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STABILITY AND DYNAMICS OF OFFSHORE SINGLE POINT 
MOORING SYSTEMS 

C.P.Pesce1  

E.A.Tannuri2 

Escola Politécnica da Universidade de São Paulo 

Departamento de Engenharia Mecânica 

05508-900 São Paulo, SP, Brasil 

ABSTRACT 

The Floating Production Storage and Offloading System (FPSO’s) is a modern concept for floating offshore 
oil exploration units, moored in deep water. ‘Turret’ and ‘Mono-Buoys’ are similar types of Single Point 
Mooring systems (SPM) envisaged for the stationkeeping task. Neverthless, the highly non-linear dynamic 
nature of this kind of system may give rise to a rich behaviour scenario that may comprise from simple 
pitchfork point equilibrium bifurcations to Hopf bifurcations (limit cycles), or even chaotic regimes. 
Standard linearised stability analysis may be not sufficient anymore to deal with the design problem. 
Bifurcation theory and modern system dynamics form then a proper theoretical basis for the analysis. This 
paper addresses the stability problem and discusses a number of interesting dynamic behaviors that arise in 
steady current. A self-excited autonomous and dissipative non-linear system of equations governs the system 
dynamics. A classical ‘hydrodynamic derivatives’ model form the core for hydrodynamic forces description. 
Following Papoulias & Bernitsas, 1988, some classical results on the stability problem are recovered. Then, 
reinterpreting the equilibrium analysis, it is also shown that bifurcation theory enables one not only to 
predict but also to qualify equilibrium pitchfork bifurcation scenarios, if super- or sub-critical. It is shown 
that the algebraic sign of the third-order derivative of the lateral force with respect to the lateral component 
of relative velocity governs the type of bifurcation scenario. When super-critical pitchfork bifurcation 
scenario is present a condition for structural stability loss is established and discussed. Hopf bifurcations 
(limit cycles) are also presented and discussed. 

INTRODUCTION 

The Floating Production Storage and Offloading System (FPSO’s) is a modern concept for floating offshore 
oil exploration units, moored in deep water. A tanker is moored offshore and oil is stored before being 
transported by shuttle tankers that periodically are connected to the mother ship in a tandem formation.  The 
vessels are subject to the environmental loads, due to the concomitant action of ocean currents, waves and 
wind. Single Point Mooring (SPM)  systems are alternatives to conventional spread systems, envisaged for 
the stationkeeping task. The pimer motivation of such systems is to allow the ship to be aligned with the 
‘resultant’ of the environmental forces, diminishing motions and structural loads on the mooring lines, 
hawsers3 and risers. 

                                                 

1  Prof. Dr. 
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3 the cable through which the ship is attached to the mono-buoy 
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The conventional SPM system is a mooring system composed by a mono-buoy, moored to the sea bed by 
means of cables and chains and to which the FPSO, a specially converted tanker, is attached through a 
‘hawser cable’. Not only the length but also the elastic characteristics of the cable and the attachement point 
position are important control parameters, concerning the stability and the dynamics of the system. In this 
paper we shall refer to mono-buoy systems (or ‘hawser cable’ systems) symply as SPM. 

The ‘Turret’ type is a special kind of  single point mooring system composed by a huge bearing system, 
fixed directly to the ship, the hawser cable being eliminated, and moored to the sea-bed, as shown in Figure 
2 . 

If wind and waves actions are not considered and if ocean current is taken as steady, a self-excited 
autonomous non-linear system of ordinary differential equations can be shown to govern the system 
dynamics. The highly non-linear dynamic nature of this kind of system gives rise to a rich behaviour 
scenario that may comprise from simple pitchfork point equilibrium bifurcations to Hopf bifurcations (limit 
cycles), or even chaotic regims. Bifurcation theory and modern system dynamics may form a proper 
theoretical basis for the analysis, although standard linearised stability analysis remains suitable for 
preliminary design purposes. 

Under the bifurcation theory approach some research work has been done in this subject, primarily 
motivated by a close-related prolem of a towed ship in either a straigth course or maneuvering in a port site. 
Bernitsas & Kekridis, 1985, treat the towed-ship problem. Papoulias & Bernitsas, 1988, take the single point 
mooring problem into attention. Recently, Bernitsas & Garza-Rios, 1995, have studied the dynamics of some 
offshore spread but slacken mooring systems, that exhibit the same sort of dynamic behavior. Under such an 
approach the general equation of motion is derived on a “hydrodynamic derivative” model basis, in which 

                                                 

4 Cortesia: Orcina Cable Protection 

 
Figure 1 - FPSO moored at a ‘Turret’ System with a 

shuttle tanker in tandem formation4 
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the hydrodynamic forces due to the relative motion with respect to the water are represented through Taylor 
series expansions given in terms of  relative velocity components. 

Following Papoulias & Bernitsas, 1988, this paper recovers and enlarges the analysis, addressing the 
stability problem again and discussing a number of interesting dynamic behaviors that arise for a ‘Turret’or 
a SPM in steady current. Under a third-order model of the “hydrodynamic derivatives” type, it is shown that 
bifurcation theory enables one not only to predict but also to qualify point equilibrium instability. Two 
excludent pitchfork bifurcation scenarios are shown to exist: sub- and super-critical. As well known, the 
position of mooring line attachement at the ship is the control parameter governing equilibria bifurcation. It 
is also shown, in this paper, that this parameter can be responsible for a loss of structural stability of the 
system, switching bifurcation scenarios, whose type is controled primarily by the ‘hydrodynamic 
derivatives’ coefficients. The sign of the third derivative of the lateral force with respect to the lateral 
velocity, for instance, is shown to govern the type of bifurcation scenario that would appear. The occurrence 
of Hopf bifurcations (limit cycles) are also exemplified and discussed. 

