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Adaptive Techniques Applied to 
Offshore Dynamic Positioning 
Systems 
Dynamic positioning systems (DPS) comprise the deployment of active propulsion to 
maintain the position and heading of a vessel. Several sensors are used to measure the 
actual position of the floating body, while a control algorithm is responsible for the 
calculation of forces to be delivered by each propeller, in order to counteract all 
environmental forces, such as wind, waves and current loads. The controller cannot 
directly compensate motions in the sea waves frequency range, since they would require 
an enormous amount of power to be attenuated, possibly causing damage to the propeller 
system. That is the reason why a filtering algorithm is to be put in place to separate high-
frequency components from the low-frequency ones, which are, then, fed into the control 
loop. Usual commercial systems apply Kalman filtering technique to perform such task, 
due to the smaller phase-lag introduced in the control loop compared to conventional low-
pass filters. The Kalman filter draws on a model of the system to be controlled, which, in 
turn, depends on an unknown parameter, related to the wave frequency. Adaptive filtering 
is called upon with a view to perform an on-line estimation of such parameter. Most 
control algorithms, however, rely on fixed gains, thus making it possible for a noticeable 
performance degradation to take place in some situations, as those associated to mass 
variation during a loading operation. This paper presents the application of model-
reference adaptive control (MRAC) technique to DPS’s, cascaded with the commonly used 
adaptive Kalman filter. The model of a dynamically-positioned shuttle tanker exposed to 
waves and current is employed to highlight the advantages of the adaptive controller 
compared to commonplace fixed-gain controllers. 
Keywords: Adaptive control, dynamic positioning system, Kalman filter 
 
 
 

Introduction 

Dynamic Positioning Systems (DPS) are defined as a set of 
components used to keep a floating vessel on a specific position or 
on a desired path through the action of propellers. DPS includes 
position and heading measurement systems, a set of control 
algorithms and propellers. Several offshore operations are carried 
out using DPS, such as drilling a sub sea petroleum well, underwater 
pipe-laying, offloading and diving support.1 

The environmental forces acting on a floating vessel are 
complex, and induce at least two distinct kinds of motions. Sea 
waves consist of a large number of oscillatory components, with 
several directions, amplitudes and phases. The resulting energy 
spectrum has a peak value between 0.3rad/s and 1.3rad/s. Wind-
generated waves give rise to large oscillatory forces and moments 
on a vessel, inducing high-frequency motions (in the same 
frequency range of waves). Additionally, environmental loads 
include slowly-varying disturbances caused by wind, current and 
wave-drift forces, which induce low-frequency oscillations and 
steady motions on vessels. DPS must suppress the low-frequency 
motions, keeping the mean position of the vessel as close as possible 
to the desired point. High-frequency motions, however, are difficult 
to be handled by the control system, since they would require an 
enormous amount of power to be attenuated, leading to extra fuel-
consumption and increased rate of propellers wear-out, due to 
thruster modulation (high frequency oscillations in propellers). 

Therefore, a sophisticated filtering algorithm must be included 
in the control loop. The purpose of the wave filter is to separate the 
high-frequency oscillatory wave induced motion from the motion 
caused by slowly varying disturbances. Feedback control action 
must be implemented using the filtered low-frequency vessel 
dynamics, enabling thruster modulation and all related problems to 
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be avoided. Of course, the introduction of a wave filter in the 
control loop leads to increased phase-shift (time lag) and to a lower 
stiffness (reaction to variations in input variables and disturbances). 
So, a good filter is the one that keeps the modulation below tolerable 
limits while retaining maximum system stiffness. Earlier DPS used 
conventional Butterworth low-pass wave filters or notch filters, 
which could be easily implemented in analog circuits (Fossen, 
1994). However, the main disadvantage of such filters is the 
introduction of additional phase-lag, causing poor performance, 
increased oscillations and, sometimes, instability in closed-loop 
response.  

