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In deep water oil production, Dynamic positioning systems (DPS) strategy has shown to
be an effective alternative to tugboats, in order to control the position of the shuttle
tanker during offloading operations from a FPSO (floating production, storage, and
offloading system). DPS reduces time, cost, and risks. Commercial DPS systems are
usually based on control algorithms which associate Kalman filtering techniques with
proportional-derivative (PD) or optimal linear quadratic (LQ) controllers. Since those
algorithms are, in general, based on constant gain controllers, performance degradation
may be encountered in some situations, as those related to mass variation during the
loading operation of the shuttle tanker. The positioning performance of the shuttle
changes significantly, as the displacement of the vessel increases by a factor of three. The
control parameters are adjusted for one specific draught, making the controller perfor-
mance to vary. In order to avoid such variability, a human-based periodic adjustment
procedure might be cogitated. Instead and much safer, the present work addresses the
problem of designing an invariant-performance control algorithm through the use of a
robust model-reference adaptive scheme, cascaded with a Kalman filter. Such a strategy
has the advantage of preserving the simple structure of the usual PD and LQ controllers,
the adaptive algorithm itself being responsible for the on-line correction of the controller
gains, thus insuring a steady performance during the whole operation. As the standard
formulation of adaptive controllers does not guarantee robustness regarding modeling
errors, an extra term was included in the controller to cope with strong environmental
disturbances that could affect the overall performance. The controller was developed and
tested in a complete mathematical simulator, considering a shuttle tanker operating in
Brazilian waters subjected to waves, wind and current. The proposed strategy is shown to
be rather practical and effective, compared with the performance of constant gain

controllers. [DOI: 10.1115/1.2199559]
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Introduction

Dynamic positioning systems (DPS) are defined as a set of
components used to keep a floating vessel on a specific position or
pre-defined path through the action of propellers. DPS include
position and heading measurement systems, a set of control algo-
rithms, and propellers. Several offshore operations are carried out
using DPS, such as drilling, pipe-laying, offloading, and diving
support.

The environmental forces acting on a floating vessel are com-
plex and induce at least two distinct kinds of motions. Sea waves
consist of a large number of oscillatory components, with several
directions, amplitudes and phases. The resulting energy spectrum
has a peak value between 0.3 and 1.3 rad/s. Wind-generated
waves give rise to large first-order, wave-frequency oscillatory
forces, and moments on the vessel. Additionally, environmental
loads include slowly varying disturbances caused by wind, current
and wave drift forces, which induce low-frequency oscillations,
and steady motions on vessels. DPS must suppress or control the
low frequency motions, keeping the mean position of the vessel as
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close as possible to the desired point or track. Wave frequency
motions, however, are difficult to be handled by the control sys-
tem, since they would require an enormous amount of power to be
attenuated, leading to extra fuel consumption and increased rate of
propellers wear-out, due to thruster modulation (high frequency
oscillations in propellers).

Therefore, a sophisticated filtering algorithm must be included
in the control loop. The purpose of the wave filter is to separate
the wave frequency oscillatory wave induced motion from the
motion caused by slowly varying disturbances. Feedback control
action must be implemented using the filtered low-frequency ves-
sel motion, enabling thruster modulation and all related problems
to be avoided.

Commercial DP systems apply observer based techniques, such
as Kalman filtering. One of the main characteristics of Kalman
filter is the use of available information regarding the dynamical
behavior of the process. The vessel motion due to slow distur-
bances and due to wave action is modeled. The motion informa-
tion (predicted by the filter model) is combined with available
observations and an optimum state estimator is then constructed.
The vessel motion is regarded as the sum of two linearly indepen-
dent response functions. A low-frequency (LF) model yields mo-
tions due to maneuvering forces and environmental forces due to
wind, current and wave drift, and a wave-frequency (WF) model
yields vessel response due to waves. The idea of separating the
filter model into a low and a wave frequency model was originally
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suggested Balchen et al. [1]. Since the model of vessel LF dynam-
ics presents geometrical nonlinearities, the extended Kalman filter
(EKF) technique should be used. Furthermore, the WF model de-
pends on an unknown parameter, related to wave frequency. Such
parameter is included in the EKF formulation as another state,
whose numeric value is continually estimated.

