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ABSTRACT 

Floating offshore platforms motions induced by currents are 

quite complex phenomena, in general. In particular, VIM, Vor-

tex-Induced Motion, is a type often encountered in platforms with 

circular columns. Recently, VIM has been observed in towing 

tank tests with a small-scale model of a Floating Offshore Wind 

Turbine (FOWT), the OC4 Phase II floater, a 3+1 columns plat-

form. The present paper proposes a reduced-order mathematical 

model (ROM) to assess VIM of a FOWT. The ROM is derived on 

the horizontal plane, including yaw motions and nonlinear 

mooring forces. Current forces are represented through ‘wake 

variables’, adapting phenomenological models firstly used for 

VIM of mono-column platforms. The ROM is built upon a set of 

eleven generalized coordinates, three for the rigid body motion 

on the horizontal plane and a pair of wake variables for each 

column, resulting in a system of eleven nonlinear second-order 

ODEs. The pairs of wake variables obey van der Pol equations, 

and use hydrodynamic coefficients and parameters obtained 

from previous experiments with small draught cylinders. Hydro-

dynamic interferences among columns or heave plates effects on 

the flow are not considered, for simplicity. The validity of the 

proposed model is assessed having the mentioned small-scale ex-

perimental campaign as a case study. The simulations are car-

ried out at three different current incidence angles, 0, 90 and 180 

degrees, spanning a large range of reduced velocities. The sim-

ulations reproduce well the oscillations observed in the experi-

mental tests. A good agreement in transverse oscillations is 

found, including lock-in regions. The simulations also depict a 

possibly important phenomenon: a resonant yaw motion emerg-

ing at high reduced velocities. 

 

Keywords: VIM, FOWT, Reduced-order Model, Wake Os-

cillator modeling, experimental comparison. 

INTRODUCTION 

Density of power, steadiness and enormous available oce-

anic areas have proved offshore wind as a promising renewable 

energy source. TLP, monocolumn and semisubmersible plat-

forms, originally employed as solutions for the offshore oil and 

gas sector, have been used recently in the offshore wind energy 

industry to give support to wind turbines in mid and relatively 

deep waters, [1]. Such floating moored unities are acted by 

strong loads due to the incoming waves, wind and current. Ocean 

currents, generally quite steady flows, may be responsible not 

only for displacing the unit away from its original design posi-

tion, but also for inducing slow oscillatory motions on the hori-

zontal plane. In the case of floating platforms with circular col-

umns, current induced motions are usually related to the vortex 

shedding phenomenon and are known as Vortex-Induced Mo-

tions (VIM). VIM is a recurrent phenomenon, what may turn its 

prediction an important issue in the design process; see, e.g., [2]. 

Generally speaking, VIM is a non-linear resonant phenom-

enon, of the Vortex-Induced Vibration (VIV) type, in which the 

frequency of the vortex structures, shed from vertical cylindrical 

bodies that constitute the hull, synchronize with the usually low 

natural frequencies of the system, corresponding to the oscilla-

tion modes of the moored platform on the horizontal plane. 

Computational Fluid Dynamics modeling (CFD) might be 

used to solve the Navier-Stokes and the Poisson equations, which 

govern the velocity and pressure flow fields. Once coupled to the 

dynamic equations of the body, such a modeling technique might 

serve as a prediction tool for VIM. However, the high computa-

tional time of the numerical simulations usually impairs this ap-

proach, at least during design stages. Moreover, verification and 

validation procedures cannot be dispensed. 

Alternatively, phenomenological models based on non-lin-

ear oscillators, such as on van der Pol equations, are proper to 
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vortex wake dynamics modeling. In fact, the non-linear self-sus-

tained and self-excited mechanism of the vortex-shedding phe-

nomenon resembles the response of such a class of oscillators, 

characterized by Hopf bifurcations and the existence of limit cy-

cles. Indeed, Aranha (2004), [3], after the work by Huerre and 

Monkewitz (1990), [4], proved that the vortex wake dynamics 

behind slender fixed cylinders exposed to current flows, there-

fore affected by a weak three-dimensionality, is governed by 

Ginsburg-Landau oscillators which emerge naturally from the 

Navier-Stokes equations. Besides, as well-known, Landau equa-

tion is a particular case of the van der Pol equation, which can be 

also transformed into a Rayleigh oscillator. This class of phe-

nomenological approach is also known as ‘wake oscillators’ 

modeling. 

The interaction between the flow and the structure dynamics 

can be modelled through a proper coupling between the corre-

sponding equations to emulate the classical VIV. Early studies 

on such a class of models, treating VIV of rigid cylinders 

mounted on elastic supports and free to move transversally to the 

income flow, may be traced back to the 1960’s and 1970’s; see, 

e.g., [5]. Iwan and Blevins’ (1974) model, [6], is one of funda-

mental importance, in which coupling between the wake oscilla-

tor and the cylinder dynamics was made through velocity de-

pendent terms. See, also, [7]. 

