02. The drag and inertia coefficients
have been determined through the use of the
Fourier analysis and the least squares method.
The transverse force (lift) has been analysed in
terms of its maximum, semi peak-to-peak, and
root-mean-square values. In addition, the fre­
quency of vortex shedding and the Strouhal number
have been determined.

The results have shown that (a) for smooth
cylinders, all of the coefficients cited above
are functions of the Reynolds and Keulegan and
Carpenter numbers, particularly for Reynolds
numbers larger than about 20,000; (b) for rough
cylinders, the force coefficients also depend on
the relative roughness kiD and differ signifi­
cantly from those corresponding to the smooth
cylinder; and that (c) the use of the 'frequency
parameter' D2/vT and the roughness Reynolds
number Umk/v allow a new interpretation of the
present as well as the previously obtained data
and the establishment of model laws for oscilla-

References and illustrations at end of paper.

tory flow about cylinders at supercritical
Reynolds numbers.

INTRODUCTION

The design of structures for the marine
environment requires the prediction of the forces
generated by waves and currents. Much of the
present knowledge has been obtained by means of
model tests at Reynolds numbers generally two to
three orders of magnitude smaller than prototype
Reynolds numbers. These model tests have relied
heavily on the so-called Morison formula for
expressing the force as the sum of a drag and
inertia force. The values of the drag and iner­
tia coefficients to be used in the Morison equa­
tion became the subject of many experimental
studies in the last twenty years. The correla­
tion of these coefficients with the relative
amplitude of the waves (or the Keulegan-Carpenter
number) has been generally inconclusive.
Furthermore, lift forces which are associated
with vortex shedding have received relatively
little attention. It thus became clear that much
is to be gained by considering plane oscillatory
flow about cylinders at high Reynolds numbers in
order to isolate the influence of individual
factors such as relative amplitude, Reynolds
number, and the relative roughness on vortex
shedding and resistance. It is with this reali­
zation that the present investigation was under­
taken and the preliminary results obtained with
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smooth cylinders in a small U-shaped water tunnel
operating at relatively low Reynolds numbers
(2,500 to 25,000) have been previously reported
[1 J.

The present paper deals with in-line and
transverse forces acting on smooth and artifi­
cially-roughened circular cylinders in harmonic
flow at critical and supercritical Reynolds
numbers.

APPARATUS AND PROCEDURE

Of the two possible methods of generating
relative harmonic fluid motion about bluff bodies
namely, oscillating the fluid or the body, the
former has been chosen. The relative merits and
shortcomings of the two methods have been amply
discussed [2J and will not be repeated here.
Suffice it to note that large amplitude struc­
tural and free surface oscillations commonly
encountered in oscillating the body in a fluid
otherwise at rest do not lead to reliable data.
The advantages of the apparatus used herein for
the purpose under consideration have already been
demonstrated [lJ and will become further evident
from the data to be presented.

The oscillating flow system consisted of a
large U-shaped vertical water tunnel as shown in
Fig. 1. The cross-section of the two vertical
legs is 3 ft by 6 ft and that of the test section
is 3 ft by 3 ft. The two corners of the tunnel
were carefully streamlined to prevent flow
separation. This design proved to be more than
adequate for no separation was encountered, and
also the desired frequency and amplitude of
oscillation were achieved. The auxiliary compo­
nents of the tunnel consisted of plumbing for
hot and cold water, butterfly-valve system, and
the air-supply system.

The butterfly-valve system (mounted on top
of one of the legs of the tunnel) consisted of
four plates, each 18 inches wide and 36 inches
long. All four valves were simultaneously driven
by a simple rack and pinion system actuated by an
air-driven piston and a three-way pneumatic valve
Initially, the butterfly valves were closed and
air was introduced to that side of the tunnel,
with an electrically-controlled ball valve, to
create the desired differential water level
between the two legs of the tunnel. Then the
valves were opened with the help of the rack and
pinion system and the three-way control valve.
This action set the fluid in the tunnel in oscil­
latory motion with a natural period of T = 5.272
seconds. The elevation, acceleration, and all
force traces were absolutely free from secondary
oscillations so that no filters whatsoever were
used between the outputs of the transducers and
the recording equipment (see Fig. 2).

Throughout the investigation, the monitoring
of the characteristics of the oscillations in the

tunnel was of prime importance in view of the
fact that most of the difficulties in the past
in the determination of the drag, lift, and iner­
tia coefficients resulted from the difficulty of
generating a purely harmonic motion free from
vibrations or from applying theoretically derivec
rather than measured values for velocities and
accelerations.