The control algorithm itself calculates thrust forces and moment
based on low-frequency motion estimates. Modern commercial
systems still employ simple PD algorithms. The integral action is
given by the direct compensation of environmental forces, which
are also estimated by the Kalman filter, as will be shown in the
next section.

The robustness and simplicity of PD controller are the main
reasons for its extensive utilization. Furthermore, it meets the per-
formance requirements of a great deal of DP ships. The control
parameter tuning procedure is normally carried out during the
DPS installation, and sometimes call for execution of some ma-
neuvers in order to assess the ship overall dynamics and maneu-
verability.

However, during harsh environmental conditions, the control
system may display a poor performance, since the PD parameters
are usually adjusted under a calm sea state, as described by Bray
[2]. Furthermore, in some offshore operations, oil is transferred
from one moored FPSO or platform into a DPS shuttle tanker.
This operation lasts up to 24 h, and the displacement of the tanker
may be increased by a factor of four, altering its dynamic proper-
ties. In this case, a constant gain controller is hardly the best
approach, given the fact it would require full attention on the part
of the tanker operator, who would have to perform manual cor-
rections in the positioning of the tanker, in order to avoid danger-
ous approximations.

Therefore, fixed-gain PD controller could be inadequate for
vessels that must operate under a wide “environmental window”
or for ships that present significant displacement variation during
the operation. Such and other reasons led the researchers to apply
different control methodologies to the DPS. All initiatives feature
advantages compared to the constant gain PD, demonstrated by
means of experiments or simulations. However, the research com-
munity has not been able to convince operators and manufactur-
ers, who still rely on PD controller. Some examples of such novel
controllers may be found in [3-5].

In the present paper, the problems associated to the PD control-
ler are solved by means of a robust model-reference adaptive con-
troller. It is shown that the overall structure of the PD controller is
still preserved, and that the adaptive algorithm is responsible for
the on-line, real-time, correction of control gains. With the present
solution, the authors try to address the problem while keeping the
simplicity of the PD controller, which is one of the main reasons
of its widespread utilization.

The controller is developed and tested in a complete numerical
simulator of a shuttle tanker, similar to the vessels operating in
Brazilian waters.

System Modeling

The following dynamic model governs the low-frequency hori-
zontal motions of a vessel:

(M + M )i, = (M + Mayp)ipig — Magig + Cy i = Fip+ Fip
(M + M)ié; + Mogiig + (M + M )X X6 + Copdy = Fop+ For (1)

(I + Mgg)is + Mogis + Mogk X6 + Cegle = For + For

where I, is the moment of inertia about the vertical axis; M is the
vessel total mass, C;; are damping coefficients, M;; are added
mass matrix terms, Fg, Fop, Fgp are surge, sway, and yaw envi-
ronmental loads (current, wind, and waves) and Fr, F,r, Fer are
forces and moment delivered by the propulsion system. The vari-
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ables Xy, x, are the absolute' surge and sway velocities of a central
point at midship and x¢ is the yaw absolute rate of rotation (Fig.
1), all expressed in the ship’s moving reference frame.

Current induced forces are determined via a heuristic model
based on a low aspect ratio wing theory with experimental vali-
dation [6]. Wind forces are calculated employing coefficients sug-
gested by OCIMF [7] and wind gusts are also considered. Wave
drift forces are evaluated using the hull drift-coefficients worked
out by means of a standard second-order potential flow analysis
performed by a computer software (Wamit). The interaction be-
tween current and waves (wave-drift damping) is also taken into
account [8].

Wave-frequency (first-order) motions are evaluated by means of
transfer functions related to the wave height, said functions are
known as response amplitude operators (RAQOs), and are obtained
via numerical methods modeling the potential flow around the
hull. Such an approach is grounded on the assumption of linear
response of wave-frequency motions and on the uncoupling be-
tween wave-frequency and low-frequency motions.

Actual sea waves are described by a power spectrum S(w) of
the free-surface height. The power spectrum of the ship motion i
(P;;) is then evaluated by the usual relation

Pi(w) =RAO{(w, ). S(w) (2)

where B is the wave incidence angle relative to the ship. The
wave-frequency motion of the ship is then obtained through a
time-serie realization of the power spectrum function P;;.