An alternative to conventional filtering is to apply observer-
based techniques, such as Kalman filtering. One of the main 
characteristics of Kalman filter is the use of available information 
regarding the dynamical behavior of the process. The vessel motion 
due to slow disturbances and due to wave action is modeled. The 
motion information (predicted by the filter model) is combined with 
available observations, and an optimum state estimator is then 
constructed. The vessel motion is regarded as the sum of two 
linearly-independent response functions. A low frequency model 
yields motions due to maneuvering forces and environmental forces 
due to wind, current and wave drift, and a high-frequency model 
yields vessel response due to waves. The idea of separating the filter 
model into a low and a high-frequency model was originally 
suggested by Balchen et al. (1976).  

Kalman filter draws on a model of the system, which depends 
on an unknown parameter, related to wave frequency. A biased 
estimation of wave spectrum peak frequency may degrade the 
performance of the filtering, affecting the overall behavior of the 
controller. Several frequency tracking algorithms have then been 
applied to such a problem, including variations on Recursive 
Prediction Error Method (RPEM) and Recursive Least Square 
(RLS) Estimation (Saelid et al., 1983, Balchen et al., 1980). These 
algorithms perform on-line frequency estimation and update the 
Kalman filter model. Such “adaptive filtering” approach has been 
extensively used in commercial DPS, as shown in Bray (1998) and 
(Kongsberg Simrad, 1999).  
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The control algorithm itself calculates thrust forces and moment 
based on low-frequency motion. Modern commercial systems still 
employ simple PD algorithms. The integral action is accounted for 
thanks to the direct compensation of environmental forces, which 
are also estimated by the Kalman filter, as will be shown in the next 
section. A simplified block diagram of a DP System is presented in 
Fig.1.  

 

 
Figure 1. DP System block diagram. 

 
The robustness and simplicity of PD controller are the main 

reasons for its widespread utilization. Furthermore, it satisfies the 
performance requirements of a great number of DP ships. Tuning of 
the controller gains is normally carried out during the DPS 
installation, and sometimes requires the execution of some 
maneuvers in order to evaluate ship overall dynamics and 
maneuverability (Bray, 1998).    

However, during harsh environmental conditions, the system 
may display loss of performance, since the PD gains were adjusted 
under a calm sea state, as described in Bray (1998). Furthermore, in 
some offshore operations, oil is transferred from one moored FPSO 
or platform to a DPS shuttle tanker. This operation can last as long 
as 24h, and the mass of the tanker may undergo a threefold increase 
in its original value, thus imparting a substantial change in the 
tanker dynamic properties. In this case, a fixed-gain controller 
would hardly prove a fitting approach, since it would require full 
attention on the part of the operator, who, in turn, must perform 
manual corrections in the positioning of the tanker, in order to keep 
said vessel within a safe distance away from the FPSO. 

 Therefore, constant-gain PD controller is not appropriate for 
ships that must operate under a wide “environmental window” or for 
ships undergoing significant mass variation throughout the 
operation. Such and other reasons have led researchers to apply 
different control methodologies to the DPS. All initiatives feature 
advantages when compared to the fixed-gain PD controller, 
demonstrated by means of experiments or simulations. However, the 
academic community was not able to sway operators and 
manufacturers, who still rely on PD controller. Some examples of 
such novel controllers may be found in Katebi et al. (1997), Aarset 
et al. (1998) and Tannuri et al. (2001).  

In the present paper, the problems associated to the PD 
controller are solved by means of a model-reference adaptive 
controller. It is shown that the overall structure of the PD controller 
is still preserved, and the adaptive algorithm is responsible for the 
on-line correction of control gains. With the present solution, the 
authors try to address the problem, while retaining the simplicity of 
the PD controller, which is one of the main reasons for its 
widespread utilization.  

The controller is developed and tested on the ship model for 
only one degree of freedom. Simulations are carried out considering 
a shuttle tanker similar to the vessels operating in Brazilian waters. 

