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Abstract: This paper deals with the dynamics of an offshore moored monocolumn platform subject to ocean currents. 

Floating Production Storage Offloading (FPSO) offshore platforms of the monocolumn type are enormous structures 

designed as oil processing facilities to operate in deep and very deep waters. Usually of circular shape, such 

structures are moored to the seabed. Being bluff bodies, they are subjected to Vortex Induced Motions (VIM) or simply 

Flow Induced Motions (FIM) caused by the current flow. In the last decade, a plethora of research studies has been 

dedicated to this topic, approached either from the numerical or from the experimental side, this latter through small-

scale models tested in water channel or ocean basis facilities. The present research work proposes a 5dof reduced 

order model, in which analytical mechanics guides the derivation of the governing dynamic equations of the platform 

on the horizontal plane, forced through hydrodynamic forces caused by the wake. The hydrodynamic forcing is 

dynamically represented with a 2dof phenomenological model, based on the coupling of two van der Pol oscillators, 

commonly referred to as wake-oscillator models. The reduced order model is applied to a case study, the MonoBR-

GoM platform, supposed moored in 500m deep water through chains in catenary configuration. The dynamic 

response is analyzed and effects on motions due to the nonlinear restoring mooring forces are investigated. 
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INTRODUCTION 

Offshore oil and gas exploitation in deep and very deep waters rely on the use of FPSO (Floating, Production, 

Storage and Offloading) platforms, moored to the seabed in a variety of forms, from simple chain catenary 

configurations to mixed mooring lines, which includes chains, cables (polypropylene and steel), mounted in taut leg 

configurations; see, e.g., Faltinsen (1990) or Chryssostomidis and Liu (2011). Usually the FPSO has a ship shaped hull 

especially designed for the moored offshore activity, with a whole chemical processing plant on deck. Another kind of 

FPSO, the so-called MPSO (Monocolumn Production, Storage and Offloading system; Gonçalves et al, 2010b), or 

simply monocolumn platform, is characterized by a large diameter cylindrical hull that pierces the free surface. Existing 

unities or designs may have a moon-pool inside, an internal pool through which risers and umbilical cables are 

connected to the wellheads and subsea equipment.  

  

Figure 1 – Monocolumn platforms. Left: MonoBR-GoM, (Nishimoto et al, 2010), with a moon-pool. Right up: 
FPSO Sevan1 Hummingbird; bottom: FPSO Sevan Piranema, (Gonçalves et al, 2010b). 

Figure 1 shows examples of MPSO existing designs or operating unities. On the left, the MONOBR-GoM platform 

(Nishimoto et al, 2010), designed to operate in the Gulf of Mexico, by adapting the original MonoBR concept. This 
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concept exhibits a moon-pool. On the right, two existing unities in full operation, the Sevan1 monocolumn platforms 

(Saad et al, 2009, Gonçalves et al, 2010b). In those cases, the platform is not equipped with moon-pool. The main 

feature of the cylindrical platform is its somewhat low response heave motion to incident waves, beneficial to 

operational conditions and to loadings on risers and umbilicals (Gonçalves et al, 2010). Particularly, the dynamics of the 

water column inside the moon-pool, if properly tuned, mitigates even more the heave motion of the platform 

(Nishimoto et al, 2010, Gonçalves et al, 2010b). 

On the other hand, the cylindrical shape characterizes a bluff body, prone to vortex-induced vibrations, eventually 

caused by ocean currents. In fact, shedding vortices phenomena may take place. However, the monocolumn platform 

hull is usually a low-aspect ratio circular cylinder, so that the common vortex-shedding phenomenon from long rigid 

cylinders, usually related to the so-called Karman-street, may be strongly affected by three-dimensional vortex 

structures emanated from the lower face of the cylindrical hull. Such a matter has been investigated extensively in the 

recent years, both experimentally or numerically (Fujarra et al, 2007, Fujarra et al, 2012, Gonçalves et al, 2009, 2010a, 