Three transducers were used to generate
three independent d.c. signals, each proportional
to the instantaneous value of elevation, velocit)
and acceleration. The first one consisted of a
platinum wire stretched vertically in one leg
of the tunnel. The response of the wire was
perfectly linear within the range of oscillationc

encountered. The second method consisted of the
measurement of the instantaneous acceleration by
means of a differential-pressure transducer
connected to two pressure taps placed horizon­
tally 2 ft apart and 4 ft to one side of the tes1
section. The instantaneous acceleration was ther
calculated from ~p = ps.dU/dt where ~p is the
differential pressure, s the distance between
the pressure taps and dU/dt is the instantaneous
acceleration of the fluid. The third method
again consisted of the measurement of the differ­
ential pressure between two pressure taps placed
sYmmetrically on the two vertical legs of the
tunnel at an elevation H ft below the mean water
level. The linear differential-pressure trans­
ducer yielded the instantaneous elevation and
hence the amplitude of oscillation since,
according to Bernoulli·s equation

A = 2Ao = [~p/yJ 1[1 - (2~/T)2H/gJ (1)max
in which g and T are constant and H is kept
constant.

All three methods gave nearly identical
results and yielded the amplitude A, the maximum
velocity U~ = 2~A/T, or the maximum acceleration
am = (2~/T)2A to an accuracy of about 2% relativE
to each other.

The in-line and transverse forces were meas
ured with two identical, cantilever type, force
transducers, one at each end of the cylinder.
The gages had a capacity of 250 lbs and the
deflection of the cantilever end was less than
0.008 inches. A special housing was built for
each gage so that it can be mounted on the tunnel
window and rotated to measure either the in-line
or the transverse force alone. The test cylin­
ders were placed in the test section by retrac­
ting the gages from their housing and then push­
ing them into the bearings mounted on each end
of the cylinders. This allowed a gap of 1/32
inch between the cylinder and the tunnel wall.
The natural frequency of the cylinder and force­
transducer combination in water was about 20
times larger than the frequency of oscillation
of the water column and about 10 times larger
than the largest frequency of vortex shedding.
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It is recognized that the coefficients cited
above are not constant throughout the cycle and
are either time-invariant averages or peak values
at a particular moment in the cycle. A simple
dimensional analysis of the flow under consider­
ation shows that the time-dependent coefficients
may be written as

F/(0.5DLpU~)= f(UmT/D, UmD/v, kiD, tiT) (6)

in which F represents the in-line or the trans­
verse force. Equation (6), combined with Eq. (2)
assuming for now that the latter is indeed valid,
yields

and Cmls=Cm• Evidently, the Fourier analysis and
the metnod of least squares yield identical Cm
values and that the Cd values differ only
slightly. The details of the modified least­
squares method may be found in Ref. [5] and will
not be repeated here.

The transverse force has been expressed in
terms of various coefficients. Some of these are
(a) the maximum lift coefficient defined by CL=
(maximum amplitude of the transverse force in a
cycle)/(0.5LDpU~); (b) the semi peak-to-peak
value o~ the transverse force normalized by
0.5LDpUm; and (c) the normalized root-mean-square
value or the transverse force. In addition, the
frequency of the oscillations of the transverse
force and the Strouhal number have been evaluated

Sevencircul'ar cylinders with diameters
ranging in size from 2 inches to 6.5 inches were
used. The cylinders were turned on a lathe from
aluminum pipes or plexiglass rods and polished
to a mirror-shine surface. Same cylinders were
also used as rough cylinders. For this purpose,
sand was sieved to obtain the desired relative
roughness and applied uniformly on the cylinder
surface with an air-drying epoxy paint. After
a series of tests with water at various tempera­
tures, the cylinders were polished again and
covered with sand of different size. This pro­
cedure was continued until the desired ranges of
all the governing parameters were covered. The
use of hot water increased the range of the
Reynolds number by as much as 100%.

Experiments were repeated at least four
times for each cylinder and for all suitably
selected amplitudes, roughness hights, and water
temperatures. The in-line and transverse forces
were read every 0.1 second from the traces for
the period of T = 5.272 seconds. Then the drag,
inertia, and the lift coefficients, the vortex
shedding frequency, Strouhal number, maximum
error between the measured and calculated forces,
etc. were evaluated through the use of the appro­
priate equations and a computer.

FORCE COEFFICIENTS AND GOVERNING PARAMETERS

Data reduction for the forces in-line with
the direction of oscillation is based on Morison
equation [3] and three different analysis of the
force records, namely, Fourier analysis, least
squares, and a modified least squares method.