 

Nomenclature 

â =estimated parameters vector 
ã =vector of parameter estimation error 
c = damping in  degree of freedom model, N/m/s or N/rad/s 
C = damping matrix 
D =derivative gain 
e =tracking error 
K = stiffness in  degree of freedom model, N/m or N/rad 
FiE = environmental loads, N or N.m 
FiT = forces and moment by the propulsion system, N or N.m 
FE = vector with environmental loads 
FT = vector with thrusters forces and moment vector 
G =matrix associated with Lyapunov function 
Iz = moment of inertia of the vessel about the vertical axis 
K = Kalman gain matrix 
m = total mass in  degree of freedom model, kg or kg.m2 
M  = vessel mass matrix 
M = vessel mass, kg 
M11 =surge added mass, kg 
M22 =sway added mass, kg 
M66 = yaw added mass, kg.m2 
M26 = sway-yaw added mass, kg.m 
P = estimate of cov(Ψ [k]). 
Pii = power spectrum of ship motion i, m2/rad/s or rad2/rad/s 
PR = proportional gain   
QC = matrix associated with control law gains 
QFL  = covariance matrix of 

L

ω
F

 

QH =covariance matrix of 
H

ω  

QL =covariance matrix of 
L

ω  

R =covariance matrix of  v 
RAOi =Response Amplitude Operator, dimensionless or rad/m 
S = power spectrum of wave surface height, m2/rad/s 
u = control signal 
uc = reference signal 
v = vector of measurement white noises 
V = Lyapunov function 
x  = a priori estimate vector 
x̂  = a posterior estimate vector 

ixɺ  = midship absolute velocities, m/s or rad/s 

xH = vector with high frequency states 
xL = vector with low frequency states, 
X,Y =Position of vessel center point in absolute reference frame, 

m 
x =error state vector 
ym =position of the reference model 
z = vector with measred signals 

Greek Symbols 

β = wave incidence angle related to the ship, rad 
β0,β1 = positive coefficients of a stable (Hurwitz) polynomial 
∆t = sampling time, s 
ε = innovation 
λ  = the forgetting factor 
Γ Γ Γ Γ = = = = matrix associated with control gains 
ω = wave frequency, rad/s 

0ω  = peak frequency of high frequency motion (rad/s) 

FL
ω  = vector of white noises in environmental forces model 

H

ω  = vector of white noises in low frequency model 

L

ω  = vector of white noises in low frequency model 

Ψ = vessel heading, rad 
Ψ  = sensitivity function 
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ζ  = relative damping ratio of high frequency motions 

Subscripts 

1   relative to surge motion 
2   relative to sway motion 
6   relative to yaw motion 
E   relative to environmental agents 
H   relative to high frequency motion 
L   relative to low frequency motion 
M   relative to the reference model 
T   relative to propulsion system 

System Modeling 

The following dynamic model governs the low frequency 
horizontal motions of a vessel:  
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 (1) 

 
where Iz is the moment of inertia about the vertical axis; M is vessel 
mass, Mij are added mass matrix terms, F1E, F2E, F6E are surge, sway 
and yaw environmental loads (current, wind and waves) and 

TTT FFF 621 ,,  are forces and moment delivered by the propulsion 

system. The variables1xɺ , 2xɺ  and 6xɺ  are the surge, sway and the 

yaw absolute velocities (Fig. 2), expressed in the reference frame of 
the ship, of a central point at midship.  It has been assumed that the  
center of mass of the vessel is coincident with such point. 

 

 
Figure 2. Earth-fixed and ship-based reference frames 

 
High frequency motions are evaluated by means of the transfer 

functions related to the wave height, called Response Amplitude 
Operators (RAOs). Such functions are obtained by numerical 
methods considering the potential flow around the vessel hull. This 
approach is based on the linear response of high frequency motions 
and on the uncoupling between high frequency and low frequency 
motions. Figure 3 shows the sway RAO for the shuttle tanker 
(M=1.5x108 kg) and for a pipe-laying barge (M=0.2x108kg) when a 
wave incidence of 90o (beam sea waves) is considered. As expected, 
the barge displays more pronounced motions than the tanker does, 
due to its lower inertia (mass). 

