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ON THE FORCE DECOMPOSITIONS OF
LIGHTHILL AND MORISON

T. SARPKAYA

Department of Mechanical Engineering, Naval Postgraduate School
Monterey, CA 93943, U.S.A.

(Received 10 July 2000, and in "nal form 1 November 2000)

Lighthill's assertion that the viscous drag force and the inviscid inertia force acting on a
blu! body immersed in a time-dependent #ow operate independently is not in conformity
with the existing exact solutions and experimental facts. The two force components
are interdependent as well as dependent on the parameters characterizing the phenomenon: the
rate of di!usion of vorticity, relative amplitude of the oscillation, and the surface
roughness. ( 2001 Academic Press
1. INTRODUCTION

BATCHELOR (1967) STATED THAT &&One of the most important problems of #uid mechanics is to
determine the properties of the #ow due to moving bodies of simple shape, over the entire
range of values of Re, and more especially for the large values of Re corresponding to bodies
of ordinary size moving through air and water.'' Advances in #uid mechanics over the past
thirty years have only enhanced the importance of the problem. Separated #ows in general
and time-dependent #ows in particular arise in many engineering situations, and the
prediction of the #uid/structure interaction (forces and dynamic response) presents monu-
mental mathematical, numerical and experimental challenges in both laminar and turbulent
#ows. Among them, sinusoidally oscillating #ow about a circular cylinder or the sinusoidal
motion of a cylinder in a viscous #uid otherwise at rest has been of special interest to
o!shore engineers for at least half a century.

Morison et al. (1950) proposed a force decomposition, for the determination of wave force
on a &&cylindrical object'', which may be written as
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where F (t) represents the in-line force acting on a cylinder as a linear sum of a velocity-
squared-dependent drag force and an acceleration-dependent inertial force. The coe$cients
C

d
and C

m
are experimentally determined, cycle-averaged drag and inertia coe$cients, over

a broad range of the governing parameters: the Keulegan}Carpenter number K (";
m
¹/D),

Reynolds number Re (";
m
D/l) or b ("Re/K"D2/l¹), and the relative roughness k/D,

where D is the diameter of the circular cylinder,;
m

the maximum velocity in a cycle, ¹ the
period of #ow oscillation, l the kinematic viscosity of #uid, and k the mean roughness
height. The force decomposition of Morison et al. (1950) is semi-empirical and its justi"ca-
tion is strictly pragmatic and rests with experimental con"rmation. It does not perform
uniformly well in all ranges of K, b, and k/D [see e.g. Sarpkaya (1977, 1981, 1986, 1992)].
Comprehensive data on C

d
and C

m
have been presented by Sarpkaya (1976, 1986, 1999a).
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The generalized formulations of the force exerted on a rigid body in translational motion
in an incompressible viscous #uid require either the velocity or the vorticity "eld to be
known throughout the whole #uid space [see e.g. Wu (1981), Quartapelle & Napolitano
(1983), Lighthill (1986a), and Howe (1989)]. Wu (1981) and Lighthill (1986a) expressed the
force F in terms of the moment of the vorticity distribution over the entire space, as

F"!po
L
Lt P x'x d3x#o<

b

L;
Lt

, (2)

where p"1
2

for three-dimensional #ows and <
b

is the volume of the body. According to
equation (2), the "rst term represents the total contribution of vorticity and the second term
the inviscid inertial force. This formulation has been adopted by Lighthill (1986b) for
a similar decomposition of the in-line force acting on a cylinder in time-dependent #ow
(to be discussed later).

Howe (1989) has shown that the force F
i
exerted by the #uid on a rigid body in the

i-direction is given by
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in which A
ij

is the added mass tensor of the body for translational motion, v
3%-

("v!;) is
the relative velocity, v

i
is the velocity potential of the irrotational #ow about the body, dS is

the elemental surface area, and x is the vorticity. It is seen that F
i
is represented as the sum

of its three constituent components: an inviscid inertial force, a vector sum of the normal
surface stresses induced by vorticity in the -uid, and a shear force or skin friction. Note that
the second component is of particular importance for the purpose of this note.

2. STOKES CANONICAL SOLUTIONS

Stokes (1851) presented the solutions for both a sphere and cylinder oscillating in a liquid
with the velocity ;"!Au cos ut, assuming that the amplitude A of the oscillations is
small and the #ow about the bodies is laminar, unseparated, and stable. For a sphere, his
solution may be written as
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which shows that both the drag and inertia force are modi"ed by the Stokes number b,
expressing the rate of di!usion. In other words, it is impossible to decompose F (t), for
the #ow under consideration, into an inviscid inertia force and a viscous force. Both are
a!ected by the di!usion of vorticity in which resides the memory of viscous #uids. If
di!usion has su$cient time to adjust to the unsteady conditions imposed on the #ow, it may
be said that the motion is a juxtaposition of steady states or a slowly varying unsteady #ow.
If the di!usion cannot adjust to the conditions imposed on the #ow, each succeeding state
will be increasingly a!ected not only by the prevailing conditions but also by the past
history of the motion. Equation (4) shows that, the inertia force approaches its ideal value
only when the rate of di!usion b ["(D2/l)(1/;

m
)(d;/dt)