2012a,b, 2013, 2015, 2018). Such a complex three-dimensional flow impairs not only computational fluid dynamics 

approaches as creates extra obstacles in pursuing reliable and simple empirical hydrodynamic models. However, it has 

been shown that for aspect ratios of order one, some regularity in the wake do exist (Gonçalves et al, 2018). Essentially, 

that has been the reason for the use of phenomenological models, the so-called wake-oscillator models, to face the VIM 

of monocolumns, irrespective their restrictive assumptions (Rosetti et al, 2009; Lacerda et al, 2009; Rosetti et al, 2011; 

Lacerda 2011). In particular, Rosetti et al, 2011, present an extensive discussion, with experimental comparisons, on an 

ad-hoc 2dof phenomenological model, applied to represent the VIM of monocolumn platforms. 

In fact, such an approach had been used since the 1970’s (Iwan and Blevins, 1974), but in the classic rigid cylinder 

1dof VIV (Vortex-Induced Vibration) context. Since VIV is an auto-excited and auto-regulated phenomenon, i.e., a 

post-critical response after a Hopf bifurcation, van der Pol, Rayleigh or Landau oscillators have had their coefficients 

experimentally adjusted to represent the VIV phenomenon; see, e.g., Aranha, 2004, for a first principle derivation of a 

Landau wake-oscillator from the Navier-Stokes equations. After Fachinetti et al. 2004 revisited the phenomenological 

approach for the 1dof VIV, some effort has been put on wake-oscillators, trying to improve them to represent the so-

called ‘lower-branch response’ (Ogink and Metrikine, 2010). More recently, Franzini and Bunzel (2018) extended the 

Ogink and Metrikine’s model to consider the 2dof situation. In the context of VIM we chose to use the already existing 

model by Rosetti et al (2009), with the coefficients calibrated according to Postnikov et al. (2016), on an ad-hoc basis. 

Guided by the formalism of analytic mechanics, the dynamic equations that govern the motion of monocolumn 

platform on the horizontal plane are derived. The nonlinear mooring lines restoring forces are worked out analytically, 

following a previous derivation by Pesce et al, 2018. Then, taking the MonoBR-GoM platform as a case study, some 

dynamic simulations are performed. The effect of mooring forces linearization is assessed and exemplified, by varying 

the ocean current intensity. Some examples are also shown, concerning effects caused by the current direction. 

REDUCED ORDER MATHEMATICAL MODEL 

A 5dof reduced-order model is presented below for the problem under discussion. The model considers the motion 

of the platform, taken as a rigid body, on the horizontal plane only (3dof). The equations of motions are derived from 

the classic Lagrangian formalism. Hydrodynamic and mooring line restoring forces on the horizontal plane are taken as 

generalized forces. 

The generalized mooring line restoring forces are modeled in a quite general way, through the formalism of 

analytical mechanics, following the derivation by Pesce et al, 2018. Such a derivation permits to consider rather distinct 

mooring configurations, taking nonlinearities into account. It is somewhat restrictive though, since restoring forces are 

considered to be function of position only, in a quasi-static approach. Effects associated to the mooring line system 

dynamics are not considered in this model, what would include mooring line damping. This issue deserves a proper 

discussion that will be left for a further work. 

The hydrodynamic forces may be divided in two kinds: (i) the inertial ones, represented through the well-known 

concept of added mass tensor; (ii) those related to the vortex shedding phenomenon, here represented through a 

phenomenological approach, considering two wake-oscillators, of the van der Pol type, corresponding to forcing in the 

direction of the current (in-line direction) and transversal to it (crosswise direction). These two oscillators involve two 

additional degrees of freedom, that summed up to the three degrees of freedom of the platform on the horizontal plan, 

totalize the 5dof of the reduced order model. In the sequel, the governing equations for the dynamic of the platform are 

established. 

