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Effect of the Second-Order Potential in the Slow-Drift Oscillation of a 
Floating Structure in Irregular Waves 

J. A. P. Aranha 1 and C. P. Pesce I 

The slow-drift phenomenon is important when the waves are irregular and the sea spectrum has a relatively 
narrow band. In this paper an expression is derived for the low-frequency force due to the second-order 
potential. This expression is the leading-order contribution in the wave spectrum bandwidth and can be 
exactly determined without computing the second-order potential. It is shown that this effect is of 
importance when the water depth is relatively shallow or the typical wave period relatively long. 

1. I n t r o d u c t i o n  
SLOW-DRIFT OSCILLATION of a moored s t ructure  in i r regular  

waves may be an important problem whenever the restoring 
forces are small. This condition often arises for the motions in 
the horizontal plane of a moored ship or even for the vertical 
motions in a semisubmersible vessel with small waterplane area. 

The origin of this phenomenon is as follows (see, for instance, 
reference [lie): Nonlinear interaction, in irregular waves, in- 
duce exciting forces at low frequency. If the floating structure 
has a small restoring force in one of its six degrees of freedom, the 
corresponding natural period is relatively long. So the nonlinear 
low-frequency forces, although of small magnitude, can excite 
large motions due to the amplification provided by resonance. 
Former investigations have shown that this nonlinear phenome- 
non is, in many cases, the dominating one in determining maxi- 
mum mooring line tensions [2]. 

We recognize here three conditions for the existence of the 
slow-drift oscillation, namely: 

(a) Small restoring force in some of the six degrees of freedom. 
(b) Irregular (nonharmonic) waves. 
(c) Aw, the nondimensional bandwidth of the sea spectrum, 

should be relatively small. 
This last condition is quite common in the field of sea waves and 
its necessity can be easily understood. In fact the forces at low 
frecluencies are spread over a range of frequencies of order 0 < 
w/w < O(Aw), where ~o is the average frequency of the sea. To 
excite resonance, 60 ~ ~n, where co n is the natural frequency of 
the system. Then w,/w," O(A6o) and the following estimates can 
be used: The vertical motion of a semisubmersible has, typical- 
ly, a natural period around 80 sec and the horizontal motion of a 
moored ship has a ngtural period around 80 sec. If the average 
period of the sea is around 8 sec, then A6o ~ 0.25 to excite 
resonance in the semisubmersible or A6o ~ 0.1 for the ship. In 
both cases the bandwidth is relatively smaller than one. 

Once the physical origin of the phenomenon is recognized, it is 
certainly desirable to derive a theory that allows one to predict 
the low-frequency oscillation. The most difficult point is to 
compute the exciting forces, since they are nonlinear, and it is 
with this task that the literature in the field is mainly concerned. 
We present next a brief overview of several approaches used by 
different researchers. 

The nonlinear forces at low frequencies are the result of two 
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distinct components: one is related to the second-order effect o f  
the first-order (linear) potential and the other is the effect of the 
second-order potential. 

Newman [8] has argued that the leading-order contribution, in ' 
A00, is due to the first-order potential. More than that, he shows 
that this contribution can be approximated by the mean drift. 
force in harmonic waves multiplied by the amplitude modula- 
tion of the sea spectrum. Newman's result is reviewed in the 
present paper (see Section 8). Pinkster [4] dedicates most of 
his paper deriving an exact way to compute the effect of the first- 
order potential. He analyzes the case where the water depth is 
arbitrary but deals with the influence of the second-order poten- 
tial in a crude way. He argues that this effect is important when 
the waves are long and diffraction is small, and from this he 
computes only the second-order potential due to the incoming " 
wave. As we are going to see, his assumption is only partially 
correct. Faltinsen and L~kens analyze the case of an infinitely 
long horizontal cylinder in a beam sea (strip theory) in water of 
infinite depth, but they compute exactly the effect of the second- 
order potential. By comparing their results with the ones de- 
rived by Newman, they conclude that the approximation intro- 
duced by this author is good enough for practical application. 

It is important to keep in mind the amount of numerical work 
involved in these last two studies. For instance, if we assume 
that the sea is approximated by a sum of (n) harmonic waves, 
Pinkster computes 1/~(n~ + n) nonlinear interactions among the 
linear potentials and Faltinsen and L~kens, besides this, also 
compute 1/z(n2 + n) second-order potentials associated with com- 
binations of possible low frequencies. This tremendous amount 
of numerical work, together with the fact that the importance of 
the second-order potential is weak in deep water, has certainly 
played a role in the decision, common among all these research 
efforts, to substantially or even totally disregard this effect. 

Ships, however, are usually moored in relatively shallow water 
and, as it is well known, the second-order potential becomes 
more important the shallower the water is. The results of the 
research work quoted above are inconclusive in this case. New- 
man disregards from the outset the second-order potential. 
Pinkster, although analyzing relatively shallow water, does so 
only in a crude way and Faltinsen and L~kens analyze only deep 
water. The main objective of this paper is to study, in a consis- 
tent and relatively easy way, the effect of the second-order 
potential, irrespective of the water depth. 

The starting point is to take note of the fact that Aw, the sea 
spectrum bandwidth, is "small." A consistent asymptotic theory 
in this small parameter is derived and an expression for the low- 
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frequency exciting force is then obtained. In this paper, as in 
Faltinsen and LCkens, only the case of an infinitely long cylinder 
in a beam sea is analyzed, but the results are rewarding. In fact 
if QK, Lv(t) is the exciting force in the mode K (K = 1, sway; K = 2, 
heave; K = 8, roll), then its asymptotic expression can be written 
as 

QK,Lv(t) = {ogAB. 6. [O(~!Lv(t) + Q(~!LF(t)]I [1 + 0(Awa;6)] 

where p = water density, g = acceleration of gravity, ,~ --- 
average wave amplitude, B = beam of ship, ~ ffi A/B = small- 
amplitude parameter, Aw = nondimensional bandwidth [see 
equation (79)], and 

Q~!LF(t) = effect, in low frequency, of first-order potential 

Q~!LF(t) = effect, in low frequency, of second-order potential 

The expression for QI<,LF(t) is correct to leading order in 6 and 
to second order in Aw. If Aw ~ 0.25, then the error is of order 6 
percent, which is generally quite reasonable. Furthermore, the 
functions Q(~!uF(t); Q~!LF(t) can be written as 

Q(~)LF(t) = ~)k(~O)- IF(t)[ 2 

[ + kek(& • V(t) + 

(k)- 1 d 2 
Q(~)LF(t) = ~-:)a°(°°) 7 d - t  (I/~(t)l) 

where (*) stands for the complex conjugate, F(t) is the amplitude 
modulation, and {0k(~o); P/¢(w); Q(~(w)}, k = 1,2,8 are coefficients 
that can be computed with basic knowledge of the linear har- 
monic potential in the average frequency ¢o. 

Clearly the amount of numerical work is comparable to that 
for solving the linear problem, and is, by far, much less demand- 
ing than the method of either Pinkster or Faltinsen and L~kens. 
Furthermore the expressions for these coefficients are relatively 
simple, and they provide insight into the relative importance 
between the two factors when the water becomes shallow. It is 
worthwhile, here, to emphasize one important point: The value 
of Q(~(~) can be computed without solving any second-order 
problem. 

2. T h e  n o n l i n e a r  p r o b l e m  

Let 6 be the small parameter associated with the wave ampli- 
tude and O(y,z,t) the potential correct to second order in 6. 

There are two sources of nonlinearities: the free surface and 
the body boundary condition. If v(t), w(t), and e(t) are the 
generalized displacement in sway, heave, and roll, the function 
• (y,z,t) must satisfy the following set of equations: 

(i) V a ~ = O ( V  a = bY 9 D2 + ~ z  2ha) 

- °°1 1[ 1 b a ~ +  = 2 - V ~ . ~ r  
(ii) g bt 2 bz z=o - g  - ~ -  

1 b,~ 
g bt 

bz ~, bt 2 bz lJ~=o 

. ( a v  _ + 
(iv) V#i'-fi0JOB0= y,O.~d t z .  dt]  nz'°(-~t "I-Y'-~t) 

de be 

_[e(t).(_d 7 de~+ b ( ~ 1  - z.--d]-} [v(t) - z .  e ( t ) ] ,  by \ b z / j  nz'° 

1 d 
- 2 "  d t  lea(t)] " (y" %,o + z .  n,, o) 

+ -e ( t ) .  be  + ba l i  
-~z [v(t) - O(t) . z] . bz2 j . n~, o 

+ [e( t ) .  b~  + 1 [w(t) + o(t). y]"  -iu j. n .o 

(v) Radiation condition (1) 

In equation (1), he = ny o" ] + n=,o. ~ is the normal to the cross 
section OB0, as indicated in Fig. 1, where bB0 is the rest position 
of the body, The radiation condition will be explicitly stated 
later in the paper, but it is important to keep in mind that cI, is the 
distortion of a free wave (or train of waves) propagating from left 
to right. 

The nonlinear term at the free surface is given by Newman [5], 
but the derivation of (1)(iv) will be omitted in this paper. The 
generalized displacements {v(t); w(t); 0(t)} can be determined 
from the equation of the body's motion, as shown in Section 4. 
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Expression (1)(iv) contains second derivatives of cI,, in a way 
not very convenient for the purposes of this work. It is desirable 
to transform it to an equivalent expression, whose deduction is 
indicated below. In fact let (s) be the curvilinear coordinate, as 
shown in Fig. l(a), and suppose that the cross section is approxi- 
mated by a stepwise contour line; see Fig. l(b). The size of the 
steps can be arbitrarily small and we can easily see, in this case, 
that 

(a) Ifln~,01 = 1, thenn~o ffi 0 andny,o ---~-~ ffi -~--  
' ~z ~s 

(b) If I nz,0l = 1, then nu, 0 = 0 and n~, 0 • i~y i~s 

Using these relations in (1)(iv), we obtain 

v~-,~01~.o=n~,o" ~ - ~ ' ~  +n~.0" - ~ - + U ' ~ -  

d[o( t ) . (w( t )+  1--. ) O(t) + -~ 2 y" O(t) • ny,o - 

• Iv(t ) _ 1 .  z + ~-- 2 • O(t)). nz.oJ ~)s 

• W "ny'0 

It is not difficult 3 to extend this demonstration for an arbitrary 
cross section. As is clear, this can be done by approximating i~B0 
by a stepwise contour line and then letting the size of the steps go 
to zero. Details will not be given here, but it can be shown that 
(2) is valid for all/~B0 that define a "regular" fluid region. The 
convenience of (2) will be realized later in this work. 