Cd= fl(K, Re, kiD, tiT)

em= f 2(K, Re, kiD, tiT)

(7)

(8)

The in-line force which consists of the drag in which K= UmT/D and Re = UmD/v, and kiD repre­
force Fd and the inertia force Fi is assumed to sents the relative roughness.
be given by [3]

in which Fm represents the measured force.

The method of least squares consists of the
minimization of the error between the measured
and calculated forces. This procedure yields [5]

2w
Cdl s= -.(8/3w)~ (FmIcose Icose/pDLU~)de (5)

(9)

There is no simple way to deal with Eqs. (7)
and (8) even for the most manageable time-depen­
dent flows. Another and 'perhaps the only other
alternative is to eliminate time as an independ­
ent variable and consider suitable time-invariant
averages as given by Eqs. (3), (4), and (5).
Th~s, one has

" Cd
\ Cm = f.( K , Re , kiD )
" 1\ CL

It appeari, for the purposes of Eq. (9), that the
Reynolds number is not the most suitable param­
eter involving viscosity. The primary reasons
for this are that the effect of viscosity is
relatively small and that Urn appears in both K
and Re. Thus, replacing Re by Re/K = D2/vT in
Eq. (9), one has

Ci(a coefficient) = fi(K, a, kiD) (10)

in which a = D2/vT and shall be called the

(2)

(3)

(4)
2w

Cm= (2UmT/w3D) .r (Fmsine/pU;LD)de
o

F=Fd+Fi=0.5CdLDPIUIU +0.25CmLD2wp.dU/dt

in which Cd and Cm represent respectively the
drag and inertia coefficients and U the instan­
taneous velocity of the ambient flow. For an
oscillating flow represented by U=-Umcose, with
e=2wt/T, the Fourier averages of Cd and Cm are
given by Keulegan and Carpenter as [4]

2w
Cd= -0.75 f (FmcoSe/pU~LD)de

oand
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‘frequency parameter’. Evidently, f3‘isconstant The tabulated as well as plotted data for all
For a series of experiments conducted with a force coefficients are given in Ref. [2].
:ylinder of diameter D in water of uniform and
:onstant temperature since T is constant. Then Figures 7 and 8 show Cd versus Kand ~ ver
the variation of a force coefficient with Kmay sus K for five values of 6. Evidently, there is
]e plotted for constant values of 6. Subse- very little scatter in the data even though the
Iuently, one can easily recover the Reynolds figures represent the results of four independ-
~umber from Re = KB and connect the points, on ent runs. A summary of the complete data for
:ach B=constant curve, representing a given Re. all cylinders is presented in Figs. 9 and 10.

Also shown in Figs. 9 and 10 are the constant
Let us now re-examine a set of data previ- Re lines obtained through the use of K= Re/f3.

)uslyobtained by others [4] partly to illus- Evidently,there is a remarkablecorrelation
trate the use and significance of B as one of between the force coefficients, Reynolds number,
the governing parameters and partly to take up and the Keulegan-Carpenter number. The smooth-
the question of the effect of Reynolds number ness of the constant Re lines is another indica-
m the force coefficients. tion of the consistency of the data from one

cylinder to another.
The data given by Keulegan and Carpenter

[4] maybe represented by 12 different values Figures 9 and 10 show that Cd and ~ do not
of B. The drag and inertia coefficients are vary appreciably with Re for Re smaller than
plotted in Figs. 3 and 4 and connected with about 20,000 and help to explain the conclusions
straightline segments. Evidently~ the identifi- previously reached by Keulegan and Carpenter [4]
cation of the individual data points in terms and Sarpkaya [1].
of the cylinder diameter, as was done by
Keulegan and Carpenter [4] and also by Sarpkaya The data, similar to those given in Figs. 7
[1], irrespective of the B values gives the through 10, are also plotted as a function of Re
impression of a scatter in the data and invites for constant values of K in Figs. 11 and 12
one to draw a mean drag curve through all data since it is believed that the Reynolds number
points. Such a temptation is further increased
by the fact that the data for each B span over

is the liveliest of all the non-dimensional
parameters. These figures clearly show that Cd

only a small range of K values. Evidently, the decreases with increasing Re to a value of
drawing of such a mean curve eliminatesthe about 0.5 (dependenton K) and then begins to
dependence of Cd and/or Cm on f3and hence on Re. increase with further increase in Re. The