Real sea waves are described by a power spectrum S(ω) of 
surface height, and the power spectrum of ship motion i (Pii) is then 
evaluated by: 

 

)(.),()( 2 ωβωω SRAOP iii =  (2) 

where β is the wave incidence angle related to the ship. The high 
frequency motion of the ship is then obtained by the time realization 
of the power spectrum function Pii. Figure 3 illustrates a typical 
wave spectrum, for a 5.0m significant wave height and 11s peak 
period, considering the Pierson-Moskowitz description of irregular 
sea. Power spectra of sway motions are also presented, considering 
both the barge and the shuttle tanker. It should be emphasized that 
the peak frequency of motion spectrum may not be the same as that 
of the wave, due to the shape of RAO function, as can be seen in 
Fig.4. 
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Figure 3. Sway RAO for a tanker and a barge under beam sea wave 
incidence. 
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Figure 4. (Up) Wave power spectrum (5.0m wave height and 11s peak 
period). (Down) Spectrum of sway motion for a tanker and a barge under 
beam sea wave incidence. 

Kalman Filter Design 

The Kalman Filter is based on simplified models for low 
frequency and high frequency motions of the vessel. More detailed 
discussions about filter design can be found in Tannuri et al. (2003). 
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Such models consider linearization about small heading angles, 
linear damping approximation, linear wave response, and others 
simplifications.  

Being X and Y the position of the central point of the vessel 
(assumed to be coincident with the vessel center of mass), ψ the 
heading angle and disregarding non-linear terms, the low frequency 
motion can be described by: 
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where ( )TLLLLLL YXYX ψψ ɺɺɺ=Lx , FT are thrusters forces and 

moment vector, FE are low frequency environmental forces and 
moment vector, M  is the mass matrix of vessel and C is a damping 
matrix. The subscript L is related to low frequency motion. In this 
model, it is assumed that the heading angle is less than 20o, 
approximately, during the motion. 

L

ω is a 3x1 vector containing 

zero-mean Gaussian white noises processes with covariance matrix 
QL  ( ),0(~ LL Qω N ). 

The forces FE are slowly varying unknown variables, and can be 
modeled by: 

 

FLE
ωF =ɺ  (4) 

 
Where ωωωωFL is a 3x1 vector containing zero-mean Gaussian white 
noises processes with covariance matrix QFL (ωωωωFL ),0(~ FLQN ). 

Finally, high frequency motions can be modeled by (Balchen et 
al., 1980): 
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where ( )THHHHHHH YXdtdtYdtX ψψ∫∫∫=x , 
H

ω is a 3x1 

vector containing zero-mean Gaussian white noises processes 
( ),0(~ HH N Qω ) and H represents high frequency. The parameter 

ζ is the relative damping ratio of the motions, and was set as 0.1. 
The parameter ω0 should be the peak frequency of the motion power 
spectrum, which is close to the peak frequency of the wave 
spectrum, as explained in the previous section.  

The measured signals z are given by: 
 

















++
++
++

=

ψψψ v

vYY

vXX

HL

YHL

XHL

z  (6) 

 
where v is a 3x1 vector containing zero-mean, Gaussian white noise 
processes ( ),0(~ Rv N ). 

Equations (3), (4), (5) and (6) were written as a discrete-time 
state space model and applied to a standard Kalman Filter. For the 
sake of simplicity, the matrixes QL, QH , QFL and R are considered 
diagonal in real applications. 

It should be emphasized that the Kalman Filter estimates the 
components xH and xL and also low frequency environmental forces 
FE. 