Extended Kalman Filter Design

As already mentioned, the extended Kalman filter (EKF) tech-
nique is broadly used in commercial DPS to perform the tasks of
state observation, filtration and others. It must be emphasized,
however, that the EKF technique presents several drawbacks.
There is a large number of tuning parameters and requires a time-
consuming tuning procedure. Furthermore, it requires the use of a
gain-scheduling technique, since the model is linearized about ap-
proximately 36 yaw angles. As an alternative to the EKF ap-
proach, a novel nonlinear observer was recently proposed by Fos-
sen and Strand [9] with excellent results in both simulations and
sea-trials. Such observer does not present the problems of EKF,
and is based on passivity theory. Nowadays developments indicate
that the observer proposed in [9] will soon replace the traditional
EKF in modern commercial DPS. However, since the purpose of
the present paper is to analyze the controller algorithm, and not
the observer itself, the traditional EKF approach will still be
adopted.

The extended Kalman filter (EKF) applied to DPS is based on
simplified models for LF and WF motions of the vessel. The ap-

'With respect to a reference frame fixed to the Earth, Coriolis effects being ne-
glected.
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plication was first proposed in [1], with further improvements,
results and discussions presented in [10-13]. In the present section
such formulation will be briefly adressed.

Under low-speed assumption, the LF motion equation (1) can
be simplified, disregarding Coriolis and other second order terms.
Therefore, being X and Y the position of the central point of the
vessel and ¢ the (slowly varying) heading angle, the LF dynam-
ics can be described by:

. X X X X
X, =AY, + A+ ES 0w, + BOF,

. 0 T(y1)
with A(L’><6 = ( 7 4 - ;
053 —M " Ds3y5

3)

0
Aty |

cos(¢fy) —sin(yy) 0
sin(;)  cos(yfy) O
0 0 1

In Eq. (3), xp=(X, Y, ¢y %, %, %)T, Fp contains thrusters
forces and moment vector, Fg contains low-frequency environ-
mental forces and moment vector, M is the mass matrix of vessel,
and D is a damping matrix. The subscript L stands for low-
frequency motion. @; is a 3X1 vector containing zero-mean
Gaussian white-noise processes with covariance matrix Q; (e,
NN(OsQL))

The forces Ff are slowly varying unknown variables, and can
be modeled by:

T(’ﬁz,) =

Fr=wp 4)

where wp; is a 3 X 1 vector containing zero-mean Gaussian white-
noise processes with covariance matrix Qg (wp; ~N(0,Qpfy)).
Finally WF motions can be modeled by [14]:

- X X
Xy = A?] 6XH + E?_] 3(0[.]

JooE (M) o

I3><3

| EE
- w(2)13x3 = 2{wgl3x3

where XHz(fz)XHdT f(tr)YHdT fé)l/IHdTXH YH lpH)T, Wy is a 3X1
vector containing zero-mean Gaussian white-noise processes
(wy~N(0,Qp)) and H is used since wave motion are mainly
composed by high-frequency components. The parameter { is the
nondimensional damping ratio of the motions, and was set as 0.1.

The parameter w represents the peak frequency of the motion
power spectrum, which is close together to the peak frequency of
the wave spectrum. Such parameter undergoes on-line estimation,
since its numerical value is unknown and the environmental con-
ditions may vary during the operation. It is a common practice in
commercial DPS to introduce such parameter as a new state in the
Kalman filter model. Being a slowly varying parameter, its dy-
namics is given by:

0
with Ag“:( e

d)o =w, (6)

where w,, is a zero-mean Gaussian white-noise process (w,
~N(0,0,))-
The measured signals z are given by:
X+ Xpy+vy
z=|Y, +Yy+vy (7)
Y+ dg+uy,
where v is a 3X 1 vector containing zero-mean, Gaussian white
noise processes (v~N(0,R)).

