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Chapter 23
Non-linear Free Vibrations of a Hanging
Cable with Small Sag

Guilherme Jorge Vernizzi, Guilherme Rosa Franzini and Celso Pupo Pesce

Abstract This paper presents a method for evaluating non-linear modes and the1

corresponding natural frequencies of hanging cables with small sag. The use of a2

Galerkin temporal scheme on the governing equations of motion associated with a3

fictitious normal force accounting for the effects of the resulting non-linear terms4

leads to a closed-form solution for the non-linear free vibration problem. The influ-5

ence of amplitude on the modal shapes and frequencies are presented.6

Keywords Non-linear normal modes · Extensible cable · Small sag · Closed form7

solution · Galerkin projection8

23.1 Introduction9

Structural solutions based on tensioned cables with varying traction along the length10

are commonly found in engineering applications. The study of the dynamic response11

of those structures is of great importance in fatigue design and stability analysis.12

Particularly, the study of the free-vibration problem is of interest, since it provides13

intrinsic characteristics such as its natural frequencies and modes. Considering a14

linear problem in free vibrations, the system oscillates with the form of a particular15

normal mode if the initial conditions match this mode. This concept can be expanded16

for non-linear systems by using the concept of the non-linear normal modes; see [1].17

Reference [2] analytically investigates the linear free oscillations of a cate-18

nary riser with negligible bending stiffness, providing a Wentzel–Kramers–Brillouin19
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2 G. J. Vernizzi et al.

(WKB) (see for example [3]) closed-form solution for the problem. Following, the20

non-linear modes for a vertical beam with varying tension were addressed in [4],21

which presents a closed-form expression for the modal shape and the natural fre-22

quencies. In the latter paper, the authors employed a temporal Galerkin projection23

and a fictitious normal force similar to that previously proposed in [5].24

The present paper aims at contributing with the planar non-linear dynamics of25

cables in free vibrations. Particularly, the major interest lies on determining the non-26

linear modes and frequencies of a cable hanging between two points at different27

heights, with a sag to span relation of order of 1:20 or smaller. The formulation28

herein presented extends the results of [4], allowing for use in cables that are in a29

configuration different from the vertical one. Furthermore, the formulation herein30

presented includes some non-linear effects neglected in [2].31

23.2 Mathematical Model32

Consider a cable made of an elastic-linear material, with axial stiffness E A, mass33

per unit length μ and unstretched length l, as sketched in Fig. 23.1. Let u and v be,34

respectively, the displacements in the tangential and in the normal directions defined35

with respect to the static configuration. In addition to these quantities, we define T as36

the traction and θ as the angle with the horizontal in the static configuration, τ as the37

dynamic traction variation, γ as the dynamic variation of θ and ε as the engineering38

strain component related to τ . The definition T = T + τ is used in some mathemat-39

ical steps. Throughout this paper, primes denote differentiation with respect to the40

arclength coordinate s in the static configuration and dots represents differentiation41

with respect to time. Since the sag is small and the tangential displacements are con-42

sidered small compared to the transversal ones, the approximation γ ∼= v′ is used.43

This is possible due to the fact that the term uθ ′, although linear in the dynamical44

perturbations, becomes of second order when compared to v′. A detailed analysis on45

order of magnitude of terms arising from a dynamic perturbation approach around46

the equilibrium configuration may be found in [6].47

The equations of motion herein analysed are based on the Clebsch–Love equations48

(see for example [7]). For the sake of a future generalization of this mathematical49

model, the static terms are not approximated using a parabolic static configuration50

as in [8]. Let bu and bv be the external forces per unit length in the tangential and51

transversal directions, respectively. Defining fu and fv as the corresponding elastic52

forces and neglecting rotatory inertial forces, the equations of motion are written as:53

fu + bu = μü . (23.1)54

fv + bv = μv̈ . (23.2)55

Considering a cable segment δs, the resulting elastic forces in the tangential and56

transversal directions are given by:57
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23 Non-linear Free Vibrations of a Hanging Cable with Small Sag 3

Fig. 23.1 Basic sketch and principal parameters

δFu = T (s + δs) cos (δθ + γ (s + δs))− T (s) cos (γ (s)) . (23.3)58

δFv = T (s + δs) sin (δθ + γ (s + δs))− T (s) sin (γ (s)) . (23.4)59

Taking the limit δs → 0 in Eqs. (23.3) and (23.4), considering that γ is small, the60

resulting terms are:61

fu = lim
δs→0

δFu = T
′ − T

(
θ ′ + γ ′) γ . (23.5)62

fv = lim
δs→0

δFv = (Tγ )′ + Tθ ′ . (23.6)63

The resulting equations of motion are then:64

[T + bu] + τ ′ − T γ θ ′ − T γ γ ′ − τγ θ ′ − τγ γ ′ = μü . (23.7)65
[
T θ ′ + bv

