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Effect of the Second-Order Potential in the Slow-Drift Oscillation of a
Floating Structure in Irregular Waves

J. A. P. Aranha' and C. P. Pesce'

The slow-drift phenomenon is important when the waves are irregular and the sea spectrum has arelatively
narrow band. In this paper an expression is derived for the low-frequency force due to the second-order
potential. This expression is the leading-order contribution in the wave spectrum bandwidth and can be

exactly determined without computing the second-order potentiai.

It is shown that this effect is of

importance when the water depth is relatively shallow or the typical wave period relatively long.

1. Introduction

SLOW-DRIFT OSCILLATION of a moored structure in irregular
waves may be an important problem whenever the restoring
forces are small. This condition often arises for the motions in
the horizontal plane of a moored ship or even for the vertical
motions in a semisubmersible vessel with small waterplane area.

The origin of this phenomenon is as follows (see, for instance,
reference (1]2): Nonlinear interaction, in irregular waves, in-
duce exciting forces at low frequency. If the floating structure
has a small restoring force in one of its six degrees of freedom, the
corresponding natural period is relatively long. So the nonlinear
low-frequency forces, although of small magnitude, can excite
large motions due to the amplification provided by resonance.
Former investigations have shown that this nonlinear phenome-
non is, in many cases, the dominating one in determining maxi-
mum mooring line tensions [2].

We recognize here three conditions for the existence of the
slow-drift oscillation, namely:

(a) Small restoring force in some of the six degrees of freedom.

(b) Irregular (nonharmonic) waves.

(¢) Aw, the nondimensional bandwidth of the sea spectrum,

should be relatively small.

This last condition is quite common in the field of sea waves and
its necessity can be easily understood. In fact the forces at low
frequencies are spread over a range of frequencies of order 0 <
w/w < 0(Aw), where w is the average frequency of the sea. To
excite resonance, w ~ w,, where w, is the natural frequency of
the system. Then w,/w~ 0(Aw) and the following estimates can
be used: The vertical motion of a semisubmersible has, typical-
ly, a natural period around 30 sec and the horizontal motion of a
moored ship has a natural period around 80 sec. If the average
period of the sea is around 8 sec, then Aw =~ 0.25 to excite
resonance in the semisubmersible or Aw = 0.1 for the ship. In
both cases the bandwidth is relatively smaller than one.

Once the physical origin of the phenomenon is recognized, it is
certainly desirable to derive a theory that allows one to predict
the low-frequency oscillation. The most difficult point is to
compute the exciting forces, since they are nonlinear, and it is
with this task that the literature in the field is mainly concerned.
We present next a brief overview of several approaches used by
different researchers.

The nonlinear forces at low frequencies are the result of two
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distinct components: one is related to the second-order effect of
the first-order (linear) potential and the other is the effect of the
second-order potential.

Newman [3] has argued that the leading-order contribution, in-
Aw, is due to the first-order potential. More than that, he shows
that this contribution can be approximated by the mean drift.
force in harmonic waves multiplied by the amplitude modula-
tion of the sea spectrum. Newman’s result is reviewed in the
present paper (see Section 8). Pinkster [4] dedicates most of
his paper deriving an exact way to compute the effect of the first-
order potential. He analyzes the case where the water depth is
arbitrary but deals with the influence of the second-order poten-
tial in a crude way. He argues that this effect is important when
the waves are long and diffraction is small, and from this he
computes only the second-order potential due to the incoming -
wave. As we are going to see, his assumption is only partially
correct. Faltinsen and Lgkens analyze the case of an infinitely
long horizontal cylinder in a beam sea (strip theory) in water of
infinite depth, but they compute exactly the effect of the second-
order potential. By comparing their results with the ones de-
rived by Newman, they conclude that the approximation intro-
duced by this author is good enough for practical application.

It is important to keep in mind the amount of numerical work
involved in these last two studies. For instance, if we assume
that the sea is approximated by a sum of (n) harmonic waves,
Pinkster computes Y5(n2 + n) nonlinear interactions among the
linear potentials and Faltinsen and Lgkens, besides this, also
compute Y5(n2 + n) second-order potentials associated with com-
binations of possible low frequencies. This tremendous amount
of numerical work, together with the fact that the importance of
the second-order potential is weak in deep water, has certainly
played a role in the decision, common among all these research
efforts, to substantially or even totally disregard this effect.

Ships, however, are usually moored in relatively shallow water
and, as it is well known, the second-order potential becomes
more important the shallower the water is. The results of the
research work quoted above are inconclusive in this case. New-
man disregards from the outset the second-order potential.
Pinkster, although analyzing relatively shallow water, does so
only in a crude way and Faltinsen and Lgkens analyze only deep
water. The main objective of this paper is to study, in a consis-
tent and relatively easy way, the effect of the second-order
potential, irrespective of the water depth.

The starting point is to take note of the fact that Aw, the sea
spectrum bandwidth, is “small.” A consistent asymptotic theory
in this small parameter is derived and an expression for the low-
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Fig. 1

frequency exciting force is then obtained. In this paper, as in
Faltinsen and Lgkens, only the case of an infinitely long cylinder
in a beam sea is analyzed, but the results are rewarding. In fact
if Qg LF(t) is the exciting force in the mode K (K = 1, sway; K =2,
heave; K = 3, roll), then its asymptotic expression can be written
as

QxLr(t) = 10gAB - 5 - [ORLp(t) + OEL (O} [1 + 0(Aw?0)]

where p = water density, g = acceleration of gravity, A =
average wave amplitude, B = beam of ship, 8 = A/B = small-
amplitude parameter, Aw = nondimensional bandwidth [see
equation (79)], and

Qg,)u-(t) = effect, in low frequency, of first-order potential
Qg)LF(t) = effect, in low frequency, of second-order potential

The expression for Qg x(t) is correct to leading order in & and
to second order in Aw. If Aw = 0.25, then the error is of order 6
percent, which is generally quite reasonable. Furthermore, the
functions Q@) x(t); O x(t) can be written as

ORLe(t) = Qy(@) + |F®)|?

+ [pk(;,) -F(t)

£~

&0+ K@ Fr LI <t)]

0Pt = OB(@) i% (F@®)|?)

where (*) stands for the complex conjugate, F(t) is the amplitude
modulation, and {Qx(w); Px(w); Qg{))(w)}, k = 1,2,3 are coefficients
that can be computed with basic knowledge of the linear har-
monic potential in the average frequency w.

Clearly the amount of numerical work is comparable to that
for solving the linear problem, and is, by far, much less demand-
ing than the method of either Pinkster or Faltinsen and Lgkens.
Furthermore the expressions for these coefficients are relatively
simple, and they provide insight into the relative importance
between the two factors when the water becomes shallow. It is
worthwhile, here, to emphasize one important point: The value
of Q¥(w) can be computed without solving any second-order
problem.

2. The nonlinear problem

Let 4 be the small parameter associated with the wave ampli-
tude and $(y,3,t) the potential correct to second order in .
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Geometric definitions

There are two sources of nonlinearities: the free surface and
the body boundary condition. If o(t), w(t), and 6(¢) are the
generalized displacement in sway, heave, and roll, the function
®(y,2,t) must satisfy the following set of equations:

2 2
G ve=o(vi=2 49
o> 222

=1 ve. v (22 1 2%
g ot g ot

._b_ bzl.{-g.lql
oz btz oz =0

2,
1.8, 28

(i) g o xi

2=0

22
oz

z=—h

. d de d do
Vq""o|030="y,o'(_?_z"&?)*'"z,o("dl:‘*‘y"d—t)

+ [w) : (id’tﬁ +y- ﬂ) ~ ) + -8} 2 (%3)] nyo

dt
~low. (% - ,. 4 —z.0p)- 2 (22
[a(t) ( % s dt)+[v(t) 2 0()] by(bz)]nw

+ [—(m) : 2—2’ +[0(t) ~ 6(2) - 2] -:27‘1’] “no

0% R
+ [G(t) "“or + [w(t) + 6(t) + y] - —b?] "N
(v) Radiation condition (L

In equation (1), 7ig = ny _j + 1,0 k is the normal to the cross
section OBy, as indicated in Fig. 1, where 3B, is the rest position
of the body. The radiation condition will be explicitly stated

‘later in the paper, but it is important to keep in mind that ® is the
. distortion of a free wave (or train of waves) propagating from left

to right.

The nonlinear term at the free surface is given by Newman (5],
but the derivation of (1)(iv) will be omitted in this paper. The
generalized displacements {o(t); w(t); 8()} can be determined
from the equation of the body’s motion, as shown in Section 4.
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Expression (1){iv) contains second derivatives of &, in a way
not very convenient for the purposes of this work. It is desirable
to transform it to an equivalent expression, whose deduction is
indicated below. In fact let (s) be the curvilinear coordinate, as
shown in Fig. 1(a), and suppose that the cross section is approxi-
mated by a stepwise contour line; see Fig. 1(b). The size of the
steps can be arbitrarily small and we can easily see, in this case,
that

o 0
(a) If|n,o| =1, thenn,g=0andn,,- > s

0 )
(b) H|n,.o| =1, thenn,g=0andn,,- 2 =

Using these relations in (1)(iv), we obtain

n d do d do
V¢’"0,aao="y,0'(d*?_z‘a)+"z,o'<d*lf+y‘gt‘)

+ % [o(t) . (w(t) + % y- B(t)) c1y0 = B(2)

1 Pe)
- <v(t) -1 0(t)) : nw] +2
0d
. {g [(o(t) =z -6(t)) - nyo+ (w(t)+y-0(t)) - "z,o]} (2)

It is not difficult® to extend this demonstration for an arbitrary
cross section,  As is clear, this can be done by approximating 3By
by a stepwise contour line and then letting the size of the steps go
to zero. Details will not be given here, but it can be shown that

'(2) is valid for all @B, that define a “regular” fluid region. The
convenience of (2) will be realized later in this work.