From now on, only one degree of freedom will be considered. 
Such simplification disregards the coupling between sway and yaw, 
presented in Eq. (1). Being x the controlled motion (surge, sway or 

yaw), and x the vector containing all Kalman filter model variables 

x = ( )TEHHLL Fxdtxxx ,,,, ∫ɺ  , the previous equations transform as: 
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Where m is the total mass related to the controlled motion 
(considering the added mass) and c is the damping term presented in 
matrix C of Eq. (3).  

The following discrete version of Eq. (7) is used in the Kalman 
filter algorithm, being ∆t the sampling time: 
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Being x  the a priori estimate and x̂  the a posterior estimate of 
state vetor, X the error matrix covariance and K  the Kalman gain 
matrix, the discrete Kalman filter is given by (Cadet, 2003): 
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The frequency ω0 must be estimated, since it plays an important 
role in the filter performance. Commercial DPS contains algorithms 
to perform such on-line estimation, but the complete mathematical 
formulation is not given away by the manufacturers. Ljung (1987) 
presents several methods that can be applied in this problem, and in 
the present work the Recursive Prediction Error Method was 
adopted. The same method was used in the seminal work of Balchen 
et al. (1976).  

Being the innovation ][.][][ kkzk xH−=ε  and ][ˆ
0 kω  the 

frequency estimate at a sample time k, the RPE equations are given 
by: 
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where λ is the forgetting factor (taken as 0.996 in the present work), 

0
ˆ][ ωε ∂∂−=Ψ k , P[k] is an estimate of cov(Ψ [k]). The 

sensitivity function Ψ [k] can be evaluated by: 
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Using Eq.(10), one can show that 
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disregarding the dependency of K [k] on ][ˆ
0 kω , Eq. (13) and (12) 

lead to the following algorithm to evaluate  the sensitivity function:  
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Figure 5 presents a block diagram of the Kalman filter and the 
controller, which will be analyzed in the next section. It must be 
noticed that DP systems normally contain a feed forward loop to 
compensate for wind effects. Wind speed and direction are 
measured by anemometers, and the forces are worked out using the 
wind coefficients of the ship. Such forces are directly compensated 
by the controller, and they are counteracted before causing a 
positioning error. These estimates are also used by the Kalman 
filter, which must subtract them from the total thrust forces, 
resulting the parcel of thrust responsible for current and wave 
compensation. In the present work, such feed forward loop is not 
considered. 
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Figure 5. Kalman filter and controller block diagram. 

 

Model-Reference Adaptive Controller Design 

The idea behind the so-called model-reference adaptive control 
is to design a controller whose action on the plant under study is 
such that its response tracks that of a pre-established dynamic 
system, which is otherwise known as the reference model. Hence 
the name model-reference adaptive control (MRAC for short). The 
dynamic behavior of the reference model is represented by Eq.(15) 
and the plant dynamics is given in Eq.(16). A complete derivation of 
the MRAC can be found in Slotine and Li (1991). 

 
)t(uykycym cMMMMMM =++ ɺɺɺ  (15) 

 
)t(uycym =+ ɺɺɺ  (16) 

 
Note that for the present offshore operation, K=0, which 

basically means that the vessel is deprived of any sort of mooring 
lines whatsoever. We shall now introduce z(t): 

 
  eey)t(z M 01 ββ −−= ɺɺɺ  (17) 

 
where Myye −= , β0 and β1 are positive constants such that 

01
2 ββ ++ ss  is a stable (Hurwitz) polynomial . It follows from 

this definition that e is expected to converge asymptotically to zero 
(the plant matches the reference model). Now, let us define the 
vector v = Tytz ])([ ɺ and the vector of estimated parameters â(t) 

= Taa ]ˆˆ[ 12
. In doing so, we have laid the basis to define the control 

law, which is given by: 
 

yatzatu ɺ
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At this point, all that is left is to evaluate the law for the 

adaptation mechanism. The error ( Myye −= ) dynamics can be 

written as:  
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where ã(t)=â(t)-a(t). Equation (19) can be rewritten in the state-
space form as: 
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Introducing the matrices ΓΓΓΓ , G and QC, being ΓΓΓΓ and G 

symmetric positive definite constant matrices, 
C

T QGAGA −=+ , 

0>= T

CC QQ , for a chosen QC. The adaptation law is then given 

by: 
 

