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ABSTRACT

The Floating Production Storage and Offloading System (FPSO’s) is a modern concept for floating offshore oil exploration units, moored in deep water. ‘Turret’ and ‘Mono-Buoys’ are similar types of Single Point Mooring systems (SPM) envisaged for the station keeping task. Nevertheless, the highly non-linear dynamic nature of this kind of system may give rise to a rich behaviour scenario that may comprise from simple pitchfork point equilibrium bifurcations to Hopf bifurcations (limit cycles), or even chaotic regimes. Standard linearised stability analysis may be not sufficient anymore to deal with the design problem. Bifurcation theory and modern system dynamics form then a proper theoretical basis for the analysis. This paper addresses the stability problem and discusses a number of interesting dynamic behaviors that arise in steady current. A self-excited autonomous and dissipative non-linear system of equations governs the system dynamics. A classical ‘hydrodynamic derivatives’ model form the core for hydrodynamic forces description. Following Papoulias & Bernitsas, 1988, some classical results on the stability problem are recovered. Then, reinterpreting the equilibrium analysis, it is also shown that bifurcation theory enables one not only to predict but also to qualify equilibrium pitchfork bifurcation scenarios, if super- or sub-critical. It is shown that the algebraic sign of the third-order derivative of the lateral force with respect to the lateral component of relative velocity governs the type of bifurcation scenario. When super-critical pitchfork bifurcation scenario is present a condition for structural stability loss is established and discussed. Hopf bifurcations (limit cycles) are also presented and discussed.

INTRODUCTION

The Floating Production Storage and Offloading System (FPSO’s) is a modern concept for floating offshore oil exploration units, moored in deep water. A tanker is moored offshore, and oil is stored before being transported by shuttle tankers that periodically are connected to the mother ship in a tandem formation.  The vessels are subject to the environmental loads, due to the concomitant action of ocean currents, waves and wind. Single Point Mooring (SPM) systems are alternatives to conventional spread systems, envisaged for the stationkeeping task. The pimer motivation of such systems is to allow the ship to be aligned with the ‘resultant’ of the environmental forces, diminishing motions and structural loads on the mooring lines, hawsers
 and risers.
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Figure 1 - FPSO moored at a ‘Turret’ System with a shuttle tanker in tandem formation

The conventional SPM system is a mooring system composed by a mono-buoy, moored to the sea bed by means of cables and chains and to which the FPSO, a specially converted tanker, is attached through a ‘hawser cable’. Not only the length but also the elastic characteristics of the cable and the attachment point position are important control parameters, concerning the stability and the dynamics of the system. In this paper we shall refer to mono-buoy systems (or ‘hawser cable’ systems) simply as SPM.

The ‘Turret’ type is a special kind of  single point mooring system composed by a huge bearing system, fixed directly to the ship, the hawser cable being eliminated, and moored to the sea-bed, as shown in 
Figure 1 .

If wind and waves actions are not considered and if ocean current is taken as steady, a self-excited autonomous non-linear system of ordinary differential equations can be shown to govern the system dynamics. The highly non-linear dynamic nature of this kind of system gives rise to a rich behaviour scenario that may comprise from simple pitchfork point equilibrium bifurcations to Hopf bifurcations (limit cycles), or even chaotic regimes. Bifurcation theory and modern system dynamics may form a proper theoretical basis for the analysis, although standard linearised stability analysis remains suitable for preliminary design purposes.

Under the bifurcation theory approach some research work has been done in this subject, primarily motivated by a close-related prolem of a towed ship in either a straight course or maneuvering in a port site. Bernitsas & Kekridis, 1985, treat the towed-ship problem. Papoulias & Bernitsas, 1988, take the single point mooring problem into attention. Recently, Bernitsas & Garza-Rios, 1995, have studied the dynamics of some offshore spread but slacken mooring systems, that exhibit the same sort of dynamic behavior. Under such an approach the general equation of motion is derived on a “hydrodynamic derivative” model basis, in which the hydrodynamic forces due to the relative motion with respect to the water are represented through Taylor series expansions given in terms of relative velocity components.