It is important to compare the orders of magnitude of the
nonlinear correction and the linearterm. f ®=®&;+ &+ . . .,
then, from the boundary condition at the free surface, we get

2
2%,/ ~0 (i"g— <1>1)

do, \2
0®,/0z ~ 0 [E . (ﬁ) ]
& \oy
From mass conservation
od -
9P of—L _.za
oy tanh Koh

where w2/g = K, - tanh Koh, & = wave amplitude (average), and
w = wave frequency (average). Thus

®,
2 ~0(
2, (80)
KA
bg=———7 3
% tanh Ksh ®

and the wave is said to be of small amplitude when 8, < 1.

3. Nondimensional variables

The problem can be linearized, or else the solution can be
written as an asymptotic series, if the wave amplitude and body
motion are both small. The first condition implies §; < 1 and
the second 6 « 1 where

8 This could eventually be done by recalling the Cauchy-Riemann
equations and the conjugate stream function, to relate normal and tan-
gential derivatives.
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(4)

In (3), Bis the typical dimension of the cross section (see Fig, 1)
and A is the typical value of the wave amplitude. Notice also
that the condition § << 1 is essential for the potential theory, since
only then the influence of flow separation and vorticity can be
disregarded,

In this work, we shall suppose the cross section to be given,
although the wave frequency (w) and the water depth (k) can
change. It is convenient, then, to take 8 as the small parameter
and the role played by 8, will be discussed when needed. In this
way we introduce the following scales

oA
B

length scale = B

time scale = wg™! = yB/g

scale for body displacement = A
scale for angle of rotation = A/B
scale for potential = gA/wg
pressure scale = pgA

force scale = pgAB (unit of length)

From here on, the dimensional quantities will be designated by a
(). Then

= wB‘i
D
(y;z) 3 (y:3)

h="hk/B

PRPNPN

B(y,2,t) = :—j - ®(7.2.0) 5)

where the quantities on the left are nondimensional. The gener-
alized displacements are written as

a)=od)  (sway)
at) =5 -wd  (heave) (6)
as(t) = 3-0@)  (roll)
Correct to second order, we write then
B(y,zt) = 8- By(y3,8) + 8- By(y,2,t) + . ..
at)=8-gq)+ -0+ ... (k=123) (7)

Placing (6) into (1) and (2), one obtains, after separating terms of
like order in é:

{(a) Linear problem

@) v =0
o*e, o®
(i) L+ =90
2 0z =0
Lo 0%
(lu) 0z |z=—h
: _ g, _  dg"
(iv) VQI'"O’O&,:( dlt —ae
dg®  dgv
‘n,t (————dt +y- ) L)
(v) Radiation condition (8)
Again the radiation condition will be specified later.
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(b) Nonlinear correction

() v, =0

*®, 2%, 2%\ 2%, »
ii +—= =-]2v¢,-V|—)——-—
@ o2 9z =0 % ot ot Oz
AL
biz 0z 2=0
L 9% _
(i) feZ4 z=‘h_

. . dg,”  dgg®
(iv) V®y-iglap, = ( A2 g ) e

dqz(Z) qu(Z) d (o) (1), 1 ),
+( dt +y.—dt_ 'nz,o+dt[qs (t)'(‘h ) + P Yqs (t)>

1
‘Mo~ as"V(t) - (ql(l)(t) - qu(l)(t)) . "z,o]

(v) Radiation condition 9)

In (8)(iv) we have used (2), and the nonlinear radiation condi-
tion deserves special consideration. From Bernoulli’s equation
the pressure is given by

od, 0%, ]
t)=————2z+6-}—+=(v®)?|+... (0
p(y,Z,) bt z 6 [bt 2( 1) ( )

and the free-surface displacement 5(y,t) can be written as
n(y,t) = 8- m(y.t) + 8 - mply,t) + ...
2%,
’t ==
7{(y.t) ot

From (8), (4) and (5) we obtain here

P, Ky 1

— e~ )0 hen K,h >0 (12

®, (tanh Koh) (h) v 0 (12)
where Ky is the typical wave number of the sea spectrum (w? =
Ky - tanh Koh; w = average frequency). Expression (12) shows

that the effect of the second-order term increases as the water
becomes shallow.

(11)

4. Linear solution—harmonic waves

For a narrow-band spectrum the leading contribution in (Aw)
is harmonic. It is thus natural to analyze the properties of this
solution, which will be done in the following four sections. In
Section 8 we will review the problem of nonharmonic excitation.

We intend to discuss briefly here the linear solution for a
harmonic wave with frequency (w). The dispersion relation

W= K, - tanh Koh (18)
is correct with an error factor of the form [1 + 0(3¢)2] The
(linear) incident wave is given by

1 - _
Py.zt) = Py [d(y.2) - €7 + (*)] (14)
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(14)

(cont’d)

where (*) means the complex conjugate of the expression be-
tween brackets. If

w cosh Koh

= Mo when K =1 (sway)
| T ™0 when K =2 (heave)
oxly2) =—2:n,oty-n,g whenK=3 (roll)
=—(V® - 7iy)| o8, when K =4 (diffraction)

(15)
then let ¢x(y,2), k = 1,2,3,4, be the solution of the problem
(i) VZd’k =0

. Od

(ii) 2 loo = &yl .=
N _

(iii) % | =

(iv) Yy - figl op, = 0(y,2)

_ i coshKy(z +h)
M) 4lua) w cosh Kph

T
. { k} - ¥ when y—>+ (16)
By

Equation (16) can be solved by the Hybrid Element Method

(see [6]). In the region|y| < b, ¢x(y,2) is obtained numerically
and for |y| = b it is given by
__ i coshKyz+h) [Ti] x4y
Suly:2) = = = coh K \RC
+ Z Ar:tk 'fn(z) . e_anyl—E)
n=1
for
yzxbh 17)
where
foz)=F,-cosK, (z+h) ==K, -tanK,h
1 4K h 0
F ==, W7 . 2 =~
" h 2K h+sin2Kh’ f_h fo@dz=1(18)

In (17) the coefficients Ty, Ry and Ajf, & can be determined in
the following way: Once ¢(y,2) is numérically computed in the
region |y| < b, then

4+ Kow-coshKyh [0
P — J ¢(+bz) - cosh Ky(z + k) - dz

L 2Koh + sinh 2K h N
__4-K0w-coshK0h 0 ; h
¢ ZKoh + sinh 2K0h : j—h ¢k( ,Z) - COS Ko(z + h) .dz

0

. ou(ED2) - £,(z) - dz (19)

+ _
An,k - j
Details about the numerical computation of ¢(y,z) in the

region |y| < b can be found in [6].
The excitation torces are
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04 = iw ] (61(52) + 6(u2)) - 04lyz) - dOB,  (20)

28,
and the hydrodynamic coefficients are given by

m(;j) = LB (Real ¢p(y,2)) - Uj(y,z) . deo

dg) = L . w(Imag ¢4(y,)) - 0(y,2) - ddB,

€j=123) (21)

where m(é‘!) = mg‘? and d(e“j) = d;‘j) are elements of the added mass
and radiation damping matrices, respectively [M,] = [m(é‘ﬂ; [D,]
= [d‘;;’]. If [M], (D,), and [K] are the inertial mass, viscous
damping, and restoring forces matrices, the harmonic general-
ized displacement, {gx 4}, is the solution of the system

[—X([M] + [M,]) — iw([D,] + [D,]) + (K]l - {gi.1} = {0} (22)
Once determined gxp, k = 1,2,3, we define

3
T=14+T,—iw - T,
4 ; In - Tk
3
R=R,—iw 2 s By (23)
k=1
3
AT = AL —iw Z Geh Ani
k=1
Then
3
91(y2) = di(y2) + dy(u2) —iw > ap $i(y:2)
=1
n.(y) = iwd, (y,0) (24)
where for y = +b
by () = ~ L. K@ R) _{Te"‘"” ] }
w cosh Koh XY L g oK

+ 2 A: @) - e—Kn(]y|‘5)

n=1

Te™ e
= ; + - -b)
w=[ heuS st

n=l

(25)
With (25) the linear harmonic solution can be written as
— -l —iwt *
®,(y.zt) = 5" G(yz) - e + (*)
a0 =| gy e+ <*>] (26)
() = L on@) e 4 (%)
L2

It is worthwhile to keep in mind that
oL(y.2) = $L(Y.7:0); G = Gip(@); Lly) = mely;w)

(w) being the frequency.
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5. Radiation potential in zero frequency

Once the linear solution for harmonic waves is derived, it is
natural, in the context of this work, to study the nonlinear correc-
tion. It is convenient, however, that we postpone this discussion
to the next section and address, here, another sort of problem.
The relevance of this will become apparent a bit later.

We start by considering the equation of motion for the low-
frequency oscillation, {gix Lr(t)}. As is clear from equation (22)
we must solve, now, the system of differential equations

(M) + M/lp - faried + (D) + [DILp) * g ) + (K] - fae e
=5 {Qrp(t)} (27)

where [M]; [D,] and [K] are the inertial mass, viscous damping
and restoring forces matrices; [M,]yr and [D,].r are the added
mass and radiation damping matrices in low frequency; § -
{Qx Lr(t)} is the exciting force in low frequency.

In (27), g = dq/dt and the right-hand side show, explicitly, that
the exciting forces are of order 8.