For the sake of simplicity, the matrixes Q;, Qg, Qf;, and R are
considered diagonal in real applications.
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It should be emphasized that the EKF estimates the components
xy and x; and also low-frequency environmental forces Fp.
The complete model can be written as:

x=A(x).x+BF;+Ew

z=Hx+v (8)
with:
XL i BO3
Xy ®n 6L><3
X = W= ;:B=|0 ;
Fpr mF.’:L 03
w w,
A?X6(X) 06><6 Angﬁ 06><l
A(X) _ 06><6 AGXG(X) 06><3 06)(1 .
= o ;
04><6 04><6 04><3 04><l

X
Ei 3 06><3 06><4

6X3
E= 06><3 E[—[X 06><4
4x4

-H= (I3><3 03><3 03><3 I3><3 03><4)

04><3 04><3

The following discrete version of Eq. (8) is used in the ex-
tended Kalman filter algorithm, being Af the sampling time:

x[k]=f(x[k—1],Fg[k—1],w[k-1])
z[k]=H . x[k] + v[k] 9)

f(,.,.)=(A(X).At+1) . x[k—1]+B . Ar. Fylk—1]
+E.Ar. w[k-1]

Being X and X the a priori and the a posteriori estimates of the
state vector, X the error matrix covariance, and K the Kalman
gain matrix, the discrete EKF is given by [15]:

Prediction

X[k + 1] =f(X[k],F[£],0)

X[k+1]=® . X[k]. ®"+T.Q.TI7

o, 0 0 O
‘ 0 9y 0 O
with & = ﬁf/o'?x\x:;([k]; I'=E.Arand Q=
0 0 0y 0
o o0 o0 9,
(10a)

Correction
K[k]=X[k].H".(H.X[k] . H +R)™!

x[k] =x[k]+ K[k] . (z[k] - H . x[k]) (10b)

X[k]=(I-K[k]. H) . X[«]

Figure 2 presents a block diagram featuring the EKF and the
controller, which will be analyzed in the next section. It must be
recalled that DP systems usually contain a feed forward loop to
compensate for wind effects. Wind speed and direction are mea-
sured by anemometers, and the forces are evaluated using the
wind coefficients of the ship. Such forces are directly compen-
sated by the controller and counteracted before causing a position-
ing error. These estimates are also used by the Kalman filter,
which must subtract them from the total thrust forces, resulting in
the parcel of thrust responsible for current and wave compensa-
tion.
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Fig. 2 Kalman filter and controller block diagram

Robust Model-Reference Adaptive Control

The Model-Reference Adaptive Control Algorithm. Adap-
tive control laws operating on the model-reference concept are
usually designed in such way that the plant under consideration
should display a dynamic behavior that matches that of a dynamic
system known as reference model. Hence the name model-
reference adaptive controller (MRAC) with which said control
algorithm was coined.

The concept of MRAC was firstly proposed in [16], and several
applications and improvements were developed since then (for,
e.g., [17-19]). Here, though, we shall present an abridged version
of MRAC that suits the problem at hand, while retaining the origi-
nal structure originally proposed. For simplicity, we will restrict
ourselves to presenting the derivation of the controller for just
one-degree of freedom. The complete design actually considers
three independent controllers, one for each degree of freedom.

Equation (11) represents the dynamic behavior exhibited by the
reference model:

Mm.).im+Bmym+Kmym=uc(t) (11)
The plant dynamics is given in Eq. (12):
My + By = u(r) (12)
We shall now introduce z(1):
2(1) =¥, = Bré = Boe (13)

where e=y—y,,. It follows from this definition that e is expected
to converge asymptotically to zero (the plant should match the
reference model). Now, let us define the vector v=[z(¢)y]” and the
vector of estimated parameters 4(t)=[d,d;]”. We have then laid
the basis to define the control law, which is given by:

(14)

At this point, all that is left is to evaluate the law for the adap-
tation mechanism. The error (e=y-y,,) dynamics can be written
as:

u(t) = d,z(1) + d,y
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é+ PBié+ Boe=(11ax)vT (1) .a(r) (15)

where 8, and B, are positive constants such that s>+ 8,5+ 8, is a
stable (Hurwitz) polynomial and a(r)=a(z)—a(z). Equation (15)
can be rewritten in the state-space form as:

x=Ax +b[(1/a,)v"a]

wa-( e o=l (0)
with A = ;b= yx=\| .
-Bo —Bi 1 e

Introducing the matrices I', P, and Qc, being I' and P symmet-
ric positive definite constant matrices, PA +ATP=—QC, QC=Q£,
with det(Q,) > 0. The adaptation law is then given by:

(16)

(G, 4)"=-T.v.b".P.x (17)

It is possible to show the convergence of x using Barbalat’s
Lemma. Therefore, with the adaptive controller defined by both
the adaptation and the control law, x converges to zero. The con-
dition for parameter convergence can be shown to be the persis-
tent excitation of the vector v.