0
] increases to very large values

while maintaining unseparated, stable, laminar #ow, i.e. the conditions for the validity of
equation (4).
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Stokes' solution for a circular cylinder, as later extended to higher terms by Wang (1968),
may be decomposed into in-phase and out-of-phase components as

C
a
"1#4(nb)~1@2#(nb)~3@2, (5a)

C
d
"

3n3

2K C(nb)~1@2#(nb)~1!
1

4
(nb)~3@2D , (5b)

which shows the dependence of C
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on b and the fact that
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in the limit as KP0, bPR.
Stokes' classical solutions formed the basis of many subsequent models where the

oscillations are presumed to be small enough to allow convective accelerations to be
ignored. Recently, Coimbra & Rangel (1998) presented the general solution of the particle
momentum equation (Maxey & Riley 1983) for unsteady Stokes #ows. Their solution &&is
only valid for small particle Reynolds number (Re

p
"D;!< Da/l@1), small shear Reynolds

number (Re
s
";

0
a2/l¸@1) and applicable only for a small particle so that a/¸@1'', where

< and; are the particle and #uid velocities, respectively, a is the radius of the particle, and
¸ is the characteristic length of the background #ow. The case of "nite particle Reynolds
number requires appropriate corrections to the analytical solutions through higher-order
expansions. An extensive review of the existing force models has shown that the degree of
empiricism increases with increasing Reynolds number and some measure of the unsteadi-
ness of the motion. The practice of expressing the time-dependent #uid force as a function of
the prevailing velocities and accelerations has been extended to nonlinear motions where
convective accelerations, separation, and three-dimensional wakes are important. Some of
these e!orts expressed the force as a sum of the quasi-steady component (a function of the
body shape and the instantaneous Reynolds number), an ideal inertia component, and
a history term (Basset 1888). A comprehensive discussion and numerical solution of the
unsteady Navier}Stokes equations have been presented by Mei (1994) for #ow over
a stationary sphere at "nite Reynolds numbers (Re(100) with oscillating free-stream
velocity in the range of K(Re(K~1. Mei's (1994) and Coimbra & Rangel's (1998) results
are particularly illuminating and useful for particle dynamics where the Reynolds numbers
are at least three orders of magnitude smaller than those encountered in the applications of
the Morison equation.

3. LIGHTHILL'S FORCE DECOMPOSITION

The inertia and drag coe$cients in the Morison model are forced to share the contributions
of the vorticity "eld as in equations (4) and (5). Thus, the question naturally arises as to why
one should not express the resistance in time-dependent #ows as a sum of the contributions
of (a) an inviscid inertial force (with a precisely determinable inertia coe$cient, unlike that
in Morison's equation) and (b) a vorticity}drag (in-line components of skin friction and the
form drag) due to concentrated and distributed vorticity shed during the entire history of
the motion (expressed, if at all possible, in terms of a single coe$cient, dependent on K, Re,
and k/D). In fact, Lighthill (1986b), following his equation (2), asserted that the viscous drag
force and the inviscid inertia force operate independently and therefore it is possible to
divide the measured time-dependent force into two distinct components: an inviscid inertial
force, either corrected or uncorrected for a weakly nonlinear #ow "eld (Madsen 1986), and
a viscous drag force. Lighthill's assertion is based on Kelvin's minimum energy theorem



230 T. SARPKAYA
which assumes that the motion of the unbounded external #uid may be expressed as a linear
sum of (a) the potential #ow that satis"es the boundary conditions, and (b) a residual vortex
motion which satis"es the zero boundary conditions (at the interface and at in"nity).

This led Lighthill (1986b) to suggest that &&2 the irrotational part (a) of the #uid motion
depends only upon those boundary conditions which it satis"es instantaneously''. &&This is
the part [unlike (b), the vortex motion] which is devoid of any &&memory'' for earlier values
taken by ; (t); rather, it is proportional simply to the current value of ;, and its kinetic
energy is proportional to ;2, 2so that 1

2
M

a
;2 can be thought of as if it were the kinetic

energy of an added mass M
a
of #uid which the body's motion e!ectively drags along with

it.'' Then he goes on to state that &&Simultaneously, the kinetic energy of part (b), the vortex
motion, is increasing as more and more vorticity is shed into the wake, where the vortex
lines are subsequently convected and di!used. The rate of working by the thrust with which
the body acts upon the #uid is necessarily equal to the rate of increase of the total energy of
the #uid; including (it must be emphasized) both the kinetic energy of part (b) and any
thermal energy into which viscous dissipation may progressively convert that kinetic
energy.''However, Lighthill does not associate the increase in kinetic energy of part (b) with
any added mass, as he has done so with that of part (a) as if the #uid &&knew'' how to
di!erentiate the two increases in kinetic energy (one due to; and the other due to d;2/dt.
In fact he goes on to state that &&An estimate of the rate of increase of energy in part (b) may
be derived from the rate, proportional to oA; (where A is the body's frontal area), at which
the mass of wake #uid is growing. Velocities of the vortex motion are proportional to ;,
giving a rate of increase of energy 1

2
oA;3 C

d
, where C

d
is a coe$cient. The corresponding

thrust required to yield this rate of working, and to overcome the equal and opposite
vortex-#ow drag of the #uid on the body, is 1

2
oA;2 C

d
. &&This implies that the drag force is

proportional to the square of the instantaneous velocity only, with no e!ect of the time rate
of change of the kinetic energy as if the vorticity "eld were comprised of inviscid line vortices
of constant strength, devoid of di!usion (bPR) [a detailed discussion of this is given in
Sarpkaya (1963, 1996)]''.