It is important to compare the orders of magnitude of the 
nonlinear correction and the linear term. If • = cI,1 + ~e-+ . . . .  
then, from the boundary condition at the free surface, we get 

~ l / ~ z  "~ O (~-~ " ~ )  

From mass conservation 

~ ~ o { -1 ~ h  
by \ t a n h  Koh } 

where ooZ/g ffi Ko" tanh Koh, A = wave amplitude (average), and 
co = wave frequency (average). Thus 

- -  ~ o (60) 

Ko~ 
6o - tanh Koh (8) 

and the wave is said to be of small amplitude when 6o << 1. 

3. N o n d i m e n s i o n a l  v a r i a b l e s  

The problem can be linearized, or else the solution can be 
written as an asymptotic series, if the wave amplitude and body 
motion are both small. The first condition implies 60 << 1 and 
the second 5 << I where 

3 This could eventually be done by recalling the Cauehy-Riemann 
equations and the conjugate stream function, to relate normal and tan- 
gential derivatives. 

= A (4) 
B 

In (8), B is the typical dimension of the cross section (see Fig. 1) 
and A is the typical value of the wave amplitude. Notice also 
that the condition 6 << 1 is essential for the potential theory, since 
only then the influence of flow separation and vortieity can be 
disregarded. 

In this work, we shall suppose the cross section to he given, 
although the wave frequency (w) and the water depth (h) can 
change. It is convenient, then, to take 6 as the small parameter 
and the role played by 6o will be discussed when needed. In this 
way we introduce the following scales 

• length scale = B 
• time scale = cob -a = , ~ - g  
• scale for body displacement = A 
• scale for angle of rotation = A/B  
• scale for potential = gA/coB 
• pressure scale = pgA 
• force scale = pgAB (unit of length) 

From here on, the dimensional quantities will be designated by a 
(^). Then 

t = COB ~ 

1 - ^  (u;z) = ~ (u;z) 

h = ~/B 

_~ COB 
• (u,z,t) 3 "  ;~(Y'~'~) (5) 

where the quantities on the left are nondimensional. The gener- 
alized displacements are written as 

1 . v(t) (sway) ql(t) = -~ 

1 . w(t) (heave) (6) q2( t ) = -~ 

B .  0(t) (roll) qs( t ) = -~ 

Correct to second order, we write then 

,~(y,z,t) = ~ . ~l(y,z,t) + ~z. ~z(y,z,t ) + . . .  

qk(t) = 6, qkO)(t) + 8~- qk(2)(t) + . . .  (k = 1,2,8) (7) 

Placing (6) into (1) and (2), one obtains, after separating terms of 
like order in 6: 

(a) Linear problem 

(i) vZ~l  = 0 

(ii) b2~1 " i~1  
~t - - q -  + ~ .-o = 0 

0,I, I 
(iii) ~ zf-h 

(iv) ~r~ .ho la ,  o -  \ - - - ~ - z .  dt / 

\ at Y ' - - d ~ ] "  ~,o 

(v) Radiation condition (8) 

Again the radiation condition will be specified later. 
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(b) Nonlinear correction 

(i) Vz¢2 = 0 

(ii) ~t - - q -  ~ z:o = - _ 2 v ~ .  v ~,-~-/ ~S ~z 

\ at ~ Oz/_1~:o 

(iii) ~ z=-h=O 

(dq,  (m dqa(Z'~ n 
(iv) V%'a01OBo = \--d?---z'--~-]" ~,o 

(dqz(Z'. t. dqa(Z)~.nzo_l__~[q(,)(t).(q2(1)(t).l__~yq(,)(t)) + \ - 2 V  ~'--2?-/ 

"ny,o--qs(1)(t)'(qa(1)(t)--lzqs(l'(t))'nz,o] 
+ ~ l~}~vXV~l [ ( ~ - -  qa(1)(t)) " 

t -ST" z.  ~,o 

(v) Radiation condition (9) 

In (8)(iv) we have used (2), and the nonlinear radiation condi- 
tion deserves special consideration. From Bernoullfs equation 
the pressure is given by 

p(y,z , t )=--  i~-[---z + ~ 1. ~t 2 . ,  "'" (10) 

and the free-surface displacement r/(y,t) can be written as 

n(y,t) = b. nl(y,t) + 5z. ~?2(y,t ) + . . .  

~ 1  ,l(y,t) = - - -  (11) 
6t 

From (8), (4) and (5) we obtain here 

- -  "~ 0 ---" 0 when Koh ---" 0 (12) 
'I h 

where K0 is thetypical wave number of the sea spectrum (w 2 = 
K0" tanh Koh; w = average frequency). Expression (12) shows 
that the effect of the second-order term increases as the water 
becomes shallow. 

4. L i n e a r  s o l u t i o n - - h a r m o n i c  w a v e s  

For a narrow-band spectrum the leading contribution in (A¢0) 
is harmonic. It is thus natural to analyze the properties of this 
solution, which will be done in the following four sections. In 
Section 8 we will review the problem of nonharmonic excitation. 

We intend to discuss briefly here the linear solution for a 
harmonic wave with frequency (w). The dispersion relation 

w 2 = K o • tanh Koh (18) 

is correct with an error factor of the form [1 + 0(~0)2]. The 
(linear) incident wave is given by 

1 
¢br(y,z,t) = ~ [~I(~,Z) ° e -'~` + (*)1 -(14) 

~bi(y,z ) = _ i .  cosh Ko(Z + h) etr, oy (14) 
w cosh Koh 

(cont'd) 

where (*) means the complex conjugate of the expression be- 
tween brackets If 

F =n~,° when K = 1 (sway) 
= I = n~,o when K = 2 (heave) 

vk(Y'Z) ] = - z . n y , o +  y.nz.  0 whenK = 8 (roll) 

m = - ( v ~ I -  ho)[~Bo when K = 4 (diffraction) 

then let Ck(y,z), k = 1,2,3,4, be the solution of the problem 

(i) v26k = o 

~ k  = ~%kl ~:o (ii) --~-z z=o 

(iii) -~z lz=_ h --- 0 

(iv) V~b k. h0[~s ° = vk(y,z ) 

(v) Ck(Y,z) "~ i cosh Ko(Z + h) 
w cosh Koh 

(15) 

• {T~}-e~r'dylBk wheny--~4-¢o (16) 

Equation (16) can be solved by the Hybrid Element Method 
(see [6]), In the region lul -< fi ~,k(v,z) is obtained numerically 
and for Yl >- b it is given by 

C k ( Y ' z ) = - i c ° s h K ° ( z + h ) w  eosh Koh {Tk} " e ' ~ y l R  k 

+ 2 An~'k" fn(z)" e-K"@l-b) 
nffil 

for 

where 

y e ±/~ (17) 

fn(z) = F~ . cos K n (z + h) w 2 = - K~ . tan K~h 

1 4Knh 
fOhfn2(z)dz = 1 (18) Fn2 - h 2Knh + sin2Knh' 

In (17) the coefficients Tk Re and A ~  can be determined in ,o,~ 
the following way: Once Ck(Y z) is numerically computed in the 
region l ul -< g, then 

4.  Kow . cosh Koh 
T k = _ 2Koh +-si~ff-2Koh 

Rk = m 4 .Kow. coshK0h 

2Koh + sinh 2Koh 

h Ck( +~,Z) • cosh Ko(z + h ) . dz 

"Lh Ck(-~ ' z ) ' c°shK°(z+ h ) ' d z  

An.k - @k(4-~,z) • fn(z),  dz (19) 

Details about the numerical computation of Ck(y,z) in the 
region l yl -< ~ can be found in [6]. 

The excitation forces are 
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Ok (e) = iw I~ (4)I(Y'z) + ~4(Y'Z))" vk(Y'Z)" dOB° (20) 
B0 

and the hydrodynamic coefficients are given by 

m~) = JOBo (Real C e(y,z) ) . vl(y,z ) • d~B o 

d~) = Jo co(Imag Ce(y,z)) . vj(y,z) . dOB o 
~o 

(g,] = 1,2,3) (21) 

where m~ ) = m}~)and d~ ) = d~)are elements of the added mass 
and radiation damping matric'es, respectively [M.] = [m~!; [Da] 
d [d~. If [M], [D~], and [K] are the inertial mass, vlseous 

ampmg, and restoring forces matrices, the harmonic general- 
ized displacement, {qk,h}, is the solution of the system 

[--co2([M] + [Ma] ) -- ico([Dv] + [Da] ) + [KI]-{q~,h} = {Q/c(e)} (22) 

Once determined qk, h, k = 1,2,3, we define 
3 

T = l + T4--iw 2 qk,h" T k 
k=l 

8 

R = R 4 - ico 2 qk,h" Rk 
kffil 

8 
A~ = A.~k -- ico ~ q*,h" A.~,k 

k=l 

(23) 

Then 

3 
6L(y,Z) = ~bi(Y,z) + qb4(y,z ) -- ico E qk.h" dPk(Y,Z) 

jffil 

IlL(Y) = iOniC(y,0) 

where for y X -i-b 

( ~ L ( y , Z )  -~ i cosh Ko(Z + h) . ~Te *r'°y } 
co cosh Koh [e ~K°u + R • e -~K°y 

+ E A~n" fn(z)" e-r"~Yl-/;) 
rim1 

= ~ TeW'°~ Yl 
IlL(Y) [e,rO~ + R .e_ , r  ° +ico y A~. fn(O).e  -r"@l-~) 

With (25) the linear harmonic solution can be written as 

(24) 

(25) 

~l(y,z,t) = [ 1 .  ckL(y,z) . e-'°'t + (*)] 

qk(U(t)=[l.qk, h.e-'~'t + (*)] 

~l(Y, t)=[1. i lL(y) .e- '~t+(*)] 

It is worthwhile to keep in mind that 

~L(y,z) = dpL(y,z;w); qk,h ---- qk,h(W); IlL(Y) ---- IlL(Y;CO) 

(26) 

(co) being the frequency. 

5. R a d i a t i o n  p o t e n t i a l  in  z e r o  f r e q u e n c y  

Once the linear solution for harmonic waves is derived, it is 
natural, in the context of this work, to study the nonlinear correc- 
tion. It is convenient, however, that we postpone this discussion 
to the next section and address, here, another sort of problem. 
The relevance of this will become apparent a bit later. 

We start by considering the equation of motion for the low- 
frequency oscillation, {qk, LF(t)}. As is clear from equation (22) 
we must solve, now, the system of differential equations 

([M] + [Ma]LF- {qk,LF} "4- ([Dv] -t- [Da]LF ) • {~/k.LF} + [K]" {qk,LF} 

= ~'{pk, LF(t)} (27) 

where [M]; [Do] and [K] are the inertial mass, viscous damping 
and restoring forces matrices; [Ma]LF and [Da]LF are the added 
mass and radiation damping matrices in low frequency; 5 • 
{Qk,LF(t)} is the exciting force in low frequency. 