The matrices [M] and [K] have already been defined in Section
4, and the effect of viscous damping is small in low frequency.
In fact if F,(t) is the dimensional viscous force, then it has
typically the expression

Fi{1) =2 pCoB6)" = pgBA (% 5+Cpe («';LF>2)

=pgBA-D,-qp
So
[D,] ~0(w-Aw-d-Arp) (28)

where Ay is the amplitude of the low-frequency oscillation.

Since [M] ~ 0(1), then [D,] is pretty small, unless Ay is large.
The smallness of the viscous damping effect in low frequency is
one of the reasons why the amplitude of the slow drift oscillation
can be large, in spite of the fact that the exciting force is of order
(8). This point will be discussed further at the end of this section.

The main objective of this work is to determine the low-
frequency exciting force, {Qr Lr(t)}, but (27) shows that the ma-
trices [M,)pr and [D,]Lr must also be computed. These are the
added mass and the radiation damping matrices in the range of
frequencies 0 < w/w < 0(Aw) where, again, (Aw) is the nondi-
mensional bandwidth of the sea spectrum.

These matrices can be determined from (21) where now
ox(y,2) is the solution of (16) when w = w - Aw. Consistent with
the error [1 + 0(Aw)?] assumed in this work, the potential ¢(y,z)
can be approximated by ¢x%(y,z), which is the solution of the
equation [see (16) and assume w = 0]:

i) vi@=0
¢
0z
o,
0z
Vo - diglo, = v(y.2)  (k=129)

v  &%y2) ~ [B(:tk + D3yl — b))

=0
z=0

(i)

2=—h

(29)

._l.. wheny—>ﬂ:m

In (v) we have used the most general solution of (i), (ii), (iii)
that is not exponentially growing when |y| — «.

Equation (29) is the standard flow equation, but the values of
the velocity at infinity, Dg;, are unknown. Furthermore, if mass
is conserved, the solution ¢%(y,z) exists but is not unique. In
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fact, if $(y,2) is a solution, then ¢3(y,z) + Calsois. Ina flow
problem the constant C is irrelevant, but here it plays a role. For
instance the added mass in heave can now be written as

mzz(o) = LB ¢2(0)(y,z) “n.g- ddB; + (Real C) - 2b
(1]

and so mgo©® depends on the specific value of C.

This problem is well known, but there is a point that is worth-
while discussing: It will be seen later that the second-order
potential at zero frequency, ¢s0(y,2), is essential in the theory
proposed here. It happens that ¢g(y,z) satisfies an equation
similar to (29), but with a nonhomogeneous term at the free
surface (see Section 6). So the solution for ¢g0(y,z) is nonunique
and the constant C will be important again. The determination
of this value follows a reasoning very much the same as the one to
be used here, and this motivates a close analysis of (29).

We start by introducing the linear functionals

Vig) = LB oly,2) - Vy.2) - ddB, (k=123)  (30)

where Y(y,z) belongs to a sufficiently broad class of functions (see
Appendix 1).

If equation (29)(i) is multiplied by y(y,z) = 1 and integrated in
the fluid region we obtain the mass conservation equation

Df + Dt =— M (81)
0.k 0k \/E
where from (15) and (30)
Vi) =L, -84 k=123 (32)

ks being the Kronecker delta function and L,, the waterline of
the body (L,, = B in Fig. 1).

Problem (29) has a solution if and only if Dy satisfy (31),
although they can otherwise be arbitrary. Certainly we could
invoke the symmetry of the cross section to write

— 1
D =D =———=+(Ly) &
> s 2 \/F w
but it is convenient to consider them undetermined as yet.
It can be shown (see Appendix 1) that ¢;®)(y,z) can be ex-
pressed as

o yz) =

(k=123) (33)

Y2+ (Bh+ By - ——

JF

+ (B3 — Bop) - pa(y:2)(y| < b)

0%w2) = [B3x + Dyl — D) - gola) + > L)
n=1

cgo(@)- e ™2 4By (34)

where ¢ (y,2); paly,z) are well behaved functions, defined in
the region |y| < g and can be numerically computed.
In (34) also
(z)=1/yh
2,(2) = (2/h)}2 - cos A (z + h); N, = %
0
L) = [ ¥ g ds (35)
-h
and By; Dj), are related by means of
-17 | B¢ Vilpt+ Df
C-[ 1 1]. 0k | _ Wp )]+ bk (36)
-1 1 BO,k Vk(p_) DO,k
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where G is a positive number defined in Appendix 1 and -

(yl <b) (87)

+ _ 1
PHy2) = —— £ p,(y.%)
okt
The singular equation (36) has a solution if and only if mass is
conserved [see (31) and notice that Vi(p+ + p—) = (1/yR)Vi(1)].
If this is the case we can write
D+ C

By =—x-Vilpd) + = G (38)

2G

The values of C; D are unknown and cannot be determined

within the context o? the mathematical problem. A physical

argument is needed and, in this case, we recall that ¢;0(y,2)

intends to be the limit of ¢i(y,z), the solution of (16), when w — 0.
Since

O(y2) ~ AE(w) - WD £2) wheny — &

where

(39)

4K gh

1/2
— V. cosh Kz +
fol@) = (h 2Kg¢h + sinh 2K0h) cosh Kol + 1)

then, for w « 1, the amplitude A¥(w) is determined from the
equation (see (36) and reference [6])

C—i-K, C A ][V
i P = = Kh
[—G G- ‘Ko] [Aa (w) Vilp—) (@=Ko/h)
and so
1
+ =
Aj(w) = y \/_ Vi) + =5 2 - Vilpt) (40)
Now fo(z) — go(z) when @ — 0 and from (39) it follows
di(y.2) ~ [AF(@) +1i - Ky - A5(w)(y| — B)] - &o(2)
when w — 0. Using (40) and looking to (34) we obtain
1
D =—~——-V,(1)
0.k 2\/E k
1
By = 2C - Vilpt) (41)
1
li -1 (o(y,2)] = ——- V(1)
lim [w - Imag (¢x(y.2))] o K
Expression (41) for Do « coincides with (33) [see (32)]. Also C

= —(1/2G) - D, is the proper value of the constant, and from
21

mf) = ] 69(4,2) - 0,(y,2) - dOB,
2B,

&) = AV (£5=123) (42)

1
lim (d@(w) =—=.V
w—0 4 2‘/5
where V(1) is defined in (32).
From (42) we obtain

[M,]Lr = [mZ)1 + 0(Aw)?)

(D] = [dE1(1 + 0(Aw)?) (43)

The radiation potential at zero frequency, $x%(y,2), must be
always computed in order to determine the low-frequency oscil-
lations. As we are going to see in Section 8, we will also use these
potentials to compute the exciting forces in low frequency, due to
the effect of the second-order potential. We close this section
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with an analysis of the order of magnitude of the slow-drift
oscillation. We first make the following observation: For a
body floating on the free surface, like a ship, the slow-drift
phenomenon is important in sway, since only in this mode i is the
restorin 5 force small. But then from (43), (42) and (32), d11
d(0 0 and so [D,]rr can be taken as zero in (27). If the
cross sectwn is totally submerged, as the cross section of the
emlsubmer51ble is, the slow drift can be important in heave and
;roll, but now dej = 0 since L, the waterline, is zero. It follows
‘that [D,]LF can always be taken zero in (27), and if Ay r(Q) is the
amplitude of the harmonic response due to the input Qxrp(t) =
‘expli+ Q- w+ Aw -+ t), where Q ~ 0(1), then from (27) we obtain

[(—w? - (Aw)P - Q%M +K)

+i-@ Q- Aw-(C,-@-Aw-3-A )] - Ap(Q) =6

In the above expression M is the total mass, of order 1, K is the
small restoring coefficient, and C, « Aw + w « 8 « Ap, with Cyp~
0(1), is the viscous damping; see (28)

As has been said before, the sea spectrum will excite resonance
ifw-Awi 1s such that K~ 0(w - Aw)2.  Writing, in this case, K = &?

- (Aw)2-K, K~ 0(1), we obtam

é
(@~ Aw)?
If Qg = (K/M)'/2 is the resonant frequency, then Qg ~ 0(1) and
(@) ApLe(®) ~ 0(8/(wAw)?), when|Q — Qg ~ 0(1)
(b) ALp(R) ~0(1/(wAw), when|Q— Q4| « 1

if K ~ 0(wAw)2. If K is small but larger than (Aw - ), the
response is quasi-static and Ay ~ 0(6/K).
To get an idea about the numbers let us assume that

B=20m
® = wg = (g/B)"/*
Aw = 0.20

[(K—9°M)+i-QC3-Arp] - ALp(Q) =

(T = average period of sea = 9 sec)
(T, = patural period of ship =~ 45 sec)

The amplitude of the low-frequency oscillation will be given
by gur = A - ALF, where A is the average amplitude of the waves
and »

Ap~125 if|@— Qg ~0(1)(A ~ 1 m;d=1/20)
Ap~5 if|Q— Qg K1

This order-of -magnitude analysis shows, quite clearly, the im-

portance of the low-frequency oscillation.