( ) G.xbv
Γ T ...12 −=

T

ââ ɺɺ  (21) 
 
A block diagram of the controller is presented in Fig.6.  
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Figure 6. Model-reference adaptive controller 

 
Convergence properties can be proved using the following 

Lyapunov function and its time derivative: 
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ãGxxã)V(x, 1TT −+=  

xQxã
Γ

2ãGxvb2ãxQxV C
T1TTTT −=++−= − ɺɺ

C
 (22) 

 
It is possible to show the convergence of x using Barbalat´s 

lemma. Therefore with the adaptive controller defined by both the 
adaptation and the control law, x converges to zero. The condition 
for parameter convergence can be shown to be the persistent 
excitation of the vector v.  

By using β0 = kM/mM and β1 = cM/mM, it goes without saying that 
the polynomial 01

2 ββ ++ ss  will be stable. Substituting Eq.(18) in 

Eq.(16), one obtains the following closed loop dynamics: 
 

yâ)t(zâycym ɺɺɺɺ
12 +=+  (23) 

 
Using Eq. (17) and (15), Eq.(23) can be written as: 
 

yâ)yy
m

)t(u
(âycym

M

c
ɺɺɺɺɺ

1012 +−−=+ ββ  

( ) )t(uyâyââc
â

m.
y

â

m.m
c

MM =+−++ 02112

22

ββ ɺɺɺ  (24) 

 
Since the tracking error converge to zero, Eq.(24) converges to 

the reference model Eq.(15), what is only possible if ma →2
ˆ  and 

ca →1
ˆ .  

The analogy between a PD controller and the previously derived 
MRAC is obtained by means of Eq. (18), that can also be written as: 

 

Myâeâyâeâ)t(u ɺɺɺɺ
202112 +−+−= ββ  

 
where the first and second terms are responsible for the derivative 
action and the third term gives the proportional action. For the surge 
motion, in which the damping factor c is extremely small (c<<cm), 
the equivalent constant Pr and D gains are given by: 

 

M

M
R m

k
.mâP −=−= 02β ; 

M

M

m

c
.mâD −=−= 12β  (25) 

Case study 

The controller was implemented in a numerical simulator, 
considering a real shuttle vessel operating in Brazilian waters during 
an offloading operation (Fig. 7).  The main properties of the tanker 
in both, ballasted and loaded, conditions are presented in Table 1.  

 

Moored FPSO

Mooring lines

Hawser

Hose

Shuttle tanker

 
 

 
Figure 7. (Up) Offloading operation; (Down) Picture of shuttle tanker in 
ballasted condition. 

 

Table 1. Tanker main properties. 

Property Full load condition Ballasted condition 
Length (L) 260 m 
Beam (B) 44.5 m 
Draft (T) 16.1 m 6. 4 m 
Mass (M) 156,310 ton 58,783 ton 
Surge Added Mass (M11)* 1,560  ton 8,510 ton 

* Low frequency 
 
A 12h offloading operation was simulated, throughout which the 

tanks of the ballasted ship are loaded up with oil getting transferred 
in from the FPSO. The shuttle tanker is kept aligned with the FPSO, 
at a distance of approximately 100m. Therefore, surge motion 
control is critical, due to the risk of collision as well as hose rupture. 
So, FPSO position must be monitored and, in case of large 
amplitude motions, DPS must relocate the shuttle in order to keep a 
safe distance from the FPSO. In order to analyze controller 
performance, it was considered corrections of 20m every 30min. 
This simulation tries to recover the real control approach used in 
DPS installed in shuttle vessels. In order to save fuel, the shuttle 
tanker does not follow all motions of FPSO, being only relocated 
when the FPSO presents a large displacement (Bravin and Tannuri, 
2004). Figure 8 shows the environmental condition and the set-point 
considered in the simulations.  