The equations of motions on the horizontal plane 

The platform is considered a rigid body, restricted to move on the horizontal plane only. A fixed Cartesian reference 

frame (O,X,Y) - supposed inertial - and a non-inertial one (A,), fixed to the body, are depicted in Figure 2. The yaw 

motion is indicated by the generalized coordinate . Let  
T

x y =q  be the generalized coordinate vector, where x , 

y  and   are named simply surge, sway and yaw motions, no ambiguity implied since the platform is circular. 
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Figure 2 – Coordinates and general definitions. 

The Lagrange equations of motion then read: 

 m vd T T

dt

  
− = + 

  
Q Q

q q
, (1) 

where T  is the kinetic energy function of the system, including terms associated to the platform itself and to the 

internal and the surrounding fluid; m m
jQ =  Q  and ; 1,2,3,v v

jQ j = = Q are, respectively, the generalized forces 

corresponding to the restoring mooring forces and to the hydrodynamic forces associated to vortex shedding phenomena 

effects. Let p a= +M M M  be the (3 3)  mass matrix, where the subscript p refers to the platform and the subscript a to 

the classic added mass tensor concept. Then the kinetic energy may be put in the following form: 

 
1

2

TT = q Mq , (2) 

In the general case, the mass matrix is a full matrix, such that the generalized coordinates couple inertially. However, 

in the present case, being A G  the center of mass and assuming the body axisymmetric with respect to a vertical axis 

Gz, the mass matrix reduces to a simple diagonal form: 
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a
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where M is the mass of the platform, itself, I its moment of inertia around Gz and aM and aI  are the corresponding 

added mass terms. Note that, usually, the added mass tensor is calculated in the body-reference frame and transformed 

to the inertial one through a simple matrix rotation operation. However, due to the assumed symmetry, the added mass 

tensor is invariant with respect to rotations around vertical axes. In other words, aM M M = = . On the other hand, 

free surface effects may come into play. In fact, in the case of floating bodies, the added mass tensor depends on the 

frequency of oscillation. However, the system is characterized by a huge inertia and low restoring forces on the 

horizontal plane, so exhibiting very-low natural frequencies. In resonant conditions, very-low oscillation frequencies are 

then expected, such that asymptotic values at null frequency may be taken for the added mass; see e.g., Pesce et al, 2018. 

Notice also that, in the case of a moon-pool, the mass of water inside it has to be considered included in aM . Moreover, 

recalling the circular shape and neglecting hull appendices effects, the added moment of inertia, in the classic sense, 

may be assumed to be null; i.e., 0aI  . Summarizing, in the present work 
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where aC  is the added mass coefficient for a regular cylinder of external diameter D and draught (height) H; and 

mpM is the mass of water inside the moon-pool. For simplicity, the mass of water inside the moon-pool is taken as 

constant. In the real environment, the moon-pool water column may resonate, driven by incident ocean waves and by 

the resulting heave motion of the platform, what would turn the derivation of the equation of motions much more 

complex. The extended form of the Lagrange equations, that takes into account mechanical systems with variable mass, 

derived by Pesce, 2003 (see also Pesce et al 2006), should be applied in this case. 

Under the above set of simplifying assumptions and recalling that A G  was taken as the center of mass, the 

equations of motions (1) will then appear in a rather simple form, 

 m v= +Mq Q Q . (5) 
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Mooring forces on the horizontal plane 

We follow closely the derivation presented in Pesce et al (2018). In that paper, a generic mooring system is 

considered and a model for the corresponding generalized restoring forces on the horizontal plane is constructed 

geometrically and with the help of analytical mechanics. Figure 3 shows a sketch, where a generic mooring line is 

considered, projected onto the horizontal plane. iP , i=1,...,N, are the projections of the hanging points in the platform 

hull (fairleads) on that plane;  i i

T

i A Ax y=A , i=1,...,N, are the projections of the anchors; i i i i ir = = −A P A P  are the 

distances between iP  and iA ; i i iR const= = − =P A P A  are the distances between iP  and A and i const =  is the 

angle between iP A  and the body axis A . In the present case iR R= , i=1,...,N. 