6. Nonlinear correction—harmonic waves
Once the linear solution {®(y.2,t;w); ¢! (t;w)} [see (25)] is
known, one can determine the nonlinear correction ®s(y,z,t;w)
solution of (8).

dQ1(2) d%(z) dQ2(2) dqs @
Theterm( F TR “nyot ot +y- ) )

in (8)(iv) is associated with the radiation problems and contrib-
utes to the added mass and radiation damping matrices, as has
been shown in Section 4. The excitation of ®, is provided by the
remaining terms in (8)(iv) and (8)(ii). Since the linear solution is
harmonic we obviously have (RHS = right-hand side)

RHS of (8)(ii) = Lzo(y) + [Lzz(y) ce et 4 &)
RHS of (8)(iv) = Byy(,2) + [Bao(y,2)e™ 3" + (*)]

where RHS of (8)(iv) means the remaining terms of this bound-
ary condition. In the above expression [see (26)]
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29,
oy

-z qs,H)

L20<y>=§i[ - 6100+
e

The functions Lgo(y) and Bgo(y,2) can also be computed but
they will not be used in this work. From (44) and (25) we obtain

o
0o
Byy(y.z) = >

N

ngo+ (Gou+y-qp) - Nzl + (*)} (44)

Lao(y) ~ 0e™ 1) when|y|—e (45)
The potential ®4(y,z,t) can also be written as
Dy(y,2,t) = Bog(y,2) + [Dgs(y,3) - €72 + (¥)] (46)

and since we are interested in low frequency, only ¢go(y,2) will
be needed. From (8) it follows

(i) Vz¢2o =0
., O _
(i) 2z |imo Lag(y)
... O _
(iii) ront 0

(iv)

Vg - ﬁolaBO = By(y,3)

() ba(t:2) ~ A + Uk(ly| — B)] % when y — £ (47)

The radlatlon condition (47)(v) is equivalent to (29)( ), smce
Lso (y) — 0 when |y| — «; see (45). The values of AZ); Uz, are,
as yet, unknown and we postpone the discussion of (47) to the
next section. Here we will derive a useful expression and later
we will recall some results associated with mean values.

It is important, in order to deduce the mass conservation
equation and other equalities, to compute the integral

1) =[] V- v0-da. 48)
A,
where A, is the entire fluid region. The function y¥(y,z) will be
restricted to the class where (Vy)? is Lebesgue integrable and
such that

¥(y.2) ~ (B + D*(y| ~ B)] - # +0(e™)  when y — %o

(49)

where 8 > 0 and B%; D* can take any value.
From (47) and (49) it follows that

1) =~ [F Lao(9) - ¥(1,0) - dy ~ j Buo(y2) - W{y,3) - d0B,

2B,

— [U}(B* =b-D*) + Uz - (B~ —b-D7)]

= (U3 D" + Uz - D71+ |y
The integrals over the free surface F and dBy can be simpli-

fied. In fact if we assume, for a while, that n,o = 0 when (y =
+b; z = 0) (see Fig. 2), then

99
byL (£b;0) = iwq, 5 [see (8)]
b;} (£by0) = b"’L (£b;0) = £u? - ¢, (£b,0)
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Fig. 2 Contour C = FUQB,

ny,o(:lzb;()) =
bd)L
Os

Placing these relations and (44) in I{{) we obtain, after inte-
grating by parts

K
) =21 —|R]?)-[B~+ Dy - b)) -~

2w ‘/ﬁ

— 22 1j2 (8 + D] — B L
W

Jh
(,0) - g—ll’ (y;0) - dy
y

(£b;0) « n, o(£b;0) = —o” - ¢, (£];0)

1 . d¢;
+ 1. Real {zw L b0 5L

+ J Ugrp— 2 Gp) *Nyot Gou+ Y- Gsn) 1yl
28,

.Eﬂ.ﬂ.ds}_[(];o(3+—5-p+)+ Ugp- (B~ —b-D7)]
Os Os

—[Ugo+ D* + Upy- D]+ |y

where R and T are the reflection and transmission coefficients;
see (23). The above equality can be easily generalized to sec-
tions that do not cross the free surface at a right angle, but this
will not be pursued here. Notice that the integrands in F and
OB, have a similar expression. In fact

. 1 N
w- ¢L(y’0) == E * (V¢L ° nO)(y,z)eF

(G — 2 G3.p) My

1 .
+(Gout Yy Gp)no=— o (Vor, - Tig)yz)e0B,
So
iw[ [...]dy+] [...]doB,
F 2B,
i O¢L btl/
= — v .
w L( Ou oo 55 s

where C is the line indicated in Fig. 2.

The integral I(y) is, in general, divergent, as the term that
increases with |y| indicates, It is important, however, to distin-
guish the convergent and divergent parts and for this we define

O (40)d

oy v

J¥) = —;— * Real {iw ] ¢(y,0) - ——(y 0)-
FA

+[ [(qym— 0l X
B,

z- %,H) *Nyo + (%,H +y- qs,l-[) .
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_%.%.dsﬂwj ¢, (4,0)
P

Jds Os
26y, Y
—(y, ,0 d
Aay(y)[ (y)‘m]y

) o
o] ¢L<y,o>-ai;<y,o> [g‘y” 0) + JF] - dy

bqﬁz i- KO

+iw-~.:-] ¢, —— 1T} | dy
\/F Ft o by w?
O(I)L ’CKO

P 9% _ %o 2
ot | _[¢L L >]dy} (50)

where F; F* are the free surfaces in the regions|y| < b;y = £b,
respectively. Notice that J(y) is convergent in the class {49) and

so I(y) can be written as
K,
| TJ?
20yh

KO
1-|R|?
2w‘/ﬁ( I I)]
K,
- U+ T|?|-D*-
[20 wJ—ll] |y|

— 1:0 9 —
U R .D .
[ 20 9 \[E( | | )] |y|

(1 -|R]%) -

I¥) = J)— (B* —=b-D*)- [Uzo

-—(B——B-D‘)-[U;O—

_ K, Ky s
~|D ATI* 1yl =b) (51
w\/_ w\/_
Expression (51) will be used in the next section. But first, we
shall quote some well-known results related to means values.
(a) Mean drift forces

Suppose that B(#) is the ; wetted surface of the body at time (t),
with normal 7i(t) = ny(t) + ny(t)-k. Leto(y,zt), k=123, be’
the expression defined in (15) with 7(t) in place of 7.

The generalized force acting at time (¢) is given by

o) = [ LBM plyt) - ox(y,a.t) - dOB(E)

+ ] z-v(y.z) deO]
2B,

where p(y,z,t) is defined in (10) and

[— j z-v{y,2) deO]
2B,

is the hydrostatic generalized force.
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Since the wave is harmonic, there exists a second-order compo-
nent of Qk(t) that is constant in time. All other terms are
harmonic, with frequencies  or 2w, and their mean values over a
period are zero. We can write then, correct to second order in

(8)
Oxlt) = (Qgp - € + (*) + 5+ [Og + (Qp g - €72 + (*))]

(52)
where Q. is the coefficient of the linear force and
Q1 = Qilw) = coefficient of mean drift force (58)
Notice that
o o/ w _
—f Oult) - dt = 8- Oy - (1 +0(5))
27!' 0

The values of Qx(w) can be computed directly, as shown in
Appendix 3. In sway, however, we can use the conservation of
linear momentum to derive the simpler relation (see Maruo [7])

A () =L, _ 2K ], 2 _ |72
Oylw) = [1+mlh ZKOh] QA +|R>=|T]*)  (54)

(b) Mass transport

It is well known that the nonlinearity induces a mass transport.
In fact the instantaneous mass flow is given by

(y.8)
. jﬂ Y, pﬂ . dz
y—~zo|lp Oy
=0+ (M} -e ™ + (%) + 8
- [ME+ (MEe 2t + ()] + ...

where 82 - M# is the mean value of M*(t) over a period and
_ K
M+=¢E-[U;o+—°-|r|2]

2vh
_— _ K, 2
M __‘/E.[UZO-ZQ;‘/F (1_|R| )]

In (55), Uy, are the asymptotic values of £d¢s/dy when y —
+; see (47)(v).

From mass conservation we should certainly have that Mt +
M~ =0. Butthen

(55)

Uy + Upy =

K,
—|RIZ=|T|% (56)
w\f
Equation (56) stipulates a relation between Uz, and Ug, and it
has been derived by directly invoking mass conservation. We
can, however, deduce this relation from the mathematical equa-
tion (47). Infact, from the equality I(1) = 0 [see (48)], we obtain

[use (50); (51) with B* = Jk; D* = 0, Y(y.z) = 1]
K
(1) = —Jr| (W + Uyp) — —2 R|2—|T|?
" r[uo W eI ||>]

and so I(1) = 0 if and only if (56) is satisfied.

Relation (56) is similar to (31). Both are related to mass
conservation and are necessary conditions for the existence of a
solution for equations (29) and (47), respectively.

In Section 5 we invoked symmetry to induce (38), and only
later was this identity mathematically demonstrated; see (41).
Note that the argument of symmetry was imposed, on physical
grounds, on the mathematical problem and could be derived
mathematically only when we considered ¢;(%(y,z) as the limit of
ox(y,z) when w — 0.
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A similar procedure will be followed now. Firsta stralghtfor—
ward physical argument will be used to induce the values of U,
and only later on, when we consider ¢0(y,z) as the limit of the
second-order potential in low frequency, will these relations be
mathematically deduced.

The physical argument here is that we expect M+ = M~ =0
since, otherwise, we would get a net flow, from right to left, and
whose source is nowhere. From this condition we obtain

Ko

Zw\/ﬁ

_ K,
U20 -(1- |R|

+ o
UZO—

||

(57)
20yh
With (57) the expression for I(y) can be written as
I() =J(§) = [D* - Uzy+ D™ - Ul - (y] — (58)

7. Force coefficients and radiation condition for
: $20(3,2)

We will show in the next section (Section 8) that the numbers

Qg{)) = - LB Goo(t,2) + 04(4,2) -+ OBy k=123  (59)

represent, asymptotically, the coefficient of the generalized
forces in low frequency, due to the effect of the second-order
potential.

