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ABSTRACT 
The dynamics of a Turret-FPSO system subjected to steady 

ocean current is addressed under standard bifurcation theory and 

under a heuristic hydrodynamic model (HM) that combines Finite 

Span Wing and Cross Flow models. Accounting for the 

equilibrium problem, it has been previously shown that if a 

classical third-order hydrodynamic derivatives model (HD) is 

used, the sign of the third derivative of the hydrodynamic moment 

with respect to the transversal velocity is responsible for a 

dramatic change in the pitchfork bifurcation scenario, from a 

super-critical to a sub-critical one (Pesce & Tannuri, 1997). On 

the other hand, under a heuristic approach, supported by captive 

model tests results, a bi-linear term on the heading angle has been 

shown to be dominant (Leite et al., 1997), destroying the previous 

conclusion. Additionally, such a quadratic term is responsible for 

a change in the super-critical pitchfork bifurcation pattern. This 

strong result has shown, quite clearly, the lack of robustness of 

the classical third-order HD model. On account of this fact, the 

static heuristic model has been extended dynamically, 

incorporating bi-linear terms involving the transversal relative 

velocity and yaw rate. The advantage are twofold: robustness and 

simplicity, as the hydrodynamic coefficients are written as simple 

functions depending solely on the ship principal dimensions and 

form coefficients. Time domain simulations are presented and 

used to exemplify the overall behavior discussed herein. The 

equilibrium bifurcation behavior is recovered and some dynamic 

scenarios are showed and discussed. 

INTRODUCTION 

The Floating Production Storage and Offloading System 

(FPSO’s) is a modern concept for floating offshore oil exploration 

units, moored in deep water. A tanker is moored offshore and oil 

is stored before being transported by shuttle tankers that 

periodically are connected to the mother ship in a tandem 

formation. The vessels are subject to the environmental loads, due 

to the concomitant action of ocean currents, waves and wind. The 

‘Turret’ type is a special kind of single point mooring system 

composed by a huge bearing system, fixed directly to the ship, the 

hawser cable being eliminated, and moored to the sea-bed, as 

shown in Fig 1.The primer motivation of such systems is to allow 

the ship to be aligned with the ‘resultant’ of the environmental 

forces, diminishing motions and structural loads on the mooring 

lines, hawsers and risers. 

If wind and waves actions are not considered and if ocean 

current is taken as steady, a self-excited autonomous non-linear 

system of ordinary differential equations can be shown to govern 

the system dynamics. The highly non-linear dynamic nature of 

this kind of system gives rise to a rich behaviour scenario that 

may comprise from simple pitchfork point equilibrium 

bifurcations to Hopf bifurcations (limit cycles), or even chaotic 

regime. Bifurcation theory and modern system dynamics may 

form a proper theoretical basis for the analysis. 

Under the bifurcation theory approach a large amount of 

research work has been done in this subject, primarily motivated 

by a close-related problem of a towed ship in either a straight 

course or maneuvering in a port site. Bernitsas & Kekridis, 1985, 



treat the towed-ship problem. Papoulias & Bernitsas, 1988, take 

the single point mooring problem into attention. Recently, 

Bernitsas & Garza-Rios, 1995, have studied the dynamics of 

some offshore spread but slacken mooring systems, that exhibit 

the same sort of dynamic behavior. Under such an approach the 

general equation of motion is derived on a “hydrodynamic 

derivative” model basis, in which the hydrodynamic forces due to 

the relative motion with respect to the water are represented 

through Taylor series expansions given in terms of relative 

velocity components. 

 

 

Figure 1 FPSO moored at a ‘Turret’ System with a shuttle tanker 

in tandem formation1 

 

Pesce & Tannuri, 1997, under the same third-order model of 

the “hydrodynamic derivatives” type analyzed two excludent 

pitchfork bifurcation scenarios: the sub- and the super-critical 

ones. As well known, the position of mooring line attachment at 

the ship is the control parameter governing equilibria bifurcation. 