THE GOVERNING EQUATIONS 

We follow closely Papoulias & Bernitsas, 1988. A classical “hydrodynamic derivatives model”, extracted 
from maneuvering theory, see, e.g.,  Abkowitz, 1972, is used in order to simulate the action of the relative 
current on the ship. Waves and wind are not considered in the present paper, neither are the hydrodynamic 
forces acting directly on the mooring lines of the ‘Turret’, for instance. It is also out of the scope of the 
present work to discuss the pertinence of this type of hydrodynamic model, although, as we shall show, the 
stability and dynamic scenarios are strongly dependent on the hydrodynamic coefficients. A number of 
alternative approachs does exist; see e.g., Faltinsen et al., 1979, Whichers, 1988. However, we are primarily 
interested in discussing the stability problem, rather than the robustness of the hydrodynamic model, at least 
at the present moment. 

Let, then  Oxyz be a rigth-handed fixed reference frame, x being oriented in the opposite sense of the current 
velocity vector and z pointing upwards. Let GXY be a coordinate system attached to the floating unit, where 
G is the center of mass, X being oriented towards the bow. We restrict ourselves to the motion in the 
horizontal plane.Let be, also, 

u, v: the relative velocity components of G with respect to the water, in the AX e AY directions, 
respectively; 

ψ : the yaw angle (xGX) 

&, &x y  : the relative velocity components of G with respect to the fixed frame; 

P:  the point of mooring; 

U:  the current velocity intensity; 

xp : the distance GP; 

l:  the distance OP, where O is the fixed point where the hawser is attached (SPM case); 

m:  the floating unit mass; 

I Z :  the moment of inertia with respect to GZ; 

T: the tension in the cable (SPM case) or the mooring restoring force (‘turret’ case). 

γ
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Being v the velocity vector of G we have: 

v i j= − − + +( cos sen ) ( sen cos )u v U u vψ ψ ψ ψ  . (1) 

or else, 

& cos sen
& sen cos
x u v U
y u v

= − −
= +

ψ ψ
ψ ψ

  (2) 

For further reference, we also write the inverse form of (3), 

u x U y
v x U y

= + +
= − + +

( & ) cos & sen
( & ) sen & cos

ψ ψ
ψ ψ

 . (4) 

Let also, by definition, 

r = &ψ  , (5) 

and the following geometrical relations (see Figure 2) 

ω γ ψ= +   (6) 

l y x x xp p
2 2 2= + + +( sen ) ( cos )ψ ψ   (7) 

sen ( sen )γ ψ= +
1
l

y x p   (8) 

cos ( cos )γ ψ= − +
1
l

x x p   (9) 

noticing that (10), (7) and (8) are strictly valid only for l ≠ 0 , being γ not defined for l = 0 . 

ψ

γ 
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Figure 3 - Reference frames and geometric definitions. 
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The acceleration of the center of mass, with respect to an inertial reference frame, but written in the vessel’s 
frame, reads a I J= − + +( & ) ( & )u vr v ur .   

The equations of motions are then written, 

( )
( )

− + + + = −

− − − − + = +

− − + + − =

A u A vr T X u v r m u vr

A v A ur A r T Y u v r m v ur

A r A v ur N u v r Tx I rp Z

11 22

33 11 23

33 32

& cos ( , , ) &

& & sen ( , , ) &

& ( & ) ( , , ) sen &

ω

ω

ω

  (11) 

where  X(u,v,r), Y(u,v,r) e N(u,v,r)  are velocity dependent hydrodynamic forces acting on the floating unit 
and Amn  is the added inertia tensor, symmetric by construction (see, Newman, 1978, e.g.). 

The SPM case 

In the SPM case let T, the tension in the cable, be given (Papoulias & Bernitsas, 1988) by 

T S p
l l

l
l l

l l

b
w

w

q

w

w

=
−






 ≥

<







 0

  (12) 

where lw  is the original length of the cable (unloaded) and Sb  the limit strength, being  p and q empirical 
constants. By defining the state vector 

( )x = u v r l t, , , , ,γ ω  , (13) 

equations Erro! Vínculo não válido., Erro! Vínculo não válido. and (14) are transformed into a system of six 
first-order ordinary differential equations (Papoulias & Bernitsas, 1988), 

( )
( ) ( )

( )

& ( , , ) cos ( )

& ( )
( , , ) sen ( ) ( , , ) sen

& ( , , ) ( ) sen (

x
m A

F x x x T x m A x x A x

x
I A

D
F x x x T x m A x x A

D
F x x x A x x Tx x

x A
D

F x x x m A x x T x m

Z
p

1 11 1 1 2 3 6
22

2 3
23

3
2

2

33

2 1 2 3 6
11

1 3

23

3 1 2 3
23

1 3 6

3

32

2 1 2 3
11

1 3 6

1=
+

+ + + −

=
+

− − + − − −

= − + + − + + ( )

( )

( )

A
D

F x x x A x x Tx x

x x x x x U x x x x

x
x

x x x x U x x x x

x x
x

x x x x U x x x x

p

p

p

p

22

3 1 2 3
23

1 3 6

4 2 6 1 6 5 3 6

5
4

1 6 2 6 5 3 6

6 3
4

1 6 2 6 5 3 6

1

1

) ( , , ) sen

& sen cos cos sen

& sen cos sen cos

& sen cos sen cos

− −

= − + +

= + − +

= + + − +

           (15) 

where ( )D m A I A AZ= + + −( )( )22 33 23 2
,  and 
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F x x x X x X x X x mx x

F x x x Y x Y x Y x Y x mx x

F x x x N x N x N x N x

u uu uuu

v vvv r rrr

v vvv r rrr

1 1 2 3 1 1
2

1
3

2 3

2 1 2 3 2 2
3

3 3
3

1 3

3 1 2 3 2 2
3

3 3
3

1
2

1
6

1
6

1
6

1
6

1
6

( , , )

( , , )

( , , )

= + + +

= + + + −

= + + +

  (16) 

are the  “generalized” hydrodynamic forces given in terms of the well known hydrodynamic derivatives, up 
to third order, where we take the subscripts for partial derivatives. We notice that (12) is a nonlinear 
dissipative and autonomous dynamic system. 