Using By=K,,/M,, and B,=B,,/M,, the polynomial s+ 3}
+ By will clearly represent a stable system. Substituting Eq. (14)
into Eq. (12), the following closed-loop dynamics is obtained:

M7y + By = dyz(t) + 4,y (18)
Using Egs. (11) and (13), Eq. (18) can be written as:
o ue(D) . .
My +By=a, v; =By —Boy | +ay
(19)
M * Mm . 'Mm A A . A
—V+ ——(B+dB,—d,)y +dBpy = ut)
25} a

Since the tracking error converges to zero, Eq. (19) converges
to the reference model Eq. (11), which is only made possible if
dz-’M and d1—>B

The analogy between a PD controller and the previously de-
rived MRAC is obtained by means of Eq. (14), that can also be
written as:
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Fig. 3 (Up) Offloading operation; (down) picture of shuttle
tanker in ballasted condition

u(t) ==a,B,é +a,y — a,Bpe + dryy,
where the first and second terms are responsible for the derivative
action and the third term gives the proportional action. For the
surge motion, in which the damping factor B is extremely small
(B<B,,), the equivalent constant P and D gains are given by:

A Ky A By
P=- =—M.—; D=- =-M.— 20
aB M, aP M, (20)

The Robust Model-Reference Adaptive Control Algorithm.
In the early 80s, relatively simple examples were employed to
show that adaptive schemes designed to perform under
disturbance-free conditions could actually become unstable,
should external disturbances be added to the system. Such ex-
amples led engineers back then to claim that current adaptive
schemes failed to display robust properties relative to external
disturbances.

Those conclusions spawned a wave of research efforts to “ro-
bustify” the existing algorithms, so that external disturbances
could be rejected.

In the dynamic positioning scenario, environmental loads are
viewed as external disturbances by the control system. We shall
now modify the control law in (14) by adding an extra term. The
resulting control law will then feature robust properties relative to
the presence of environmental forces.

The modified control law is given by [20,21]:

u(®)=v"(t) . a(t) = R . sat(e)
(21)

e lel<¢
b lel>¢
¢ being the thickness of the boundary layer. The gain R is such
that |d(¢)|<R, that is, the upper bound of the disturbance
magnitude.

The control law in (21) can be shown to be globally stable, in
the sense of boundness. Furthermore, it can be shown that e(r)
will converge to zero [20].

where sat(e) = {

Case Study

The controller was implemented in a numerical simulator, con-
sidering a real shuttle vessel operating in Brazilian waters during
an offloading operation (Fig. 3). The main properties of the tanker
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Table 1 Tanker main properties

Property Full load condition Ballasted condition
Length (L) 260 m
Beam (B) 44.5 m
Draft (T) 16.1 m 6.4m
Mass 156,310 ton 58,783 ton
Yaw Inertia 6.6 10% ton.m? 2.5X 10% ton.m?
Added Mass (M, ;)" 8,510 ton 1,560 ton
Added Mass (M,,)* 142,000 ton 24,100 ton

Added Mass (Mgg)* 9.7 X 10® ton.m? 0.9 X 10® ton.m?

“Low frequency

in both, ballasted and loaded conditions are presented in Table 1.