We will see, next, that Q%) can be computed without deter-
mining ¢20(y,z) This is a tr1v1al extension of Haskind relations.
In fact from (29)(i)

0= j] V2¢k(0) . ¢20 . dAw
A,

= ” V- (VY- dog)dA. — ” v - Yoy - dA.,
Ay

From the boundary conditions of (2

9), (47)(v), and (44) we
obtain ‘

- ] ] G20+ 0 - dOBy = Kty®) + [DE - Uy + Dy - U]
2B,

- (Iyl - B) + <A;0 N D(T,k +Ag- Da,k)

Using (58) and recalling that D* = D(‘fk when Y(yz) =
o (y,z) [see (49) and (29)(v)] we get

wL

—=- Opo* (Ago + Ago)

2R
where 6y, is the Kronecker delta function and we have used (33).

In equation (60), ox'? (y,z) is the radiation potential in zero
frequency; J(-) is the convergent integral (50)

As in Section 5 the values of the constant A% affect the heave
coefficient and they can be determined only if we give a more
precise physical meaning to ¢g0(y,2). For this purpose, suppose
we have two waves with frequencies w + (Aw/2) where Aw << 1.
The nonlinear interaction will introduce the frequencies {0; Aw;
2w — Aw; 20 + Aw} and, in the slow-drift phenomenon, we are
interested solely in the nonlinear term in the frequency (Aw). If
®,(y,2;Awt) is such a potential, we define

Po0(y,2) = Alim0 ®y(y,2;A0t)

OR(w) = w- J(") — (60)

(61)
Condition (61) is similar to one used in Section 5

o(y,2) = li310 iy, 20)
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Fig. 3 Amplitude spectrum S(w)

and it is convenient to consider the pure harmonic wave as if it
were the limit of a narrow-band spectrum when the bandwidth
goes to zero. From (61) we can compute A%; U, (see Appendix
2), and it turns out that UZ, are given by (57). In other words, the
no-net-flow condition has now been deduced from the mathe-
matical equations, once we consider the pure harmonic wave as
the limit defined above.
From Appendix 2 we obtain

@ « -5 £
A;0+A2_o=r/‘1_h"|:]5 d | Loty + [z [ Lzo(y)dy]

(62)

With this relation the coefficients Q%)(w) can be computed at
once. Infact the integrals in the region y = b [F % in (50)] can
be analytically computed, if we use the series expansion (25);
(34). Theintegrals in the region|y| < b[F4 and 8By in (50)] must
be numerically determined, but this is easy since only the values
of the tangent velocity {d¢y./ds; 9%/ ds} are needed.

In sway the expression for Qg has a simple form. In fact

o,
W) =2, ; e
Qsd(w) 9 Real {WL(/JL(y,O) Y (y,0)
P2 2
P (y,0)dy + J [gLg—2-G3n) -1y
( 2B,
d¢; ¢
+(gog+y-gyn,l - a—L -———.dsp (63)
S 0s
or
Of(@) = L. Real {i . j (Ve - ip)
2 c
o¢; ¢
20 %% -ds} (64)
s os

where C is the line indicated in Fig. 2.

We close this section with an important observation. The
values Q(lg(w) can be explicitly determined in the limit of shallow
water or long waves (Koh — 0). If we consider, as we have done
in this work, that the motion in sway is not restrained when
solving the linear problem—which is quite reasonable since the
average frequency wis, in general, much larger than the resonant
frequency in sway—then in the limit as Koh —> O we can easily
see that the linear solution is given by [see (14), (22), (24)]
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- o coshKo(z+h) i,
OL(.3:0) ~ ¢ily,z;w0) o' cosh Kb

1
Guh = tanh Kgh

Gop 1
Gsp = Ky [or 8/KA = 1, see (6)]
|R|?* =~ 0;|T|? =~ 1

Physically the expression (65) means that the body follows the
fluid particle, and this condition holds if (i) the waves are long or
the water is shallow, or (ii) the body’s dynamic is unimportant or,
in other words, we are below any resonance peak.

Under these conditions the potential ¢g(y,2) must be the coun-
terflux associated with the mass transport of the incoming wave,
namely (w? = K - tanh Kgh):

R, _
Doo(y,2) ooh y whenw—0

In fact, if we use (65) in (44), (57) and (62), we obtain (see also

Appendix 2) ’

Loyy) =0

(66)

[(47)(i)]

K
By(y,2) = — ﬁ *Ty0

[(47)@v)] - (67)

K
¢2o(y,z>~——2.° y wheny— o [(47)(v)]
wh

With these boundary conditions it is easy to check that the only
solution of (47) is given by (66). From (59) it follows then that

€1

K -
OR@) == f y-vi(y,z) - ddB, whenw—>0 (68)
2B,

2h

The above relation can also be written in an equivalent form if
we apply Haskind relation to (47) and use (67). In sway, for
instance, we obtain

; 4 _ 1
(@) = ~ —2—,3 So=K,- [qs‘f’)(w,O) + o LBO ¢Vy,2)

e ny,o . daBo] (69)

where S; is the cross-sectional area and ¢>(10)(y,z) is the sway
potential in zero frequency. Placing (65) into (63) or (64), we
can derive an expression for Q%(w) that coincides with (69).
From (68) it follows that
®(o
9-2‘1(—) ~0(h™%?%)  when Ksh — 0 (70)
@

which shows the importance of the second-order potential as the
water becomes shallow.

8. Nonlinear diffraction of a narrow-band
spectrum

We start this section by considering briefly the properties of
the sea spectrum, described by a function S(w) as indicated in
Fig. 3. It is usual to define

" @ =average frequency = (My/M,)"/?
w, = central frequency = M,/M,
A = average amplitude = (2M0)1/ 2= (71)
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Notice that A = 1 in nondimensional variables, where § is the
ratio between the dimensional A and the beam B. From the
definition (71) we can easily check that

<t
w

(72)

where the equality sign holds if and only if S(w) = Sy« 6(w — wp),
that is, for a harmonic wave with frequency wy and amplitude
(2S)1/2.

A realization of this spectrum with duration Tf = 2w/Awy,
where Aws << 1, can be written as

LTOEDY [— 5 Ay T 4 <*)] (0=<¢=T)
§=1

w;=jf-Aws j=12,

w?=K; tanh K (78)
where n(y,t) is the displacement of the free surface, due to the
incoming wave, the phase o; is random, and the amplitudes A,
are given by

1 ,
Py Aj2 = S(wj) . ij (wj =j-. Awf) (74)
From the definition of A and (74) we obtain (Aw; — 0)
w 1/2
A= af (75)
=1
We introduce now the definitions
w=otw-Q
t=w-t (76)
and the function
© A _ _ © A . L
= e N i(ﬂfot+a-) = £ Q)
F(t) er j ZAe 7 7N
=1 =1
Taking y = 0 in (73) we obtain, with the help of (77)
n(t) = — é CALF@) e+ 2 AP e (1)
where 5(t) = n(0;t). Note that (rms = root mean square)
T, 1/2
rms F(f) = | = ] "Rl =1 (79)
AP _ oL 9F\ 2 = @\
rms 7 rms (‘; 9t ) Aw \/E (1 ” ) (80)

From (72) it is clear that Aw is a real quantity such that
0<Aw=2

and Aw = 0 if and only if the wave is harmonic.

The spectrum is said to have a “narrow band” when Aw « 1.
In this case the wave looks like a harmonic wave whose ampli-
tude modulates slowly in time [see (78) and (79)].

For the semitheoretical Pierson-Moskowitz spectrum (see, for
instance, reference [5], page 315) Aw =~ 0.40, but this is known to
represent a fully developed sea with a relatively wide range of
frequencies. Other models, like JONSWAP [8], are similar to
Pierson-Moskowitz, but with a smaller bandwidth. As has been
discussed in the Introduction, the slow-drift phenomenon is of
importance when Aw - w = w;,, where wy, is the natural frequency
of the system. Typically this happens in the range 0.1 < Aw <
0.25, which covers natural periods from 40 to 100 sec for a sea
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with period around 10 sec. In what follows we will assume Aw
<« 1, and an asymptotic theory, with the error factor [1 +
0(Aw)?], will be derived.

Let ¢ (y,z;w) be the linear response due to a harmonic excita-
tion with frequency (w) and unitary amplitude [see (25)]. We
define

b1 (4:3) = G (4,350)| oy
¢L(y,z) = ¢L(y,z;w)|w=; (81)

Since the input is a sum of waves with amplitude A; and
frequency w,, the linear response is given by

_ ) e B
él(y’z’t) = % <A e_“"t . Z il . ¢L’!(y’z) .e ‘(QQIH."!) + (*)]
L =1
L 3. . Aj —i@Qt+o) | x
miy.t) = E'A'e -zj-m,;(y)-e T 4 (%)
L j=1
[ A iw - A 1 —i(wf: B
qk(l)(t) = —;—-A .ot ZTJ qg’)H.e i(wlto)) + (%)
L J=1

(82)

For a narrow-band spectrum A; decreases rapidly if @, >
0(Aw). The terms in the series (82) are relevant only when ; ~
0(Aw) and so

b1, {4:2) = b330 + @Q) = [¢r(y,2) + @+ Q;- Dy (3,2)]
- (1 +0(Aw)?)
ﬂLJ(.)’) = ﬂL(y;;’ + (:JQ]') = [ﬂL(.Y) +w- Qj * dL(y)]
-(1+0(Aw)?
a9y = quu(@+ o) = [gy + @~ Q; + gyl

- (1+ 0(Aw)?) (83)
where
DL(y,Z) = % [q)L(y’z;w)]w=<;
_ 0
di(y) = > (7. (ys0)]0=5
it = o [ e 69
W

The functions {Dy(y,z); di.(y)} exist, are well behaved, and can
be computed numerically. More is said about them in Appendix
3.