The ‘Turret’ case 

Another set of state variables, apropriate for the ‘Turret’ case, could be used instead.5 Let 

( )x = u v r x y t, , , , ,ψ  . (17) 

From (2), (3), (4), we get, 

( )
( ) ( )

( )

& ( , , ) cos ( )

& ( )
( , , ) sen ( ) ( , , ) sen

& ( , , ) ( ) sen ( )

x
m A

F x x x T m A x x A x

x
I A

D
F x x x T m A x x A

D
F x x x A x x Tx

x A
D

F x x x m A x x T m A
D

Z
p

1 11 1 1 2 3
22

2 3
23

3
2

2

33

2 1 2 3
11

1 3

23

3 1 2 3
23

1 3

3

32

2 1 2 3
11

1 3

22

1=
+

+ + + −

=
+

− − + − − −

= − + + − + +

ω

ω ω

ω ( )F x x x A x x Tx

x x x x x U
x x x x x
x x

p3 1 2 3
23

1 3

4 1 6 2 6

5 1 6 2 6

6 3

( , , ) sen

& cos sen
& sen cos
&

− −

= − −
= +
=

ω
 

          (18) 

with, again, ( )D m A I A AZ= + + −( )( )22 33 23 2
, and 

( )

( )
when   ,    

if  

 

when                                                                       

l
x

x x x

l
x x x

x
x x x

l
x x x

l t t

p
p

p
p

k k

> =
+

+





 + <

−
+






 + + ≥











= =

















−

0
0

0

0

6
5 6

4 6

6
5 6

4 6

1

ω
π

ω ω

arcsen
sen

; cos

arcsen
sen

; if cos( )

, ( ) ( )

(19) 

l x x x x x xp p= + + +( sen ) ( cos )5 6
2

4 6
2     . (20) 

                                                 

5 Notice that, in the ‘turret’ case we expect to have l=0. 
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STABILITY ANALYSIS 

Standard Linear Analysis 

Let the governing equations be written 

& ( )x f x=   (21) 

If x  is a fixed point then, 

f x 0( ) =  . (22) 

Let ξ( ) ( )t t= −x x  be a perturbation around the fixed point. Then 

&ξ ξ ξ= ∈ℜ ∈ℜA A6 6    ,            (23) 

with 

A Df x= ( )   (24) 

being the Jacobian of f at x . From linear systems theory, asymptotic stability exists if all the eigenvalues of 
A are in the complex left plane. We could use the Routh Hurwitz criterion, for instance, in order to 
determine the conditions under which this necessary and sufficient condition is fully satisfied; see, e.g., 
Fernandes & Aratanha, 1996. 

For a given floating unit, being known the hydrodynamic coefficients, the control parameters for the SPM 
case are (U,xp,lw). For the ‘turret’ case (U,xp,β) are the parameters, where β indicates a subset of parameters 
characterizing the mooring restoring function. Besides changes in x , these parameters are responsible for 
qualitative variations in the stability and in the dynamic behavior of the system. As we have noticed before, 
we treat a nonlinear dissipative and autonomous dynamic system, in a hexa-dimensional space. Therefore 
equilibrium bifurcations, Hopf bifurcations, and even chaotic regimes can be expected. We should 
remember that nonlinear dissipative terms can lead to Hopf bifurcations, making the system structurally 
unstable, as well as nonlinear restoring forces to equilibrium bifurcations. Different scenarios where a 
number of atractors compete with each other can lead to chaos.We also notice that, in the SPM case the 
desirable equilibrium is obviously given by 

x = ( , , , , , )U l t0 0 0 00  , (25) 

where 

l l
X U

S p
l

T
S pw

b

q

w
b

q

0

1

0

1

1
0 0

1= +





















= +























( , , )  , (26) 

is the stretched length of the cable in this position, whereas, in the ‘Turret’ case the desirable fixed 
point is (see (27)), 

x = ( , , , , , )U 0 0 0 0 0  . (28) 
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Equilibrium Bifurcations 

We take U as invariant. The array of control parameters will be denoted by 

µ = ( , )x lp w
t  , (29) 

in the SPM case and by 

µ β= ( , )x p
t   (30) 

in the ‘Turret’ case. The dynamical system  will be writen in the form 

& ( , )x f x x 6 2= ∈ℜ ∈ℜµ µ      ,              (31) 

 

Supercritical Pitchfork Bifurcation 

There is an obvious plane of symmetry, condition under which pitchfork bifurcations usually arise. 
According to Papoulias and Bernitsas, 1988, the equilibrium equation can be reduced to (see appendix A) 

1
6

03( ) ( )N x Y v N x Y vvvv p vvv v p v− + − =    . (32) 

This equation can be rewritten in the form of a cubic equation in v  

f v v v( , )λ λ= − =3 0    (33) 

where, as defined in Papoulias & Bernitsas, 1988, 

λ = −
−

−
6

( )N x Y

N x Y
v p v

vvv p vvv( )
  (34) 

We should notice that this control parameter depends on a ratio between two diferences. Thus, errors in 
evaluating the hydrodynamic coefficients can be highly amplified. At the bifurcation point ( , )v0 0λ  both 

f v

f v
f
vv

( , )

( , )

λ

λ
∂
∂

=

= =

0

0
  (35) 

must be satisfied. Then, from (31) 

v =
±





0

λ
  (36) 

and, from (31), λ=0. Therefore 

( , ) ( , )v0 0 0 0λ =   (37) 
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and hence, from (30) 

x
N
Yp

v

v
0

=   (38) 

that is the critical value below which supercritical pitchfork bifurcation occurrs. 