It has also been shown that this parameter can be responsible for a 

loss of structural stability of the system, switching bifurcation 

scenarios, whose type is controlled primarily by the 

‘hydrodynamic derivatives’ coefficients. The sign of the third 

partial derivative of the yaw moment with respect to the lateral 

velocity, for instance, governs the type of bifurcation scenario 

that would appear. Nevertheless, this important coefficient is 

rather small, the experimental accuracy being usually poor, given 

rise even to changes in sign, depending on the analysis method 

that is used, as observed by Leite et al, 1997. The classical third-

order hydrodynamic derivative model exhibits a square-root 

behavior in the vicinity of the bifurcation point. 

                                                 

1 Cortesy: Orcina Cable Protection 

More recently, Leite et al, 1997, developed a heuristic 

hydrodynamic model in order to assess captive model tests, 

aiming the equilibrium bifurcation analysis. Being  the angle of 

attack with respect to the flow, such a model asymptotically 

merges standard cross-flow expressions commonly used in ship 

hydrodynamics, (Faltinsen, 1990), which are valid when 

sin() O(1), with low aspect ratio wing theory expressions, 

valid when  << 1, taking into account the linear maneuvering 

coefficients proposed by Clarke et al., 1983. Besides of a 

phenomenological nature this model has been experimentally 

verified for a class of tankers, and exhibits a special virtue: the 

hydrodynamic coefficients are promptly evaluated from the 

principal geometrical characteristics of the hull. More than that, 

Leite et al. have shown that the post-critical behavior of the 

super-critical pitchfork bifurcation scenario is dominated by a bi-

linear term, being locally linear (in the vicinity of the bifurcation 

point), with respect to the bifurcation parameter, namely, the 

position of mooring line attachment. So, between these two 

hydrodynamic models, not only distinct qualitative behaviors but 

also quantitative discrepancies are expected. 

The present paper extends the heuristic hydrodynamic model 

to the dynamic problem, recovering the above-mentioned results, 

concerning stability and bifurcation analysis, and presenting some 

examples of time domain simulations with both models, for a 

typical tanker. 

 

GOVERNING EQUATIONS 

 We consider the horizontal plane motions of a FPSO system 

in a turret configuration in the presence of steady marine current 

as represented in Fig 2, below: 

 

 

Figure 2 Reference frames and geometric definitions 

The main variables that describe the dynamic problem are: 

• u: velocity of the ship relative to the water, in the 

surge direction; 

• v: velocity of the ship relative to the water, in the 

sway direction;  



• (x,y):  ship’s center of mass coordinates, in the fixed 

Oxy reference frame; 

• ),( yx  :  center of mass absolute velocity; 

• : yaw angle; 

• r :  yaw rate of the ship )( ; 

• U:  current velocity; 

• :  instantaneous incidence angle of the current; 

The parameter a measures the longitudinal distance between 

the turret and the ship’s center of mass. In the present work this 

parameter is the only one that is allowed to vary and will then be 

referred to as the bifurcation parameter. The equations governing 

the system dynamics can be written as 
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where 

M:  ship’s mass; 

Iz:  ship’s moment of inertia with respect to GZ 

axis; 

[Mij]: added mass matrix (symmetric by 

construction); 

being 

(Xmoor;Ymoor;Nmoor):  the surge, sway and yaw generalized 

forces applied on the system by the 

mooring system; 

(X(u,v,r);Y(u,v,r);N(u,v,r)): the hydrodynamic surge, sway and 

yaw generalized forces. 

The hydrodynamic forces (X(u,v,r);Y(u,v,r);N(u,v,r)) depend 

on the particular hydrodynamic model that is adopted. The 

hydrodynamic model proposed herein is an extension of a 

heuristic model, developed in Leite et al.,1997, for the assessment 

of the captive model (static) forces. Dynamic forces, especially 

due to the yaw rotation of the ship, are then  incorporated to 

address the dynamic problem. 

THE HEURISTIC HYDRODYNAMIC MODEL 

 The static equilibrium version of this model has been 

proposed by Leite et al., 1997, under a captive model approach, in 

order to assess the static hydrodynamic forces acting on the hull. 

Being  the angle of attack with respect to the flow, such a model 

asymptotically merges standard cross-flow expressions 

commonly used in ship hydrodynamics, (Faltinsen, 1990), which 

are valid when  sin() O(1), with low aspect ratio wing theory 

expressions, valid when  << 1, taking into account the linear 

maneuvering coefficients proposed by Clarke et al., 1983. 