Placing (83) into (82) and using (77), we obtain, with an error
factor of the form [1 + 0(Aw)?]:

,(yat) = [g F0)- 04+ 9L () Dy 2+ <*>]

mut) = [é (B ) - ) + -9 (). dy e + <*>]

qk(l)(t) = I:% (F(t) - Qupti- % ) - dkﬂ)e—i&t + (*)]
: (85)
In (85), {¢L(y,2); nL(y); gin) are referred to the average fre-

quency w and we use A = 1; see (71).
We are in fact interested in the excitation force in low fre-
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quency. There are two distinct components of this force, name-

y
QS:I)JF(t) = generalized force, in low frequency, due to the
second-order effect of the first-order solution.
Q@) (t) = generalized force, in low frequency, due to the
' effect of the second-order potential.
and so

Ok,LF(t) = excitation force in low frequency (dimensional)

=pgAB - 6 - [O x(t) + O (1)) (86)

In (86), A is the dimensional average amplitude of the spectrum
and é = A/B.

It is not difficult to check that the expression for Q}(}I{F(t) is
given by (see Appendix 3)

Ofe(t) = {Ok@) - [F()l?

%

+ [Pk(a) F@t)- L. ‘%‘;— ) + (*)]}- (1 +0(Aw®0)) (87)
w

In (87), Ox{w) is the mean drift coefficient at the frequency w
[see (53) or (54)] and Px{w) can be computed as indicated in
Appendix 3. Again, using conservation of linear momentum,
Pi(w) has a relatively simple form in sway. Its expression is
given by

Kob

- Koh
P,(@) =T(1 + |12 - |RI®) — 4 o

“sinh 2K h
1 — (1 + Kgh)/(cosh Kyh)

. 1+ [R2 =T
1 + (2Kyh)/(sinh 2K¢h) 1+ |RP - |7
i 2Kh - dR* dT* -
SRR | DI LA DU § I LU LS LI S 88
4 (1 sinh 2K0h) ¢ (R dw T dw ) wlw)  (88)

where, in (88)

Ky = Ko(w)
R=R@) dR* _ @) dr* _ (dT*)
T= T(J}) d(.l) dw w=w dw dw w=w

and u(w) is given by

, " 20y, ¢y
()=—-‘1’--le—,0- -d+]—
plw 5 ea. {FA 2y (»,0) 771,()’) y 25, dy

“[(@1g—2qap) -nyo+ Qo+ qsp) 0] - d0B,
S S K
+iw Z Z K# (A2) - (A%)* - £,(0) - £,,(0)

n=1 m=1

3|

i RS BRLC K, A= £(0)
K, - iK, nin

c K, K5
+ 3| L b
ZI[K —iK, . '

e*F. Ky —i- PR K,
K, +i-K,

n

K e—iKOB] CAF. fn(())} (89)
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In (89), F, is the free surface of | y| < b; Ky, K,,, AL, T, R, and

' £4(0) are defined in (13), (18), and (23) and are related to the

linear solution in the frequency w = w. Note here that the series
converges fast if the water is not too deep and that the integrals
over F4 and 3By must be numerically computed.

It remains now to determine QfF x(t). To leading order in the
amplitude parameter ¢ we can easily see, from (10), that

O p(t) = — % [ LB &, ) y,z,t) - vy « deO] (90)

where ®,LF)(y,z,t) is the component of the second-order poten-
tial in low frequency.

Expression (90) indicates that Qf{F(t) is already of order Aw.
We can then compute this parameter only to leading order in Aw
and for this it suffices to take [see (85)]

() =| L - Flo) - B (p2) - o + (*)]

B
met) =[P - ny0) - e + (*)]

400 =2 FO - gy e + (*)]

Placing these expressions into (8) and separating the low-

frequency terms we obtain

9 L 0N P < R Lygly) - (1 + 0(Aw))
PYCRFYY et =0 = 20\Y el

VP it op, = IF(®)I2 - Byy(y,2) - (1 + 0(Aw))

~where Lgg(y) and Bao(y,2) are defined in (44). Since

a2¢2(LF)
ot

~ 0[(Aw)?]
it is clear that

¢E(y.2.t) = IF@)E - a0(y,2) - [1 + 0(Aw)] (o1)

where ¢go(y,2) is solution of (47). Putting (91) into (90) we

~ obtain

OfLe(t) = [ fho-1.4 (IF(t)I%]- [+ 0(Aas®)] (92)
The total slow-drift force can then be written as

() = {Ok@) AR+ [Pk@) - L 9 4 (*)]

@ dt
+ Q) (@) -%-% (|F(t)|2)} [1+0(a0%9)] (93)

To leading order in (Aw) we obtain
QrLr(t) = Q@) - [F@) - [1 + 0(Aw;d)]

which agrees with the expression proposed by Newman [3].
Formula (93) has some advantages. First it provides a consis-
tent way to evaluate the slow-drift force, with an error quite
acceptable for practical application. Second, it is not necessary
to solve any extra diffraction problem to compute the coeffi-
cients {Ox(@); Px(@); O%@)}. Only the harmonic linear problem
at the frequencies w; @ = Aw/2 [to approximate the derivatives
dR*/dw; Dy(y,3), etc.] and the radiation problem at zero fre-
quency must be solved. With them the coefficients can be
determined by direct integration, where in the region| y| 2 bthe
integrals can be done analytically. In the region|y| < b there
are integrals over the free surface and cross section, but they can
be trivially computed by a numerical method. The amount of

(94)
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work necessary to evaluate the nonlinear forces Qypr(t) is not
much greater than the amount needed to solve the linear prob-
lem.

There is also an important consequence of (93), closely related
to its simplicity. In fact, the estimates (70) show that the effect
of the second-order potential increases with (h)~1/2, when the
water depth (h) decreases. Furthermore, we can easily assess the
relative importance between the effects of the second-order and
first-order potentials. If Ex(w;Aw) is this measure, in the mode k
=1,2,3 and for a spectrum with average frequency w and band-
width factor Aw, then it can be defined as the ratio

O%(@) - rms (% . jt |F(t)l2)
@) - rms (F®)> - 1)

Since
mos ([F@R - 1) =2
and rms (é . g |F(t)|2) =2 Aw
w dt
then
- V2Aw - Qf(w)
E ;A =s——=—" 95
A Y %)
In sway we obtain
E (@) = 2240 - Q(w)
Ry
=1 2Koh 2 _ |72
Ry = (1 + Sinthoh) (L+IRE =17/  (96)

If we disregard, for instance, viscous damping:

Ry =1+ -2
H sinh 2Kyh
For long waves (@ « 1), | R|2 ~ 0(w?) and from (69)

_ S,
E (w;Aw) ~0 Aw Do
w h‘/—

This shows that the effect of the second-order potential should be
the dominating one when the waves are long and the water depth
is not too great. For shorter waves [w ~ 0(1)1 Ry~ 0(1), but this
is the region of linear resonance. Since Q4(w) increases qua-
dratically with the amplification factor, the ratioc E(w;Aw)
should remain of order 1, if the bandwidth Aw is not too small.
So even when diffraction is important, the effect of the second-
order potential should be considered, mainly in the case of rela-
tively shallow water.

These qualitative arguments will be checked in the next sec-
tion, where numerical results are presented, but the simplicity of
(93) makes it irrelevant to disregard in any way the effect of the
second-order potential.

We close this section with the following observation: Pinkster
computes the effect of the second-order potential, taking into
account only the incoming wave. His approximation, then, can
be physically justified only under conditions where (65) is valid.
But we know that in this case the effect of the second-order
potential is given explicitly by [see (68) and (92)]

K
Os(t) = [(2—,‘; . LB y - o{y2) daBO)
d

(t)lz] 11+ 0(Aw;d)] (97)

) when @ « 1
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-

So in the region where the Pinkster approximation is valid we
could use, instead, the simpler formula (97). Also, the discrep-
ancy between (97) and the exact expression (92) delimits the
region above which this approximation is not valid anymore.
This point is discussed further in the next section.

9. Numerical results

In this section we analyze some few numerical examples for
the purpose of discussing the features of the theory presented in
this paper. In all cases we consider a rectangular box with
beam/draft = 2.0 and radius of gyration equal to B/4. We
considered two different mass distributions, one with the center
of gravity B/8 below the free surface and the other with B/4.
Three different water depths, h/B = 1.0, 2.0, 5.0 have also been
analyzed and the viscosity effect in roll has been considered.
More detailed numerical results can be found in [9].

Only the coefficients Q) (w) and Qi(w), corresponding to the
leading-order contribution of the first- and second-order poten-
tial in sway [see (87), (92) and (93)], have been computed. In
Figs. 4 and 5 the variation of these coefficients with w is shown
for the case where the center of gravity (CG)isatz = —B/8. In
Fig. 5 the dotted line indicates the approximation on( w)=—Kq-
(BD)/2h [see (69)] and, for future reference, the plot of |R |2 is
also displayed. In Figs. 6 and 7 the same functions are plotted
for the case where the CG is “low.” In Fig. 7 the dotted lines
indicate the approximation (69) for h/B = 1.0and h/B = 2.0 and
the resonant frequency in roll and heave are shown in Figs. 5 and
7.

In the long-wave (shallow water) regime the effect of the
second order potential is dominant. Furthermore the value of
Q@) increases as the water becomes shallow and this coeffi-
cient depends strongly on the position of the CG.