Also shown in Figs. 3 and 4 are points rep-
inertia coefficient Cm increases with increasing
Re, reaches a maximum, and then gradually ap-

resenting four selected Reynolds numbers. The preaches a value of about 1.75. Itwill be
corresponding K values for each Re and f?were recalled that the Keulegan-Carpenter data indi-’
calculated from K = Re/f3. The points corre- cted an opposite trend. It is believed that
spending to the selected Reynolds numbers are the Keulegan-Carpenter data for Cm are not quite
reproduced in Figs. 5 and 6. These figures show , reliable for K > 15. This is also evident from
within the range of Re and K values encountered the observation that the data corresponding to
in Keulegan-Carpenter data, that (a) Cd depends 8=141 appear to be out of place (see Fig. 4)
m both K.and Re and decreases with increasing
<e for a given K; and that (b) ~ depends on

relative to those corresponding to 6=97 and 217.
Suffice it to say that the results presented in

]oth K and Re for K larger than approximately Figs. 7 through 12 shed new light on the varia-
15 and decreases-withincreasingRe. A similar tions of the drag and inertia coefficients and
analysis of Sarpkaya’s data [1] also shows that partly explain the reasons for the large scatter
:d and Cm depend on both K and Re and that Cm encountered in the plots of Cd versus Re and Cm
increases with increasing Re. Notwithstanding
this difference in the variation of Cm between

versus Re as compiled by Wiegel [6].

the two sets of data, Figs. 5 and 6 put to rest The data obtained with artificially-rough-
the long standing controversy regarding the ened cylinders are presented in Figs. 13 and 14
dependence or lack of dependence of Cd and ~ in a manner similar to those given in Figs. 11
m Re and show the importance of 6 as one of and 12. It must be noted that there exists two
the governi~g parameters in interpreting the
data, in interpolating the K values for a given

such figures for every value of K. However,
the results shown in Figs. 13 and 14 did not

Re, and in providing guide lines for further appreciably vary with K for 30 < K c 60 (see
experiments as far as the ranges of K and B also Fig. 11).
are concerned.

Figures 13 and 14 show that the effect of
RESULTS AND DISCUSSIONS roughness on the resistance to harmonic flow is

quite significant. Not only the presence of
Drag and Inertia Coefficients for Smo@h and vortices on both sides of the cylinder and the

Rough Cylinders - Only the representative data increased level of turbulencebut also the
tiillbe presented herein for sake of brevity. roughness bring about an earlier transition to

.



turbulence. Following the transition of the
entire boundary layer to turbulence during most
of the cycle, the flow reaches a supercritical
state and both the drag and inertia coefficients
acquire nearly constant values. Even though the
actual events are somewhat more complicated, it
seems unlikely that there will be any further
transitions in the boundary layer.

The reason for the experiments with rough
cylinders is of course more than the desire to
examine the effect of relative roughness on Cd>
Cm, and CL. It is prompted essentially by an
attempt at artificially increasing the Reynolds
number to supercritical regime by means of sur-
face roughness. Recent experiments [7, 8] with
steady flow over rough cylinders have shown that
(a) a change in flow regime takes place at a
Reynolds-number Vk/v of about 200 independently
of the diametral Reynolds number; (b) a correct
surface roughness condition provokes supercriti-
cal flow for Vk/v > 200, (the condition that
must be respected is k/D c 0.0022); (c) a smooth
cylinder is not a special case but behaves as if
it had a roughness of k/D = 0.000035; and that
(d) the apparent diametral Reynolds number is
increased by a factor k/(0.000035.D)for a cylin-
der of diameter D and surface roughness k. The
importance and the consequences of these conclu-
sions are self evident for supercritical Reynolds
number simulation for flow over circular cylin-
ders.

In order to carry over the above ideas to
harmonic flow, the data given in Fig. 13were
replotted in Fig. 15 as a function of U k/v for
various values of k/D. A similar plot ?or Cm has
been prepared but will,not be presented here due
to space limitations. Also shown in Fig. 15 are
the mean lines correspondingto steady flow as
compiled by Szechenyi [7]. Figure 15 shows that
a change in the flow regime takes place at a
roughness Reynolds number of about 130 and that
the drag coefficient approaches values between
0.9 and 1.0 for k/D < 0.002. Evidently, the
change in’the flow regime occurs at higher values
of U k/v with increasing k/D. Of special inter-

?est or simulation purposes, however, is the
smaller relative roughness.