 

Figure 3 – Mooring system sketch and general definitions; adapted from Pesce and Simos, 2018. 

The generalized restoring mooring forces may then be written (Pesce et al, 2018) 

 ( )
1 1

;   1,2,3;   1,..,
N N

i im T T
j i i i i

i j i j

Q f r j i N
q q= =

 
= = = =

 
 

P P
F e , (6) 

where 

 
( ) ( )

 cos sin ;   1,..,
Ti i i i

i i i

i i i

i N
r

 
− −

= = = =
−

A P A P
e

A P
, (7) 

are unit director vectors on the horizontal plane and 

 ( ) ( ) ;   1,..,i i i i i ir f r i N= = =F F e , (8) 

are the horizontal components of tractions provided by each one of the mooring lines. The restoring force intensities are 

supposed to be nonlinear functions of position only, in the form ( )if r ,  no friction or viscous effects considered, in a 

quasi-static and simplified point of view. Moreover, since each fair-lead position on the horizontal plane, 

 ( ) ( )cos sen
T

i i i i ix R y R   = + + + +  P , (9) 

is a function of the generalized coordinate vector  
T

x y =q , the generalized restoring mooring force vector may 

be also written as a function ( ; )m m= Q Q q , where ( ) ; 1,..,i i iR i N = =A  is a set of geometrical parameters. 

Then, as the restoring forces are supposed strictly dependent on position, a local stiffness matrix may be constructed 

(Pesce et al, 2018), in the form: 

 ( );
j

k

Q

q

 
 = −  

 
K q , (10) 

leading to 

 ( ; )
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xy yy y

x y
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k k k

k k k




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K q , (11) 

where, the diagonal terms read 
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and the off-diagonal ones, 

 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

1 1

1 1

sen cos

cos sen sen cos

sen sen cos cos

N

xy yx i i i i

i

N N

x x i i i i i i i i i i

i i

N N

y y i i i i i i i i i i

i i

k k k k

k k k R k R

k k k R k R

 

 

 

       

       

=

= =

= =

= = −

= = − + − + + −

= = − + − + + −



 

 

, (13) 

being ( )/i i i i if df dr k r= =  the ‘tangent stiffness’ of each line i  and ( ) ( ) /i i i i ik r f r r=  its respective ‘string stiffness’, 

associated to the ‘tensioning state’. A thorough discussion on the effects of pre-tensioning, offset and heading of the 

platform on the mooring stiffness matrix and on natural periods and corresponding vibration modes may be also found 

in Pesce et al, 2018. Notice that this model is quite general, being applicable for any mooring system, provided the 

functions ( );   1,..,i if r i N=  are known. See an application to standard catenary mooring lines in Pesce et al, 2018. 

Phenomenological model and hydrodynamic forces 

Considering Figure 4, we follow Ogink e Metrikine (2010) to write the hydrodynamic forces in the inertial frame. 

Let V  be the free stream velocity, here supposed aligned with the axis Ox. Let U be the instantaneous relative velocity 

of the stream with respect to the center of the body, being xU  and yU  their projections on the axes x and y. Define LF  

and DF  as ‘lift’ and ‘drag’ forces, respectively, the former perpendicular to U and the latter aligned with U. VxF  and 

VyF  are the components of the hydrodynamic forces in the directions x and y, respectively.   is the angle between the 

directions of U  and V . 

Cylinder moving 

down

VxF

VyF

LF

DF

VF

xU V x= −

yU y= −

 

Figure 4 – Forces diagram; adapted from Ogink and Metrikine (2010). Cylinder moving left and down. 