In (27), c/= dq/dt and the right-hand side show, explicitly, that 
the exciting forces are of order & 

The matrices [M] and [K] have already been defined in Section 
4, and the effect of viscous damping is small in low frequency. 
In fact if Fv(t) is the dimensional viscous force, then it has 
typically the expression 

-'- pgBA • D O • qLF 

So 

[Dv] ,',¢ 0(~, Aco. ~. ALF ) (28) 

where ALF is the amplitude of the low-frequency oscillation. 
Since [M] ~ 0(1), then [Do] is pretty small, unless ALF is large. 

The smallness of the viscous damping effect in low frequency is 
one of the reasons why the amplitude of the slow drift oscillation 
can be large, in spite of the fact that the exciting force is of order 
(~). This point will be discussed further at the end of this section. 

The main objective of this work is to determine the low- 
frequency exciting force, {Qk, Lr(t)}, but (27) shows that the ma- 
trices [Ma]LF and [Da]LF must also be computed. These are the 
added mass and theradiation damping matrices in the range of 
frequencies 0 < w/c0 < 0(Aw) where, again, (Aco) is the nondi- 
mensional bandwidth of the sea spectrum. 

These matrices can be determined from (21) where now 
Ck(y,z) is the solution of (16) when w = w- Aco. Consistent with 
the error [1 + 0(Aco)2] assumed in this work, the potential tkk(y,z) 
can be approximated by cbkI°)(y,z), which is the solution of the 
equation [see (16) and assume w = O]: 

(i) V2¢k (°) = 0 

OCk (°) [ 
(ii) Oz ]z=o = 0 

O~k(°/] 
(iii) --~z [z=-h = 0 

(iv) V~bk(°) .h0lOB ° = Vk(y,z ) (k = 1,2,8) 

Iv/ ~ / ° / (y , z /~  [B~k + O~gl Yl - b)] 

• 1 when y ---- q-co (29) 

In (v) we have used the most general solution of (i), (ii), (iii) 
that is not exponentially growing when I yl ~ oo. 

Equation (29) is the standard flow equation, but the values of 
the velocity at infinity, D~k, are unknown. Furthermore, if mass 
is conserved, the solution'~bkI°)(y,z) exists but is not unique. In 
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fact, if ~bk(°)(y,z) is a solution, then ¢t(°)(y,z) + C also is. In a flow 
problem the constant C is irrelevant, but here it plays a role. For 
instance the added mass in heave can now be written as 

rn~ (0) = [ ¢z(O)(y,z) . n~, o - d~B o + (Real C)- 2b 
J~ Bo 

and so m22 ~°) depends on the specific value of C. 
This problem is well known, but there is a point that is worth- 

while discussing: It will be seen later that the second-order 
potential at zero frequency, ¢k2o(y,z), is essential in the theory 
proposed here. It happens that $2o(y,z) satisfies an equation 
similar to (29), but with a nonhomogeneous term at the free 
surface (see Section 6). So the solution for ¢2o(y,z) is nonunique 
and the constant C will be important again. The determination 
of this value follows a reasoning very much the same as the one to 
be used here, and this motivates a close analysis of (29). 

We start by introducing the linear functionals 

Vk(~k) = f vk(y,z) .~b(y,z) .dOB o (k = 1,2,8) (30) 
J~ Bo 

where ~b(y,z) belongs to a sufficiently broad class of functions (see 
Appendix 1). 

If equation (29)(i) is multiplied by ¢/(y,z) = 1 and integrated in 
the fluid region we obtain the mass conservation equation 

D0+k + D~,/, = - V/c(1) (31) 

where from (15) and (30) 

Vk(1) = Lw" 6k2, k = 1,2,3 (32) 

5kt being the Kronecker delta function and Lw the waterline of 
the body (Lw = B in Fig. 1). 

Problem (29) has a solution if and only if D~k satisfy (31), 
although they can otherwise be arbitrary. Certainly we could 
invoke the symmetry of the cross section to write 

Do+k = D~,~ = - 1 . (Lw) . ~/¢z (k=1,2,3) (33) 
2 ~  

but it is convenient to consider them undetermined as yet. 
It can be shown (see Appendix 1) that $i(°)(y,z) can be ex- 

pressed as 

, ~0)(~,~) = ~0~(~,~) + (~0+,~ + ~;,~), 
2~ 

+ (Bo+,/~ - -  B~,/,) • p~(v,z)(Ivl -</;) 
m 

~°~Iu,~) = [Bo% + o~,~(lvl - ~)I" go(~) + ~ ~(~<o~) 

• g n ( z ) . e  -x"@l-~) (y .~  4,~) (84) 

where ~t°)a(y,z); p.A(y,z) are well behaved functions, defined in 
the region]y] _< b, and can be numerically computed. 

In (84) also 

go(z) = 1/~/-h 

n~ 
g,(z) = (2/h) 1/z" cos X,(z + h); X n = ~ -  

L~n(¢) = ]~h ¢ (4"~ 'Z )  ° gn(Z) ° dz (85) 

and B~,k; D~k are related by means of 

G . [  11 rv ,p+,l+roo+ l 
L~,,~ J -- Lv,@_/j L.O~kJ 

where G is a positive number defined in Appendix 1 a n d  

= 1 o*(y,~) ~-~ 4. pA(u,z) (Ivl -< ~) (37) 

The singular equation (36) has a solution if and only if mass is 
conserved [see (31) and notice that Vk(p + + p - )  = (1/,~)Vk(1)]. 
If this is the case we can write 

1 1 D:e B~k = " ~ "  Vk(P4") + ~-~" o,k + C (38) 

The values of C; D~, k are unknown and cannot be determined 
within the context or' the mathematical problem. A physical 
argument is needed and, in this case, we recall that Ck(°)(y,z) 
intends to be the limit of Ck(y,z), the solution of (16), when co ---- 0. 
Since 

Ck(y,z) ~ A~(w) .  e ~@1-~) • fo(Z) when y ---- 4-oo (39) 

where 

f°(z) = " 2Koh + sinh 2goh ] • cosh Ko(z + h) 

then, for co << 1, the amplitude A~(co) is determined from the 
equation (see (86) and reference [6]) 

- rAo+,o,1 
_ ~K0j-/Ao(co)/-- (co -- KoF) 

and so 

= i__. 1 . + 1_=. yk(p4, ) (40) 
A~(co) 2 K o ~  Vk(1) 2c 

Now fo(z) ---" go(z) when co ---- 0 and from (39) it follows 

~k(v,z) ~ [Ag:(~) + i -K0" Ag%4(Ivl - b)]" go(z) 
when co --* 0. Using (40) and looking to (84) we obtain 

D + _ 1 0,k - - • vk(1) 
2 ~  

B.~ _ 1 o.k - - ~ "  Vk(p4") (41) 

lim [co- Imag (¢/,(y,z))] = 1 . Vk(1 ) 
~--,o 2 ,~  

Expression (41) for D~./, coincides with (33) [see (82)]. Also C 
= -(1/2G) • D ~  is the proper value of the constant, and from 
(21) 

m(e°] = ]~no d~(e°)(Y'Z) " vt(Y'z) " dOB° 

d(~ ) = lim (d~)(co)) = 1 . Ve(1). Vt(1) (g,j = 1,2,3) (42) 
w~O 2~fh 

where V/,(1) is defined in (32). 
From (42) we obtain 

[Ma]LF = [m(e~)](1 + 0(Aco) z) 

[Da]LF = [d~e%l + 0(Ao~) e) (43) 

The radiation potential at zero frequency, $k(°)(y,z), must be 
always computed in order to determine the low-frequency oscil- 
lations. As we are going to see in Section 8, we will also use these 
potentials to compute the exciting forces in low frequency, due to 
the effect of the second-order potential. We close this section 
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with an analysis of the order of magnitude of the slow-drift 
oscillation. We first make the following observation: For a 
body floating on the free surface, like a ship, the slow-drift 
phenomenon is important in sway, since only in this mode is the 
restoring force small. But then from (43), (42) and (32), d (°) - 1 1  - -  

d ~  = d~  = 0 and so [Da]LF can be taken as zero in (27). If the 
cross section is totally submerged, as the cross section of the 
semisubmersible is, the slow drift can be important in heave and 

i roll, but now d(e~ ) = 0 since L~o, the waterline, is zero. It follows 
; that [D~]LF can always be taken zero in (27), and if ALF(f~) is the 
amplitude_of the harmonic response due to the input Q~,LF(t) = 
exp(i • 12- w- Aw. t), where ~ ~ 0(1), then from (27) we obtain 

[(_~z. (Ao0)~. f f .  M + K) 

+ i .  ~O. ~ .  ho~. (C v .  ~o. AW. ~ .ALF)]°ALF(~ ) --- 

In the above expression M is the total mass, of order 1, K is the 
small restoring coefficient, and Co • Aw • w • 5 • ALF, with Cv "~ 
O(1), is the viscous damping; see (28). 

As has been said before, the sea spectrum will excite resonance 
if ~o- A¢0 is such that K, '-  0(~0. Aco) ~. Writing, in this case, K = ~ 
• (A60) z. K, K -'- 0(1), we obtain 

[(~[ - -  ~2M) + i" ~Co~" ALF ] - ALF(~ ) - -  (~o. Aw) 2 

If ~ = ( K / M )  l/2 is the resonant frequency, then ~ ,-~ 0(1) and 

(a) ALF(ft) ~O(~/(~Aw)2), when l f l -  flal ~0(1)  
(b) ALF(~)~0(I/(~Aw)), w h e n l l 2 -  12a[ << 1 

if K ,-- 0(¢~Aw) z. If K is small but larger than (Aw • ~0), the 
response is quasi-static and ALF "~ O(5/K). 

To get an idea about the numbers let us assume that 

B = 2 0 m  

~o = 60 B = (g/B) ~/~ (7" = average period of sea ----- 9 sec) 

Aw = 0.20 (T n = natural period of ship " 45 see) 

The amplitude of the low-frequency oscillation will be given 
by ~/LF = A.  ALF, where fi, is the average amplitude of the waves 
and 

ALF ~, 1.25 if Il l--  i2s] ~0(1)  (A ~ 1 m; 5 = 1/20) 

ALF ~ 5 if 112 -- 12~1 << 1 

This order-of-magnitude analysis shows, quite clearly, the im- 
portance of the low-frequency oscillation. 

6. N o n l i n e a r  c o r r e c t i o n - - h a r m o n i c  w a v e s  

Once the linear solution {~l(y,z,t;o~); q~l)(t;co)} [see (25)] is 
known, one can determine the nonlinear correction ~z(y,z,t;¢o) 
solution of (8). 