Following Papoulias & Bernitsas, 1988, this paper recovers and enlarges the analysis, addressing the stability problem again and discussing a number of interesting dynamic behaviors that arise for a ‘Turret’or a SPM in steady current. Under a third-order model of the “hydrodynamic derivatives” type, it is shown that bifurcation theory enables one not only to predict but also to qualify point equilibrium instability. Two excluding pitchfork bifurcation scenarios are shown to exist: sub- and super-critical. As well known, the position of mooring line attachment at the ship is the control parameter governing equilibria bifurcation. It is also shown, in this paper, that this parameter can be responsible for a loss of structural stability of the system, switching bifurcation scenarios, whose type is controlled primarily by the ‘hydrodynamic derivatives’ coefficients. The sign of the third derivative of the lateral force with respect to the lateral velocity, for instance, is shown to govern the type of bifurcation scenario that would appear. The occurrence of Hopf bifurcations (limit cycles) are also exemplified and discussed.

THE GOVERNING EQUATIONS

We follow closely Papoulias & Bernitsas, 1988. A classical “hydrodynamic derivatives model”, extracted from maneuvering theory, see, e.g.,  Abkowitz, 1972, is used in order to simulate the action of the relative current on the ship. Waves and wind are not considered in the present paper, neither are the hydrodynamic forces acting directly on the mooring lines of the ‘Turret’, for instance. It is also out of the scope of the present work to discuss the pertinence of this type of hydrodynamic model, although, as we shall show, the stability and dynamic scenarios are strongly dependent on the hydrodynamic coefficients. A number of alternative approachs does exist; see e.g., Faltinsen et al., 1979, Whichers, 1988. However, we are primarily interested in discussing the stability problem, rather than the robustness of the hydrodynamic model, at least at the present moment.

Let, then  Oxyz be a rigth-handed fixed reference frame, x being oriented in the opposite sense of the current velocity vector and z pointing upwards. Let GXY be a coordinate system attached to the floating unit, where G is the center of mass, X being oriented towards the bow. We restrict ourselves to the motion in the horizontal plane.Let be, also,

u, v: the relative velocity components of G with respect to the water, in the AX e AY directions, respectively;

:
the yaw angle (xGX)




: the relative velocity components of G with respect to the fixed frame;

P: 
the point of mooring;

U: 
the current velocity intensity;



: the distance GP;

l: 
the distance OP, where O is the fixed point where the hawser is attached (SPM case);

m: 
the floating unit mass;



: 
the moment of inertia with respect to GZ;

T:
the tension in the cable (SPM case) or the mooring restoring force (‘turret’ case).
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Figure 2 - Reference frames and geometric definitions.

Being v the velocity vector of G we have:




.
(1)

or else,





(2)

For further reference, we also write the inverse form of 
(2),




.
(3)

Let also, by definition,




,
(4)

and the following geometrical relations (see Figure 2)





(5)





(6)





(7)





(8)

noticing that 
(5), 
(7) and 
(8) are strictly valid only for 

, being ( not defined for 

.

The acceleration of the center of mass, with respect to an inertial reference frame, but written in the vessel’s frame, reads 

.



The equations of motions are then written,





(9)

where  X(u,v,r), Y(u,v,r) e N(u,v,r)  are velocity dependent hydrodynamic forces acting on the floating unit and 

 is the added inertia tensor, symmetric by construction (see, Newman, 1978, e.g.).

The SPM case

In the SPM case let T, the tension in the cable, be given (Papoulias & Bernitsas, 1988) by





(10)

where 

 is the original length of the cable (unloaded) and 

 the limit strength, being  p and q empirical constants. By defining the state vector




,
(11)

equations 
(10), 
(11) and 
(9) are transformed into a system of six first-order ordinary differential equations (Papoulias & Bernitsas, 1988),














(12)

where 

,  and





(13)

are the  “generalized” hydrodynamic forces given in terms of the well known hydrodynamic derivatives, up to third order, where we take the subscripts for partial derivatives. We notice that (12) is a nonlinear dissipative and autonomous dynamic system.

The ‘Turret’ case

Another set of state variables, apropriate for the ‘Turret’ case, could be used instead.
 Let




.
(14)

From 
(2), 
(3), 
(4), we get,














(15)

with, again, 

, and



(16)







.
(17)

stability analysis

Standard Linear Analysis

Let the governing equations be written





(18)

If 

 is a fixed point then,




.
(19)

Let 

 be a perturbation around the fixed point. Then





(20)

with





(21)

being the Jacobian of f at 

. From linear systems theory, asymptotic stability exists if all the eigenvalues of A are in the complex left plane. We could use the Routh Hurwitz criterion, for instance, in order to determine the conditions under which this necessary and sufficient condition is fully satisfied; see, e.g., Fernandes & Aratanha, 1996.