For h/B = 1.0 the approximation (69) is quite good, when the
CGis “low,” even for waves that are not too long (w - yB/2g =~ 0.5
or T~ 12 sec if B = 20 m). The same approximation, for the
case where the CG is “high,” is worse and the reason for this has
already been explained in Section 7; in fact, if zcc = —B/8 the
roll resonance occurs in low frequency and the dynamics of the
body affects the apProxunatmn (69) much earlier. The frequen-
cy above which Qi) and (69) start to diverge is the limit up to
which the Pinkster approximation can be used. For /B = 2.0
the range of application of (69) is shorter (see Fig. 7), but this has
also been explained in Section 7. In fact the approximation (67)
holds good only if the water is shallow (Kph <« 1) and so, for the
same frequency, it is worse the deeger the water is.

There are two features about Qg (w) that must be better ex-
plained. One is the fact that for the ‘high”-CG case, QiH(w) =
for a frequency around w - (B/2g)}/2 ~ 0.8, irrespective of the
water depth; see Fig. 5. The second is the unexpected fact that
in the short-wave regime the effect of the second-order potential
is higher the higher the water depth is.

To explain the first issue we notice that w(B/2g)!/2 ~ 0.8 is just
the point where Q;(w) has a maximum. Since this coefficient is
proportional to|R |2 we plotted in Fig. 5,| R |? as a function of w.
We observe, then, that Q(w) = 0 just at the point where|R |2 =
1. Butif |R [2= 1 then there is no mass transport [see (57)] and
50 ao(y,z) must be zero. This makes even more evident the
correspondence between the phenomenon of mass transport and
the effect of the second-order potential. Furth_ern_lore, if it is
clear that the effect of the first-order potential, Q1(w), increases
with |R |2 [see (54)], the above observat1on also makes clear that
the etfect of the second-order potential, onl @), tends to increase
with 1 — |R |2 see (57). So there is a trend for one to become
greater when the other becomes smaller and vice versa. This
trend is fully confirmed by the numerical results (see, for in-
stance, Fig. 9). When the CG is “low,” Q)(w) has also a maxi-
mum at the same frequency &(B/ 2g)1/ 2~ 08 But then this
frequency is close to the resonance frequency in “roll” and
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viscosity plays an important part in the problem. Infact|R|? =~
0.85 at this point, irrespective of the water depth, and so ¢g(y,2)
must be different from zero. _

Figure 8 displays the contributions to Q4)/w that come from
the free surface and the integral around the body [see (63)]. We
notice that (Q%)/®)gedy is smaller, in absolute value, the deeper
the water is. This is in accordance with our a priori expectation,
but (Q4)/w) in the free surface has the opposite behavior when
the waves are not too long. We have been unable to explain, ina
clear physical way, this sort of unexpected result.  _

In Fig. 9 the plot of Ej(w;Aw) as a function of w is shown,
where we took Aw = 0.2. Note that the effect of the second-
order potential cannot be disregarded even in the high-frequen-

Q(w)

cy regime. Furthermore, we observe that for h/B = 5.0, Aw =
0.2, and 2CG = ‘—B/4:

max {rms(Q(w) - (F(£)|? — 1))} ~ 0.62 at @ - (B/2g)"/*> ~ 0.8
max {rms (0(210)(5) 1.4 |F(t)|2)}
w dt

~ 023 atw - (B/2g)/% ~ 1.22

So the maximum contribution of the second-order potential is
more than one third the maximum contribution of the first-order
potential. This effect, then, can hardly be disregarded in an
actual computation.

0,500 v "
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"% _IRI5,h/8:2,0 ;5,0 o
—:em— = h/B =50 | E
0,250 A " T~ 05
“7 D -
-~ o / ,( g ,/"
Z . - .
o VAN A1
./. e i X ///
e 7,
I T :
"’\/ - . Io
.| (69) R D
-0,250 ]
WWW
4:0,125.8
ROLL HEAVE D:B/2
-0,500 1 N ,
0,000 0,250 0,300 0,750 1,000 1250 7500
o[
2q
Fig-5 @)w). Alsoshown: |R|2and results from equation (69) ()
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10. Conclusion

A consistent asymptotic theory, in the small-bandwidth factor
Aw, has been derived and an expression for the slow-drift force,
correct to an error factor [1 + 0(Aw)?], has been obtained. This
expression is given by (93), where F(¢) is the amplitude modula-
tion of the incoming wave and the coefficients {Qn(w); Prlw);
QX(@)} can be computed with basically the knowledge of the
linear potential at the frequency w. In this way we can easily
assess the influence of the second-order potential and this proce-
dure must be confronted with the exact one, as derived by
Faltinsen and Lgkens [1], where Y%(n? + n) nonlinear problems
must be solved, n being the number of harmonic components of
the irregular wave.

The expression proposed by Newman [3] is the leading-order
term of (93) and the approximation proposed by Pinkster, for the
influence of the second-order potential, coincides with (93) for
the long-wave regime. The new coefficient, Q{w), is closely
related to the phenomenon of mass transport and tends to in-
. crease with 1 —|R |2, where R is the reflection coefficient. Some
features of Q(w) have been discussed and, in particular, the
long-wave approximation (68) has been derived. The behavior
of Q@) follows closely what could have been anticipated with

one important exception: For short waves Q) increases with .

water depth, which was not expected a priori.

An interesting theoretical point has also been discussed in this
work: If we consider, as we should, that the harmonic wave is
the limit of a narrow-band spectrum when the bandwidth goes to
zero, then the standard no-net-flow condition in the mass trans-
port phenomenon arises naturally from the mathematical fea-
tures of the nonlinear diffraction problem.
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Appendix 1

Radiation problem at zero frequency

For|y| = b the solution of (29) is given by (34), where By, = L¥(¢4¥);
see (35). Then

ad,k(o)
dy

(b2) = £DF- 8o(8) ¥ > Ao+ LE6) gafa)  (98)
n=%t
If we multiply (29)(i) by ¥(y,2) and integrate in A we obtain, after
further integrating by parts, using the boundary conditions 829)(i) to
(ﬁg)(iv) and (98), tﬁe weak equation, to determine ¢§(°)(y,z)eW(21 (A) such
that

G(¢ %) — [Dgx - Lg(¥) + Doy - Ly = Vi) (99)

for all Y(y,z)eWo(A).
In (99), W,1(A) is the Hilbert space for all Y(y,z) such that (V)2 is
Lebesgue integrable in the region A, Vi(¢) is defined in (30), and

cop = [[ vo-vv-dar T 10 12w o0
A

n=1
Note that G(1;1) = 0 and this bilinear form is singular. However, if
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WEA) = Wa(y WA LiWg) = Lols) = 0}

then G(-; ) is positive definite in Wol)(4). If we define now

*y2) = %[1 + %] . % (go<Z) _ ﬁ )

we can write

6 y.z) =

(101)

By 4 (y2) + By - 47 (y.2) + ¢ h(1.2); ¢{0%(v.2)eW S A)

Wyz) = L) - 4*(y.2) + Lg(¥) - 4 (9.2) + ¥a(0,2); Y(y,2)eWH(A)
Placing these expressions into (99) we obtain [see (34), (37)]
¢ %y.2) = $%h(y.2) + By - p*(y.2) + By p(y2) (y| <b)
where
(@) Hhy2)eWEA)
is such that
G(&%¥w) = Vildw)

for all

Yr(w.R)eWA)
(b) p(y.2) = q*(y,2) + PE(y.2)
where

PRy2)eWA)
and such that

C(PE) = ~Gla*spn) = = G(zi% ;¢R> == jﬁ Vilda)

for all

Yaly.2)eWi(4)
Then

Pi(yz) = EE‘/: < 6%(y.2)
and
Py )—f 25‘/_ [y + ¢ia(y.2)]
From (37)
PauA) = -y + #0h(w.2) (102)

2byh

© [G(p+;p+) G(p*;p‘)]. Bgx _ Vilp®) N Dy
Glp*p™) Gl™p7)) | Box] Vo) ]| | Dok

But

C(PA;PA) =G

Glp*p*) = —Glp*p) =

See (36).

Gl ™p7) =

Appendix 2

Radiation condition for ¢2(y,z)
For|y| 25

b20(4:2) = [A%, + Us(|yl — )] - go(2)

+ z AL, -e
n=]1

WD g () + g pl.2)  (109)
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The particular solution ¢ p(y, z) of (47), (| y(! > b), must be such that
[(d¢20,p)/dy] = O when |y| — = [see (103) and (47)(v)]. Itis given by

boar0) = 3 W) - g, 0) 4 L) plo)
n=0

J: de L " Ly()dt

L (104)
f d j Lag(Odt

where

2
pa)=EERL_ b, o f bl gulakds

and hX(y) is such that

dzh* dht Agyl-5 FLgy
o Py T e
()  ha(£b) = —p, - Ly(#b)

®

L dhy 2
(iii) d_y (:!:B) =P, — (iB) FA Py LZO(:‘:B)

L

dy

(dhf AR
dy n n

Note that
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when |y| =  since
Lyy(y) ~ exp(=Ky|y])
See (45). Then

Ofap ~0as|y] — < and ¢20P(:I:E z) =
oy

" L) -d
a¢20P IB wid)-dd

(£bhz) = -5
W ] Loglt) - de

1 [} ae L Log0ds

bo0p™~ "= -5 : y—> Lo (105)
o\ [Cae [ ratar
From (47)(v), (103}, (105):
A;0=A§0+"/1"E" [} ae- L Lo0dg
g =dg+ L. [Tar [ Lydr (106)
20 = Ago 3 L” ¢ _L., 20