The term ( ~ t  ~2) dqa(Z)~ ( d q 2 ( Z ) + d q a ( 2 ) ~  z.  q V /  + 

in (8)(iv) is associated with the radiation problems and contrib- 
utes to the added mass and radiation damping matrices, as has 
been shown in Section 4. The excitation of ~z is provided by the 
remaining terms in (8)(iv) and (8)(ii). Since the linear solution is 
harmonic we obviously have (RHS = right-hand side) 

RHS of (8)(ii) = L~o(y) + [Lz~(y). e -2~°~t + (*)] 
RHS of (8)(iv) = B2o(Y,z ) + [B22(y,z)e -2t°~t + (*)] 

where RHS of (8)(iv) means the remaining terms of this bound- 
ary condition. In the above expression [see (26)] 

L2o(y ) -- - ~ y  i .  CL(Y,O). ~)Y ] 

B2°(Y'Z) = -4 -~s [-~s [(ql,H -- z . qa,H) 

• nv,o + (q2,H + Y" q%H)" nz,o] + (*)} (44) 

The functions L22(y) and B22(y,z) can also be computed but 
they will not be used in this work. From (44) and (25) we obtain 

L2o(y ) ,,~ 0(e -Kx'DI) when lul---~ (45) 

The potential ~2(y,z,t) can also be written as 

~2(y,z,t) = #zo(y,z) + [cI,2z(y,z ) . e  -~°~t + (*)] (46) 

and since we are interested in low frequency, only ¢20(y,z) will 
be needed. From (8) it follows 

(i) v ~ ¢ 2 o = 0  

i)¢2o] 
(ii) i)Z ]z=0 = L2°(Y) 

Off) ~¢2°1 --O 

(iv) Vq~o.fiolon ° = Bzo(y,z) 

(v) ~bzo(Y,Z) '~ [A~:o + U~o(I Yl - ~)]" ~ when y - -  4-o0 (47) 

The radiation condition (47)(v) is equivalent to (29)(v), since 
L2o (y) -* 0 when I vl --" o0; see (45). The values of A~o; U~o are, 
as yet, unknown and we postpone the discussion of (47) to the 
next section. Here we will derive a useful expression and later 
we will recall some results associated with mean values. 

It is important, in order to deduce the mass conservation 
equation and other equalities, to compute the integral 

I ( ~ b ) = - f l  VCz0" v ~ . d A .  (48) 
. $ J A  ® 

where A o~ is the entire fluid region. The function ~k(y,z) will be 
restricted to the class where (v~b) 2 is Lebesgue integrable and 
such that 

ff(v,z) ~ [B ~ + O+(Ivl - b)].  i + O(e-a~[) when y --~ 4-¢o 

(49) 

where 3 > 0 and B*; D a can take any value. 
From (47) and (49) it follows that 

-- - [  L 0/yl • • dy - [ B oO, zl . ¢ ly, l . d Bo 
JF 3~ Bo 

- [Uz+o(B + - ~- D +) + U~- o • (B- - ~.  D-)] 

- - o +  + tJ;o "D-]  "lvl 

The integrals over the free surface F and OBo can be simpli- 
fied. In fact if we assume, for a while, that nz,o = O when (y = 
:l:b; z = 0) (see Fig. 2), then 

O4'L 
i~-y (+b;0) = iwq l ,u  [see (8)] 

b~bL (o-b;0) = ~ ~bL (-I-b;0) = 4-o: z • ~bL(-4-b;O ) 
o z  
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~ 1% 
( -b ,o)  Z ~  (b,o) 

n o s V \ ~ _  

Fig. 2 Contour G -- FU~Bo 

l f l ° ~ S  

nv,0(4-b;0 ) = :F1 

b~b~L (4-b;0) • nv,o(4-b;O ) = -w  2- q~L(4-b;0) 
bs 

Placing these relations and (44) in I(ff) we obtain, after inte- 
grating by parts 

. ±  I(ff) = (1 -IRI%" [B- + D-(lYl - b)] 

.A_ K°" I TI 2. [13+ + D+(I vl - ~)] 
260 

+ 1 "  R e a l 2  iwJF dPL(Y'O)'~ (y'O)'~-~-~(y;O)'dyOy 

T ( [(ql,H -- Z" qs,u)" nu,O W (Q2,H T y .  q3.u)" nz,o] J~ Bo 

b¢~,. b ~ .  d3~ - -  [U+o(B + - -  b- D +) + U~zo- (B- - b- D-)] 
bs bs J 

- [U+o "u+ + U - 2 o ' D - ] - I v l  

where R and T are the reflection and transmission coefficients; 
see (23). The above equality can be easily generalized to sec- 
tions that do not cross the free surface at a right angle, but this 
will not be pursued here. Notice that the integrands in F and 
bBo have a similar expression. In fact 

i60 ° dpL ( tJ,O ) = - -  ~ . ( V d)L . hO)(y,z),F 
~60 

(ql,n --  Z" q8,n) " ny,o 

+ (q2,H + Y" q3,n)" n~,o = -- 1 (VeL " hO)(~,z),~Bo 160 

So 

i60L[. . .]dy+J~ [. • .] dbBo 
Bo 

i [c bCkL bq/. ds = ~  ( v e L ' f i o ) c  bs bs 

where C is the line indicated in Fig. 2. 
The integral I(~k) is, in general, divergent, as the term that 

increases with lYl indicates. It is important, however, to distin- 
guish the convergent and divergent parts and for this we define 

1 .  Ileal i60 4~L(y,0) • (y,0)- ~ (y,O)dy 
J(¢~) = 2 ~ o v  

[ [(ql,H - -  Z" q3,H)" nvo + (q2,n + Y" qs,H)" nz,o] + × 
JO Bo 

bOL btp . ds + i60 ~ L ( Y ,  O) bs bs Jr~ 

b~ (y,o). [b~ (u,o) - D+] Q d ~  

by Lby 
b *  + D -  

+ i60.4~ *L" + by 
+ ~L~.ITIZ] du 

60~ .] 

'K°60~ (1 - ,R ,2) ]  dy} (50) 

where FA; F* are the free surfaces in the regions ly I < ~; y <> 4-~, 
respectively. Notice that J(ff) is convergent in the class (49) and 
so I(~) can be written as 

I(~k) = J(~) - (B+- ~" D+) "[U+o + 2 - ~  "T'2 ] 

- ( B - - ~ . D - ) "  [U2-o - 2--~--~ ( l K °  - IRI%] 

- u ; +  260~ "ITI2 "D+'Ivl 

- [  U~-°- 260~hK~ 
] (1 -lal%j. D-. IVl 

_[D_. Ko Ko ] 260~ (1-1RI%-O+-- - ' ITV (lul -~) (51) 2,o~ 
Expression (51) will be used in the next section. But first, we 

shall quote some well-known results related to means values. 

(a) M e a n  drift  forces  

Suppose that B(t) is thewetted surface of the body at time (t), 
with normal h(t) = n~(t). ] + n~(t). ~. Let vk(y,z;t), k = 1,2,3, be r 
the expression defined in (15) with h(t) in place of h0. 

The generalized force acting at time (t) is given by 

[Io P(Y'Z't)'vk(Y'Z't)'dbB(t) fk(t) = B(t) 

+ f~oz " vk(Y,z) " dbBo] 

where p(y,z,t) is defined in (10) and 

is the hydrostatic generalized force. 
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Since the wave is harmonic, there exists a second-order compo- 
nent of Qk(t) that is constant in time. All other terms are 
harmonic, with frequencies 00 or 260, and their mean values over a 
period are zero. We can write then, correct to second order in 
(6) 

QI~(t) = (QI~,L " e-i~t + (*)) + ~" [Qk + (Qk,22" e-2+~t + (*))] 

(52) 
where QI~,L is the coefficient of the linear force and 

Ok = Q k ( c 0 )  ~ coefficient of mean drift force (53) 

Notice that 

27r Q1,(t). dt  = ~- 01," (1 + 0(6)) 

The values of ()/~(¢o) can be computed directly, as shown in 
Appendix 3. In sway, however, we can use the conservation of 
linear momentum to derive the simpler relation (see Maruo [7]) 

2Koh 1 
01(60) = 1 "  l+sinh2Koh j (I+IRI~-ITI (54) 

(b) Mass transport 

It is well known that the nonlinearity induces a mass transport. 
In fact the instantaneous mass flow is given by 

] M±(t )  = lira . d z  
, , +  ++ L J-,, 

= 6 .  ( M p .  e -`°'t + (*)) + 6 + 

• [f/1 + + (M~2e -2*~t + (*))] + . . .  

where ~2. AT./+ is the mean value of Me( t )  over a period and 

~ + = ~ - v ; + ~ . l r l  2 

[ 1 /IS/- = -x /h .  U;o - ~ (1 - I R I  +) (55) 

In (55), U~0 are the asymptotic values of 4-0~2o/0y when y ---- 
4-¢o; see (47)(v). 

From mass conservation we should certainly have that 2~/+ + 
2~/- = 0. But then 

K0 
U+o + U;o = ~ (1 - I R I 2 - 1 T I  2) (56) 

Equation (56) stipulates a relation between U+0 and U~0 and it 
has been derived by directly invoking mass conservation. We 
can, however, deduce this relation from the mathematical equa- 
tion (47). In fact, from the equality I(1) = 0 [see (48)], we obtain 
[use (50); (51) with B t = ~/-h; D + = 0; $(y,z)  = 1] 

1(1) = - , ~ [ ( U + 0  + Uz-°)- K~°~200~/h ( 1 -  ]RlZ- ITI2)] 
and so I(1) = 0 if and only if (56) is satisfied. 

Relation (56) is similar to (31). Both are related to mass 
conservation and are necessary conditions for the existence of a 
solution for equations (29) and (47), respectively. 

In Section 5 we invoked symmetry to induce (88), and only 
later was this identity mathematically demonstrated; see (41). 
Note that the argument of symmetry was imposed, on physical 
grounds, on the mathematical problem and could be derived 
mathematically only when we considered dpk(°)(y,z) as the limit of 
Ck(y,z) when 00 ---- 0. 

A similar procedure will be followed now. First a straightfor- 
ward physical argument will be used to induce the values of U~: 0 
and only later on, when we consider ¢2o(y,z) as the limit of the 
second-order potential in low frequency, will these relations be 
mathematically deduced. 

The physical argument here is that we expect 37/+ =/~/-  = 0 
since, otherwise, we would get a net flow, from right to left, and 
whose source is nowhere. From this condition we obtain 

U+o = Ko .IZl 2 
2 0 0 ~  

U;o- Ko (1 - I R I  ~) (57) 
200~ 

With (57) the expression for I(ff) can be written as 

I(~) =J(J/) - [D +- U+o + D - -  U~o]-(Ivl - ~ )  (58) 

7. F o r c e  c o e f f i c i e n t s  a n d  r a d i a t i o n  c o n d i t i o n  for  
~20(Y,z) 

We will show in the next section (Section 8) that the numbers 

QIk)  ]~So¢2O(V,z ) . 20 = -oo vk(y,z) . dbBo; k = 1,2,8 (59) 

represent, asymptotically, the coefficient of the generalized 
forces in low frequency, due to the effect of the second-order 
potential. 