On the other hand, taking (  ,  ) = (0,0,0)& &, &x y ψ  in (39) we have the equilibrium values for the relative velocity 
components given by 

 
u u U
v v U

= =
= = −

cos
sen

ψ
ψ

 .                               (40) 

After equilibrium bifurcation occurs, v = ± λ , and so, 

senψ λ= ±
U

  (41) 

gives the new equilibrium positions. If λ  is negative there is no real stable bifurcated solutions. Notice, 
also, that λ ≤ U 2  must be satisfied, as well. In other words, at ψ π= ± 2  structural stability is broken. We 
shall return to this point later on. 

Structural Stability and Subcritical Pitchfork Bifurcation  

The previous analysis, recovered from Papoulias & Bernitsas, 1988, takes the hydrodynamic derivatives 
given in terms of the relative velocity component v, defined by equations (2) and (3), as usually done in 
marine hydrodynamics. We can think of reconducting such a reasoning, but now in terms of the heading 
angle ψ , perhaps enhancing our physical understanding. As a direct result, a condition for stability loss 
concerning supercritical pitchfork equilibrium bifurcations is discussed, and a new type, the subcritical one 
(or cathastrophic) appears vividly. For, taking (42), solved in terms of ( , )u v  we get, 

∂
∂ψ
∂
∂ψ

v
u

u
v

= −

=
 , (43) 

valid for all states. If we assume ( )&, & ( , )x y = 0 0  -  as in a captive model experiment, where a restrained 
small-scale model of the vessel is driven by a constant current velocity U, being measured the hydrodynamic 
forces and moment ( , , )( ) ( ) ( )X Y Nc c c , acting upon the model, - from equation  (3) we get6 

u U

v U

c

c

=

= −

cos

sen

( )

( )

ψ

ψ
 . (44) 

We can think of ( , , )( ) ( ) ( )X Y Nc c c  as functions of ( )ψ ψ= = −( ) ( , ) arctanc u v v u  and U, such that 

                                                 

6 The subscript c stands for captive. 
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X X U

Y Y U

N N U

c c

c c

c c

( ) ( )

( ) ( )

( ) ( )

( ; )

( ; )

( ; )

=

=

=

ψ

ψ

ψ

 . (45) 

Accordingly, with the use of  (46), we get 

 Y
Y

v
Y

v u
Yv

c
c c

c( )
( ) ( )

( )= = = −∂
∂

∂
∂ψ

∂ψ
∂ ψ

1
 

that after (47) is used, reads 

Y
U

Yv
c

c
c( )

( )
( )

cos
= −

1
ψ ψ  , (48) 

leading, as can be easily verified, to 

Y
U

Yvvv
c

c
c( )

( )
( )

cos
= −

1
3 3 ψ ψψψ  . (49) 

Analogously, 

N
U

Nv
c

c
c( )

( )
( )

cos
= −

1
ψ ψ   (50) 

and also, 

N
U

Nvvv
c

c
c( )

( )
( )

cos
= −

1
3 3 ψ ψψψ   (51) 

Equations (52)-(53) are valid only under ( )&, & ( , )x y = 0 0 , i.e. if  (54) holds. Substituting (55)-(56) in (57) it 

follows at equilibrium (ψ ψ ψ= =( ) ( , )c u v ), that7 

x Y Y N Np  {   
1
6

} =    
1
6ψ ψψψ ψ ψψψψ ψ ψ ψtan tan tan tan+ +3 3  . (58) 

Notice that (44)  is satisfied for any ψ , particularly at ψ = 0  and ψ π= , fixed points. For these two fixed 
points we may have super- (as previously presented) or sub-critical pitchfork bifurcations. But, as we shall 
see, confirming results presented in the last section, if super-critical pitchfork bifurcation scenario 
exists,ψ π= ± 2  will be an unstable solution, leading to a former (locally) sub-critical bifurcation, when the 
dynamic system looses structural stability. 

Firstly we shall restrict ourselves to a local analysis around ψ = 0 . Obviously, the same reasoning can be 
applied around ψ π=  as well. Equation (44)  can then be written, 

                                                 

7 From now on, Y Y c
ψ ψ ψ ψ

=
=

( )

( )
, etc., are implied. 
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x Y Y N Np  {   1
6

} =    1
6ψ ψψψ ψ ψψψψ ψ ψ ψ+ +3 3   (59) 

or else, 

ψ λ ψ3 −   =  0c   (60) 

where 

λ ψ ψ

ψψψ ψψψ
c

p

N Y

N x Y
= −

−

−
 

( x )p6
( )

  (61) 

plays the role of the λ  parameter, previously defined. As before,equation (62) admits up to three roots 

ψ

ψ λ

=

= ±

0

c

 . (63) 

Let, now, M ( )ψ  be a cubic restoring moment, such that 

M x Y N x Y Np p( ) ( ) ( )ψ ψ ψψψψ ψψψ ψ ψ= − + −
1
6

3   (64) 

and take a non-dissipative one-dimensional dynamic system (one degree of freedom) 

I M&& ( )ψ ψ+ = 0   (65) 

as representing our system around the considered fixed point. Equation (66) can be put in the form 

&& ( )ψ α ψ λ ψ+ − =3 0c   (67) 

where 

α ψψψ ψψψ=
−x Y N

I
p

6
 . (68) 

Two possibilities do exist: (i) α > 0 ; (ii) α < 0 . Let us analyse the alternatives that appear: 

(i) If α > 0 ; or, equivalently, 
x N Y Y
x N Y Y

p

p

> >
< <





ψψψ ψψψ ψψψ

ψψψ ψψψ ψψψ

;
;
 if  
 if 

0
0

; two different situations arise: 

(ia) if λc < 0 : 

In this case ψ = 0  is the only fixed point, stable, a center. 