About thirty years later, comparing experimental and nu-

merical results on classic VIV, Facchinetti and his collaborators, 

[8], concluded that the mentioned interaction might be modeled 

as dominated by inertial terms, proposing then a coupling in 

terms of acceleration. It is worth noticing that the dependence of 

coupling parameters on the variation of inertial terms, as the 

added mass taken as function of the reduced velocity, had been 

already considered, see, e.g., [9], by modifying the classic model 

of Iwan and Blevins. An acquaintance of the differences between 

models, regarding the robustness of the added mass concept on 

VIV, may be seen in [10]. Recently, the discussion on the added 

mass concept on VIV has regained a renewed strength, as shown 

by a novel reinterpretation of this complex phenomenon by Ber-

nitsas et al, [11]. 

Facchinetti et al’s model was revisited and discussed in 

detail by Ogink and Metrikine, [12]. Still restricted to one degree 

of freedom (1-dof) VIV, an important hypothesis of Facchinetti 

et al’s model, namely, the linearization of the instantaneous rela-

tive velocity of the cylinder with respect to the flow, was relaxed. 

Moreover, the authors modified the coupling parameters, accord-

ing to the experimentally observed vortex emission regime. 

More recently, Franzini and Bunzel, [13], extended the approach 

by Ogink and Metrikine to two degrees of freedom (2-dof), 

allowing both crosswise and in-line oscillations. A second van 

der Pol oscillator, vibrating twice as fast as the crosswise one, 

was introduced in the in-line direction, assuming, a priori, a dual 

ressonance phenomenon. 

Aditionally, regarding calibration, CFD has been used, [14], 

to determine the parameters that govern some types of wake 

oscillator models. The influence of mass ratio was discussed, 

such as their impact on response amplitudes and on the width of 

the lock-in region.  

Wake oscillator models have then been applied to 

monocolumn production, storage and offloading (MPSO) 

floating platforms, with success; see [15], [16]. In those papers, 

CFD techniques were applied to improve the adherence between 

the results of a wake-oscillator model with experiments. Using 

one van der Pol oscillator for vortex wake dynamics modelling 

and a linear oscillator with two degrees of freedom (2-dof) for 

the platform dynamics, a parametric analysis was carried out. 

Moreover, it was concluded that the three-dimensionallity of the 

flow due to the small aspect ratio of the floating monocolumn 

cylindrical platform has a strong influence on the frequency of 

vortex shedding, thus on the Strouhal number; see also [17]. 

Improving even more such kind of modelling to study VIM 

of a MPSO, [18] considered a two-wake oscillators model, based 

on Franzini and Bunzel’s work. The very low aspect ratio of the 

cylindrical platform (~ 1:3) was duly taken into account by ap-

plying the proper and smaller Strouhal number, experimentally 

determined in [19]. A 5-dof reduced-order mathematical model 

(ROM) was then constructed. That model considered the plat-

form dynamics in three degrees of freedom on the horizontal 

plane coupled to two van der Pol wake oscillators to deal with 

the VIM phenomenology. The use of two van der Pol oscillators, 

adapting the Franzini and Bunzel’s model, [13], with proper 

parameters and coefficients, was the methodological difference 

of that work compared with [16]. Another key improvement was 

the consistent modelling of the nonlinear response of the moor-

ing lines, using the closed-form analytical approach, based on 

methods of Analytical Mechanics, introduced by [20]. In fact, 

such an approach made it possible to observe yawing motions 

driven by the mooring lines while the body centroid develops 

classic eight shaped trajectories on the horizontal plane, even 

treating a circular cylindrical hull. A good comparison with ex-

periments was then obtained. 

Motivation and objectives 

The good numerical results obtained in [18], and the recent 

experimental findings by Gonçalves et al, [21], on the existence 

of VIM on a small-scale multicolumn FOWT model, truly moti-

vated the present work. The intent henceforth is to verify whether 

reduced-order models based on wake oscillators could be suc-

cessfully applied to multicolumnar platforms. 

The experiments reported in [21] were carried out with a 

small-scale model of the FOWT OC-4 (Phase 2) platform in a 

towing tank. That study proved VIM as a worthwhile investiga-

tion phenomenon for multicolumn FOWT platforms, at least in 

laboratory scale, where relatively low Reynolds numbers take 

place. If proved to be relevant in full scale, VIM might constitute 

a significant factor to the operation of wind turbines, especially 

in the case of substantial yaw oscillations, possibly affecting the 

azimuthal orientation control of the nacelle. 
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Regarding the mooring system, four pre-tensioned linear 

springs were perpendicularly arranged and connected to a circu-

lar rigid ring attached to the platform model. As already men-

tioned, geometric nonlinearities in the mooring restoring forces 

are relevant, inducing couplings between translational and yaw 

motions. Pesce et al’s, [20], closed form formulation for the re-

sponse of a generic mooring system shows explicitly the depend-

ence of the restoring forces on the position and heading of the 

floating unit. Such analytical formulation, geometrically non-lin-

ear, is shown to be important for the conception of a consistent 

reduced-order model on the horizontal plane. 