We will see, next, that Q~  can be computed without deter- 
mining dp2o(y,z). This is a trivial extension of Haskind relations. 
In fact from (29)(i) 

0 = J/a V2¢k(°) • ¢2o" dA~ 

= # A  +,+,,o, . + ° +  . ,+A+ 
. + 

From the boundary conditions of (29), (47)(v), and (44) we 
obtain 

- = [o0,k • V~o + o ; ,k -  v;0] 
3J~ Bo 

• (I vl - b) + (A~+0 • O+0,k + A;0-  O;,k) 

Using (58) and recalling that D + = D + when t~(y,z) = o,k 
d~k(°)(y,z) [see (49) and (29)(v)] we get 

Q(~(00) o~. J(¢k (°)) 00Lw = - • ~k2-(a~+o + a~-o) (60) 

where 6kt is the Kronecker delta function and we have used (38). 
In equation (60), ~bk (°) (V,z) is the radiation potential in zero 

frequency; J(.) is the convergent integral (50). 
As in Section 5 the values of the constant A~: o affect the heave 

coefficient and they can be determined only if we give a more 
precise physical meaning to ¢2o(y,z). For this purpose, suppose 
we have two waves with frequencies 00 4- (A00/2) where A00 << 1. 
The nonlinear interaction will introduce the frequencies {0; A00; 
200 - A00; 200 + A00} and. in the slow-drift phenomenon, we are 
interested solely in the nonlinear term in the frequency (A00). If 
&2(y,z;A00t) is such a potential, we define 

¢~o(y,z) = lira ~z(y,z;A00t) (61) 
Ata ~0  

Condition (61) is similar to one used in Section 5 

dp~°)(y,z) = lim ¢/,(y,z;00) 
c a ~ 0  
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Fig. 3 Amplitude spectrum S(6o) 

and it is convenient to consider the pure harmonic wave as if it 
were the limit of a narrow-band spectrum when the bandwidth 
goes to zero. From (61) we can compute A~0; U~: 0 (see Appendix 
2), and it turns out that U~o are given by (57). In other words, the 
no-net-flow condition has now been deduced from the mathe- 
matical equations, once we consider the pure harmonic wave as 
the limit defined above. 

From Appendix 2 we obtain 

+ + = [ / /  ,++ / /  ,+ I ++ + I:°,+I+++,] 

(62) 
With this relation the coefficients Q~(~) can be computed at 

once. In fact the integrals in the region y <> 4-~ [F 4- in (50)] can 
be analytically computed, if we use the series expansion (25); 
(84). The integrals in the region ly[ < ~ [FA and bB0 in (50)] must 
be numerically determined, but this is easy since only the values 
of the tangent velocity [~4)L/bs; i~q~/~(°)/0s} are needed. 

In sway the expression for Qz0 has a simple form. In fact 

04¥ 
Q~)(~o) = ~o.2 Real i~o eL(Y,0). ~ (y,0) 

0~o___~) 

(g,O)dy + fo [(ql,H-- Z. qa,n).n~,o 
( )Y B o 

o~ o~ °) e~ (6a) 
J Os Os 

-I- (q2,H "t- y . qa,n)n+,o] 

o r  

1 Q(~)(~) = ~- 

++'~+++ +'¢G°>++ e+} (64> 

where C is the line indicated in Fig. 2. 
We close this section with an important observation. The 

values Q(~(~) can be explicitly determined in the limit of shallow 
water orlong waves (Koh --* 0). If we consider, as we have done 
in this work, that the motion in sway is not restrained when 
solving the linear problem--which is quite reasonable since the 
average frequency 60 is, in general, much larger than the resonant 
frequency in sway--then in the limit as Koh --" 0 we can easily 
see that the linear solution is given by [see (14), (22), (24)] 

cosh Ko(z + h) 
CL(y,Z;~O) ----- ¢I(y,Z;~0) = - i .  . e~KOY 

w cosh Koh 

i 
ql ,h  - -  tanh Koh 

q2,h --~ 1 (65) 

%,h ~-- Ko [or O/KoA = 1, see (6)] 

IRI 2 -"-' o; I rl" -,~ 1 

Physically the expression (65) means that the body follows the 
fluid particle, and this condition holds if (i) the waves are long or 
the water is shallow, or (ii) the body's dynamic is unimportant or, 
in other words, we are below any resonance peak. 

Under these conditions the potential 492o(y,z) must be the coun- 
terflux associated with the mass transport of the incoming wave, 
namely (~m = go" tanh K0h): 

go 
rbz°(Y'z) = - 2~oh" y when ~ ---- 0 (66) 

In fact, if we use (65) in (44), (57) and (62), we obtain (see also 
Appendix 2) 

L2o(y) = 0 [(47)(ii)] 

go 
B2°(Y'z) ffi - 2~oh " ny'° [(47)(iv)] (67) 

K0 
(k2°(Y'z) "" - ~ h  y when y ---- 4-= [(47)(v)] 

With these boundary conditions it is easy to check that the only 
solution of (47) is given by (66). From (59) it follows then that 

koIo y .  vk(y,z ) • dOB o when ~ --* 0 (68) 

The above relation can also be written in an equivalent form if 
we apply Haskind relation to (47) and use (67) In sway, for 
instance, we obtain 

Ko [ 1 ]o  4)~o)(y,z) 
Q(~(~) = - ~ - "  So = Ko" ~b~°)(°°, 0) + ~ B0 

• n~, o • dOBo] (69) 

where So is the cross-sectional area and 4~°)(y,z) is the sway 
potential in zero frequency. Placing (65) into (68) or (64), we 
can derive an expression for Q(zg~/o) that coincides with (69). 

From (68) it follows that 

ik) g, 
Qmo_( ) ,~ O(h-+/2) when Koh --~ 0 (70) 

60 
which shows the importance of the second-order potential as the 
water becomes shallow. 

8. N o n l i n e a r  d i f f r a c t i o n  o f  a n a r r o w - b a n d  
s p e c t r u m  

We start this section by considering briefly the properties of 
the sea spectrum, described by a function S(o0) as indicated in 
Fig. 3. It is usual to define 

~0 = average frequency = (Mz/Mo) 1/2 

o0 c = central frequency = MI/M o 
,~ = average amplitude = (2M0) 1/2 = 1 (71) 
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Notice that A = 1 in nondimensional variables, where ~ is the 
ratio between the dimensional A and the beam B. From the 
definition (71) we can easily check that 

w- c < 1 (72) 
60 

where the equality sign holds if and only if S(w) = So" ~(60 - 60o), 
that is, for a harmonic wave with frequency w0 and amplitude 
(2S0)U 2 

A realization of this spectrum with duration 7'] = 27r/A60y, 
where Aoq << 1, can be written as 

rl(y,t) = -- ~ .  A 1 • e '(~'t-K'y+a') 4- (*) (0 <-- t <- TI) 
t=1 

w l = J ' A w I  J =1 '2 '  

wtz = K t • tanh K1h (73) 

where ~l(y,t) is the displacement of the free surface, due to the 
incoming wave, the phase a t is random, and the amplitudes A t 
are given by 

1 
At~ = S(°°t)" Awl (601 = 1" A~/) (74) 

From the definition of ,4 and (74) we obtain (Ao~/--~ 0) 

i = ,4 7 (75) 
=1 

We introduce now the definitions 

t = 6 0 .  t (76) 

and the function 

F(t) = __~ ~ A--!A " e-~(t~t+~i) = - -  y,¢* -AAJ e_i(~+~ ) (77) 

1=1 jffil 

Taking y = 0 in (73) we obtain, with the help of (77) 

~l(t) = - i .  ~ .  F(t). e -tSt -I- i ~ .  F*(t) .  e +iS°t (78) 
2 2 

where ~/(t) = n(0;t). Note that (rms = root mean square) 

rmsF(t)  [ ~ j 0  IF(t) l~ 'dt  = 1 (79) 

rms ~ -  = rms • = Aw = 1 - (80) 

From (72) it is clear that Aw is a real quantity such that 

0 < Aw < Vr2 

and Aw = 0 if and only if the wave is harmonic. 
The spectrum is said to have a "narrow band" when A60 << 1. 

In this case the wave looks like a harmonic wave whose ampli- 
tude modulates slowly in time [see (78) and (79)]. 

For the semitheoretical Pierson-Moskowitz spectrum (see, for 
instance, reference [5], page 315) A60 --~ 0.40, but this is known to 
represent a fully developed sea with a relatively wide range of 
frequencies. Other models, like JONSWAP [8], are similar to 
Pierson-Moskowitz, but with a smaller bandwidth. As has been 
discussed in the Introduction, the slow-drift phenomenon is of 
importance when A~ - ~ ~ wn, where 60n is the natural frequency 
of the system. Typically this happens in the range 0.1 < Ao0 < 
0.25, which covers natural periods from 40 to 100 sec for a sea 

with period around 10 see. In what follows we will assume A60 
<< 1, and an asymptotic theory, with the error factor [1 + 
0(Aw)2], will be derived. 

Let g~c(y,z;60) be the linear response due to a harmonic excita- 
tion with frequency (60) and unitary amplitude [see (25)]. We 
define 

g, Lj(y,z) = Cd~,z;o~)lo,:~j 

Cdy,z) = ¢L(y,z;o~)lo,=:o (81) 

Since the input is a sum of waves with amplitude A I and 
frequency o~t, the linear response is given by 

] 1 . ~ .  e_~5 t . ~ A I . e-~(~ajt+~? 
q~l(Y'z't)= 2 t =1  

- ~- -  ¢L,j(Y,z) + (*) 

711(y,t ) = "1.2 ~" e-~St . ~* -~'AJ I1L, J (y )  " e_i(Sait+~y) + (*)] 

I j=l 

qk(1)(t)=L l ' ~ ' e - i [ ° t  ~ A j  1 • -~--. q~-/-  e-i('~";+~J ) + (*) 

j=l 
(82) 

For a narrow-band spectrum A t decreases rapidly if ~2 t > 
0(hw). The terms in the series (82) are relevant only when f~t 
0(h~) and so 

~L,t(y,Z) = ~)L(y,Z;5 "t- 5~j) = [gbL(Y,Z ) "t- 5" ~j" DL(Y,Z) ] 

• (1 + 0(At0) 2) 

~ILj(Y) = 71L(Y;60 4- W~j) = [~/L(Y) "t- 5 .  ~j.  dL(Y) ] 

• (1 + 0(A60) 2) 

q~),H = qk~( ¢° + ~ol2j) = [qhd~ + 5 .  f~j + qk,H] 

• (1 + 0(~w)  ~) (83) 

where 

DL(Y,Z ) ..--- ~ [ ~L(Y'Z;60)l°J:5 

dL (Y) = ~ [~IL (Y;60) ]~=~ 

d 
6~,. = ~ [qk, n(w)L:~ (84) 

The functions {DL(y,z); dL(y)} exist, are well behaved, and can 
be computed numerically. More is said about them in Appendix 
3. 