As α > 0 , and Yv < 0  always, so that, from(69), Y Uψ ψ> >0 0  if    and  cos > 0 ,  we then have the 

following condition, 

x
N

Y
N
Yp

v

v

> =ψ

ψ

 ; (70) 
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(ib) if λc > 0 ,  conversely, we then have, 

x
N

Y
N
Yp

v

v

< =ψ

ψ

  (71) 

In this case three are the fixed points, 

ψ = 0 : a saddle point (unstable, therefore) 

ψ λ= ± c  : nodes (stable) 

This situation corresponds to the super-critical bifurcation, previously studied. 

(ii) If α < 0 ; or, equivalently, 
x N Y Y
x N Y Y

p

p

< >
> <





ψψψ ψψψ ψψψ

ψψψ ψψψ ψψψ

;
;
 if  
 if 

0
0

; again, two different situations arise: 

(iia) If λc < 0 : 

ψ = 0  is the only fixed point, unstable, a saddle point. 

As α < 0 , and, as mentioned before, Yv < 0  always, so that, from (72), 
Y Uψ ψ> >0 0  if    and  cos > 0 , we then have valid the following condition, 

x
N

Y
N
Yp

v

v

< =ψ

ψ

 ; (73) 

(iib) If λc > 0 ,  conversely, we then have, 

x
N

Y
N
Yp

v

v

> =ψ

ψ

  (74) 

In this case three are the fixed points, 

ψ = 0 : a center (stable) 

ψ λ= ± c  : saddle points (unstable). 

Notice that λc = 0  is a bifurcation point, therefore. The stability condition x N Yp > ψ ψ  is a necessary 

condition, either for α > 0  or α < 0 . This condition (53), is the same one that has been previously achieved, 
(34). It is also the same necessary condition that emerges if the Routh-Hurwitz criterion is applied to the 
linearised system, (see Fernandes, 1995). 

If x N Yp < ψ ψ  and if α > 0 , the pitchfork bifurcation is of the supercritical  (smooth) type, whereas, if 

α < 0  it is of the subcritical  (cathastrophic) type. Notice that the sign of the third-order derivative Yvvv , 
that under equilibrium hypotheses is related to Yψψψ  as given by (75), controls the bifurcation scenario, if 

super- or sub-critical. 
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Summarizing, stability around ψ = 0  exists if the necessary condition (53) holds. Otherwise  
( x N Yp < ψ ψ ), two bifurcation scenarios arise: 

(i) α > 0 : supercritical bifurcation and then a new equilibrium point is reached: ψ λ= ± c (local 

analysis); senψ λ= ±
U

 (global analysis); 

(ii) α < 0 : subcritical bifurcation. The system would not reach, (smoothly) another point of equilibrium. As 
a matter of fact, looking at the original equation, ψ π=  would be reached as the new stable fixed point, 
of the center type. 

Notice that, although somewhat simplified, the present analysis do consider terms up to the third-order, 
retaining all the features of the system regarding equilibrium point stability analysis. This kind of features is 
unacessible under the Routh-Hurwitz criterion applied to the linearised equations. Notice also that 
dissipation terms, not considered in this simplified analysis, will transform centers in stable foci. 

Another important point is that, even when a supercritical (smooth) bifurcation occurs, there is a limit value 
for a stable bifurcated equilibrium, namely ψ π= ± 2 . This corresponds to the condition λ = U 2 , as 
already mentioned. In fact, (76) can be written in the form (77), with the restoring moment given as 

M x Y N x Y Np p( ) tan ( ) tan ( )ψ ψ ψψψψ ψψψ ψ ψ= − + −
1
6

3  . (78) 

Whenever ψ π→ ± 2  the restoring moment changes sign suddenly, tranforming itself into a repulsive 
moment. Thus stability is broken at ψ π→ ± 2 and, usually ψ π=  will be the new atractor point. This is in 
fact a loss in the structural stability for the dynamic system, considering up to the third-order hydrodynamic 
coefficients. Notice also that, from, (79) - (80) in (81), and comparing it to (82), that,  

λ ψλ ψ= U c
2 2cos ( )  , (83) 

where the parameter λ c  is determined for ψ ψ=  from (84). The bifurcated equilibrium equation (85) can 
then be transformed into 

tan ( )ψ λ ψ= ± c  . (86) 

This equation, together with the definition (87), shows clearly that, for each ψ ψ= , there is a “turning 
point”, x x N Yp p1 1= =( )ψ ψψψ ψψψ , concerning the loss of stability for supercritical pitchfork bifurcations. 

Additionaly, this latter form has the advantage, if compared to (88), of being (at least explicitly) independent 
of U. The above discussion will be clearly exemplified in the next section. 

The figures below ilustrate the present local analysis, where M ( )ψ  is the restoring moment. 
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Figure 4 - Pitchfork Bifurcation Diagram. Supercritical Case: α > 0 ; x N Y Yp > >ψψψ ψψψ ψψψ;   0 .  

Local analysis around ψ = 0 . 

(i.a) λc < 0 ; x N Y N Yp v v> =ψ ψ . (i.b) λc > 0 ; x N Y N Yp v v< =ψ ψ . 

 

 

Figure 5 - Pitchfork Bifurcation Diagram. Subcritical Case: α < 0 ; x N Y Yp < ψψψ ψψψ ψψψ;  > 0 .  

Local analysis around ψ = 0 .  