The magnitude of the apparent increase in
the diametral Reynolds number can be estimated
by fitting the curve obtained for smooth cylin-
ders (see Figs. 11 and 13) for K= 50 onto the
rough cylinder results shown in Fig. 15. Workin!
back from the resulting values of Umk/v on the
abscissa, this procedure gives an effective
relative roughness between 0.0004 and 0.0006 for
the smooth cylinder in harmonic flow with K = 50.
Further exploration of these ideas will be
extremely important in model tests and in the
simulation of supercritical Reynolds numbers.
It must, however, be kept in mind that the actual
events in harmonic flow are considerably more
complicated and that the effect of roughness

cannot be represented by k/D alone. Additional
parameters such as the size distribut’ion,.shape
and packing of grains must be introduced. Alter
natively, one can define an equivalent roughness
height ks [9] or a roughness-length parameter
based on the actual boundary-layer characteris-
ticcs.

Transverse Force and Vortex Shedding for
Smooth and Rough Cylinders - The data for the
maximum lift coefficient for smooth cylinders
are summarized in Figs. 16 and 17. The original
data in plotted and tabulated form are presented
in Ref. [2]. Evidently, the lift coefficient
depends on Re for Re larger than about 20,000
and rapidly decreases to about 0.2 for larger
values of Re and K. It is also evident that the
lift force is a major portion of the total force
acting on the cylinder and cannot be neglected
in the design of structures.

The frequency of the alternating transverse
force is shown in Fig. 18 in terms of fr=fv/f as
a function of K and Re. It is apparent
that fr is not constant and increases with
increasing K and Re. Furthermore, a quick calcu
lation through the use of Fig. 18 shows that the
Strouhal number given by fvD/U = fr/K is not

?constant at 0.2, as in steady low, and depends
on both Re and K. Experiments with rough cylin-
ders yielded similar results for CL, fr, and the
Strouhal number [2]. Largest lift as well as
the largest in-line force tended to occur atthe
time of maximum velocity. This in turn decrease
the phase angle and hence the inertia coeffi-
cient and increased the drag coefficient relativ
to smooth cylinder. Thus, roughness increases
the maximum instantaneousforce acting on the
cylinder by synchronizing the occurrence of the
maximum in-line and transverseforces at or near
the time of maximum velocity.

CONCLUSIONS

The results presented herein warrant the
following conclusions: (a) For smooth cylinders,
the drag, lift, and the inertia coefficients
depend on both the Reynolds and Keulegan and
Carpenter numbers; (b) For rough cylinders, the
same force coefficients become independent of
the Reynolds number above a critical value and
depend only on the Keulegan and Carpenter number
and the relative roughness; (c) Correct artifi-
cial roughness may be used to provoke and simu-
late supercritical flow in model tests in steady
as well as oscillatory flows; (d) For both smoot
and rough cylinders, the relationship between
the drag and inertia coefficients is not unique
and depends on the particular value of the
Keulegan and Carpenter number; (e) The transvers@
force is a significant fraction of the total
resistance at all Reynolds numbers and must be
considered in the design of structures; (f) The
frequency of the shedding of the primary vortices
increases at more or less discrete steps with
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Increasing Reynolds and Keulegan-Carpenter num-
,bers; (g) The results reported herein and the
conclusions arrived at are applicable only to
cyJinders in harmonic flow with zero mean veloc-
ity. The force coefficients for harmonic flow
with a mean velocity superimposed on it may
differ significantly from those reported herein;
land finally, (h) it is hoped that the data
presented herein will accentuate the need for
~actual full scale experiments and enable those
concerned to interpret and better understand the
factors effecting the force-transfer coefficients
in wavy flows.

NOMENCLATURE . .. . ..,.,.

A
A.
Cd
CL
cm
D
F
Fd
Fi

;V
9
H

;
L

~e
T
t

:m
v

B
Y
e
v
P

Amplitude of oscillations at the test section
Amplitude of oscillations at the free surface
Drag coefficient
Maximum lift coefficient
Inertia coefficient
Diameter of the test cylinder
Force
Drag force
Inertial force
Frequency of oscillations, l/T
Frequency-of vortex shedding (first harmonic)
Gravitational acceleration
Elevation (see Fig. 1)
Keulegan-Carpenter number, UmT/D
Roughness height
Length of the test cylinder
Pressure
Reynolds number, UmD/v
Period of oscillations in the tunnel
time
Instantaneous velocity
Maximum velocity in the cycle
Velocity in steady flow

Frequency parameter, D2/vT
Specific weight of water
2rt[T
Kinematic viscosity of water
Density of water
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