Placing (83) into (82) and using (77), we obtain, with an error 
factor of the form [1 + 0(Aw)2]: 

• l(y,z,t) = (F(t). ¢pL(y,z) + i .  ~ (t). OL(Y,z))e -~St + (*) 

nl(y,t) -- (F(t) - nL(Y) + i .  ~ (t). dc(y))e -~g't + (*) 

qh(1)(t) = (F(t) .  qk,H + i" -~-  (t) .  qkN (*) 

(85) 

In (852, {¢L(y,z); ~IL~Y); qk,~1} are referred to the average fre- 
quency 60 and we use A = 1; see (71). 

We are in fact interested in the excitation force in low fre- 
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quency. There are two distinct components of this force, name- 
ly 

Q~,)LF(t) = generalized force, in low frequency, due to the 
second-order effect of the first-order solution. 

Q~2,)F(t) = generalized force, in low frequency, due to the 
effect of the second-order potential. 

and so 

0k,Lr(t) = excitation force in low frequency (dimensional) 

=pgAB. ~. [Q~I,)LF(t) + Q~,Z)F(t)] (86) 

In (86), A is the dimensional average amplitude of the spectrum 
and 6 = A/B. 

It is not difficult to check that the expression for Q~I)Lr(t) is 
given by (see Appendix 3) 

= {~)k(~)- IF(t)l 2 Q~I,)LF(t) 

In (87), 0k(/O) is the mean drift coefficient at the frequency ~o 
[see (53) or (54)1 and P~(~) can be computed as indicated in 
ApEendix 3. Again, using conservation of linear momentum, 
P~(~0) has a relatively simple form in sway. Its expression is 
given by 

K° h 
el(~) = (1 + ITI 2 - Ial z) - *- sinh 2Koh 

1 - (1 + Koh)/(cosh Koh) 
(1 + Ial ~ - I T I  z) 

1 + (2Koh)/(sinh 2K0h) 

_ _ _ . (  2K°h ~ - ( d R * - T . d T "  ~ + 1 ~  . , ~ .  a + ~ , ( ~ )  (88) 
4 sinh 2Koh ] " ~  do~ ] 

where, in (88) 

K0 = K0(8) 
a = a (5 )  

T = T(~) G \dw]+++ ~ \dw]+=+ 

and #(/o) is given by 

= w Real~ /  - - ( y , O ) . ~ L ( Y ) . d y +  
~'(~) 2 [JF~ by  J~Bo by  

• [(qLH -- z -  qa~) • ny,o + (q2~ + Y" qa~)" nz,0] "dbBo 

_ ~ ~ Kn 
+ io~ E E ~ "(A~n>'(A~>*'f+(O)'['~(O) 

n=l m=l Kn Km 

- eiKO ~ . + E K o -  i . e  a @ . R * . K  n 
n= 1 K+ + i .  K o 

_ i .  e -iK°b + R .  e -iK°~. Ko] " 
A n • Mo) 

K n - iK o J 

• + o  +°> 

In (89), FA is the free surface of [ Yl < ~; K0, K~, + A n,T, R, and 
f , ( 0 )  are defined in (13), (18), and (23) and are related to the 
linear solution in the frequency w = w. Note here that the series 
converges fast if the water is not too deep and that the integrals 
over FA and bBo must be numerically computed. 

It remains now to determine Q~.Z)LF(t). To leading order in the 
amplitude parameter ~ we can easily see, from (10), that 

= _ b • dbBol (90) Q~Z,)Lv(t) ~[J~BogP2(LF)(Y,Z,t)'Vk 
.I 

where a22(LFI(y,z,t) is the component of the second-order poten- 
tial in low frequency. 

Expression (90) indicates that Q~)Lv(t) is already of order Aw. 
We can then compute this parameter only to leading order in Aw 
and for this it suffices to take [see (85)] 

¢bl(y,z,t) = [ 1 .  F(t) . ¢bL(y,z) . e-'St + (*)] 

~/a(Y,t) = [ l"F( t ) .T1L(Y).e- iSt - I  - (*)] 

qk(1)(t) =[1F(t).qk21.e-iS°t+ (*)] 

Placing these expressions into (8) and separating the low- 
frequency terms we obtain 

(-~t 2 + 4~oz ] ~(2LF/Iz=° = [F(t)[2 " L2°(Y) " (I + O(A¢°)) 

V~(2 LF)• ~d0B0 = IF(t)l 2- n20(Y,z)" (1 + 0(Aw)) 

where Lzo(y) and Bzo(y,z) are defined in (44). Since 

b2~2 (LF) 
o[(a,o) z] 

bt 2 

it is clear that 

¢(2LF)(y,z,t) = IF(t)l 2- ¢2o(V,z)- [1 + 0(A~)1 (91) 

where ¢2o(y,z) is solution of (47) Putting (91) into (90) we 
obtain 

Q~,z~F(t ) = [Q2o ((k) ~o). ~ • ~ I  d (iF(t)12)]. [I + 0(Ao~;+)] (92) 

The total slow-drift force can then be written as 

Qk,LF(t) = 0k([o)-IF(t)t 2 + P k ( ~ ) . F ( t ) .  ~o dt 

+ (h) - 1 d } Q20 ( ~ ) ' ~ ' ~  (IF(t)[2) [1 + 0(A~02;5)] (93) 

To leading order in (Aw) we obtain 

Qk, LF(t) = ~)k(/~)- IF(t)[ 2- [1 + 0(A00;5)] (94) 

which agrees with the expression proposed by Newman [3]. 
Formula (93) has some advantages. First it provides a consis- 

tent way to evaluate the slow-drift force, with an error quite 
acceptable for practical application. Second, it is not necessary 
to solve any extra diffraction problem to compute the coeffi- 
cients {Qk(w); ek([O)',Q(~([o)} • Only the harmonic linear problem 
at the frequencies ~; w 4- Aw/2 [to approximate the derivatives 
dR*/dw; DL(y,z), etc.] and the radiation problem at zero fre- 
quency must be solved. With them the coefficients can be 
determined by direct integration where in the region Yl > ~ the 
integrals can be done analytically. In the region [ Y -< ~ there 
are integrals over the free surface and cross section, but they can 
be trivially computed by a numerical method. The amount of 
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work necessary to evaluate the nonlinear forces Qk,LF(t) is not 
much greater than the amount needed to solve the linear prob- 
lelTl. 

There is also an important consequence of (93), closely related 
to its simplicity. In fact, the estimates (70) show that the effect 
of the second-order potential increases with (h) -1/z, when the 
water depth (h) decreases. Furthermore, we can easily assess the 
relative importance betweenthe effects of the second-order and 
first-order potentials. If E/,(w;Aw) is this measure, in the mode k 
= 1,2,3 and for a spectrum with average frequency ~ and band- 
width factor Ao~, then it can be defined as the ratio 

Q~(~)" rms ( 1 -  d IF(t)12) 

Qk(~) • rms (lY(t)l ~ - 1) 

Since 

and 

then 

rms (IF(t)P - 1) = Xf2 

d iF(t)l 2) = ,f~ Ao~ rm (l  

E~(~;A~) - Ok(Z,) (95) 

In sway we obtain 

Q2o(O~) EI(~;A~) _ 2~Ao~- I~) - 
Bn 

1( _ 
/~n = 1 + sin-h--~oh- ] - (1 + IRI ~ - Irl 2) (96) 

If we disregard, for instance, viscous damping: 

( Rtt = 1 + sinh 2Koh ] IRI2 

For long waves (~ << 1), IRI z ~ 0(;0 2) and from (69) 

El(~;A~0) ~ 0 ( .A~ S~h  ) when ~ << 1 

This shows that the effect of the second-order potential should be 
the dominating one when the waves are long and the water depth 
is not too great. For shorter waves [~0 ~ 0(1)], R~/~ 0(1), but this 
is the region of linear resonance. Since Q(2~(~) increases qua- 
dratically with the amplification factor, the ratio El(~;Ao~) 
should remain of order 1, if the bandwidth A~0 is not too small. 
So even when diffraction is important, the effect of the second- 
order potential should be considered, mainly in the case of rela- 
tively shallow water. 

These qualitative arguments will be checked in the next sec- 
tion, where numerical results are presented, but the simplicity of 
(93) makes it irrelevant to disregard in any way the effect of the 
second-order potential. 

We close this section with the following observation: Pinkster 
computes the effect of the second-order potential, taking into 
account only the incoming wave. His approximation, then, can 
be physically justified only under conditions where (65) is valid. 
But we know that in this case the effect of the second-order 
potential is given explicitly by [see (68) and (92)] 

d 2 q 
• IF ( t ) l / -  [1 + 0(A~;a)] (97) 

~S J 

So in the region where the Pinkster approximation is valid we 
could use, instead, the simpler formula (97). Also, the discrep- 
ancy between (97) and the exact expression (92) delimits the 
region above which this approximation is not valid anymore. 
This point is discussed further in the next section. 

9 .  N u m e r i c a l  r e s u l t s  

In this section we analyze some few numerical examples for 
the purpose of discussing the features of the theory presented in 
this paper. In all cases we consider a rectangular box with 
beam/draft = 2.0 and radius of gyration equal to B/4. We 
considered two different mass distributions, one with the center 
of gravity B/8 below the free surface and the other with B/4. 
Three different water depths, h/B = 1.0, 2.0, 5.0 have also been 
analyzed and the viscosity effect in roll has been considered. 
More detailed numerical results can be found in [9]. 

Only the coefficients Ql(o~) and Q(21o)(~o), corresponding to the 
leading-order contribution of the first- and second-order poten- 
tial in sway [see (87), (92) and (93)], have been computed. In 
Figs. 4 and 5 the variation of these coefficients with ~0 is shown 
for the case where the center of gravity (CG) is at z = -B/8. In 

• • (1~ - Fig. 5 the dotted line indicates the approximation Qz0(o~) = -K0" 
(BD)/2h [see (69)] and, for future reference, the plot of IR 12 is 
also displayed. In Figs. 6 and 7 the same functions are plotted 
for the case where the CG is "low." In Fig. 7 the dotted lines 
indicate the approximation (69) for h/B = 1.0 and h/B = 2.0 and 
the resonant frequency in roll and heave are shown in Figs. 5 and 
7. 

In the long-wave (shallow water) regime the effect of the 
second-order potential is dominant. Furthermore the value of 
Q~(~) increases as the water becomes shallow and this coeffi- 
cient depends strongly on the position of the CG. 