(ii.a) λc < 0 ; x N Y N Yp v v< =ψ ψ . (ii.b) λc > 0 ; x N Y N Yp v v> =ψ ψ . 
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EXAMPLES ON STABILITY ANALYSIS AND BIFURCATIONS 

The studied cases and their hydrodynamic derivatives 

Two different tankers moored at either a SPM or a ‘Turret’ type systems have been taken. Table 1 shows the 
particulars of these vessels. The characteristcs of both the hawser cable, for the SPM case, and the restoring 
mooring force function, for the “Turret’ case, are shown in Table 2. Table 3 presents the nondimensional 
hydrodynamic derivatives, extracted, respectively from Takashina, 1986 and Bernitsas & Kekridis, 1985. It 
should be noticed that the Takashina coefficients were obtatined by means of  captive model experiments, in 
either static drift tests at Froude number  0.066, or yaw rotating tests (for four different constant yaw rates 
&ψ = =r constant ). It should also be pointed out that Takashina’s nondimensionalized parameters differ 

somewhat from Bernitsas & Kekridis, as shown in Table B1, appendix B. For comparison purposes Table 3 
shows, for the Takashina tanker, the nondimensional hydrodynamic derivatives in both forms. Notice, 
however, that equations of motions are invariant in form, under both nondimensionalization procedures, the 
velocity being always equal to unity. Both have been considered as linear. 

Table 1. Tanker’s particulars 

 Tanker (1) Tanker (2) 

Length (Lbpp) (m) 270 325 

Breadth (m) 44.8 - 

Draft (m) 10.8 - 

Displacement ( )m3  90699 310669 

Mass (t) 92967 318436 

 

Table 2. Hawser Breaking Strength for the SPM and Restoring Force Charactheristics for the 
‘Turret’ System. 

 Hawser  Breaking Strength (*) 

SB  

Turret System Restoring 
Coefficient 

K 

 12200 kN 33.0 kN/m 

Dimensionless (A) 8.0 6.0 

Dimensionless (B) 0.2252 0.194 

(*) ( )q p= =10 5 0. ; . .; ; i.e., linear and 20% stretching at rupture. 
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 Table 3. Tankers’ Dimensionless Parameters and Hydrodynamic Derivatives8. 

 Tanker 1 Tanker 2 

 (A)9 (B)10 (B) 

m 2.258 0.0903 0.0181 

I z  0.14112 0.00564 - 

I Az
rr+     - - 0.00222 

Auu   0.050xm 0.004516 0.0009 

Avv    0.650xm 0.05871 0.0171 

A rr     0.043xm 0.003884 - 

A vr     - - ~0.0 

A rv     - - ~0.0 

X u     -0.01 -0.0004 -0.003 

Yv     -0.285 -0.0114 -0.0261 

Yr     - - 0.00365 

N r     -0.030 -0.0012 -0.0048 

N v     -0.0028 -0.00011 -0.0105 

Yvvv    -0.894 -0.21456 -0.045 

N vvv    -0.0093 -0.002232 0.00611 

N rrr  - - 0.00611 

 

                                                 

8 Only shown hydrodynamic derivatives actually used in the present time domain simulations. 

9 Values according to Takashina, 1986, and table 2, column (A). Notice that in that paper the Taylor expansion 
coefficients (n!) that appear in the definition of the hydrodynamic derivatives are implicitly considered in the equation of 
motion. In other words, these values should be corrected by the corresponding factor if the hydrodynamic forces are 
calculated as in equation (Erro! Apenas o documento principal.). 

10 Values calculated from column (A) but already corrected according to table 2, column (B). 
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Stability, bifurcations and dynamic behaviours 

Consider the fixed point corresponding to ψ = 0 . The necessary condition for stability is given by equation 
(89). If applied to tanker (1), irrespective if SPM or ‘Turret’ cases are considered, we get 
x L N Yp v v> = =0 0028 0 285 0 009824. . . . But, in the present case, N Yvvv vvv = =0 0093 0894 0 0104. . . , and 

so N Y N Yv v vvv vvv< . Notice, also that, in the present case, Yvvv < 0 , such that, for cosψ > 0 , we have 
Yψψψ > 0 . This implies that the stability condition (ia) ( ; )α λ> <0 0c , can be written  as 

( ; )x L N Y x L N Yp vvv vvv p v v> > , i.e., x Lp > 0 0104. . Condition (ib) ( ; )α λ> >0 0c , for its turn, would 

be written ( ; )x L N Y x L N Yp vvv vvv p v v> < , i.e., this would never occur, in this case. In words, only the 

subcritical pitchfork scenario may appear, and supercritical bifurcation will never occur. In fact, condition 
(iib) ( ; )α λ< >0 0c  or ( ; )x L N Y x L N Yp vvv vvv p v v< > , Figure 6 , corresponding to a ‘marginal stability’ 

around ψ = 0 , holds whenever 0 009824 0 0104. .< <x Lp , and condition (iia), corresponding to 

( ; )α λ< <0 0c , or ( ; )x L N Y x L N Yp vvv vvv p v v< <  (corresponding to be ψ = 0  an unstable fixed point) 

applies if x Lp < 0 009824. . Table 5 summarizes the stability analysis. Figure 7 , shows a number of time 

domain simulations, starting from the desired equilibrium position by means of a small perturbation in the 
tranversal relative velocity v. The time domain simulations have been performed by means of 
MATLAB/SIMULINK code, using a fifth-order Runge-Kutta integration scheme. We see that ψ = 0  is a 
stable equilibrium point for x Lp = 0 011. , in accordance to Table 4 (i.a). We see also that ψ π=  is the 

atractor for the two other conditions exemplified. It should be notice that 100 units of dimensionless time 
corresponds to about 7.5 hours in real scale, for a current speed of 1 m/s. 

As a conclusion tanker (1) can be considered ‘stable’, since for practical reasons x Lp ≥ 0 25. , in general. If 

the connection point is moved aft, only subcritical bifurcation shall appear, therefore.  

