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SUMMARY

Low {requency nonlincar wave forces on ocean structures arc
usually divided into two distinct componcnts. Onc, Fy(t).
q;sociutcd with quadratic interaction of th fxrst‘ordcr
klincar) potcntiul;.thc other, E,(t), associated with the
second order potential. The purposc of the present papcer 1s
to indicate that this second parcel must always be computed
for a submerged body. On one hand, when the depth of guhmcr-
gence is large, Fy(t)/F,(t) ~ 0(1) and the effect of F,(t)
cannot be neglected; on the other hand, when the depth of
submergence is small, the ratio Fp (t)/F,(t) increcascs bgt the
likelihood of trapped mode excitation also does. If this
happens the second order problem is resonant and then Fa(t)
is, by far, the dominating parcel. The analysis 1n this
work is restricted to two dimensional infinite water depth
case and only diffraction problem is considered (body fixed
in waves).

1. EXCITING FORCES IN BEAM SEA

Consider first a rcgular wave train and let F,= pgABS.Qy (w)
be the steady force in the mode being analysed, where:-

p= density; g = acceleration of gravity; A = wave amplitude;
B = beam: 6 = A/B = small amplitude parameter; Q)(w) = steady
force coefficient for a harmonic wave with frequency «. If
Ki= wz/g is the wave number, the wave steepness is given by
KOA ="K B: 6 <<1 when KB <0(1). In sway mode a simple
expression for Q)(w) has been obtained by Maruo (1960) and

it is given by,

i

W) = 1 [r|? (1+0(9)).

where R = reflection coefficient. This regular wave train
Cxcites, at second order, the stcady potential ¢20(y,z) where:
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N
\?“\b‘“\\ = 0‘

Agaeldz = L, (y) on the free surface z = 0,

J¢20/3n = 0 on the body surface 2B,
r_T_——Gj_*m

Véae ~ 0 when r = ¥ y“+ z° +=.

In the above expression the exciting term Lao(y) is given g, §
¥.o

g :

34,

a Y " - + 7 3 * l'

A S = e o Ll 1 & A \'.O - = (} 20)) ) ( ) * fT_—\ -:
I 20 0 ) F§ ay (1 vL(. ) 3) Li=3) §

:2) being the linear diffraction potential at freguepcy

14

w., IF UK is the mode boundary condition (UK =t e for sway, etc.
the following coefficient will be uscd later on:

e S e o T T

In reality the potential ¢20 necd not be detcrmined to obtain
Q.{w). In an actual computation the radiation potentials
Sy

¢y, must be determined to ceapute

PP

3s.. "7 fzn = U,., at the body surface. If now,

P I g

G(e:Y) = i7 T3.VY.dA: A = fluid region, :
v &
N ;
. X - = :
V.(¥) = [f,p Y.U.. d3B, (1-3) :
)\ oD N 5
2
\':ﬁ&:\ = -‘_-l L3 \.\}.‘ . (}.‘0) -k“.}'. ,
-_—
Taen, ‘
ol 3
~ral®) ey = v (Y 1-0]
Ul‘} :¥) .= Vpl?), (1-o: 1
MNE-X - W = F 3 {:;
L{VZo .. ) = \-\'(JJ' &
Since Qa(¢) = - «.V (420 from (1-6) it follows that.
)
{e) ;:_f)

(i
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Th15 latter expression is just Ha;kzwd': relation 1n!1¢! tQ
the prcscnt problem and it shows that the knowle cdge of \{v
s enough to compute Qag ().

consider now an irregular incident wavetrain consisting ot 2

modulation of the harmonic wave at the frequency w. The

& slow

? ypgrial and tcemporal modulation is described by a function

B oa(y.z.t) ~ 0(1) with (3/3,: 3/3.3 3/3,) a ~ 0 (ae) <« 1.

P The dlfffdblion pote nt!dl.'uorrcct to second order in the

?‘ small amplitude parameter §. is given by a(y,2) = s (y.2)
é{ + 87, ¢;(y.2). vhere, obviously. ¢:{y.z} has cnergy in two

él distinct range of {requencies:- one around the frequency ¥

and another around the zero frequency. Oaly this Iatter
From Hernouilli’

TreTE

parcel will be considered in the following.