For h/B = 1.0 the approximation (69) is quite ~ood, when the 
CG is "low," even for waves that are not too long (o~. ~ ~ 0.5 
or ~" ~ 12 sec if B = 20 m). The same approximation, for the 
case where the CG is "high," is worse and the reason for this has 
already been explained in Section 7; in fact, if zcc = -B/8  the 
roll resonance occurs in low frequency and the dynamics of the 
body affects the approximation (69) much earlier. The frequen- 
cy above which (r), - Qz0(o~) and (69) start to diverge is the limit up to 
which the Pinkster approximation can be used. For h/B = 2.0 
the range of application of (69) is shorter (see Fig. 7), but this has 
also been explained in Section 7. In fact the approximation (67) 
holds good only if the water is shallow (Koh << 1) and so, for the 
same frequency, it is worse the deeper the water is. 

There are two features about Q~(~) that must be better ex- 
plained. One is the fact that for the "high"-CG case, Q(2~)(~) = 0 
for a frequency around ~ - (B/2g) 1/2 ~ 0.8, irrespective of the 
water depth; see Fig. 5. The second is the unexpected fact that 
in the short-wave regime the effect of the second-order potential 
is higher the higher the water depth is. 

To explain the_first issue we notice that ~(B/2g) 1/2 ~ 0.8 is just 
the point where Ql(o~) has a maximum. Since this coefficient is 

2 2 proportional to I R I we plotted, in Fig. 5, I R I as a function of ~. 
We observe, then, that Q(2~)(~) = 0 just at the point where IR 12 --'- 
1. But if IR 12 = 1, then there is no mass transport [see (57)] and 
so Cbzo(V,z) must be zero. This makes even more evident the 
correspondence between the phenomenon of mass transport and 
the effect of the second-order potential. Furthermore, if it is 
clear that the effect of the first-order potential, Ql(0~), increases 
with I RI 2 [see (54)], the above observation also makes clear that 
the effect of the second-order potential, Q~(~), tends to increase 
with 1 - IR 12; see (57). So there is a trend for one to become 
greater when the other becomes smaller and vice versa. This 
trend is fully confirmed by the numerical results (see, for in- 
stance, Fig. 9). When the CG is "low," Ql(~0) has also a maxi- 
mum at the same frequency ~o(B/Zg) 1/z ~ 0.8. But then this 
frequency is close to the resonance frequency in "roll" and 
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viscosity plays an important part in the problem. In fact I R 12 
0.85 at this point, irrespective of the water depth, and so q~20(y,z) 
must be different from zero. 

Figure 8 displays the contributions to Q(9~/~ that come from 
the free surface and the integral around the body [see (63)]. We 
notice that (Q<2~)/~o)~ly is smaller, in absolute value, the deeper 
the water is. This is in accordance with our a priori expectation, 
but (Q(2~/~o) in the free surface has the opposite behavior when 
the waves are not too long. We have been unable to explain, in a 
clear physical way, this sort of unexpected result. 

In Fig. 9 the plot of EI(~;Aw) as a function of ~ is shown, 
where we took Aw = 0.2. Note that the effect of the second- 
order potential cannot be disregarded even in the high-frequen- 

cy regime. Furthermore, we observe that for h/B = 5.0, Ao~ = 
0.2, a n d  z c c  = -B/4: 
max {rms(Qa(w) • ([F(t)l 2 - 1))} ----- 0.62 at ~ -  (B/2g) 1/~ ~-- 0.8 

max{rms(Q(z~(~)'l'dlF(t)12)}~o 

0.23 at ~ -  (B/2g) 1/z ~ 1.22 

So the maximum contribution of the second-order potential is 
more than one third the maximum contribution of the first-order 
potential. This effect, then, can hardly be disregarded in an 
actual computation. 
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10. C o n c l u s i o n  
A consistent asymptotic theory, in the small-bandwidth factor 

A~, has been derived and an expression for the slow-drift force, 
correct to an error factor [1 + 0(Aw)z], has been obtained. This 
expression is given by (93), where F(t) is the amplitude modula- 
tion of the incoming wave and the coefficients {(~k(~o); ek(~); 
Q(z~(~o)} can be computed with basically the know/edge of the 
linear potential at the frequency w. In this way we can easily 
assess the influence of the second-order potential and this proce- 
dure must be confronted with the exact one, as derived by 
Faltinsen and Lffkens [1], where 1/2(n2 + n) nonlinear problems 
must be solved, n being the number of harmonic components of 
the irregular wave. 

The expression proposed by Newman [3] is the leading-order 
term of (93) and the approximation proposed by Pinkster, for the 
influence of the second-order potential, coincides with (93) for 
the long-wave regime. The new coefficient, Q(2~(~), is closely 
related to the phenomenon of mass transport and tends to in- 
crease with 1 - [ _R, z, where R is the reflection coefficient. Some 
features of Q~iw) have been discussed and, in particular, the 
long-wave approximation (68) has been derived. The behavior 
of Q~(~) follows closely what could have been anticipated with 
one important exception: For short waves Q~(~o) increases with 
water depth, which was not expected a priori. 

An interesting theoretical point has also been discussed in this 
work: If we consider, as we should, that the harmonic wave is 
the limit of a narrow-band spectrum when the bandwidth goes to 
zero, then the standard no-net-flow condition in the mass trans- 
port phenomenon arises naturally from the mathematical fea- 
tures of the nonlinear diffraction problem. 
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Appendix 1 

R a d i a t i o n  p r o b l e m  at  z e r o  f r e q u e n c y  

Forly I >- ~ the solution of (29) is given by (34), where B +0,k-- L0~(~bk(°)); 
see (85). Then 

~¢k(0) 
(-l-~;z) = 4-D~. k • go(z) :F ~ h n • L~,(4~k(°)) • g,(z) (98) 

~Y .=I 
If we multiply (29)(i) by ~(y,z) and integrate in A we obtain, after 

further integrating by parts, using the boundary conditions (29)(i) to 
(29)(iv) and (98), the weak equation, to determine ~°)(y,z)~W(21)(A) such 
that 

G(~k(°);~) - [Do+,k • a+(~) + D~, k • Lo(~) ] -- Vk(~) (99) 

for all ~(V,z)eW2(1)(A). 
In (99), Wz(1)(A) is the Hilbert space for all ~(y,z) such that (Vff) z is 

Lebesgue integrable in the region A, Vk(ff) is defined in (30), and 

G(4~;~) ffi lfA Vck. v~ .dA  + ~ Xn. L,(~). L,(~) (100) 
n = l  

Note that G(1;1) = 0 and this bilinear form is singular. However, if 
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A : 0,25. B / , /  
D=B/2 ! /  

/./,,,, 
: ~ , ~  _ , _ - - -  , \ i ~  / 

• =.~.-...-. - " " - . .  v /  I 
....... ,(69) 

"'" '"*'" 6 

"% 

\ 

h / S =  1,0 

h/B = 2,0 

h/B = 5,0 

HEAVE ROLL 

0,250 0,500 0,750 I,O00 1,250 

7 ~21o)(~). Also shown: results from equation (69) ( ...... Fig. ) 

1,500 

(I) - 
(OZO/~0 )F, SURFACE 

1,0 

0,8 

0,40,6 " - - ' ~ e  = ~ h/B=llO 5,0 

0,2 

o p  

-0,2 

"0,4 h/B = 5 , 0  

h/B=P,0 
"0,6 

-0~8 h / B  = I10 

-i,o i 
O,Z 

(d;o) / ~ ) IooY 

Fig, 8 

I I I I I 
0,4 O~ 0,8 1,0 ItZ 1,4 

~ - x / - -~ ,  

(Q(21o)/OJ) on body and f ree surface (A = B/8) 
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¢¢['(a) = {~.(v,z),W['(a): L+(,~) = Lo(¢,) = o} 

then G(.; .) is positive definite in We(1)(A). If we define now 

q ~ ( Y ' z ' = l [  14 -~ ]"  1~- I ~/h (g°(z)=~hh) 

we can write 

,~(o)(v,,) = B + .  q+(v ~) + B;,~. q-(v,z) + ,t°)~(v,z); ,~o)~(v,,),w(~)(,~) 
~b(y,z) = L+(tp) • q+(y,z) + Lo(tp). q-(y,z) + 6n(y,z); tpn(y,z)¢W(zl)(A ) 

Placing these expressions into (99) we obtain/see (84), (87)] 

,~(°)(v,z) = ~{°~(v,z) + ~o+~. p+(v,z) + B~.~. p-(v,.) (Iv l - ~) 
where 

(a) 

is such that 

for all 

(b) 

where 

p+(v,z) = q:E(u:) + e*.(v,z) 

/'~@,z)~C@)(a) 
and such that 

for all 

Then 

and 

From (37) 

(c) 

But 

See (86) 

Vk(~R) 

pa(v,z) = + - [ v  + ~{°)R(v,z)} 

o<,+-+, rg-+,l + ?o+q 
G(p+;p-)G(p-;p-)J'LBff,  k.J LV,(p-)j L O a d  

G(p+;p +) = G(p-;p-) = -G(p+;p -) - G(Pa;pa ) = 

(101) 

(102) 

Appendix 2 

R a d i a t i o n  c o n d i t i o n  f o r  ~20(Y,Z) 

Forlul >-- b 
~>~o(V,z) = [a~o + U~:o(I yl - 1;)]. go(z) 

+ ~ A~o." e -x"lM-b)" g.(z) + 4~2o,e(V,z) (108) 

E- I 

Lo 3 

1021 

IO 

7 \ \ 
\ 

ii\ ~5 tO = O, 20 

i o  I 

16 2 

,\ I 
I 
I 

I 
I 
l 
I 

% 
% 

% 
%, 

I 0 3 I [ I I I I 
0 0,2 0~4 0,6 0,8 I,O 1,2 b4 

Fig. 9 EI(co,Aw) for  Ao~ = 0.20 

The particular solution ck2oe(y,z) of (47), (lYl >- ~), must be such that 
[(~l~zo,e)/~U] --" 0 when lyl 22; ~o [see (103) and (47)(v)]. It is given by 

¢zo,t,(!l,z) =" E h~(!l) " e -xh~yl-~) • g.(z) + L2o(!t) . p(z) 
ri=O 

/J; s: l df  Lzo( ~)d ~ 
1 /fy-b I'  fj (104) 

+ -h" d~ -® Lzo(~)d 

where 

(i) 

(ii) 

(iii) 

Note that 

p(z) = (z + h) 2 h f °  h 2h - 2 ; p" = p(z) . g.(z)dz 

and h~n(y) is such that 

dZh 4" dh~ d2L~ 
- .-n ~ = -Pn" e-X"~ul-~)" au ~ 9x. ~ a ¢  

hni("l'fi) -- --Pn" L20(4"~) 

dh~n - 
-~v ( i b )  = -p , ,  . (±[,) • x,, . p,, . L~o(:t:b) 

(~ -~  :F )t n - hn~-sq(lul-b) --~ 0 
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when lul ~ o~ s i n c e  

L2o(V ) "" exp(-K d u[) 
See (45). Then 

~b2°'e -," 0 as [Yl --" ¢o and ¢2o, e(4-~;z) -- 0 
/)y 

1 [ ~  L20(~) " d~ ] 