] + τθ ′ + (T γ )′ + (τγ )′ = μv̈ . (23.8)66

Note that the expressions between brackets in Eqs. (23.7) and (23.8) are the67

equations of static equilibrium when the dynamical changes in the external forces68

can be disregarded or are, in fact, null. Now a static condensation procedure is applied.69

Following [2, 9], the inertial term in the tangential direction is disregarded. A price to70

be paid is missing the mutual inertial effect between tangent and transverse dynamics.71

The well known frequency cross-over phenomenon analysed in [8] is missing as well.72

However, the tangential component of the mode function may still be written as a73

function of the transversal one (see [2, 9]).74

Also, a scaling analysis is used to simplify Eq. (23.7). The scaling is made con-75

sidering v of unity order, which implies that v′ is of order η, the later being a small76

parameter. The additional curvature v′′ is of order η2, and the same order is consid-77

ered for the small static curvature. This is in fact a strong hypothesis, limiting the78

dynamic amplitude to a fraction of the wave length of the modes that will be sought.79

Also, considering valid the scaling between tangential and transversal displacements80

obtained in [8], τ is considered of order η. Keeping only terms of the smallest power81

of η, the condensed equation for the tangential displacements becomes:82
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4 G. J. Vernizzi et al.

E Aε′ − T v′θ ′ − T v′v′′ = 0 . (23.9)83

To ensure mathematical clearness, a dummy variable ξ is used when indefinite84

integrals of functions of s are required. Integration of Eq. (23.9) leads to:85

E Aε = C1 +
∫ s

0
T v′θ ′ dξ +

∫ s

0
T v′v′′ dξ . (23.10)86

Now, as made in [9], the constant C1 is obtained considering a spatial averaging87

of Eq. (23.10). Also, the strain measure is defined as ε = u′ − vθ ′ + (
v′)2

/2. The88

retained terms follow the smallest power of η that appears in the geometrically89

complete expression of ε. The constant C1 is given by:90

C1 = E A

2l

∫ l

0

(
v′)2

ds − E A

l

∫ l

0
vθ ′ ds − 1

l

∫ l

0

∫ s

0
T v′θ ′ dξ ds91

−1

l

∫ l

0

∫ s

0
T v′v′′ dξ ds . (23.11)92

Equation (23.11) allows writing the equation of transversal motion in a isolated93

manner, i.e., decoupled from that associated with the tangential one. The resulting94

equation is given by Eq. (23.12).95

θ ′
(

C1 +
∫ s

0
T v′θ ′ dξ +

∫ s

0
T v′v′′ dξ

)
+ (

T v′)′ +96

+T v′2 (
θ ′ + v′′) + v′′

(
C1 +

∫ s

0
T v′θ ′ dξ +

∫ s

0
T v′v′′ dξ

)
= μv̈ . (23.12)97

Supposing that the dynamics is governed by a single mode, the solution is sought98

in the form v = ψ (s) sin (ωt). After a series of algebraic manipulations and the use99

of a Galerkin’s temporal scheme (see [4]), the equation of the modal shape for the100

modes associated with the transversal direction becomes:101

− E Aθ ′

l

∫ l

0
ψθ ′ ds − θ ′

l

∫ l

0

(∫ s

0
Tψ ′θ ′ dξ

)
ds + θ ′

∫ s

0
Tψ ′θ ′ dξ102

+T ′ψ ′ + Tψ ′′ + 3

4
Tψ ′2ψ ′′ + 3E A

8l
ψ ′′

∫ l

0

(
ψ ′)2

ds103

− 3

4l
ψ ′′

∫ l

0

∫ s

0
Tψ ′ψ ′′ dξ ds + 3

4
ψ ′′

∫ s

0
Tψ ′ψ ′′ dξ + μω2ψ = 0 . (23.13)104

Following [4, 5], a fictitious or equivalent “normal force” N is proposed as:105
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23 Non-linear Free Vibrations of a Hanging Cable with Small Sag 5