Gonçalves et al, [21], observed that the amplitudes of oscil-

lation in the transverse direction to the incoming flow reached 

up to circa 60% of the diameter of the largest (and external) col-

umns. This happened within the synchronization (lock-in) range 

varying between 5 and 10, with reduced velocities defined by 

taking the diameter of the external columns as the length scale. 

Such values, if extrapolated to the real scale, would refer to cur-

rent speeds between 0.5 and 1.2 (m/s), often found in offshore 

areas. 

The trajectories of the platform centroid experimentally ob-

served on the horizontal plane depended on the incidence angle 

of the flow. Indeed, some differences were reported at 0 and 180 

degrees. Notice that at these two incidence angles, columns are 

not aligned with the flow, which certainly reduces wake interfer-

ences between them. On the contrary, at 90 degrees incidence 

angle, the columns alignment with respect to the flow increases 

wake interferences. 

In the present work, using the formalism of Analytical Me-

chanics and based on a wake oscillators phenomenological ap-

proach, a reduced-order mathematical model (ROM) is derived 

to assess the motion on the horizontal plane of multicolumnar 

floating platforms. The conceptual floater FOWT-OC-4 Phase II 

is used as a case study and numerical results are confronted with 

the experimental data presented in [21]. The authors believe that 

this is the first attempt to model VIM of a multicolumn floating 

platform through a ROM, by using the wake oscillator approach. 

THE REDUCED-ORDER MATHEMATICAL MODEL 

In this section, a reduced-order model is proposed for the 

problem under discussion. Lagrange’s equations for the horizon-

tal plane rigid-body motions (3-dof) of the platform are derived, 

neglecting coupling effects with out-of-plane motions. Hydrody-

namic and mooring line restoring forces on the horizontal plane 

are taken as generalized forces. 

The generalized mooring line restoring forces are modeled 

in a quite general way, through the formalism of Analytical Me-

chanics, following [20]. Such a derivation permits to consider 

rather distinct mooring configurations, taking nonlinearities into 

account. Restoring forces are considered to be function of posi-

tion only, in a quasi-static approach. Effects associated with the 

mooring lines dynamics are not considered in this model, what 

should include ‘mooring line damping’, for instance. This issue 

certainly deserves a proper discussion, what is left for a future 

work, since not relevant to modeling the small-scale experiments 

in [21], as the mooring system was formed by springs in the air. 

Two fluid-structure interaction effects are considered in this 

model: (i) the inertial ones, represented through the well-known 

concept of the potential added mass tensor; (ii) those related to 

the vortex shedding phenomenon, here represented via a phe-

nomenological approach. For each column of the platform, the 

corresponding drag and lift forces coefficients are expressed as 

functions of two independent variables, each of them modelled 

according to a wake-oscillator, of the van der Pol type, forced by 

a term proportional to the respective component of acceleration 

in the direction of the current (in-line direction) and transversally 

to it (crosswise direction). These wake-oscillators represent two 

additional degrees of freedom for each column, which, along 

with the three degrees of freedom of rigid-body motions of the 

platform in the horizontal plane, totalize 11-dof. In the sequel, 

the governing equations for the dynamic of the platform are es-

tablished. 

Equations of motion on the horizontal plane 

For simplicity, assume that the current has a uniform veloc-

ity profile both in magnitude U∞ and direction.  Define ( , , )O X Y

as a Cartesian coordinate system in the horizontal plane, attached 

to an inertial reference frame, whose X direction is parallel to the 

current. Let  
T

x y =q  be the 3-vector of generalized 

coordinates that describe the rigid-body motions of the platform 

on the horizontal plane, with ( , )x y  representing the coordinates 

of the center A of the platform in ( , , )O X Y  and   denoting the 

yaw angle, as illustrated in Figure 1. Also, define ( , , )A    as a 

body-fixed coordinate system, that coincides with ( , , )O X Y

when 0A   and 0 = . 

 

Figure 1. Coordinates and general definitions. At origin, plat-

form is shown at 0 degrees current heading.  

The Lagrange’s equations of motion for the platform can be 

expressed as follows: 

 ,m v
d T T

dt

  
− = + 

  
Q Q

q q
  (1) 
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where T  represents the kinetic energy of the system, including 

added-mass inertial effects; m m
jQ=   Q  and v v

jQ=   Q ; 

1,2,3,j =  are, respectively, the generalized forces correspond-

ing to the restoring mooring forces and to the hydrodynamic 

forces associated to vortex shedding phenomenon effects. 