For a given floating unit, being known the hydrodynamic coefficients, the control parameters for the SPM case are (U,xp,lw). For the ‘turret’ case (U,xp,) are the parameters, where indicates a subset of parameters characterizing the mooring restoring function. Besides changes in 

, these parameters are responsible for qualitative variations in the stability and in the dynamic behavior of the system. As we have noticed before, we treat a nonlinear dissipative and autonomous dynamic system, in a hexa-dimensional space. Therefore equilibrium bifurcations, Hopf bifurcations, and even chaotic regimes can be expected. We should remember that nonlinear dissipative terms can lead to Hopf bifurcations, making the system structurally unstable, as well as nonlinear restoring forces to equilibrium bifurcations. Different scenarios where a number of atractors compete with each other can lead to chaos.We also notice that, in the SPM case the desirable equilibrium is obviously given by




,
(22)

where




,
(23)

is the stretched length of the cable in this position, whereas, in the ‘Turret’ case the desirable fixed point is (see 
(14)),




.
(24)

Equilibrium Bifurcations

We take U as invariant. The array of control parameters will be denoted by




,
(25)

in the SPM case and by





(26)

in the ‘Turret’ case. The dynamical system  will be writen in the form





(27)

Supercritical Pitchfork Bifurcation

There is an obvious plane of symmetry, condition under which pitchfork bifurcations usually arise. According to Papoulias and Bernitsas, 1988, the equilibrium equation can be reduced to (see appendix A)




.
(28)

This equation can be rewritten in the form of a cubic equation in 






(29)

where, as defined in Papoulias & Bernitsas, 1988,





(30)

We should notice that this control parameter depends on a ratio between two diferences. Thus, errors in evaluating the hydrodynamic coefficients can be highly amplified. At the bifurcation point 

 both





(31)

must be satisfied. Then, from 
(31)




(32)

and, from 
(31), (=0. Therefore





(33)

and hence, from 
(30)




(34)

that is the critical value below which supercritical pitchfork bifurcation occurrs.

On the other hand, taking 

 in (
3) we have the equilibrium values for the relative velocity components given by




 .

                     




   (35)

After equilibrium bifurcation occurs, 

, and so,





(36)

gives the new equilibrium positions. If 

 is negative, there is no real stable bifurcated solutions. Notice, also, that 

 must be satisfied, as well. In other words, at 

 structural stability is broken. We shall return to this point later on.

Structural Stability and Subcritical Pitchfork Bifurcation 

The previous analysis, recovered from Papoulias & Bernitsas, 1988, takes the hydrodynamic derivatives given in terms of the relative velocity component v, defined by equations 
(2) and 
(3), as usually done in marine hydrodynamics. We can think of reconducting such a reasoning, but now in terms of the heading angle 

, perhaps enhancing our physical understanding. As a direct result, a condition for stability loss concerning supercritical pitchfork equilibrium bifurcations is discussed, and a new type, the subcritical one (or catastrophic) appears vividly. For, taking 
(3), solved in terms of 

 we get,




,
(37)

valid for all states. If we assume 

 -  as in a captive model experiment, where a restrained small-scale model of the vessel is driven by a constant current velocity U, being measured the hydrodynamic forces and moment 

, acting upon the model, - from equation  (3) we get




.
(38)

We can think of 

 as functions of 

 and U, such that




.
(39)

Accordingly, with the use of  (
37), we get

 


that after 
(38) is used, reads




,
(40)

leading, as can be easily verified, to




.
(41)

Analogously,





(42)

and also,





(43)

Equations 
(40)-
(43) are valid only under 

, i.e. if  (
38) holds. Substituting (
40)-(
43) in (
28) it follows at equilibrium (

), that




.
(44)

Notice that 
(44)  is satisfied for any 

, particularly at 

 and 

, fixed points. For these two fixed points we may have super- (as previously presented) or sub-critical pitchfork bifurcations. But, as we shall see, confirming results presented in the last section, if super-critical pitchfork bifurcation scenario exists,

 will be an unstable solution, leading to a former (locally) sub-critical bifurcation, when the dynamic system loses structural stability.