 

 

Table 4. Stability Scenarios for the Tanker (1) concerning ψ = 0  

 stability 
parameters 

bifurcation 
scenario 

situation 

x Lp < 0 00982.  α λ< <0 0; c  (ii.a) unstable 

0 00982 0 0104. .< <x Lp  α λ< >0 0; c  (ii.b) subcritical 
bifurcation11 

x Lp > 0 0104.  α λ> <0 0; c  (i.a) stable 

 

                                                 

11 ‘marginally stable’ 
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Figure 8 - Subcritical Pitchfork Bifurcations for tanker (1) in SPM; x Lp  as a parameter. 

Dimensionless time ′ =t t U L . Hawser length: l Lw = 2 .  Initial conditions: 
x u U x v U x r L U x l L x x1 2 3 4 5 61 01 0 2 0 0= = = = = = = = = = = =; . ; ; ; ; .γ ω  

For the tanker (2), however, we get N Yv v = =0 0105 0 0261 0 4023. . .  and 
N Yvvv vvv = − = −0 0061 0 045 01358. . . . Hence, we have N Y N Yvvv vvv v v< . Notice that, even in the present 
case, Yvvv < 0 , such that, for cosψ > 0 , we have Yψψψ > 0 . The stability condition (ia) ( ; )α λ> <0 0c , or 

( ; )x L N Y x L N Yp vvv vvv p v v> > , leads to, x Lp > 0 4023. . Condition (ib) ( ; )α λ> >0 0c , or 

( ; )x L N Y x L N Yp vvv vvv p v v> < , gives − < <01358 0 4023. .x Lp , in this case. In words, supercritical 

bifurcation scenario is now present. On the other hand, condition (iib) ( ; )α λ< >0 0c  or 
( ; )x L N Y x L N Yp vvv vvv p v v< > , that would correspond to a ‘marginal stability’ around ψ = 0 , cannot 

hold, and condition (iia) ( ; )α λ< <0 0c , or ( ; )x L N Y x L N Yp vvv vvv p v v< <  (corresponding to be ψ = 0  

an unstable fixed point) applies if x Lp < −01358. . Table 5 summarizes the stability analysis. 

Table 5. Stability Scenarios for the Tanker (2) concerning ψ = 0  

 stability 
parameters 

bifurcation 
scenario 

situation 

x Lp < −01358.  α λ< <0 0; c  (ii.a) unstable 

− < <01358 0 4023. (*) .x Lp  α λ> >0 0; c  (i.b) supercritical 
bifurcation 

x Lp > 0 4023.  α λ> <0 0; c  (i.a) stable 

(*) see discussion below) 

Condition (iib) cannot hold and so, subcritical bifurcation will never occur in this case. 
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Figure 9 - Supercritical Pitchfork Bifurcations (showing some cases with subsequent loss of structural 
stability) for tanker (2) in SPM; x Lp  as a parameter. Dimensionless time ′ =t t U L . Hawser length: 

l Lw = 2 5. . Initial conditions: 
x u U x v U x r L U x l x x1 2 3 4 5 61 01 0 2 5 0 0= = = = = = = = = = = =; . ; ; . ; ; .γ ω  

Figure 10 shows a number of time domain simulations, also starting from the desired equilibrium position 
by means of a small perturbation in the tranversal relative velocity v. 

Notice, however, that if supercritical bifurcation occurs, i.e. condition (ia) transforms into (ib), stability 
around the bifurcated equilibrium position breaks down whenever λ > U 2 , i.e. if ψ π→ ± 2  (otherwise 
equation (90) would have no real roots). This fact can be also interpreted as a loss of structural stability, 

regarding the system equations. Looking at Figure 11 we see that this situation happens for ( )x Lp

*
.≅ 0 28 , 

as could be predicted, and now ψ π=  is the new atractor. 

In fact, from (91) and (92), under the condition λ = U 2 , we get from table 3,  

 
( )

( ) ( )
( ) ( )

x

L
N N
Y Y

p vvv v

vvv v









 =

+
+

=
×

×
=

*
( )

.
6
6

0 2822
0.00611 + 6 - 0.0105

- 0.045 + 6 - 0.0261
, 

confirming the numerical simulations (see Figure 12 ). Table 5 must then be corrected, in order to account 
for the loss of stability of supercritical pitchfork bifurcations. This is shown in Table 6. Figure 13  refers to 
equation (93), showing, as in Papoulias & Bernitsas, 1988, ψ  as a function of x Lp . 

As mentioned before the present stability analysis, concerning the desirable equilibrium position ψ = 0 , 
does not depend on the type of mooring system used, if SPM or ‘Turret’. Figures 14 and 15 show the time 
domain simulations for the corresponding ‘Turret’ cases. Conditions are the same. Stability behavior is 
unchanged, as predicted but, the time histories, although similar, are not. Particularly, for tanker 2 a limit-
cycle (Hopf bifurcation), around the atractor ψ π= , is got for x Lp = 0 28. . 



 - 20 - 

 

Table 6. Stability Scenarios for the Tanker (2) concerning ψ = 0 . Considering ‘unstable’ supercritical 
bifurcations 

 stability 
parameters 

bifurcation 
scenario 

situation 

x Lp < −01358.  α λ> >0 0; c  (ii.a) unstable 

− < <01358 0 2822. .x Lp  α λ> >0 0; c

λ > U 2  
(i.b) unstable ‘unstable’ 

supercritical 
bifurcation 

0 2822 0 4023. .< <x Lp  α λ> >0 0; c

λ < U 2  
(i.b )stable ‘stable’ 

supercritical 
bifurcation 

x Lp > 0 4023.  α λ> <0 0; c  (i.a) stable 

 

 

 
Figure 16 - Diagram of Supercritical Pitchfork Bifurcation for tanker (2) 
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Figure 17 - Subcritical Pitchfork Bifurcations for tanker (1) in ‘Turret’; x Lp  as a parameter. 