 

Static Forces 

 The static hydrodynamic forces acting on the floating unit 

hull are written in a standard way, Leite et al., 1997, as 
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being, 

(L,B,T):  ship’s main dimensions (waterline length, 

breadth and draft); 

S:  wetted surface; 

CB: block coefficient; 

CY : lateral force coefficient in transversally steady 

current.; 

Re:  Reynold’s number (based on the length L); 

The length lg measures the longitudinal distance between the 

hull’s center of mass and the midship section. The model assumes 

that the hull is also symmetric with respect to the midship section. 

The hydrodynamic force coefficients were compared to 

experimental data gathered from captive model tests, within a 

very good agreement (Leite et al., 1997), what provides a great 

confidence on the heuristic model. Notice that the computation is 

straightforward as only main particulars, the block coefficient and 

a cross flow coefficient are needed. 

The angle  is defined so that the head current case 

corresponds to  =. In the dynamic problem, the instantaneous 

value of this angle must be taken, being written in terms of the 

yaw angle  and the velocities components in the form, 
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Dynamic Forces 

The hydrodynamic forces are here accounted for as being 

separable according  to two distinct phenomena: those related to 



the crossflow along the ship length and those referring to vortices 

emission at bow and stern. 

Forces and Moment due to Cross-flow: 


CG

v

r

 

Figure 3 Definitions for the cross-flow dynamic effects 

 

Considering the cross-flow effect, being r  the yaw rotation 

rate, the force in the transversal direction and the yaw moment 

may be expressed as integrals along the ship length, in a standard 

strip-theory way, involving the transversal components of the 

relative velocities of each section with respect to the water, in the 

form 
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where 

CD ()  : is the transversal drag coefficient for each 

station; 

  : is the longitudinal coordinate of the considered 

station, with respect to   the hull’s center of 

mass 

After some simple algebraic manipulations, Eq.(6) may be 

written as: 
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being: 
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As the terms involving v2 in Eq. (7) have already being 

considered in the static model, Eq. (2), the only terms that must 

be added are the .v  and 2 terms, that is, 

( )
2

2

1 ....2..
2

1
IIvTY S

D

CF   +−=  

         ( )
3

2

2 ....2..
2

1
IIvTN S

D

CF   +−=              (9) 

For consistency, the values of CD(), (extracted from 

Faltinsen, 1990, in the present work), are normalized by the 

transversal coefficient CY  as to make the v2 component of the 

cross-flow lateral force equal to the static force Ys (see Eq. (2)), 

for the incidence angle =90o, viz.  

 = LCdC YD  )(           (10) 

Moment due to vortices emission at bow and stern 

An heuristic reasoning leads to a yaw moment component 

caused by vortices emission at bow and stern, as schematically 

shown in Fig 4, here referred to simply as a tip-vortex 

phenomenon, 

 

Figure 4 Tip-vortex phenomenon 

 

As a first rough approximation, the hull can be considered as 

a flat plate of length L and infinite depth. Assuming these forces 

are applied at the very ends it can easily be shown that the 

corresponding yaw moment parcel can be written, 
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where the value of the coefficient 
plate

DC  can be taken, from 

Höerner, 1965, as 2. 



A CLASSICAL THIRD-ORDER HYDRODYNAMIC 

DERIVATIVES MODEL 

Usual ‘Hydrodynamic Derivatives’ (HD) models, are oftenly 

imported from ship maneuvering theory to the moored ship 

problem, under steady current. The classical one, as in Papoulias 

& Bernitsas, 1988, expands the generalized hydrodynamic forces 

into standard Taylor’s Series, in the relative velocity components. 

The coefficients in this expansion are the so-called 

‘hydrodynamic derivatives’, being experimentally determined. 

Heuristically, a number of models, also present in the technical 

literature, add odd bi-linear terms of the form v|v| to the Taylor’s 

Series; see, e.g., Takashina, 1986, Nishimoto et al., 1995. 

In this particular section we shall address only the third-

order, classical HD model, in order to discuss some crucial points, 

concerning stability and dynamics, that are originated when terms 

of the form v|v| are disregarded. The hydrodynamic forces acting 

on the hull will then  be given in terms of the hydrodynamic 

derivatives (in this case, up to the third order) in the form, 

33

33

3

6

1

6

1
),,(

6

1

6

1
),,(

6

1
),,(

rNrNvNvNrvuN

rYrYvYvYrvuY

uXuXrvuX

rrrrvvvv

rrrrvvvv

uuuu

+++=

+++=

+=

   (12) 

where X(u,v,r) and Y(u,v,r) are, respectively, the surge and sway 

forces and N(u,v,r) is the yaw moment acting on the floating unit.  