Firstly, we shall restrict ourselves to a local analysis around 

. Obviously, the same reasoning can be applied around 

 as well. Equation 
(44)  can then be written,





(45)

or else,





(46)

where





(47)

plays the role of the 

 parameter, previously defined. As before, equation (
46) admits up to three roots




.
(48)

Let, now, 

 be a cubic restoring moment, such that





(49)

and take a non-dissipative one-dimensional dynamic system (one degree of freedom)





(50)

as representing our system around the considered fixed point. Equation (
50) can be put in the form





(51)

where




.
(52)

Two possibilities do exist: (i) 

; (ii) 

. Let us analyse the alternatives that appear:

(i) If 

; or, equivalently, 

; two different situations arise:

(ia) if 

:

In this case 

 is the only fixed point, stable, a center.

As 

, and 

 always, so that, from
(40), 

,  we then have the following condition,




;
(53)

(ib) if 

,  conversely, we then have,





(54)

In this case three are the fixed points,



: a saddle point (unstable, therefore)



 : nodes (stable)

This situation corresponds to the super-critical bifurcation, previously studied.

(ii) If 

; or, equivalently, 

; again, two different situations arise:

(iia) If 

:



 is the only fixed point, unstable, a saddle point.

As 

, and, as mentioned before, 

 always, so that, from 
(40), 

, we then have valid the following condition,




;
(55)

(iib) If 

,  conversely, we then have,





(56)

In this case three are the fixed points,



: a center (stable)



 : saddle points (unstable).

Notice that 

 is a bifurcation point, therefore. The stability condition 

 is a necessary condition, either for 

 or 

. This condition 
(53), is the same one that has been previously achieved, 
(34). It is also the same necessary condition that emerges if the Routh-Hurwitz criterion is applied to the linearised system, (see Fernandes, 1995).

If 

 and if 

, the pitchfork bifurcation is of the supercritical  (smooth) type, whereas, if 

 it is of the subcritical  (catastrophic) type. Notice that the sign of the third-order derivative 

, that under equilibrium hypotheses is related to 

 as given by 
(41), controls the bifurcation scenario, if super- or sub-critical.

Summarizing, stability around 

 exists if the necessary condition 
(53) holds. Otherwise, (

), two bifurcation scenarios arise:

(i) 

: supercritical bifurcation and then a new equilibrium point is reached: 

(local analysis); 

 (global analysis);

(ii) 

: subcritical bifurcation. The system would not reach, (smoothly) another point of equilibrium. As a matter of fact, looking at the original equation, 

 would be reached as the new stable fixed point, of the center type.

Notice that, although somewhat simplified, the present analysis does consider terms up to the third-order, retaining all the features of the system regarding equilibrium point stability analysis. This kind of features is inaccessible under the Routh-Hurwitz criterion applied to the linearized equations. Notice also that dissipation terms, not considered in this simplified analysis, will transform centers in stable foci.
Another important point is that, even when a supercritical (smooth) bifurcation occurs, there is a limit value for a stable bifurcated equilibrium, namely 

. This corresponds to the condition 

, as already mentioned. In fact, 
(44) can be written in the form 
(50), with the restoring moment given as




.
(57)

Whenever 

 the restoring moment changes sign suddenly, transforming itself into a repulsive moment. Thus, stability is broken at 

and, usually 

 will be the new attractor point. This is in fact a loss in the structural stability for the dynamic system, considering up to the third-order hydrodynamic coefficients. Notice also that, from
, (40) - 
(43) in 
(30), and comparing it to 
(47), that, 




,
(58)

where the parameter 

 is determined for 

 from 
(47). The bifurcated equilibrium equation 
(36) can then be transformed into




.
(59)

This equation, together with the definition 
(47), shows clearly that, for each 

, there is a “turning point”, 

, concerning the loss of stability for supercritical pitchfork bifurcations. Additionally, this latter form has the advantage, if compared to 
(36), of being (at least explicitly) independent of U. The above discussion will be clearly exemplified in the next section.

The figures below illustrate the present local analysis, where 

 is the restoring moment.
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Figure 3 - Pitchfork Bifurcation Diagram. Supercritical Case: 

; 

. 

Local analysis around 

.

(i.a) 

; 

. (i.b) 

; 

.
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Figure 4 - Pitchfork Bifurcation Diagram. Subcritical Case: 

; 

. 

Local analysis around 

. 