 

Shuttle Tanker
FPSO

1 hour

20m

Surge set-point

1,0m/s Current
2,0m height,10s period Wave  

Figure 8. Surge set-point and environmental conditions acting upon the 
shuttle tanker. 

 
Main control and filter parameters are given by: 
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Figure 9 shows the simulation result considering the adaptive 

control. The reference model is a second order system with a natural 
period of 200s and damping factor of 1.0 (no overshoot).  The 
reference model is tracked with good accuracy by the ship, despite 
the mass variation, with no performance loss. After a short transient, 
the tracking error e = y-ym is reduced to values smaller than 0.5m, 
being mainly represented by the non-controlled high-frequency 
motions. Figure 10 presents control force, which gets higher during 
the simulation, due to an increase in the mass, damping, wave and 
current forces.  

The adaptive controller estimation of the components of vector 
â(t) (mass and damping, as already explained), are shown in Fig. 11. 
The mass estimation presents very good accuracy and an oscillatory 
behavior was found in damping estimation. This fact was expected, 
since damping effect in surge motion is extremely small, what is 
confirmed by the very good performance of the system (Fig. 9) 
despite such estimation error. Figure 12 confirms that Kalman filter 
high frequency motion estimation works properly. The estimation of 
the surge motion peak period converges to 12.5s, recovering the 
value theoretically evaluated by Eq.(2). As already mentioned, this 
value is close to the peak period of waves (10s in the present case). 
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Figure 9. (Up) Actual Surge position (y) and reference-model output (ym) 

(Down) Tracking error myye −= . 
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Figure 10. Control force delivered to vessel thrusters. 
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Figure 11. Parameter estimation. (Up) Mass ; (Down  ) Damping. 
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The fixed-gain PD controller was also applied to the problem, 
and the simulation output is displayed in Fig. 13. The performance 
loss during the offloading operation becomes evident as the mass 
and other dynamic properties of the ship changes. Since the P and D 
gains associated with the controller was evaluated by Eq. (25) 
considering the ballasted mass of the ship, the performance of the 
controller is better in the beginning of the operation, getting 
progressively worse as the ship’s inertia increases. As a result, the 
overshoot in the closed-loop response increases, which may cause 
dangerous approximations of the ships.  
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Figure 13. Actual position (y) and set-point (ym) (Shuttle tanker). 

 
A simple analysis shows that a constant-gain controller may lead 

to oscillatory behavior as the mass increases. In fact, the following 
equation represents the closed-loop transfer function of surge 
motion: 

 

 
R

R

Ps)cD(ms

PDs

+++
+

2
 (26) 

 
The closed loop equivalent damping factor (ζ) and natural 

frequency (ωn) are then by: 
 

m

PR
n =ω  ;    

m.P

cD

R2

+=ζ  (27) 

 
As expected, for an increasing mass, the damping factor 

decreases, and the closed loop system may become equivalent to a 
sub-critically damped oscillator. Furthermore, the natural frequency 
of the oscillator also decreases. 

Conclusions 

This work presented the application of the model-reference 
adaptive control technique to DPS’s cascaded with the commonly 
used adaptive Kalman filter. The controller was applied to a 
dynamic-positioned shuttle tanker exposed to environmental forces 
issuing from the interaction of waves and currents with the floating 
vessel, over the course of an offloading operation. The results 
showed that a good performance can be assured throughout the 
operation, despite the significant variations in dynamic properties 

undergone by the vessel thanks to oil transfer. The adaptive 
algorithm was able to estimate the mass of the vessel with a good 
accuracy – provided a persistent excitation is fed into the system – 
as well as to properly tune the controller gains. For the sake of 
comparison, a fixed-gain PD controller was tested out in the very 
same situation, and it was shown that such controller fails to cope 
with substantial changes imparted to the vessel dynamic properties, 
leading to a loss in performance as the operation unfolds.  
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