The simulation reproduces the first 5 h out of a 12 h long op-
eration, throughout which the tanks of the ballasted ship are
loaded up with oil getting transferred in from the FPSO. The
shuttle tanker is kept lined up with the FPSO, at a distance of
approximately 100 m. Therefore, position and heading control is
critical, due to the risk of collision as well as hose rupture. So, the
FPSO position must be monitored and, in case of large amplitude
motions, the DPS must relocate the shuttle, which must be kept at
a safe distance away from the FPSO. In order to assess the con-
troller performance, corrections of 20 m every 30 min in surge,
10 m every 20 min in sway and 20 deg every 33 min in yaw, were
considered. The simulation attempts to reproduce the actual con-
trol strategy employed in commercial DPS set up in shuttle ves-
sels. As a fuel-saving procedure, the shuttle tanker does not follow
all motions of the FPSO, being relocated only when the FPSO
displays a pronounced displacement [22]. Figure 4 shows the en-

Surge Set-Point (m)

% : ; . ; ;
0 02 04 06 08 1 12 14 16 18 2
Sway «Set-Poirt (n) x10°

25 . . . . . . .

20t

15}

10} 1
st |
0

0 02 04 06 08 1 12 14 16 18 2
s

Yaw SetPoint (degrees) x10
T T T

0 02 04 068 08 1 12 14 16 138 2
Time () +

—/ —
1,0rafs Current

Shuttle Tanker

2,0mheight,
106 perbd Wave

(60%)

FPSO

8 Orais Wind
(1007)

Fig. 4 (Up) Set-points; (down) environmental conditions
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Surge Tracking Emor{m) vs Time(s)
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Fig. 5 Actual positions and heading compared to reference
model (subscript,,) outputs

vironmental conditions and set-points considered in the simula-
tions.
Main control and filter parameters are given by:

Q =diag(4 X 1094 x 10194 x 10 3.4 3.4 0.023 X 10'°3
X 1003 x 10™ 5 x 107)

R = diag(1 1 3 X 107
I',=diag(22 X 10° 5 X 10°) Qcx=Lyy X 6.5 X 1076
', =diag(3.8 X 10° 1.6 X 107); Qcy=Iyxy X 7.5 X 107

I, =diag(3.9 X 10 4.4 X 10°) Qc, =Ly, X 6.5 X 107

Figure 5 shows the simulation results, considering the adaptive
control. The reference model is made up of three uncoupled and
critically damped second-order systems, with natural periods of
200 s for surge, 400 s for sway, and 600 s for yaw motion. The
reference-model is tracked with good accuracy, despite the dis-
placement variation, with virtually no performance loss. After a
short transient, the tracking error e=y-y,, is reduced to values
smaller than 2.5 m for surge, 5 m for sway and 3 deg for yaw, as
it is shown in Fig. 6. Figure 7 presents control forces and moment,
the magnitudes of which show the tendency to escalate as the
simulation goes on, due to the increase of mass and due to damp-
ing, wave, and current forces.

The adaptive controller estimation for the mass matrixes is
shown in Fig. 8. The differences between actual values and pre-
dicted ones are actually bounded, as predicted by theory.

A paramount condition for a convergent parameter estimation
in adaptive controllers is the presence of a persistent excitation.
Observe Fig. 8 and notice that in the sway direction, the estima-
tion process performs quite well indeed, while in the surge
direction—where the environmental loads are a lot less pro-
nounced as far as their magnitude are concerned—the mass esti-
mation process follows a very similar trend to that of the actual
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Fig. 6 Tracking errors e=y-yp,

vessel mass, only it is shifted downwards. The increase in the
estimated mass over time mirrors what goes on as the offloading
operation is carried out, namely the shuttle tanker undergoes an
increase in its inertia.

The constant-gain PD controller was also applied to the prob-
lem. The simulation result is presented in Fig. 9. The performance
loss during the offloading operation becomes evident, as the ship’s

x 10° Surge Control Force(N) vs Time(s)
2 T T T T T T T T T
L " ]
Lok 1 | )
jui HFT ' i ¥ J i Y f i | f 1{mr
T
-2

jui 0.2 04 06 08 1 1.2 14 1.6 18 2
w10° Sway Control Force(N) s Time(s)

0 wuxw\mmhwﬂwMMNWMM»WWﬁ\[ymnﬂ%‘wq\ww’“ﬂm‘wl‘“‘\}r”“[

s 4

EQU U.‘Q UTAI UTB DTB % 1*2 1T4 1?6 1?8 2
4 x 10 Yaw Control Moment (N.m)vs Time(s) w10
2t \J 1
21 J
4 1 L L " . : 1 L L

jui 0.2 04 06 08 1 1.2 14 16 18 2
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Fig. 7 Control forces and moment
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Fig. 8 Surge, sway, and yaw, mass matrix estimation

mass and main dynamic properties undergo a substantial variation.
Since the P and D parameters of the controller were evaluated by
Eq. (20) considering the ballasted mass of the ship, the perfor-
mance of the controller is better in the beginning of the operation,