Lighthill (1986b), using equation (2), re-wrote the Morison equation as
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which, for an ambient #ow de"ned by ;(t)"!;
m

cos ut, reduces to
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where C*
m

is now the ideal value of the inertia coe$cient (C*
m
"2 for a circular cylinder), and

A
p
and<

b
are the projected area and the volume of the body, respectively. Lighthill's version

of the Morison equation requires only one experimentally determined coe$cient: C
d
,

presumably dependent on such parameters as the Reynolds number, Keulegan}Carpenter
number, relative roughness, and direction of the body motion. Clearly, equations (7) and (8)
make the entire K spectrum inertia-dominated, not just the region of relatively small
K values. We will now show that it is impossible to "nd a suitable C

d
value which enables

equation (8) to represent the measured force even for a circular cylinder.
Figure 1 shows a representative measured force for a sinusoidally oscillating #ow about

a circular cylinder (K+15, Re+40 000). Also shown in this "gure are the traces of force
calculated using equation (8), with a C

d
value that makes the maximum measured and

calculated forces nearly agree, and the di!erence between the measured and calculated
forces (the residue). This "gure as well as several thousand others show conclusively that it is
impossible to represent the measured force with equation (8), regardless of what value one



Figure. 1. Normalized measured force, force calculated from equation (8) due to Lighthill (1986b), and the
residue"(calculated!measured) force.
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assigns to C
d
, as long as C*

m
(here equal to 2)0) is used. Only for very small values of

K [where the second term in equation (8) is dominant] do the measured and calculated
forces approach each other. The form of the residue immediately suggests, as veri"ed by
a proper Fourier analysis, that equation (8) must, for a "rst-order reduction of the residue,
be augmented by a term involving sin h (proportional to the acceleration of the #ow). Using
the C

d
value deduced from a Fourier analysis of the measured force as the most appropriate

drag coe$cient, one has
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which is obviously identical to the Morison equation. Here C
m

is identical to the inertia
coe$cient C

m
in the original Morison equation and is obtained in exactly the same manner

as before. It must be emphasized that the use of a smaller or larger C
d

could not have
provided a better "t to the measured force. Furthermore, it would have required additional
coe$cients resulting from the expansion of C

d
into a suitable series.

4. CLOSING REMARKS

It has been shown that the viscous drag force and the inviscid inertia force do not operate
independently and it is not possible to divide the measured time-dependent force into an
inviscid inertial force and a viscous drag force. Our results have shown convincingly that the
creation, convection, and di!usion of vorticity a!ect both components of the force, because
the unsteady #ow is neither a juxtaposition of steady-#ow states nor a juxtaposition of
impulsively started unsteady-#ow states. The inertia coe$cient (or the added mass coe$c-
ient) varies with time during a given cycle and, if Fourier averaged, with the governing
parameters (Re, K, k/D, shape and orientation of the body). It is now clear that the second
term in equation (3), i.e. the vector sum of the normal surface stresses induced by vorticity in
the -uid, contributes to both the inertial force and the drag or, in other words, modi"es the
ideal inertial force and the velocity-squared-dependent form drag and the skin-friction drag.
Lighthill's decomposition [equations (7, 8)] is valid only for KP0, bPR. It must be
emphasized that what is questioned here is not the validity of the total force given by



232 T. SARPKAYA
equation (2) but rather the decomposition of the total force into the constituents given by
equation (8) and the assumptions of Kelvin and Lighthill leading to it.

Even though the foregoing has been presented in the context of in-line forces acting on
blu! bodies, it is equally applicable to transverse forces acting on blu! bodies undergoing
vortex-induced oscillations as evidenced by equally extensive data (Sarpkaya 1995). It
appears from the foregoing that the Morison force decomposition does perform well over
a broad range of K, b, and k/D values in spite of its well-known shortcomings. Recently,
Sarpkaya (1999b) modi"ed the Morison model to enhance its accuracy in the drag/inertia-
dominated regime through the use of a third term, expressed in terms of the existing two
coe$cients and a new parameter based on (n2/K)(C*

m
!C

m
).

Paul Adrien Maurice Dirac once noted that &&A theory with mathematical beauty is more
likely to be correct than an ugly one that "ts some experimental data.'' Apparently,
Morison's equation with Fourier-averaged empirical coe$cients will remain as an excep-
tion to Dirac's wisdom as long as the concerns expressed by Batchelor (1967) remain
theoretically unresolved.
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