Let p a= +M M M  be the (3 3)  mass matrix, where the 

subscript p refers to the platform and the subscript a to the classic 

added mass tensor concept. Also, let ˆ T
a a=M BM B , with B  the 

rotation matrix from ( , , )O X Y  to ( , , )A   , and ˆ
aM  the added 

mass tensor expressed in the body-fixed coordinate system 

( , , )A   , which, due to symmetry can be assumed as a diagonal 

3 3  matrix. Oscillations at very slow motions are assumed, 

such that the asymptotic limit for the added mass tensor at zero 

frequency can be used. Thus, the kinetic energy may be put in 

the following form: 

 
1

.
2

TT = q Mq    (2) 

Under the above set of simplifying hypotheses and assuming 

that the centroid is taken as the center of mass, i.e., A G , the 

equations of motions (1) will then appear in a rather simple ma-

trix form, 

 ,I m v+ = +Mq Q Q Q    (3) 

with IQ  denoting generalized inertia forces related to the 

angular velocity of the body. 

Phenomenological model and hydrodynamic forces 

Considering the diagram shown in Figure 2, adapted from 

[12], the hydrodynamic forces related to vortex shedding effects 

can be described in terms of their components in the body-fixed 

coordinate system. Let U  be the free stream velocity, which is 

supposed aligned with the axis OX . Let kU  be the instantane-

ous relative velocity of the current stream with respect to the cen-

troid of the k-th column, being , kU  and , kU  their projections 

on the axes   and  . Define ,L kF  and ,D kF  as ‘lift’ and ‘drag’ 

forces, respectively, the former perpendicular to kU  and the lat-

ter aligned with kU . 
,v k

F


 and 
,v k

F


 are the components of the 

hydrodynamic forces in the directions   and  , respectively, 

and k  is the angle between the directions of kU  and U . 

Considering a platform with Nc columns, such that 

1,2, , ck N= , we then follow [12] and [22], to obtain: 

 

2 2
, ,, ,

, , , , ,
2

, , , , ,
2

2 2
, , , , , ,, ,

1 1
; ,

2 2

( ) ,

( ) ,

; ; ,

v k k k v k k kk k

k
k D k k L k k

k
k D k k L k k

k C k C k k kk k

F D H C U F D H C U

U
C C U C U

U

U
C C U C U

U

U U v U U v U U U

  

  

  

      

  





 

= =

= −

= +

= − = − = +

   (4) 

where   is the water density, kD  is the diameter of the k-th col-

umn and kH  its respective draught; ,D kC  and ,L kC  are the hy-

drodynamic coefficients in their respective directions. The ve-

locity terms are expressed in the local frame, ( , , )A   , such that 

,U   and ,U   are the components of the stream velocity, 

whereas 
,Ck

v


 and 
,Ck

v


 are the components of the velocity vec-

tor of the k-th column center, Ck, i.e.: 

 | .C A p C Ak k
= + v v ω r    (5) 

In Eq. (5), Av  is the velocity vector of the centroid of the 

platform, A, on the horizontal plane, pω  is the angular velocity 

vector of the platform, and |C Ak
r  is the relative position vector 

between A and the center of the k-th column, Ck. 

 

Figure 2. Forces diagram for the k-th column; based on [13],  

after [12]. Cylinder moving left and down. 

On the other hand, 
,v k

F


 and 
,v k

F


 may be written, 

 

, ,

,

,
cos( ) sin( ),

sin( ) cos( ),

cos( ) ; sin( ) .

k k

k k

v D k L kk

v D k L k

k k k k k

k

k

F F F

F F F

U U U U






 

 

 

= −

= +

= =

   (6) 

Therefore, 

 
, , , ,,

, , , ,,

1
( ) ,

2

1
( ) ,

2

v k k D k k L k k kk

v k k D k k L k k kk

F D H C U C U U

F D H C U C U U

 

 





= −

= +

   (7) 

and the corresponding generalized viscous hydrodynamic force 

vector turns out to be: 

 ,

1

1, 2,3;
c

k

N
Cv

j v k

k j

Q
q

j
=

=


= 



v

F .  (8) 

The wake oscillator model 

Following [18], by considering [13]-[14], we write two 

forced van der Pol oscillators for each column, aligned with the 

directions   and  , being , ,( , )k ka a   the components of the ac-

celeration at the center of the k-th column, in the form: 
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2 2
, , , , ,, ,

2 2
, , , , ,, ,

( 1) 4 ,

( 1) ,

k s k k k kk s k

k

k s k k k kk s k

k

A
w w w w a

D

A
w w w w a

D


    


    

  

  