Then, from (Ogink and Metrikine, 2010) and (Slingsby, 2015): 

 ( ) ( )

2 2

2 2

2 2

1 1
;  

2 2

;  

;   ;   

Vx x Vy y

x D x L y y D y L x

x y x y

F DLC V F DLC V

U U
C C U C U C C U C U

V V

U V x U y U U U

 = =

= − = +

= − = − = +

, (14) 

where xC  and yC  are hydrodynamic coefficients in their respective directions (surge and sway). On the other hand, VxF  

e VyF  may be written, 
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cos sin ;   sin cos

cos ;   sin

Vx D L Vy D L

x y
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   

 

= − = +

= =
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Therefore, 

 ( ) ( )
1 1

;   
2 2

Vx D x L y Vy D y L xF DH C U C U U F DH C U C U U = − = + , (16) 

and the corresponding generalized hydrodynamic force vector turns out to be 

 ( ) ( )
1

0
2

T

D x L y D y
v

x LDHU C U C U C U C U − −=   Q . (17) 

The wake oscillator model 

Following Rosetti et al (2009) and Postinikov et al (2016), we write two van der Pol oscillators, aligned with in-line 

and cross-wise directions, in the form: 

 

( )

( )

2 2

2 2

1 4

1

x
x x s x x s x

y

y y s y y s y

A
w w w w x

D

A
w w w w y

D

  
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+ − + =

+ − + =

, (18) 

where  
T

x yw w=w  is a hidden variable vector that phenomenologically emulates the wake dynamics; x  and y  are 

damping parameters and ( )2 /s tS V D =  is the shedding frequency, being tS  a characteristic value of the Strouhal 

number for the low aspect ratio cylinder case. Notice that the in-line wake oscillator vibrates with twice the frequency 

corresponding to the cross-wise one. This is a common ad-hoc assumption that comes from well-known experimental 

observations, according to which the fundamental harmonic of drag forces pulsates twice as faster as the lift forces’ one. 

The terms on the r.h.s of Eq. (18) represent the coupling between the wake oscillators and the body equations of motion. 

According to Fachinetti et al (2004), coupling through inertial terms are recommended, despite original models apply 

velocity terms coupling; see, e.g., Iwan and Blevins (1974). The inertial coupling has been followed since, by a number 

of authors, as Ogink and Metrikine (2010) or Franzini and Bunzel (2018). The coefficients ( , )x y   and ( , )x yA A  are 

hereinafter calibrated from experiments (Rosetti et al, 2009, 2011) and from CFD simulations (Postinikov et al, 2016). 

Finally, the generalized wake forces in Eq. (17) are computed by determining the lift and drag coefficients as 

functions of  
T

x yw w=w  (Postinikov et al, 2016), (Rosetti et al, 2009), in the form, 

 ( )0 2 ` 0
0;  1

2 2

f
L D

L y D D y x

C C
C w C C Kw w= = + + , (19) 

where 0LC  and 0DC  are, respectively, the lift and drag coefficients for a fixed cylinder, 0
f

DC  is a weighting coefficient 

for the oscillation amplitude of the drag and K is a constant experimentally determined (Rosetti et al, 2009). 

The coupled model 

Gathering Eqs. (5 - 6) and (14 -19), the 5dof reduced order model may be written in the following form: 

 c nc= +Mq Q Q , (20) 

where, on the l.h.s., 5 5xM and 5 q  are, respectively, the augmented inertia matrix and generalized coordinate 

vector; and on the r.h.s., 5
c Q and 5

nc Q  are, respectively, conservative and non-conservative generalized force 

vectors. Eq. (21) provides their respective forms explicitly. 
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Note that nonlinearities in Eq. (20) are present in cQ , through the mooring forces mQ , as well as in ncQ , both, in 
vQ  and in the van der Pol damping terms. 
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A CASE STUDY 

The MonoBR-GoM platform has been taken as a case study. Table 1 shows its main characteristics. The platform is 

supposed to me moored in 500m deep waters. Figure 5 shows a sketch of a possible mooring arrangement, with 12 

mooring lines, clustered around three main directions, at ( 3; )  . For simplicity, mooring lines are supposed to be 

composed by chains and installed in simple catenary configurations; Table 2. Notice that, in the actual design, the 

mooring lines are mixed ones (chain - polypropylene cable – chain - steel cable) linked one to another in a taut leg 

configuration, in 1800m deep water. For the simple adopted catenary configuration, the needed nonlinear relation ( )i if r  

may be written analytically in an inverse form as (Pesce et al, 2018), 

 
( ) ( )