¢ equation the low frequency exciting force is given by F(t) *

« Fy{t) + Fat) where

FooF(t) =-0.5. 2. 1 (78, ) 4. UK.J3B.
f aB
E X s o _ 3 (1-8)
I:(t) ﬂ';{’f ..! ‘;- UK .d B. 5 !
8
Bue to the siow modulation,g; ~ 3. )l\)'ﬂlxwlk where i 15

the diffrsction porential at frequency «. Placing this cxpres-

sien into {(1-8) onc obtains Newman's (1874) approximation,

Fiit) = sgABS .Q (=), fato)t” .(1=0{as}). (1-9)

wvhere (,(w) is the steady f{orce cocfficient for harmonic wWaves.

wWith vhc same relative error the
q' ] {‘:}_ h“_‘;‘ }. ests Lo H:-ig_(. $3e ,ia’?,‘ .‘,3:_-

free surface exciting term for

D
(‘V

$#; is given by fai
{1+0{4a)), After a dct&izcd analysis of the far field radiation

condition Aranha & Pesce {1986) have
tion is indeed consistent. Using it

shown that this approxima-

into (1-8) cone ochtains,

‘ & o 1 & e 1 i ¥om W~ " & g
Faf{ev) = opAB3 .Qaiw}. *‘iv;""ij;sp}. {1+{8u}) . {1-30}
with (y(«) defined in (1-%). Since the derivative of ja{t)i< is

of order &w the Jtlﬁ between Fo(t) and F; {t} car be gauged by,
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r (w) = Q|(N) = __l_lz-l—?——-——— y (1._11
1 Aw.Qs (w) 20w.Q; (w) )

where the expression on the right is valid only in SWAY | geq
(1-1). For a surfacc-picrcing body in deccp water, |R| and
Q2 (@) are both of order 1 and ri(®) ™ 0(1/8w) »> 1 gr i,
short:- ‘the effect oL F2(t) can bc neglected in comparisoy
to F1(t). a conclusion consistent with the one numerically
obtained by Faltinscn § Lgckens. (1980). For a circular
submerged body IRl = 0, sce Ogilvie (1963). and in general
IR |<<1 when the depth of submergence is rclatively large.
In this case 11(w) can be of order 1 and the cffect of the
sccond order potential cannot be ncglected. When the body
approaches the free surface, |R]  increascs in general and
so ri(w) also does. Simultancously, howcver. increcases the

likelihood of a resonant phenomenon to be cxplained next.

2. TRAPPED MODE EXCITATION

A penctrating physical discussion about trapped waves over
submerged bodics in shallow water can be found in Longuet-
ltiggins (1967), and Aranha (1987)a cxtended some of these
results to the arbitrary water depth case. Mathematically
a trapped wave is a function of the form,

:i‘():.y‘z't) = T(y.Z). Ci(K']'x-mt)

+ - A ; oo
Foyizyveal e 2elyti K 2 sy - (2-1)

that satisfies the linear homogencous water wave cquation:

The mode (K3 T(y.z)} can be determined from the following -

simple cigenvalue problem:- to find a non-trivial T(y_z)fﬁf
which the Lagrangian. '

J
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::"‘Hd{;(T) i ff [(vry? + kT2 ] dA - z It (y,0) dy, (2-2)

-

is stationury. Since KT >K0 these modes can be cxcited only by
pon-lincar interaction of two incoming waves but, il this happens.,
the second order potential ¢2 w111 be of order 6'h sce Aranha
(1987)b. and so Qz(w) ~ 0(s¢ 3 ) > 1. As it is usual in non=
lincar rcsonant phenomena a nonlinear cubic wave cquiation can
be obtained by multiple scales, although the pertinent cquation
is non-dispersive in the present case, sce Aranha (1987)b for
dctails. I§/ 0 is the normalized detuning it can be shown that

s vo (s 3 /(},/K, )) or in short:- the morc diffusc 1is the
mode (the smaller is A /K ) the larger will be o and the more
unlikely the mode will be excited. Since A /K  increascs when

the depth of submergence S decreases (see figure (5-1)) then

the likelihood of excitation also incrcases when the body

approaches the free-surface.

o [¢]