Surge Displacement(m) vs Time(s)
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Fig. 9 Actual positions and heading and set-tracks
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Fig. 10 Root-locus for sway and surge motions, considering
the variation of mass during offloading operation

getting worse as the inertia increases. The overshoot of the closed
loop response increases, what may cause dangerous approxima-
tion between the ships.

A simple analysis shows that a constant-gain controller may
lead to oscillatory behavior as the mass increases. In fact, disre-
garding the coupling between sway and yaw, the following equa-
tion represents the closed-loop transfer function of each motion:

D;s+P;
(M +M;)s* + (D; + C;)s + P;
where P; and D; are the proportional and derivative gains of the

controller in the direction i (i=1, 2, or 6). The correspondent
damping (¢;) and natural frequency (w,;) are given by:

(22)
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As expected, for an increasing mass, the damping coefficient
decreases, and the closed loop system is equivalent to a sub-
critically damped oscillator. Furthermore, the natural frequency of
the oscillator also decreases. Figure 10 presents the root-locus of
sway and surge closed-loop dynamics. In the beginning of the
operation, the surge equivalent damping factor, for example, is
approximately 0.74, and decreases to 0.45 in the final phase of the
operation. That would explain the rather pronounced oscillatory
behavior observed during the simulation (Fig. 9), which only goes
to show one of the drawbacks of applying a constant gain control-
ler to the present operation

As an additional test, in order to evaluate MRAC performance
with a nonpersistent excitation, a different simulation was carried
out. During the first 10,000, the ship position and heading is kept
constant. The corrections in the set-point are initiated at this in-
stant. Figure 11 shows that the performance of the system is good,
with a small tracking error for the three degrees of freedom. Of
course, the mass (inertia) estimation is affected by the nonpersis-
tent excitation in the first part of the operation, as shown in Fig.
12 for surge total mass. However, the parameter error is bounded,
and does not affect the overall tracking performance.

Conclusions

This work presented the application of a robust model-reference
adaptive control technique to DPSs, cascaded with the commonly
used extended Kalman filter. The controller was applied to a dy-
namic positioned shuttle tanker subjected to waves and current,
during the offloading operation. The simulation results showed
that a good performance is kept during all the operation, despite
the significant variations in dynamic properties of the vessel aris-
ing from the oil transfer process. If a persistent excitation is
present, the adaptive algorithm was able to estimate the mass of
the vessel with a good accuracy. However, even without such
excitation, the adaptive law was able to adjust the controller cor-
rectly, keeping a good tracking performance in spite of a poor
parameter estimation.

For the sake of comparison, a fixed-gain PD controller was also
applied, and it was shown that such controller is not able to cope
with substantial variations in dynamic properties of the vessel,
consequently, a loss in performance was observed as the offload-
ing operation proceeded.

Based on a wide range of numerical simulation results, all it
could be observed, up to this point, is that the cascaded system
made up of a Kalman filter and Robust MRAC has never shown
any evidence whatsoever of what could go under the heading of
unstable behavior. The KF equations are based on the assumption
of a linearized ship model, therefore, the KF algorithm can be
shown to be locally stable as long as the linear assumption holds.
As for the R-MRAC, [20] shows that the proposed algorithm is
actually globally assimptotically stable (GAS). When we, then,
proceed to set up the R-MRAC with the KF equations, the result-
ing cascaded system must be analyzed. In fact, the lingering ques-
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tion “Do we have global stability for the resulting cascaded sys-
tem?” has steered a new research effort on our part whose main
purpose boils down to providing a formal mathematical proof to
show that the resulting cascaded system would be actually glo-
bally stable. For example, Loria et al. [23] presented a separation
principle for dynamic positioning of ships which can be applied to
a cascaded observer-controller system. Such reference, among
others, will be used as a starting point of the stability analysis we
shall be conducting further.
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