Dimensionless time ′ =t t U L . Initial conditions: 
x u U x v U x r L U x x L x L x y L xp1 2 3 4 5 61 01 0 0 0= = = = = = = = − = = = =; . ; ; ; ; .ψ  

 

 

 

Figure 18 - Supercritical Pitchfork Bifurcations for tanker (2) in ‘Turret’;     x Lp  as a parameter. 

Dimensionless time ′ =t t U L .   Initial conditions: 
x u U x v U x r L U x x L x L x y L xp1 2 3 4 5 61 01 0 0 0= = = = = = = = − = = = =; . ; ; ; ; .ψ  
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Figure 19 - Effect of Yvvv  sign in the Pitchfork Bifurcations Scenario for tanker (2) in SPM; 
x Lp = 0 35. . Dimensionless time ′ =t t U L .   Initial conditions: 

x u U x v U x r L U x l x x1 2 3 4 5 61 01 0 2 5 0 0= = = = = = = = = = = =; . ; ; . ; ; .γ ω  

Figure 20  exemplifies as the sign of the third-order derivative Yvvv  may change the whole picture. If sign is 
reversed such that Yvvv = 0 045. , the supercritical scenario, for which condition (i.a) ( ; )α λ> <0 0c  is now 
written ( )N Y x L N Yv v p vvv vvv< < , will not be possible anymore. In fact, now 

N Yv v = =0 0105 0 0261 0 4023. . .  and N Yvvv vvv = =0 0061 0 045 01358. . . . Hence, we have 
N Y N Yvvv vvv v v< , such that (i.a) cannot hold. Instead, subcritical pitchfork bifurcation scenario will 
appear, conversely. Explicitly, condition (iib) ( ; )α λ< >0 0c  or ( ; )x L N Y x L N Yp vvv vvv p v v> > , would 

correspond to a ‘marginal stability’ around ψ = 0 ,  and condition (iia) ( ; )α λ< <0 0c , or 
( )N Y x L N Yvvv vvv p v v< <  (corresponding to be ψ = 0  an unstable fixed point) applies if 

01358 0 4023. .< <x Lp . Notice, however, that this is a local analysis and gives no information concerning 

the existence or not of other atractors and if structural stability is preserved. 

Finally, figure 21  shows time-histories corresponding to tanker (2), for different values of hawser cable 
length, taking x Lp = 0 7.  (the attatchement point on a bridge at the bow). According to table 7, ψ = 0  is a 

stable fixed point. Neverthless, a Hopf Bifurcation may appear, leading to a steady limit cycle. This 
behavior can depend also on hawser cable length. A “dynamic behaviour map”, as shown, for example in 
Papoulias & Bernitsas, 1988, could be constructed, describing as a function of x Lp  and l Lw , the kind of 

dynamic behavior that migth be expected.  
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Figure 22 - Hopf Bifurcations (limit cycles) for tanker (2) in SPM; l Lw  as a parameter. 
Dimensionless time ′ =t t U L .   X u = −0 001. ; x Lp = 0 7. .  Initial conditions: 

x u U x v U x r L U x l L x xw1 2 3 4 5 61 01 0 0 0= = = = = = = = = = =; . ; ; ; ; .γ ω  

CONCLUSIONS 

Stability analysis of  Single Point  (SPM) and ‘Turret’ Mooring Systems for Floating Production Storage 
and Offloading Systems, under the action of steady ocean currents, has been performed by means of 
bifurcation theory. Theoretical results previously published by Papoulias & Bernitsas, 1988, have been 
recovered and discussed. The most important result is the necessary condition for stability, governed by the 
longitudinal position of the attachement point. Stability analysis has been enlarged somewhat, showing how 
bifurcation theory applied to a third-order model, based on the standard “hydrodynamic derivatives” type, is 
able to qualify two distinct equilibria bifurcation scenarios of the super- and sub-critical pitchfork type. It 
has been shown that the sign of the third-order hydrodynamic  derivative of lateral force with respect to the 
lateral component of relative velocity governs the type of bifurcation scenario. Usually third-order 
hydrodynamic coefficientes are small, and experimental errors can easily lead to changes in algebraic sign, 
conducting to a totally different bifurcation scenario. 

Additionally, when super-critical pitchfork bifurcation scenario is present a condition for structural stability 
loss has been stabilished and discussed as well. Finally, some practical examples, taking two tankers of 
different size, moored either in SPM or in  ‘Turret’ configurations have been presented, ilustrating the 
features predicted by bifurcation analysis, through a number of time-domain simulations, performed with a 
fifth-order Runge-Kutta integration scheme. Some examples, concerning the appearance of Hopf 
bifurcations have also been presented and discussed. 
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Appendix A 

In fact, using Erro! Vínculo não válido., Erro! Vínculo não válido. and (9) under equilibrium assumption, 
equations (19) can be written, 

X u v r mrv T
Y u v r mru T

N u v r Tx p

( , , ) cos
( , , ) sen

( , , ) sen

+ + =
− − =

− =

ω
ω

ω

0
0

0
 . (94) 

The second and third equations are then combined, leading to 

x Y u v r m r u N u v rp  { ( , , )     } =  ( , , )−  . (95) 

As equilibrium is assumed, the angular velocity is null ( )r = 0 . Taking the hydrodynamic derivatives up to 
third order, we then have, at equilibrium, 

x Y v Y v N v N vp v vvv v vvv {   } =    + +
1
6

1
6

3 3  . (96) 

Appendix B 

Table B1. Nondimensionalizers Parameters. 

Type of Variable (A) According to Takashina, 
1986 

(B) According to Bernitsas & 
Kekridis, 1985 

velocity U U 

length L L 

mass (*) 0.5 ρ L2 T 0.5 ρ L3 

inertia of mass 0.5 ρ L4 T 0.5 ρ L5 

force 0.5 ρ L T U2 0.5 ρ L 2 U2 

(*) T is the draft. 
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