1 1

2 2

2 2

1 2 1 2( )
1 ln 1

i i fi i fi i i fii i i

i i i ii i fi i i fi

f z z f zr f f

L L ff z f z
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  

  
     + +
   = −  − + +  
     
       

, (22) 

where 
iL and 

i  are, respectively, the total mooring line length and the immersed weight per unit length and fiz  is the 

distance of the fairlead from the bottom. For comparison sake, cases have been run also supposing a linear restoring 

system, taking a mooring stiffness matrix calculated from Eq. (11-13) at the neutral equilibrium position, i.e., 

0 ( ; )= K K 0 . Notice that such a stiffness matrix reduces to a diagonal form due to symmetry, so that coupling due to 

mooring restoring forces is null by construction in this case; see Pesce et al (2018) for a deeper discussion on this matter. 

 

Figure 5 – Sketch of the monocolumn platform mooring system. 

The simulations were performed in a MATLAB / Simulink® environment, by numerically integrating the equations 

of the coupled model in state space form. For the integration, a fixed time step of 0.1 seconds was used, applying the 

Runge-Kutta method of 4th order. Wake oscillator parameters are given in Table 3. Two current incidence angle 

conditions were taken to illustrate the reduced order model simulation, both aligned with the global axis Ox. The first 

one assumes that the current acts in the positive direction, from left to right, at  = 0. The second one, in the opposite 

direction, from right to left, at = Oblique incidences are left for further analyses, to be presented in another paper. 

Table 1 – MonoBr-GoM main particulars and general parameters. 

Draught, H  (m) 39.50 

Diameter, D  (m) 100.0 

Mass, M  (t) 262000.0 

Added mass coefficient, aC  1.0 

Mass of water in moon-pool, mpM  (t)  67447.0 

Density of water, ( )3t/m  1.025 

Table 2 – Mooring system: parameters and arrangement at neutral position, =q 0 . Catenary chains. Depth 500m. 

Immersed weight,   (kN/m) 1.07 

Total length, L  (m) 1525.0 

Distance of fairlead from anchor, ( )0r f  (m) 1317.0 

Horizontal component of pretension, 0f  (kN) 532.83 

Number of mooring lines, N  12 

Angles of mooring lines in the body frame,   (rad) [(0.79, 0.96, 1.13, 1.31); (2.88, 3.05, 3.22, 3.40); 

(-0.79, -0.96, -1.13; -1.31)] 

Ai

Pi

x

y

O
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Table 3 – Wake-oscillators parameters; Rosetti et al (2009), Gonçalves et al (2010). 

[ ;x yA A ] [12; 6] 

[ ;x y  ] [0.30; 0.15] 

[ 0DC ; 0LC ; ` 0
f
DC ; K ] [0.70; 0.30; 0.10; 0.05] 

Strouhal number, tS  0.078 

Figure 6 shows trajectories of the platform center of mass on the horizontal plane, as function of the current velocity, 

within the range   ( )0,2;2 m/sV  . Two current directions are exemplified: (i) from left to right, at  = 0 and (ii) from 

right to left, at =  The corresponding reduced velocity, 2 /r nV V D = , is also shown, calculated with 

( )0,0080 rad/sn = , which is the undamped natural frequency in crosswise (sway) direction, determined at the neutral 

position by taking the mooring stiffness matrix 0 ( ; )= K K 0 . In the legend, ‘linear’ and ‘nonlinear’ refer only to the 

mooring system. The common source of nonlinearities is the wake oscillator. In case (i),  = 0, despite amplitudes of 

crosswise oscillations do not differ too much, in-line oscillations are remarkably distinct for the two mooring system 

models, making trajectories rather different. As a matter of fact, as in-line oscillations evolve, coupling increases in the 

nonlinear case, making crosswise oscillations larger than in the linear one. Also noticeable is the larger average offset 

encountered with the linear mooring system. Moreover, the linear mooring system responses in cases (i) and (ii) are 

mirrored images of each other, as expected. However, there are strong differences for the nonlinear mooring system 

model. In fact, the mooring geometry makes the stiffness in the x-axis to increase much more rapidly if a negative surge 

displacement is imposed than in the opposite sense; see Figure 3. Consequently, oscillations are smaller in case (ii).  