3. VARIATIONAL APPROXIMATION FOR Qi(w); Qa(w): A /K

The present analysis devends on three coefficients:- Qi (w):
Q2(w) and A /K, , wherc this latter onc gauges the likelihood

of trapped mode cxcitation. It is important to be obscrved
that all of them can be cxpressed as stationary valucs of well
defined functionals and so an order € crror in the potential
leads to an order €2 error in these coefficients. In fact,
)‘O/Ko can be obtained by standard Rayleigh quoticent, sece (2-2).
and Aranha § Pcsce (1987) have shown how to express Qi(w), in
its form (1-1), in a similar way. A short demonstration that
this is also valid for Qz(w) will be given next.let ¢={¢202¢K(°)}
be the solution of the wecak equation G(¢.¥) = V(¥). sce (1-0),
and § its projcction into the finite dimensional space W. Then
¢ =% + a¢ where G(a¢.¥) = 0 for all ¥ E W. The reclated approx-
imation for Q,(w) is given by (see (1-7), (1-6))
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Q2 (w)

- Voo (7, () = - 0.6, $20)= - w.G(¢ 2 20200 - 2.6 OV ing,

]

3 iy, 68
- 0. Voo (0 ) - 0,680, (75 8020) = Q2() - 0.6, *); B0y,

From this latter expression and Schwarz incqual%§¥ it follows
that the error in Qs (w) is smaller than e€,0 -.E€ where

K
€ = {e€g9; €k 9% (G(2¢;49)) 1, is the error in the potential,

4. NUMERICAL RESULTS

A variational approximation will be designated by the size

(NxN) of the recal and symmetric matrix that should be constructeq

and inverted in this formulation. Figurc (5-1)b compares the

phase of the transmission cocfficient for a circular cylinder

obtained from a (4x4) variational approximation with the ones

obtained by Ogilvie (1963) ; Figure (5-1)d comnarcs the values

of Qi1(y,) in sway mode (rectangular scction) obtained from a
(4x4) variational approximation with the ones obt

Inoue & Kyozuka (1985), where in this last work a (30x30) complex

crted.  Both results
agree quite well and this gives an indication of t

the present variational approximation.

ained by
non-symmetric matrix was constructed and inv

he power of

To compute Q2(w) a (I1x1) variational

represent @K(U) in sway mode and the integral Vi, (¢K(°)) has
been computed only above the body. This cocefficient is not

supposced then to be determined with g
its order of magnitude

approximation was uscd to

reat precision although
- and this is cnough
analysis - is thought to be corrcct,

that T(y,z) - ckoz when S + = this trj

in the present
Since it can be shown
al function has been used
for a circle and compared with the values obtained by McIver &
Evans (1985): sce Figure (5-1)e to be noticedthe drastic impro-
vement when S changes from Y.l o YR and that., from minimum

principle, the variational approximations gre always lower

bounds here. For the rectangle the

: same - (1x1) approximation
was used and comparcd with g (2x2) approximation where the
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sccond trial function immitates shallow water trapped modes in

¢he region
poth inCreascs drastically when § decrcases, sce Figure (5-1)f.

above the rectangle. Again the discrepancy between

5 whole two things are to be noticed:- Q,(w) is the dominating

AS
.crm when S is "large", sce Figure (5-1)d where fuw = 0.20 has
peen usced to compute Qz(w) = bw.Qz(w); A /K  incrcascs when the

phody approaches the free-surface. So (Ehe @ffect of the second
order potential should always be computed for a submerged body .
furthermorc, variational approximation secms to be a powerfull
tool to determine macroscopic quantities, like the exciting

forces on a body. As it was shown here this approach can also

be used to computc nonlincar exciting forces and this can affect

significantly the required ammount of computing time. In the

present casc the computation of Qj(w)., Qz(w) and Ao/Ko(m), in
the range of frequencics shown in Figure (5-1), did not take

more than 15 minutes in a IBM personal micro-computer.
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Fig. (5-1):- a) Anal. ysed gerEtrJ:.es; b) Phase of T for submerged circular
C{1u£§ diff s Wl‘ﬂilhrEOgrllvie (1963) ; c) |R(w) | for a rectan-
?bsz‘ ients E.rent x gence depth; d) Q) & Q, Drift Force
with ;gliger &Oli‘v:nie?:gggle; e) )‘o/Ko for a circle compared
ok f)Ao/Ko for a rectangle.
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