It is assumed in this work that the surge force depends only 

on the longitudinal relative velocity (u). Also, as the forces above 

are odd functions with respect to the velocity components in their 

corresponding directions, the series expansions only present odd 

terms. 

STABILITY ANALYSIS2 

When the turret is located near the center of mass, the stable 

equilibrium position of the ship is usually different from o0= . 

In other words, the ship is not aligned with the ocean current, but 

takes a new yaw angle of static equilibrium. The critical value of 

the distance a (between the turret and the center of mass) below 

which such a  bifurcation takes place may be analytically 

calculated. 

For the classical Hydrodynamic Derivatives model, it can be 

shown that (Papoulias & Bernitsas, 1988) this critical value is 

simply given by, 

v

v
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Y

N
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The new stable equilibrium position of the ship (when 

CRaa  ) is then, 

U


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2 see also Leite et al, 1998, in this same Conference. 
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a bifurcation control parameter. Under this HD model, as pointed 

out in Pesce & Tannuri, 1997, and easily seen from Eqs. (14-15), 

the qualitative behavior of the pitchfork bifurcation scenario can 

be dramatically changed, according to the sign taken by the third-

order hydrodynamic derivative Nvvv, switching from a super- to a 

sub-critical pattern. In fact, if   is negative there is no real 

stable bifurcated solutions. It should be noticed that the 

nondimensional absolute value of this ‘hydrodynamic derivative’ 

is rather small, compared to Yvvv, and errors in experimentally 

evaluated high-order coefficients can be large. Notice, also, that 
2U  must be satisfied, as well. In other words, at 2 =  

structural stability is broken. We shall return to this point later 

on. 

On the other hand, as shown in Leite et al., 1997, the static 

heuristic hydrodynamic model leads to, 
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and the angles of static equilibrium, for a<aCR, are given by, 
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where, 
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As pointed out by Leite et al., 1997, this latter model is 

much more robust, concerning bifurcation scenario predictability. 

It turns out that not only the bifurcation is of the supercritical 

type, but also the pitchfork is linear in â, in the vicinity of aCR. 

Example on Stability Analysis 
As an example on stability analysis and equilibrium 

bifurcations, the horizontal plane dynamics of a tanker in turret 

configuration will be studied, with hydrodynamic forces 

determined according to the two distinct models described above. 

The tanker’s main particulars, according to Papoulias & 

Bernitsas, 1988, are shown in Table 1. For simplicity,  the 

mooring line system has been considered as linear, and no 

mooring line damping has been taken into account. Table 2 shows 

data used in the Heuristic Model (HM). Table 3 presents data 

referring to the Hydrodynamic Derivative Model (HD).  

 



Table 1 Tanker’s particulars 

Length (Lbpp) (m) 325 

Breadth (m) 52.9 

Draft (m) 23.6 

Displacement )m( 3  310669 

M (t) 318436 

11M  (t) 15834 

22M   (t) 300840 

66MIZ +    (t.m2) 4.1254E9 

 

Table 2 Data for the Heuristic Hydrodynamic Model 

lg 3.25 m 

S 2.48E04m2 

CB 0.75 

CY 0.7 

 

 

Table 3 Nondimensional data for the Hydrodynamic Derivatives 

Model. 

Hydrodynamic 

Derivative 

Factor Nondimensional 

Hydrodynamic Derivative 

X u    UL25.0   -0.003 

Yv     UL25.0   -0.0261 

Yr     UL35.0   0.00365 

N r     UL45.0   -0.0048 

N v     UL35.0   -0.0105 

Yvvv    UL /5.0 2  -0.045 

N vvv    UL /5.0 3  0.00611 

N rrr  UL /5.0 6  0.00611 

 

The Equilibrium Bifurcation 
The angle of static equilibrium is plotted as a function of the 

bifurcation parameter a, according the two distinct hydrodynamic 

models. Both models lead to the same critical value for this 

parameter, 40.0LaCR
, (Eqs. (13) and (16)), below which 

super-critical pitchfork bifurcation occurs. Nevertheless, the post-

critical behavior predicted by the distinct hydrodynamic models is 

significantly different, as may be seen in the figure below, shown 

only for positive values of equilibrium, due to symmetry. 