+ − + =

+ − + =

   (9) 

where ,1 ,1 , ,c c

T

N Nw w w w   =   w  is a hidden general-

ized coordinator vector that phenomenologically emulates the 

wake dynamics and its interaction with the structure;   and   

are damping parameters and ( ), ,2 /s k t k k kS U D =  is the shed-

ding frequency, being ,t kS  a characteristic value of the Strouhal 

number, specific for the case of low aspect ratio cylinders. Notice 

that the in-line wake oscillator vibrates with twice the frequency 

corresponding to the crosswise one. This is a common ad-hoc 

assumption that comes from well-known experimental VIV ob-

servations, according to which the fundamental harmonic of drag 

forces pulsates twice as fast as that of the lift forces. The terms 

on the r.h.s of Eq. (9) represent the coupling between the wake 

oscillators and the body equations of motion. According to [8], 

coupling through inertial terms are recommended, despite origi-

nal models apply velocity terms; see, e.g., [6]. The inertial cou-

pling has been followed since, by a number of authors, as [12] or 

[13]. The coefficients ( , )   and ( , )A A   have been cali-

brated from experiments, [15], [16], and from CFD simulations, 

[14]. 

Finally, the generalized wake forces in Eq. (3) are computed 

by writing the lift and drag coefficients as functions of the wake 

variables, [14]-[15], in the form, 

 
0 02

, , , 0 ,,;  (1 ) ,
2 2

f
L D

L k k D k D kk

C C
C w C C Kw w = = + +    (10) 

where 0LC  and 0DC  are, respectively, the lift and drag coeffi-

cients for a fixed cylinder; 0
f

DC  is a weighting coefficient for the 

oscillation amplitude of the drag; and K is a constant, experimen-

tally determined, [15]. 

Coupled model 

Gathering Eqs. (3-10), the 11-dof reduced-order model may 

be written in the following form: 

 ,c nc= +Mq Q Q    (11) 

where, on the l.h.s., 11 11xM and 11q  are, respectively, the 

augmented inertia matrix and generalized coordinate vector; and 

on the r.h.s., 11
c Q and 11

nc Q  are, respectively, general-

ized force vectors, the first one dependent on the generalized 

configuration of the system and the second one is a non-con-

servative term. Eq. (12) provides their respective forms explic-

itly. 

; ,
w

   
= =   
   

M 0 q
M q

A 1 w
 

; ,
m I v

c nc
r v
w w

−   
= =   
   

Q Q Q
Q Q

Q Q
 

(12) 

where, 

 

,1 ,1 ,1

1 1 1 2 1 3

,1 ,1 ,1

1 1 1 2 1 3

, , ,

1 2 3

, , ,

1 2 3

c c c

c c c

c c c

c c c

w

N N N

N N N

N N N

N N N

a a aA A A

D q D q D q

a a aA A A

D q D q D q

a a aA A A

D q D q D q

a a aA A A

D q D q D q

    

    

    

    

  
− − −

  

  
− − −

  

=

  
− − −

  

  
− − −

  

A ,


 
 
 
 
 
 
 
 
 
 
 
 



  (13) 

 

2
,1 ,1

2
,1 ,1

2
,,

2
,,

4

;

4
cc

cc

s

s

r
w

Ns N

Ns N

w

w

w

w

















− 
 

−
 
 =
 
− 
 − 

Q

2
,1 ,1 ,1

2
,1 ,1 ,1

2
, ,,

2
, ,,

( 1)

( 1)

.

( 1)

( 1)

c cc

c cc

s

s

v
w

s N NN

s N NN

w w

w w

w w

w w
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  

 

 

 

 

 

 

− − 
 

− − 
 =
 
− − 
 − − 

Q   (14) 

A CASE STUDY 

To verify the applicability of the model, a case study was 

carried out considering the reduced scale model (1:72.72) of the 

OC4 platform with a simplified mooring system composed of 4 

springs lines connected to the towing carriage (Figure 3(a)), used 

by Gonçalves and collaborators, [21]. The model is equipped 

with three main columns, in an equilateral arrangement, and a 

fourth and much smaller one, at the center. The results presented 

herein replicate the experiments in small-scale, where three cur-

rent incidence angles were considered (0, 90 and 180 degrees), 

as illustrated in Figure 3(b)-(d). Simulations were carried out at 

least for 30 reduced velocities, spanning the range 3 < VR < 24, 

what corresponds to the Reynolds number range 8,000 < Re < 

70,000, for each incidence angle. The simulations were carried 

out in a MATLAB® environment, numerically integrating the 

coupled equations in the state space form. A fixed time step of 

0.1 seconds was used, applying the 4th order Runge-Kutta algo-

rithm. 

The platform main characteristics are shown in Table 1, 

while the mooring system parameters and those corresponding 

to the wake oscillators are given in Tables 2 and 3, respectively. 