(ii.a) 

; 

. (ii.b) 

; 

.

examples ON STABILITY ANALYSIS AND BIFURCATIONS

The studied cases and their hydrodynamic derivatives

Two different tankers moored at either a SPM or a ‘Turret’ type systems have been taken. Table 1 shows the particulars of these vessels. The characteristics of both the hawser cable, for the SPM case, and the restoring mooring force function, for the “Turret’ case, are shown in Table 2. Table 3 presents the nondimensional hydrodynamic derivatives, extracted, respectively from Takashina, 1986 and Bernitsas & Kekridis, 1985. It should be noticed that the Takashina coefficients were obtatined by means of captive model experiments, in either static drift tests at Froude number 0.066, or yaw rotating tests (for four different constant yaw rates 

). It should also be pointed out that Takashina’s nondimensionalized parameters differ somewhat from Bernitsas & Kekridis, as shown in Table B1, appendix B. For comparison purposes Table 3 shows, for the Takashina tanker, the nondimensional hydrodynamic derivatives in both forms. Notice, however, that equations of motions are invariant in form, under both nondimensionalization procedures, the velocity being always equal to unity. Both have been considered as linear.

Table 1. Tanker’s particulars
	
	Tanker (1)
	Tanker (2)

	Length (Lbpp) (m)
	270
	325

	Breadth (m)
	44.8
	-

	Draft (m)
	10.8
	-

	Displacement 


	90699
	310669

	Mass (t)
	92967
	318436


Table 2. Hawser Breaking Strength for the SPM and Restoring Force Charactheristics for the ‘Turret’ System.

	
	Hawser  Breaking Strength (*)




	Turret System Restoring Coefficient

K

	
	12200 kN
	33.0 kN/m

	Dimensionless (A)
	8.0
	6.0

	Dimensionless (B)
	0.2252
	0.194


(*)

; i.e., linear and 20% stretching at rupture.
 Table 3. Tankers’ Dimensionless Parameters and Hydrodynamic Derivatives
.

	
	Tanker 1
	Tanker 2

	
	(A)

	(B)

	(B)

	m
	2.258
	0.0903
	0.0181

	


	0.14112
	0.00564
	-

	

   
	-
	-
	0.00222

	

 
	0.050xm
	0.004516
	0.0009

	

  
	0.650xm
	0.05871
	0.0171

	

   
	0.043xm
	0.003884
	-

	

   
	-
	-
	~0.0

	

   
	-
	-
	~0.0

	

   
	-0.01
	-0.0004
	-0.003

	

   
	-0.285
	-0.0114
	-0.0261

	

   
	-
	-
	0.00365

	

   
	-0.030
	-0.0012
	-0.0048

	

   
	-0.0028
	-0.00011
	-0.0105

	

  
	-0.894
	-0.21456
	-0.045

	

  
	-0.0093
	-0.002232
	0.00611

	


	-
	-
	0.00611


Stability, bifurcations and dynamic behaviours

Consider the fixed point corresponding to 

. The necessary condition for stability is given by equation 
(53). If applied to tanker (1), irrespective if SPM or ‘Turret’ cases are considered, we get 

. But, in the present case, 

, and so 

. Notice, also that, in the present case, 

, such that, for 

, we have 

. This implies that the stability condition (ia) 

, can be written  as 

, i.e., 

. Condition (ib) 

, for its turn, would be written 

, i.e., this would never occur, in this case. In words, only the subcritical pitchfork scenario may appear, and supercritical bifurcation will never occur. In fact, condition (iib) 

 or 

, 
Figure 4 , corresponding to a ‘marginal stability’ around 

, holds whenever 

, and condition (iia), corresponding to 

, or 

 (corresponding to be 

 an unstable fixed point) applies if 

. Table 5 summarizes the stability analysis. 
Figure 5 , shows a number of time domain simulations, starting from the desired equilibrium position by means of a small perturbation in the tranversal relative velocity v. The time domain simulations have been performed by means of MATLAB/SIMULINK code, using a fifth-order Runge-Kutta integration scheme. We see that 

 is a stable equilibrium point for 

, in accordance to Table 4 (i.a). We see also that 

 is the atractor for the two other conditions exemplified. It should be notice that 100 units of dimensionless time corresponds to about 7.5 hours in real scale, for a current speed of 1 m/s.

As a conclusion tanker (1) can be considered ‘stable’, since for practical reasons 

, in general. If the connection point is moved aft, only subcritical bifurcation shall appear, therefore. 