The natures of the discrepancies in the static angles are 

twofold. First of all, a qualitative difference, which  is inherent to 

the hydrodynamic models formulation. The heuristic model 

presents a component of yaw (static) moment  that is proportional 

to CY. which is not considered in the hydrodynamic 

derivatives model. In fact, one may demonstrate (see Leite et al. 

(1997)) that this parcel is dominant in the post-critical behavior. It 

turns out that, in the vicinity of the bifurcation point, the yaw 

angle predicted by the heuristic model varies linearly with the 

parameter a/L, while, according the hydrodynamic derivatives 

model, this variation obeys a square root law involving the 

bifurcation parameter; see Eq. (12). 

 

0

10

20

30

40

50

60

70

80

0,26 0,28 0,3 0,32 0,34 0,36 0,38 0,4 0,42

a/L



Heuristic Model Hydrodynamic Derivatives

 

Figure 5 Pitchfork Bifurcation diagram. 

 

Conversely, the observed quantitative discrepancy has a 

different reason. The dynamic behavior predicted by the 

hydrodynamic derivatives model depends strongly on the values 

of the third-order derivatives Yvvv and Nvvv. It is well known, 

however, that accurate experimental determination of such 

derivatives is extremely difficult, especially for Nvvv, because the 

very small values usually obtained. Actually, very different 

results are observed for those derivatives (including changes in 

sign) depending on the source of experimental data; Leite et al, 

1997. The relatively strong inaccuracy in such coefficients may 

even lead (see Pesce et Tannuri (1997)) to changes in the 

pitchfork bifurcation scenario predicted by the hydrodynamic 

derivatives model, switching from a super- to a sub-critical one. 

Furthermore, the bifurcated angles of  static equilibrium, 

presented in the figure above, also strongly depend on the values 

of the third-order derivatives. As a matter of fact, according to 

Eq. (14), the angle of equilibrium depends on the parameter  see 

Eq. (15). 

Assuming, for simplicity, that the error in the determination 

of the first-order derivatives is negligible and naming (Nvvv–aYvvv) 

as  one may easily verify, from Eq. (14) that, in the classical 

HD model, the error )(  in the angle of equilibrium is 

proportional to () As  is usually a small quantity and the 

inaccuracy in its evaluation is significant, the error in the angle of 

equilibrium may also be expressive. 

On the other hand, it must be emphasized that the post-

critical behavior predicted by the heuristic model depends only on 

ship’s main dimensions and, as mentioned above, is dominated by 

the parcel proportional to CY. The experimental evaluation 

of the coefficient CY is relatively precise, due to the magnitude of 

the lateral cross-flow forces in beam current and this fact provides 

a desirable robustness to the heuristic hydrodynamic model which 

was also confirmed by experimental results; Leite et al., 1997. 



Time-Domain Simulations 
The dynamic system (1) was solved using a 5th-order Runge-

Kutta integration scheme, with the following set of state 

variables: (u,v,r,x,y,) Some time-domain simulations results, 

obtained according  the two distinct hydrodynamic models, are 

presented in the figures below for different values of the 

bifurcation parameter a. The main goal of this analysis is to 

exemplify the discrepancies that may arise between the HD and 

the HM models. Initial conditions are taken the same for both 

models. 

Figure 6 shows a stable equilibrium case around =0. Notice 

that for the HM model this equilibrium is not asymptotically 

stable, eventhough the remaining oscillation is rather small. This 

can be easily explained. In fact as in equilibrium conditions; see, 

e.g., Papoulias & Bernitsas, 1988, 


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sin
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Uvv

Uuu

−==

==
      (19), 

the hydrodynamic damping is exactly null at =0, in the present 

HM model, as can be seen from Eq. (9). It turns out that a linear 

term in r should then be incorporated, otherwise a small 

oscillation will last. Figs 7, 8 and 9 present some post-critical 

cases, concerning bifurcation of equilibrium. The discrepancies 

are really high. The heuristic hydrodynamic model (HM) leads 

always to asymptotically stable solutions, the time domain 

simulation recovering the equilibrium values analytically 

determined from Eq. (17). 