1 t;~ J~ 4-~ (105) 

qn LJ" d,]. Lzo(;)d' 

From (47)(v), (105), (105): 

~ + +  1 . 
A+o = 2o ~ J;d~.]'Lzo(~)d~ 

A-2o = A'[o + -~ .]_®d~.J_®L~o(~)d ~ - ~  ~ (106) 

The problem now is the same as in Appendix 1 where, instead of 
Vl,(ff), we have 

V~o(~) = [ B~o(y,z). ~(y,z)- di~B o + [ Lzo(y). ~(y,O)dy J~ B o JFa 

b,f~" +Lo,¢).[-~.f:®L~o,~)d~] (107' 

Note that 

VzO(1) = f~eo Bz°(y'z)'d~Bo + fir L~°(Y)'dY=-2~ (1 - JR[9 -[T[~) 

(lO8) 
The values fit~o are solutions of [see (36)] 

(~=[_11 - 1 ]  [aq 1j LX;oj=lV o( )j+L<o] (lO , 
Equation (109) has a solution if and only if 

Ko U+o + V~-o = -v~0(p + + p-) = ~ (1 -IRI~ -ITI ~) 
1 

This is just mass conservation; see (46). So 

A~o = 2-~ [V~o(P +) + U~:o] + C (110) 

where C and U~o can be determined if we consider 

Czo(y,z) = lim ~2(y,Z;oaAt) 
hw~O 

where O2(y,z;Ao~t) is the low-frequency interaction between two waves 
with frequencies o~ 4- Ao~/2 and wave numbers Ko 4- (Ak/2). If 

1 coshKo(z + h) 
ck~(Y'z)=¢L(Y'z;~°-I'~-)~---~" cosh Ko h 

"{ ,(~:E~ -,(r, oi~]v + E A~'S"(z)'e-~"<IvI-~) 

L e ~ "/+Re \ ~ /  n = l  

where T, R, :t and A n are the coefficients associated with the f r equency ,  
then 

¢~(u,~,t) = , ~ ( y , ~ ) e  ~ ~ ' + ~ ~ i (u , z ) ' ~  ~ ~ j + (*) 

Placingthis expression into the free-surface term of (8), separating the 
terms that pulsate with Ao~ and disregarding those that tend to zero with 
Aw, we obtain, at the free surface 

i)0~ = (Aw)2. O2(y,0 ) + L2o(y ) 

[ ~( I_IRI~  ) Ak- sin(A/~vl) 

The term Ak • sin(A/~ y])gives a leading-order contribution as we are 
going to see next. Indeed, if AKo is the wave number associated with 
ha,, then with an error [1 + 0(Aw) 2] we obtain, for [g[ >__/~ 

¢(V,z;w&t) = A~:. e *~'~IyI-~) • go(z) + E A~:° ~" e-X"~ul-~) 
n = l  

E.  gn(z)+dp20,p(y,Z)+ ~o(y,z)).e-ih°'t+ (*)] (111) 

where 

and 

Imposing 

v ~  = o; ~ o / ~  = o at = = - h  

e~¢~o Ko f-ITI z ] 
~-z *=o = ~ ' l l  -IRI~J " AK. sin z2ff~y I 

then 

_Ko J'-ITl  / 
~'g(V,z) - 2 - ~ "  [1 -IRI2J 

zr~o(+kz) = o 

• [,Mr(. h .  sin(Z~ Yl)" p(z) + sin(z~ vl)&K- sin(AK~) + 0((&K)~) ] 

o r  

Ko f-ITI 2 ] .  
¢~o(V,z) = 2-~" ~1 -IRle~ (Ivl - ~) (112) 

when A*o ~ O. Now 

• + " 2o,,,'_..zg-() 
n = l  

] 1 + I-ITI 

If 

(ZZO(¢/) = V2o(C/) + L'~(~/) . I -  2~h~ . I T]21 

+ Lo(*/. [ K_~0L2,N h (1 -IBIS)] 

then [see Appendix 1 and equation below (89)]: 
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- -,~oJ Lad LV~o(p-)l 
So 

--i~Ko(.~ + + X2") ffi ~'(p+ + p-) = ~'(l/~/h) = O 

See equation (108). Then 

(118) 
X7 = ~ (V~o(p-) + Ko_ (1 -lal~)~ 

zt. \ 260,/h / 
For lYi "--" ~ and Aw ~ 0 we obtain 

(~o=~mo'~(U,z',A60t)) 

[ /(o ,f-lrl ~ / . (1~1_~)] .±  
¢2o(y,z) ~ A~ + (A~o -- "~2~o) + 2w--~" i1 - - l a l q  J 

See (,106), (105) and (112). By comparing with (47)(v) we obtain (57) 
and Afro ffi A~:; see (118). Since 2,~ + ,~- = 0, then from (106) we obtain 
(oz). 

A p p e n d i x  3 

Force  coef f ic ient  due to f irst -order  potential 
First we consider the coefficient in sway. Using conservation of 

linear momentum, the total force at time (t) is given by 

I~ p(y,z,t) . d~B(t) F~(t) = v(t) ~t~(t) • 

at IJla(,) ou J 1.1o \k-~(/ - U- 
where A(t) is the fluid region between the vertical lines y- < y < y+ and 

[fl u = Y_ + =/(Y+) - f(Y-) y----y 

In the above expression we will let/~l --" ~o. 
Using (85) and isolating the quadratic terms in low frequency, due to 

the first-order potential, we obtain, to leading order in 8: 

~1 2 Y = Y+ F(t ~ ' rf ° - % : - i  ,i ] . :  _.l Q{~'[r(t) = -  7"  {..Lh k l . ,  I ~z ] 

at lJJaa(o i~y JLF 

f_, r,o oo, ] ; :< 
+1. 4 L Y - h \ ~  ~ Oz ~ /  +n[@)'dL(~) _-~- 

S'~(t)'F*(t)+(*)} (114) 

where A(t) = Ao + ~" AA(t) + . . . .  Note that 

~)z = mean drift coefficient 

,rio 
= - ] U _ ~ \ l - f f ~ ( i -  ~ / j ~=~-  

-- • 14 sinheKoh " ( I+IRI~- ITI~)  (115) 

Let AA+(t) be the part of A(t) for y ,~ 4-b, and A,~(t) the part for l~ ~ ~. 
Then 

V+ ~ 1  " ~I(Y) " dY]L F = • ~(y)du + fl ~ (u,o) d (iF(t)l 2) 

u+ * )d  ] ~" - - - -  T]L ~ ~L Y "L~'l,- 1~ t ~ "  + 
Using (9.5) 

• --d/- (t) 

+ r*(t), d.F (0] /(0 at - ~  [IrIs" u÷ + (IRIs- 1/" y-I 

"d(IF(t~ldt +K_~_~_.~60 [1 +lrl2-1RIq .~(IF(t/l~/ (116/ 

where #1(~0) is the series in expression (89). Also 

d[JJa~(t)~'dAA(t)]=#z(~)'l[F(t)'d~'*(t)+F*(t)'d'-ff-(t)qw L at dt _1 
(117) 

where t~(~o) are the integrals over FA and i~Bo in (89) 

From (84) 

1 
60 

(/l(~) = /.tl(~0 ) + /.12(~)) 

e°sh K°(z + h)-) ~ TetK°~ 1 
cosh K0h ~=5" [e 'K°v + Re-'r'0yJ 

cosh Ko(z+h) f(dT/d60), e 'K°' I 
eosh Ko h [(dR~d60). e-~r'°~J 

1 c°shK°(z+h'.[ Te'K°~ ! ( i ) 
eosh/(oh [dKo~ - ae-'r'o~J" ~ g ( ~ ) ' Y  ' y --" ± ® 

1(dT/dw).em'°Y 1 
dL(yl ~ ~ . {(dR~a601. e-'~°~J 

• [Te ~K°~ ~ i 

Inserting these expressions into (114) we obtain a convergent term plus 
a term in y+ and y-. These divergent terms cancel the ones that appear 
in (116) and the convergent one is just 

KOh 1 - (1 + Koh)/(eosh Koh) 
- t  sinh2Koh, l+(2Koh)/(sinh2Koh ) ( I + } R i 2 - I T i  2) 

,(,+ ( 
- 7" sinh 2Koh] ,7,. R . ~ -  a60 / 

With this expression and (117), (116), and (115), we obtain 

(Ui~0) = Ul(~0) "it" /Z2(~O)) 

See equations (87) and (88). 
In heave and roll we must use the formulas 

Q~Z,[F(t) -- [ foB(O Pl(Y,z,t) " nz(t) " doB(t) + fo&z " n~,o " dOBo]L F 

Q~Z'[F(t)-limB(t) PI(Y'z't) " (--z " n~(t) + y . nz(t))d~)B(t ) 

+ J~Bo Z(--z " ny,o + Y " n~.o)d~BO]LF 
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pl(y,z , t )  = - -z  ~)t 2 

w h e r e  

H2= I~)/i0 z .  nz,odOB 0 and Hz= I~)/i0 z(-z .r t l# ,o 4 - ! t .  nz,o)dOB 0 

are the hydrostatic generalized forces. 
The slow-drift forces in heave and roll are important only when the 

body is submerged. In this case 

= } Real [Ql,n" q;,lt - G2(~)] Q~(~) 

_- 1 Real [--Qt,H" q*z,H + O2,n(q;,tt - Ds " q~,H) -- Ga(5)] Q3(a~) 

,s • _ 

e2(D)  ":- --  4 L ~:I1,H " q3,H "1- ( e l , H ) *  " q 8 , .  - -  2G2(~°) 

" / O f ~ L  * D * -2-Real| [ - - ( q l , n - ( z +  s)q3,n) 
Jano \ 011 

• . )  o] bd& (qe, H + 11" qa, H) nz,o" d ~ B  
+ b z  

" ~ - /  "* ° st "* "* P3(~) = - l --Q1 H" q2 H -- (Q1 H) "q2,H -I- Qz,n(ql,n -- Ds" qs,tt) 

f / O¢L • 
+ (O2 , . ) * (q , , . -  D , .  q~,H) - 2 .  ca(,.,) - 2 .  Real ! | - ~ -  (q~.  

J~Bo \ Y ' 

) ] - (z + Ds)qa,t~) + (q2,H 4- y .  q3,H) " Va " dbBo  

where 

ZCG = - D  s 

Qk, H(/O) = total linear force in frequency 

Gk(~;($aJ) = [ VdpL(~ ) • tTdpL([O + ~o~). v k • d ~ B  o 
J~ Bo 

~k(~) = Ck(5,0) -- [ lYe,f t ,  vk- d~)tlo 
B0 

= dCk _ - Gk(5;~°~) -- (~k(5) 

This last approximation avoids the computation of DL(y,z). 
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