Table 4. Stability Scenarios for the Tanker (1) concerning 


	
	stability parameters
	bifurcation scenario
	situation

	


	


	(ii.a)
	unstable

	


	


	(ii.b)
	subcritical bifurcation


	


	


	(i.a)
	stable





Figure 5 - Subcritical Pitchfork Bifurcations for tanker (1) in SPM; 

 as a parameter. Dimensionless time 

. Hawser length: 

.  Initial conditions: 


For the tanker (2), however, we get 

 and 

. Hence, we have 

. Notice that, even in the present case, 

, such that, for 

, we have 

. The stability condition (ia) 

, or 

, leads to, 

. Condition (ib) 

, or 

, gives 

, in this case. In words, supercritical bifurcation scenario is now present. On the other hand, condition (iib) 

 or 

, that would correspond to a ‘marginal stability’ around 

, cannot hold, and condition (iia) 

, or 

 (corresponding to be 

 an unstable fixed point) applies if 

. Table 5 summarizes the stability analysis.

Table 5. Stability Scenarios for the Tanker (2) concerning 


	
	stability parameters
	bifurcation scenario
	situation

	


	


	(ii.a)
	unstable

	


	


	(i.b)
	supercritical bifurcation

	


	


	(i.a)
	stable


(*) see discussion below)

Condition (iib) cannot hold and so, subcritical bifurcation will never occur in this case.
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Figure 6 - Supercritical Pitchfork Bifurcations (showing some cases with subsequent loss of structural stability) for tanker (2) in SPM; 

 as a parameter. Dimensionless time 

. Hawser length: 

. Initial conditions: 


Figure 
6 shows a number of time domain simulations, also starting from the desired equilibrium position by means of a small perturbation in the tranversal relative velocity v.

Notice, however, that if supercritical bifurcation occurs, i.e. condition (ia) transforms into (ib), stability around the bifurcated equilibrium position breaks down whenever 

, i.e. if 

 (otherwise equation 
(36) would have no real roots). This fact can be also interpreted as a loss of structural stability, regarding the system equations. Looking at 
Figure 6 we see that this situation happens for 

, as could be predicted, and now 

 is the new atractor.

In fact, from 
(30) and 
(36), under the condition 

, we get from table 3,





,

confirming the numerical simulations (see 
Figure 6 ). Table 5 must then be corrected, in order to account for the loss of stability of supercritical pitchfork bifurcations. This is shown in Table 6. 
Figure 7  refers to equation 
(36), showing, as in Papoulias & Bernitsas, 1988, 

 as a function of 

.

As mentioned before the present stability analysis, concerning the desirable equilibrium position 

, does not depend on the type of mooring system used, if SPM or ‘Turret’. Figures 
8 and 
9 show the time domain simulations for the corresponding ‘Turret’ cases. Conditions are the same. Stability behavior is unchanged, as predicted but, the time histories, although similar, are not. Particularly, for tanker 2 a limit-cycle (Hopf bifurcation), around the attractor 

, is got for 

.

Table 6. Stability Scenarios for the Tanker (2) concerning 

. Considering ‘unstable’ supercritical bifurcations
	
	stability parameters
	bifurcation scenario
	situation

	


	


	(ii.a)
	unstable

	


	



 EMBED Equation.2  

	(i.b) unstable
	‘unstable’ supercritical bifurcation

	


	



 EMBED Equation.2  

	(i.b )stable
	‘stable’ supercritical bifurcation

	


	


	(i.a)
	stable
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Figure 7 - Diagram of Supercritical Pitchfork Bifurcation for tanker (2)
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Figure 8 - Subcritical Pitchfork Bifurcations for tanker (1) in ‘Turret’; 

 as a parameter. Dimensionless time 

. Initial conditions: 
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Figure 9 - Supercritical Pitchfork Bifurcations for tanker (2) in ‘Turret’;     

 as a parameter. Dimensionless time 

.   Initial conditions: 
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Figure 10 - Effect of 

 sign in the Pitchfork Bifurcations Scenario for tanker (2) in SPM; 

. Dimensionless time 

.   Initial conditions: 


Figure 
10  exemplifies as the sign of the third-order derivative 

 may change the whole picture. If sign is reversed such that 

, the supercritical scenario, for which condition (i.a) 

 is now written 

, will not be possible anymore. In fact, now 

 and 

. Hence, we have 

, such that (i.a) cannot hold. Instead, subcritical pitchfork bifurcation scenario will appear, conversely. Explicitly, condition (iib) 

 or 

, would correspond to a ‘marginal stability’ around 

,  and condition (iia) 

, or 

 (corresponding to be 

 an unstable fixed point) applies if 

. Notice, however, that this is a local analysis and gives no information concerning the existence or not of other attractors and if structural stability is preserved.