Table 4 shows the inertia and stiffness matrices calculated at the 

trivial equilibrium position for the current incidences considered 

in the small-scale experiment, while Table 5 shows the three nat-

ural periods evaluated at the same trivial equilibrium condition, 

comparing those experimentally measured with those calculated 

with the ROM. Notice that at the trivial equilibrium, the oscilla-

tion modes are pure ones, uncoupling the ( , , )X Y  degrees of 

freedom. As the platform model drifts off from that trivial equi-

librium position, mooring stiffnesses change and motions be-

come coupled to each other, hence producing yaw, even if the 

current is originally aligned with an axis of symmetry. 
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Table 1. OC4 scaled model parameters; [21]. 

Parameters Values 

Draught, H (m) 0.275 

Arc radius, R (m) 0.490 

Columns centers’ radius, r (m) 0.397 

Diameters,  1 2 3 4, , ,D D D D

(m) 
{0.165, 0.165, 0.165, 0.090} 

Platform’s mass matrix, pM

(kg, kg, kgm²) 
diag{36.70, 36.70, 4.00} 

Added mass tensor, ˆ
aM  

(kg, kg, kgm²) 
diag{21.72, 22.13, 4.39} 

Density of water,  (kg/m³) 1000 

Table 2. Mooring system parameters; [21], [23]. 

Parameters Values 

Towing car dimensions, 

{ , , }m m mW L  (m) 
{1.59, 2.40, 0.98} 

Natural lengths 
1 2 3 4

{ , , , }n n n nl l l l (m) {0.80, 0.425, 0.80, 

0.425} 

Spring constants 1 2 3 4{ , , , }k k k k

(N/m) 
{7.46, 9.42, 7.46, 9.42} 

Table 3. Wake-oscillators parameters; [15], [19]. 

Parameters Values 

{ , }A A   {12, 6} 

{ , }    
{0.30, 0.15} 

0 0 0{ , , , }f
D L DC C C K  {0.70, 0.30, 0.10, 0.05} 

Strouhal numbers for each col-

umn, 
1 2 3 4

{ , , , }t t t tS S S S  
{0.145, 0.145, 0.145, 0.150} 

Table 4. Mass and stiffness matrices at the trivial equilibrium 

position; [21], [23]. 

Incidence 0°, 180° 90° 

Mass matrix, M  

(kg, kg, kgm²) 

diag{58.42, 58.83, 

8.39} 

diag{58.83, 58.42, 

8.39} 

Mooring stiffness 

matrix, K  

(N/m, N/m, Nm) 

diag{26.48, 27.46, 

19.22} 

diag{26.48, 27.46, 

19.22} 

Table 5. Natural periods at the trivial equilibrium position; [21], 

[23]. 

 Experiment ROM 

Incidence 0°, 180° 90° 0°, 180° 90° 

DOF Tn (s) Tn (s) Tn (s) Tn (s) 

X  9.40 9.40 9.33 9.36 
Y  9.60 9.70 9.20 9.16 
  4.20 4.20 4.15 4.15 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 3. Experiment sketch with the simplified mooring sys-

tem. (a): tank sketch and mooring system geometry. (b)-(d):   

Incoming flow incidence at 0, 90 and 180 degrees. 

According to [21], an interesting way to observe the behav-

ior of the platform centroid in the transverse (crosswise) and in-

line directions, with respect to the main flow, is by showing its 

full dynamic response on the horizontal plane. For that, Figures 

4 to 6 illustrate the motion of the centroid of the platform on the 

horizontal plane, obtained with the ROM, for all current inci-

dences considered and for a sample of the reduced velocities of 

the experiment. The reduced velocity sample was chosen consid-

ering the synchronization range of the platform oscillations in 

the transverse direction and to the yaw angle, which is repre-

sented along the trajectory through the color gradient. All simu-

lations started from rest, at the trivial equilibrium position. 

Figures 7 to 9 show the comparison between the nondimen-

sional amplitudes obtained with the proposed models of VIM 

Y

X


mW

mL

m

Y

X



U

U

Y

X



U

Y
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
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and the experimental results presented in [21]. Figure 7(a) shows 

that the proposed model produces a fairly realistic representation 

of the transverse oscillation amplitude (AY / D) for the incidence 

of 0 degrees, with maximum oscillation amplitude (0.58 at VR ~ 

9), close to the one observed experimentally (0.62 at VR ~ 8).  

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 4. Trajectories of the FOWT’s center on the horizontal 

plane for an incidence angle of 0 degrees (X is the current di-

rection, in-line; Y is the direction transversal to it, cross). Yaw 

scaled as in the colored bar. (a): VR = 5.24; (b): VR = 8.73; (c): 

VR = 11.64; (d): VR = 14.55; (e): VR = 16.87; (f): VR = 22.69. 