For the HD model, however, the asymptotically stable 

regime is reached only in the situation shown in figure 7, when 

the condition 
2U  is satisfied and Eq. (14) has real roots. 

Otherwise, as shown in Figs 8 and 9, the super-critical bifurcation 

scenario is broken, leading to a completely different one. A stable 

solution emerges (though not asymptotically), with an 

autonomous oscillation (limit cycle) taking place around =. In 

other words, a subcritical pitchfork bifurcation holds in these last 

two cases, =  being the new fixed point for the third-order 

hydrodynamic derivatives model. A pertinent question could be 

risen, however: are the hydrodynamic derivatives, experimentally 

evaluated, valid for all range of yaw angles? The answer is, 

probably, no.  

Besides experimentally verified in a wide range values of the 

bifurcation parameter a/L, Leite et al, 1997, the HM sounds much 

more robust, since their coefficients depend solely upon 

geometrical parameters, with very accurate values, post-critical 

behavior being dominated by bi-linear terms. 

Obviously, bi-linear terms could be added to the standard 

hydrodynamic derivatives model, as Takashina’s for instance. But 

then, what’s the point of doing that, since this adding would be 

totally heuristic as well, the coefficients still being determined 

experimentally? 
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Figure 6 Yaw Angle for a/L=0.45. Initial Conditions: u=U; 

v,r,x,y=0;  =2o 
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Figure 7 Yaw Angle for a/L=0.35. Initial Conditions: u=U; 

v,r,x,y=0;  =2o 
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Figure 8 Yaw Angle for a/L=0.25. Initial Conditions: u=U; 

v,r,x,y=0;  =2o 
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Figure 9 Yaw Angle for a/L=0.20. Initial Conditions: u=U; 

v,r,x,y=0;  =2o 

(•••): analytical value of   for the third-order hydrodynamic 

derivatives model; 

(◼◼◼): analytical value of   for the heuristic model.   

CONCLUSIONS 

The present paper extended the static heuristic 

hydrodynamic model (HM), proposed by Leite et al, 1997,  to the 

dynamic problem, recovering some important results concerning 

stability and bifurcation analysis, and presenting some examples 

of time domain simulations, for a typical tanker, with 

comparisons with a classical third-order hydrodynamic 

derivatives model. The main goal of this analysis is to exemplify 

the discrepancies that may arise between these two models. 

If a classical third-order hydrodynamic derivative model is 

used, the bifurcation parameter, the position of the turret, can be 

responsible for a loss of structural stability of the system, 

switching bifurcation scenarios (Pesce & Tannuri, 1997), whose 

type is controlled primarily by the ‘hydrodynamic derivatives’ 

coefficients. The sign of the third partial derivative of the yaw 

moment with respect to the lateral velocity, for instance, governs 

the type of bifurcation scenario that would appear. Nevertheless, 

this important coefficient is rather small, the experimental 

accuracy being usually poor, given rise even to changes in sign, 

depending on the analysis method that is used, as observed by 

Leite et al, 1997. The classical third-order hydrodynamic 

derivative model exhibits a square-root behavior in the vicinity of 

the bifurcation point. 

On the other hand, Leite et al, 1997, have shown that, in the 

heuristic hydrodynamic model, the post-critical behavior of the 

super-critical pitchfork bifurcation scenario is dominated by a bi-

linear term in the relative velocities, being locally linear (in the 

vicinity of the bifurcation point), with respect to the bifurcation 

parameter, namely, the position of mooring line attachment. So, 

not only  distinct qualitative behaviors but also quantitative 

discrepancies are expected, between these two hydrodynamic 

models. 

Obviously, bi-linear terms could be added to the standard 

HD model, as Takashina’s for instance. But, being  

experimentally verified for a class of tankers, in a wide range 

values of the bifurcation parameter a/L (Leite et al, 1997), the 

HM sounds much more simple and robust. In fact, besides being 

of a phenomenological nature the heuristic hydrodynamic model 

exhibits a special virtue: the hydrodynamic coefficients are 

promptly evaluated from the main geometrical characteristics of 

the hull, that are accurately known. 
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