Finally, figure 
11  shows time-histories corresponding to tanker (2), for different values of hawser cable length, taking 

 (the attachment point on a bridge at the bow). According to table 7, 

 is a stable fixed point. Nevertheless, a Hopf Bifurcation may appear, leading to a steady limit cycle. This behavior can depend also on hawser cable length. A “dynamic behaviour map”, as shown, for example in Papoulias & Bernitsas, 1988, could be constructed, describing as a function of 

 and 

, the kind of dynamic behavior that might be expected. 
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Figure 11 - Hopf Bifurcations (limit cycles) for tanker (2) in SPM; 

 as a parameter. Dimensionless time 

.   

; 

.  Initial conditions: 


conclusions

Stability analysis of Single Point  (SPM) and ‘Turret’ Mooring Systems for Floating Production Storage and Offloading Systems, under the action of steady ocean currents, has been performed by means of bifurcation theory. Theoretical results previously published by Papoulias & Bernitsas, 1988, have been recovered and discussed. The most important result is the necessary condition for stability, governed by the longitudinal position of the attachment point. Stability analysis has been enlarged somewhat, showing how bifurcation theory applied to a third-order model, based on the standard “hydrodynamic derivatives” type, is able to qualify two distinct equilibria bifurcation scenarios of the super- and sub-critical pitchfork type. It has been shown that the sign of the third-order hydrodynamic derivative of lateral force with respect to the lateral component of relative velocity governs the type of bifurcation scenario. Usually third-order hydrodynamic coefficients are small, and experimental errors can easily lead to changes in algebraic sign, conducting to a totally different bifurcation scenario.

Additionally, when super-critical pitchfork bifurcation scenario is present a condition for structural stability loss has been established and discussed as well. Finally, some practical examples, taking two tankers of different size, moored either in SPM or in ‘Turret’ configurations have been presented, ilustrating the features predicted by bifurcation analysis, through a number of time-domain simulations, performed with a fifth-order Runge-Kutta integration scheme. Some examples, concerning the appearance of Hopf bifurcations have also been presented and discussed.
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Appendix A

In fact, using 
(10), 
(11) and 
(9), under equilibrium assumption, equations 
(19) can be written,




.
(60)
The second and third equations are then combined, leading to




.
(61)
As equilibrium is assumed, the angular velocity is null 

. Taking the hydrodynamic derivatives up to third order, we then have, at equilibrium,




.
(62)
Appendix B

Table B1. Nondimensionalizers Parameters.

	Type of Variable
	(A) According to Takashina, 1986
	(B) According to Bernitsas & Kekridis, 1985

	velocity
	U
	U

	length
	L
	L

	mass (*)
	0.5 ( L2 T
	0.5 ( L3

	inertia of mass
	0.5 ( L4 T
	0.5 ( L5

	force
	0.5 ( L T U2
	0.5 ( L 2 U2


(*) T is the draft.
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� CAPES-PET scholarship


� the cable through which the ship is attached to the mono-buoy


� Cortesia: Orcina Cable Protection


� Notice that, in the ‘turret’ case we expect to have l=0.


� The subscript c stands for captive.


� From now on, � EMBED Equation.2  ���, etc., are implied.


� Only shown hydrodynamic derivatives actually used in the present time domain simulations.


� Values according to Takashina, 1986, and table 2, column (A). Notice that in that paper the Taylor expansion coefficients (n!) that appear in the definition of the hydrodynamic derivatives are implicitly considered in the equation of motion. In other words, these values should be corrected by the corresponding factor if the hydrodynamic forces are calculated as in equation � LINK Word.Document.8 "C:\\Users\\Celso\\Documents\\Pesce\\1 - Academico\\Disciplinas\\PNV5204\\Papers\\RBCM.doc" DDE_LINK55 \a \r \* FORMATOMESCLAR �(13)�.


� Values calculated from column (A) but already corrected according to table 2, column (B).


� ‘marginally stable’
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