The synchronization range obtained with the ROM (5 < VR 

< 14) also approximates well the range observed in the experi-

ments (4.5 < VR < 14). 

For the 90 degrees incidence case, the transverse oscillation 

is fairly well represented, as can be seen in Figure 8(a). In this 

case, the maximum oscillation amplitude determined with the 

ROM (0.58 at VR ~ 8.5) is slightly different from that observed 

in the experiment (0.51 at VR ~ 7.9) and the synchronization 

range predicted by the model (5 < VR < 14) is wider than the one 

observed experimentally (5 < VR < 11). Possibly, such a behavior 

is due to the alignment of two columns with the current direction, 

what certainly increases the hydrodynamic interference between 

them, not considered in the ROM. 

Regarding the amplitude of the in-line oscillation (AX / D), 

the model approximates the magnitude of the experimental re-

sults, at the beginning of the crosswise oscillation synchroniza-

tion range, for all the incidence angles analyzed. It should be no-

ticed that at small reduced velocities the wake interference may 

be conceived as relatively weak. Notice also that the graphs of 

dominant frequencies reveal, quite clearly, switches between os-

cillation modes, with jumps occurring at reduced velocities close 

to 14. 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 5. Trajectories of the FOWT’s center on the horizontal 

plane for an incidence angle of 90 degrees (X is the current di-

rection, in-line; Y is the direction transversal to it, cross). Yaw 

scaled as in the colored bar. (a): VR = 5.24; (b): VR = 8.73; (c): 

VR = 11.64; (d): VR = 14.55; (e): VR = 16.87; (f): VR = 22.69. 

Concerning the yaw oscillation amplitude (Aψ) at 0 degrees 

incidence, Figure 7(c), it is observed that the ROM predicts a 

maximum value of 7.2 degrees at VR ~ 18, overestimating by a 

large amount the typical values found in the experiment, around 

2 to 3 degrees. The overprediction is even bigger at 90 and 180 

degrees, as depicted in Figures 8(c) and 9(c). 

In fact, beyond the main synchronization – the lock-in range 

for crosswise oscillations – a quite interesting behavior is re-

vealed by the simulations: a resonant response of the yaw angle. 

Indeed, looking at Table 5, the yawing natural period at the trivial 

equilibrium position is grossly half the other two. If the graphs 

of yaw amplitude response and respective dominant frequencies 

were replotted, by redefining the reduced velocity parameter 

based on the yaw natural frequency, a VIV-like resonance regime 

would clearly appear. 

 



 8 Copyright © 2020 by ASME 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 6. Trajectories of the FOWT’s center on the horizontal 

plane for an incidence angle of 180 degrees (X is the current di-

rection, in-line; Y is the direction transversal to it, cross). Yaw 

scaled as in the colored bar. (a): VR = 5.24; (b): VR = 8.73; (c): 

VR = 11.64; (d): VR = 14.55; (e): VR = 16.87; (f): VR = 22.69. 

Notice however that, although an increase trend in the yaw 

motion may indeed be observed from the small-scale experi-

mental data, there is no clear experimental evidence of a yawing 

resonant regime. Possibly, the hydrodynamic interference phe-

nomenon, stronger at higher velocities, may have harmed the 

representation of the ROM, causing the differences observed be-

tween the simulation results and the experimental ones. Other 

possible causes, as the damping effect of the heave plates, could 

be raised, though. 

CONCLUSION 

A reduced-order mathematical model was proposed to ad-

dress the Vortex-Induced Motion, VIM, of a moored (circular) 

multicolumn floating offshore wind turbine platform. The model 

is derived considering slow motions on the horizontal plane, at 

very-low frequencies, such that the asymptotic limit for the 

added mass tensor at zero frequency can be used. Viscous fluid 

forces induced by vortex-shedding are modeled through a phe-

nomenological approach, such that the dynamics of the vortex 

wake that is shed from each cylindrical column is represented 

through a pair of wake-oscillators, of the van der Pol type.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Comparison with experimental results, [21]. Flow at 0 

degrees. (a): Cross flow amplitude; (b): In-line amplitude; (c): 

Yaw amplitude; (d): Dominant nondimensional frequencies. 

ψ 
X 

Y U∞ 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Comparison with experimental results, [21]. Flow at 

90 degrees. (a): Cross flow amplitude; (b): In-line amplitude; 

(c): Yaw amplitude; (d): Dominant nondimensional frequencies. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Comparison with experimental results, [21]. Flow at 

180 degrees. (a): Cross flow amplitude; (b): In-line amplitude; 

(c): Yaw amplitude; (d): Dominant nondimensional frequencies. 
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Each one of these pairs is considered acting according to the 

local relative velocity of the incoming flow with respect to the 

column centroid, in orthogonal directions, aligned with and 

transversal to it, in the manner proposed by [13], after [12]. All 

wake interferences that may occur among columns have been 

simply ignored in the presented version of this ROM, for sim-

plicity. Neither have been considered other possibly relevant hy-

drodynamic effects as those due to the presence of heave-plates 

on the flow around the columns, or even due to possibly existent 

bracings. 