Figure 7 shows the amplitude of motions in both directions, in-line and crosswise, for the two mooring system models, 

linear and nonlinear. As can be seen, reaffirming the observations made from Fig. 6, the nonlinear restoring coupling 

ends up amplifying or diminishing the response amplitudes. Also noticeable are the frequencies of oscillation in both 

directions, which are dependent on the current direction for the nonlinear mooring system model. The stiffer the 

mooring system, the higher are the oscillation frequencies, as it should be expected. Finally, Figure 8 illustrates time 

series of the 3dof motions of the platform, including the yaw angle. The linear mooring case is exemplified for case (i), 

 = 0, only, as motion amplitudes are essentially the same for both directions. The nonlinear mooring system model 

however shows how the mooring restoring forces coupling makes the platform to yaw, even in the absence of yawing 

moments. In fact, as the current speed increases augmenting the mooring system stiffness, coupling between sway and 

yaw augments. Such a coupling is larger for case (ii), current flowing left. In the linear mooring case, no yaw motion is 

excited. 

   

(a): ( )0,20 m/sV = ; 1,57rV = . (b): ( )0,56 m/sV = ; 4,40rV = . (c): ( )0,92 m/sV = ; 7,23rV = . 

   

(d): ( )1,28 m/sV = ; 10,05rV = . (e): ( )1,64 m/sV = ; 12,88rV = . (f): ( )2,00 m/sV = ; 15,71rV = . 

Figure 6 – Center of mass trajectories on the horizontal plane. Current direction: (i) from left to right,   = 0 and 

(ii) from right to left,   = . The terms ‘linear’ and ‘nonlinear’ in the legend refer only to the mooring system. 
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(a) (b) (c) 

Figure 7 – Normalized amplitudes and oscillation frequencies, as a function of the reduced velocity. (a): linear 

mooring model,   = 0; (b): nonlinear mooring model,   = 0; (c): nonlinear mooring model,   = . 

( )0,56 m/sV = ; 4,40rV = . 

   
( )1,28 m/sV = ; 10,05rV = . 

   
( )2,00 m/sV = ; 15,71rV = . 

   
(a) (b) (c) 

Figure 8 – Surge, sway and yaw motions; (a): linear mooring model,   = 0; (b): nonlinear mooring model,   = 0; 

(c): nonlinear mooring model,   = . 
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CONCLUSIONS 

Vortex Induced Motions of a monocolumn floating platform, subjected to ocean current, have been investigated 

numerically, through a 5dof reduced order model. Such model considers the motion of the platform on the horizontal 

plane. Hydrodynamic forces are determined from a phenomenological model, by using a 2dof wake oscillator, a 

common approach in vortex-induced vibration studies, which has been adopted in recent years for the VIM 

phenomenon. A nonlinear mooring system restoring forces model, recently developed by Pesce et al (2018), is applied. 

A case study was done, based on the MonoBR-GoM platform, supposed moored to the seabed in 500m deep water 

through 12 mooring lines, clustered around three main directions, at ( 3; )  . For simplicity, mooring lines were 

supposed to be composed by chains and installed in simple catenary configurations. The effects of mooring system 

nonlinearities on the motions amplitudes, including the coupling with yaw motions, were then illustrated through time-

domain simulations for two current directions aligned with an axis of symmetry of the system. 

This is an ongoing research. Further investigations about the effects of ocean current oblique incidence on the 

motion responses are left for further work. Other mooring arrangements and comparisons with experimental data and 

with existing simulation results are yet to be performed. 
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