The problem now is the same as in Appendix 1 where, instead of
Vi(y), we have

Vaold) = j Bag(u,5) - W{y.2) - dOBy + j Lants) - W(w,0)dy

0 Fa
1

LEW) [ﬁ 3 Lzo@)ds] +LiW) ~[—

-5
= ] Lzo(f)df] (107)

Note that

K
Vagll) = [ Booly.2) - d0By + [ Logt) -dy = = =2 (1 = |R]* = | T|")
o8, F 2w

(108)
The values A% are solutions of [see (36)]
. -17 [ A% Voo™ Ug
G=[_1 ] 20 201’_ 4| Ve (109)
1 1 Azo Vaolp™) Uso
Equation (109) has a solution if and only if
_ _ K
U+ Upy = —Vylp* +p7) = —= (1 = |R|* = |T|?
2wyh
This is just mass conservation; see (46). So
At = 1 =5 [Vaolp) + Ukl + C (110)

where C and UE % can be determmed if we consider
B20(y,2) = lim ®,(y,2;0At)

where ®5(y,z;Awt) is the low-frequency mteractlon between two waves
with frequencies w + Aw/2 and wave numbers Ko + (Ak/2). If

Aw) 1 cosh Koz + k)
of(y.2) = ¢L<yxz‘°i 2)"’

w cosh Kgh
rel+%)
e{(&i%)y + Re (

“}zlhere T, R, and A2 are the coefficients associated with the frequency @,
then

—Kqy|-b)

)y+ZAf
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o B ot
&,(yt) = [i st T 4L L 9ilu) e (%) (*)]

Placmithls expression into the free-surface term of (8), separating the
terms that pulsate with Aw and disregarding those that tend to zero with
Aw, we obtain, at the free surface

o
%) = (0P 200+ Lol
o
+ K: - Ak - sin(AKy])
70 LRI

The term Ak - sin(AKy|) dglves a leadmg-order contribution as we are
going to see next. Indeed, if AKj is the wave number assoc1ated with
Aw, then with an error [1 + 0(Aw)?] we obtain, for|y| = b

B(y,z;0At) = é—[([ﬁ LKD) o)+ z AL ¢ Mlvi-b

n=1
D £a() + daoply) + $§o(y,z)> e 4 (*)] (11

where
Vg, = 0,905 /02 =0atz = —h

and

0%, —71)?

—_— = - AK - sin

%z |0 20 {1 —~|R}J? ARyl
Imposing
B2 (+hz) =
then
- — T|
Q:l: Z) = Mo |
i) = 2wh {1 - |R|2}

-[AK - sin(aKlg]) - ple) + SAKIY) = sn(AKD) o«uo%]

or
B(y.2) = { Il (112)

o RIZ} Iyl -
when Aw — 0. Now

Bykbsnat) = [ - (Az* “gla) + > A% -gﬂ<z>) omihut 4 <*>]

n=1

) j i -
?yz (iB,Z§AWt) = j é' (ii ° AKO * Ag: ¥ ; Xﬂ * A;O,n * gn(z)
L '
" Lyt
1. L © ﬁ - T|2 —fAwt 4 (%
17 + of Je 2+ (")
j Lpdg | %k U-IR]
It
. N K, .
Vo) = Vo) + Lg(¥) [ \/._ -7 ]
w
- KO
+ L) 2
o) [Zw ‘/ﬁ( )]

then [see Appendix 1 and equation below (39)]:
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G—iAK, —C ] AF] _[Valot)
-G C_iAKO ) Az_ - ‘_’20(1’_)

—iAK(AT + A;) =Vt +p) =V(I/NR)=0
See equation (108). Then

So

A . K
A+=L_ Vv +) — 0 T2
2 2G( 20(p+) Zw‘/ﬁl |)
1 K (118)
Ay=—|[vV -) 4 0 1 - RZ)
2 ZG( 20(P=) 2w\fﬁ( ||)
For|y] — @ and Aw — 0 we obtain
(¢zo= lim ‘1’2(y,Z;Awt))
Aw—0
A A K =1 1
(y2) ~| Af + (A% — A%) + — { }'(y -nl.=
Po0ly [ 2 20— Ag) 20ih 1= [R? ly] Y

See (106), (105) and (112). By comparing with (47)(v) we obtain (57)
and A%, = AF; see (118). Since Af + A; = 0, then from (106) we obtain
(62).

Appendix 3

Force coefficient due to first-order potential

First we consider the coefficient in sway. Using conservation of
linear momentum, the total force at time (t) is given by

F,(t) = LBm plyt) - n(t) - dOB(E)

AL [ (s

where A(t) is the fluid region between the vertical lines y~ < y < y* and
g
e~ Y= fuh) = fu-)
y=y
In the above expression we will let(ly| — o,

Using (85) and isolating the quadratic terms in low frequency, due to
the first-order potential, we obtain, to leading order in é:

0 Pe 2 =yt
o‘ﬁiF(t)=-§-U (3”5 o )dz—lnLP]”_y_-lF(t)lz
-k Yy =y

2

oy oz

_4d o,
di [J‘jm(t) oy dAA(t)]LF
i [0 (o¢r oD, 24y 2D, . y=y*
+4—-—. — e 2 -
{ 1 [ f_h( o oy o o )dz+nL(y) dL(y)]y=y_

dF * *
f—;(t)-F )+ >} (114)

where A(t) = Ag+ 5 AA(t) + ... . Note that

Q, = mean drift coefficient

--1 ° %2_%2 - sp=v"
4 U—h( oy [ 74 )dz | :Iy=y'
=l _go_h_ . 2 _ P3
4 [1+sinh2K0h] A +IR|*=|T|*) (115)

%ﬁt AA%(2) be the part of A(t) for y = b, and AA(t) the part for|y] < b.
en :

JUNE 1986

d 2P d [(to®
= - . dAA:t =—. 71
dt U jAA*w oy (t)] dt Uy' oy 0

+

v 0@ d
. d + —l . - = 2
)y L e 00) - ,) d”]LF 4 (re)
i 4 + .
1 v (0d, ., O¢p
J=1 + L, L,
[4 L— L (by Yy

Using (25)

4 0 anat) = w @t [p . 9E*
- U o 344 (t)] w@LFo)- &0

+F*<t>-‘f1—f<t)]—% (712" + (BI2 - 1)+ y7]

¥

d K
- AFER”) + —2% [ +1712 - (R4 Ry (6)

where p,(w) is the series in expression (89). Also

a1l 2. aaze] e wie . Llae - dF
E[Ijﬂ(t) —-o-y— | dAA(t)] - #2<w) @ [F(t) dt (t) * F*(t) E(t)]
117)
where uy(w) are the integrals over F4 and 3By in (89)
(@) = py(@) + py(w))

From (84)

Dy (yz) ~— d (1 coshKyz+h) T
L\9:% dw \w coshKeh [,z | 4+ Re ™5

_ 1 cosh Ky(z+h) J@d1/dw) i
@ coshKeh  |(dR/dw).e
_ 1 coshKy(z+h) Te' i e
cosh Kogh Kot _ poKev (Cg(c::) y) y

®
(dT/dw) - ™
di(y) ~i-

L(y) ~i {(dR/dw)-e_‘K"y}

T i
—ge —_— yy >+
e - R (cgw) y) !

Inserting these expressions into (114) we obtain a convergent term plus
aterminy* and y~—. These divergent terms cancel the ones that appear
in (116) and the convergent one is just

. Kb 1—(1+Keh)/(cosh Koh) —

b ok 1+ @Koy (sinh 2k O TIRE=ITH
iy K\ o (p.dR*_p dT*
4'(1+sinh21<0h) @ (R do T dw)

With this expression and (117), (116), and (115), we obtain
(@) = p)(@) + po(w))

See equations (87) and (88).
In heave and roll we must use the formulas

Ol e(t) = [ [, o n-don+ [z deO]LF

0

Ol x(t) = [ Lm) Pr(Y.2.8) - (=2 - n(t) + y - n (1))dOB(2)

+ J #=z-n,ty- "z,o)daBo}
2B, LF
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o®,

Zt) = —z————= (V&
Pl(!lz ) z ot 5 ( 1)
where
Hy= [ z+n,d0B,and Hy = [ a(—z+n 0+ y-n,0)dOB,
2B, ’ B,

are the hydrostatic generalized forces.
The slow-drift forces in heave and roll are important only when the
body is submerged. In this case

Q(w) = ';' Real [Q) - q;,H = Gy(w)]
Os(‘:’) = % Real [_Ql,H ° q;,H + QZ,H(q;,H ~D,- q;,H) - Cs(‘:‘)]

Pylw) = — % [Ql,H . q:;H + (OI,H)' “ G — 2Go(w)

—2-RealJ

o . N
(ﬂ (qu— (z+DJasp)
B, \ OY

a¢ * .
+ —bz_L (Geutvy- qs,n)) No* daBo]
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Ps(‘:’) =—i % [‘—Ql,ﬂ * q;H - (OI,H)* Qo H + Qz,H(élI,H - Ds ‘ q:;H)
Py ,
( 2y (‘h,H

* 0 * *
—(z+ Dygg p) + % (Guty- qs,H)) ‘vg deo]

+ (QZ,H)*(‘?LH —D,-gsp)—2- Ca(‘:’) — 2 Real LB
(]

where

Zgg = —D,

Q1 (@) = total linear force in frequency @

Glwidw) = f Vor(w) - Yo (w + dw) - v, - dOB,

Bo
Giw) = Gylw;0) = I |VoL|? - v - dOB,
0B,

dc,
dbéw

This last approximation avoids the computation of Dy (y,2).

- Ck((;;&.u) - Ck((:))

Gyl@) = =
k(w) Sw=0 dw
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