Parameters for the wake-oscillators were taken from the 

technical literature, [14], [15], [16]; particularly, the Strouhal 

numbers for each column were taken from experimental results 

with low-aspect ratio cylinders; [19]. Notice that, at a given in-

stant, the differences between local incoming current flow at 

each column is responsible for producing yawing moments, 

which would not appear in the case of a monocolumn. 

The mooring system action is represented by a conservative 

non-linear closed-form analytical model, that may take into ac-

count any mooring configuration; [20]. 

It should be noticed that galloping, another phenomenon that 

might occur in squared section columns platforms might be ad-

dressed as well, however not under the wake-oscillator modeling 

approach. 

The development of the present ROM had original motiva-

tion from a previous successful model alike, constructed for 

monocolumn platforms; [18]. In that case, the mooring system 

had been shown to be responsible for yawing coupling, even 

treating a circular monocolumn platform. The ROM develop-

ment was then re-motivated by the experimental findings of cur-

rent-induced motions for a small-scale model of a FOWT (the 

OC4 PHASE II FLOATER), reported in [21], at IOWTC2019. 

Naturally, a first assessment of the present ROM validity 

should be carried out by modeling those small-scale experi-

ments, [21]. This has been done. A generally good agreement 

could be found between crosswise oscillations, at three distinct 

current incidence angles, 0, 90 and 180 degrees, including am-

plitudes, synchronization ranges and switching of oscillation 

modes. A fair agreement was found, considering in-line oscilla-

tions inside the crosswise synchronization range. The ROM also 

revealed something unexpected: the possibility of a resonant be-

havior of the yaw motion at higher reduced velocities, just after 

the end of the crosswise synchronization range. Such resonant 

behavior had not been observed experimentally, however, alt-

hough trends for moderate yawing amplitudes were reported. 

Such a point must be deeply investigated. 

Finally, it should be stated that, in spite of some differences 

found in the comparison with the experimental results and de-

spite the quite strong simplifying assumptions adopted in the 

mathematical modeling of such a complex phenomenon, the pre-

liminary results obtained with the proposed ROM turn it into a 

very promising approach. Future improvements should involve 

the effects of wake interferences between columns, dependent on 

the spacing between them and thought to be an important issue 

in some incidence angles and at higher reduced velocities. The 

hydrodynamic effect of the heave plates and braces are other 

points that certainly deserve further investigation. Parametric 

sensitivity studies with the ROM are also planned, as those re-

lated to initial conditions and initial wake-oscillators phases. 
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 APPENDIX 

We apply the approach introduced in [20]. In that paper, a 
generic mooring system is considered and a model for the corre-
sponding generalized restoring forces on the horizontal plane is 
constructed geometrically, under the formalism of Analytical 
Mechanics. Figure 10 shows a sketch of the mooring configura-
tion used in the experimental campaign [21]. Four linear springs 
are attached to a rigid circular ring and to the towing car. The 
actions of the springs are considered on the horizontal plane. iP  
and iA , 1, ,i N= , are respectively, the projections of fair-leads 
and anchors on the plane. i i i i ir A P A P= = −  are the distances 
between iP  and iA ; i const = , the angle between iP A  and the 
body axis, A . Finally, iR R const= = , 1, ,i N= , due to 
symmetry. 

 
Figure 10. Mooring system sketch and general definitions for 

the experimental campaign [21]; adapted from [20]; 4N = . 

The generalized restoring mooring forces are written, [20], 

 
1

;  1, 2,3; 1, , ,
N

im
j i

i j

P
Q j i N

q=


=  = =


F   (15) 

where 

 
( )

 cos sin ; 1, , ,
Ti i

i i i

i

A P
i N

r
 

−
= = =e   (16) 

are unit director vectors on the horizontal plane and 

 ( ) ( ) ; 1, , ,i i i i i ir f r i N= = =F F e   (17) 

the horizontal components of tension provided by each one of 
the linear springs. The restoring force intensities are supposed to 
be linear functions of position only, in the form ( )if r , no friction 
or viscous effects considered, in a quasi-static and simplified ap-
proach. Moreover, since each fair-lead position on the horizontal 
plane, 

 ( ) ( )( ) cos sen ,
T

i i i i iP O x R y R   − = + + + +     (18) 

is a function of the generalized coordinates vector q , the gener-
alized restoring mooring force vector may be also written as a 
function ( ; )m m= Q Q q , where ( ) ; 1, ,i i iA R i N = =  
is the set of geometrical parameters. 