− E Aθ ′

l

∫ l

0
ψθ ′ ds − θ ′

l

∫ l

0

(∫ s

0
Tψ ′θ ′ dξ

)
ds106

+θ ′
∫ s

0
Tψ ′θ ′ dξ + 3

4
Tψ ′2ψ ′′ + 3E A

8l
ψ ′′

∫ l

0

(
ψ ′)2

ds107

− 3

4l
ψ ′′

∫ l

0

∫ s

0
Tψ ′ψ ′′ dξ ds + 3

4
ψ ′′

∫ s

0
Tψ ′ψ ′′ dξ = Nψ ′′ . (23.14)108

The numerical evaluation of this term is made using a spatial Galerkin projection109

considering a set of sinusoidal functions1 sin (nπs/ l), where n is the number of110

half-waves existing in the mode considered. The consideration of the number of111

half-waves is needed since, for inclined cables, the mode number is not necessarily112

the number of half-waves since mode hybridization can occur; see [10]. Using the113

wrong consideration regarding n leads to higher values of the fictitious normal force,114

specially for the lower modes.115

For a catenary configuration, the approximation T ∼= T = α + βs can be used116

as a simplification for the static traction with small errors (see [2]). The fictitious117

normal force is then associated with the number of half-waves n used in the Galerkin118

projection, and is indicated by Nn . The vibration modes will then be non-linear119

because some terms in Eq. (23.14) maintain a quadratic relation with the amplitude120

used in the projection functions when computing the fictitious normal force. Applying121

the approximation for the static traction and the evaluated fictitious normal force in122

Eq. (23.13), the modal shapes ψn must satisfy Eq. (23.15).123

(
T + Nn

)
ψ ′′

n + T
′
ψ ′

n + μω2
nψn = 0 . (23.15)124

Notice that the averaging procedure represented by Eq. (23.14) transformed the125

nonlinear Eq. (23.13) into a linear one. Following [4], some new quantities are126

defined, being a = β/μω2
n , Tbn = α + Nn and Ttn = α + lβ + Nn . Note that Tbn127

and Ttn are the modal tractions at the lower and upper ends of the cable respectively,128

while ωn is the natural frequency associated with the mode containing n half-waves.129

Defining now, as in [2, 4], a variable transformation, and the corresponding inverse130

transformation:131

z = 2ωn

β

√
μ (Tbn + βs) , (23.16)132

s = az2

4
− Tbn

β
. (23.17)133

1Sinusoidal functions are used for simplicity. Linear modes, given by the Bessel approximation or
by the WKB closed form solution in [2] might be used instead.
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6 G. J. Vernizzi et al.

Equation (23.15) turns out to a familiar Bessel form:134

d2ψn

dz2
+ 1

z

dψn

dz
+ ψn = 0 . (23.18)135

The solution of Eq. (23.18) can be written as a combination of zero-order Bessel136

functions of first and second kinds (J0 (z) and Y0 (z), respectively). The relations in137

the combination and the natural frequencies are obtained by applying the essential138

boundary conditions of the cable and using the solvability condition for non-trivial139

solutions. Although the use of Bessel functions is already a solution, the high values140

of z for a catenary cable with small sag allows the use of an asymptotic solution.141

Following [4, 5], consider the following transformation:142

ψn = 1√
z
�n . (23.19)143

Equation (23.18) becomes then:144

d2�n

dz2
+

(
1 + 1

4z2

)
�n = 0 . (23.20)145

In the case of a catenary with small sag, 1/4z2 � 1. Such result allows substituting146

this term in Eq. (23.20) by a small perturbation parameter, evaluated as the mean147

value of 1/4z2 along the cable. As shown in [4], the solution of Eq.(23.20) can then148

be well approximated by:149

�n = An sin (z)+ Bn cos (z) . (23.21)150

This leads finally to:151

ψn = 1√
z
(An sin (z)+ Bn cos (z)) . (23.22)152

Notice that Eq. (23.22) resembles the WKB solution previously obtained in [2].153

Now, since the transversal displacements must be zero at both ends of the cable, the154

system of the boundary conditions reads:155

⎡

⎢⎢⎢
⎢
⎣

sin z0√
z0

cos z0√
z0

sin zl√
zl

cos zl√
zl

⎤

⎥⎥⎥
⎥
⎦

[
An

Bn

]
=

[
0
0

]
. (23.23)156

Being z0 and zl the values of z at s = 0 and s = l, respectively. Since is desired157

to obtain non-trivial solutions of Eq. (23.23), the solvability condition leads to:158
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23 Non-linear Free Vibrations of a Hanging Cable with Small Sag 7

sin (zl − z0)√
zl z0

= 0 . (23.24)159

The solution of Eq. (23.24) is zl − z0 = nπ , which, using Eq. (23.16) leads to:160

ωn = nπ

2l
√
μ

(√
Ttn + √

Tbn

)
. (23.25)161

The modal shapes can then be written as:162

ψn = 4

√
Tbn

Tbn + βs
sin (z − z0) . (23.26)163

Using Eq. (23.25) in Eq. (23.16), the coordinate z can be written in terms of the164

modal tensions and the number of half-waves as:165

z =
√

Tbn + βs√
Ttn − √

Tbn
nπ . (23.27)166

23.3 Numerical Example167

To illustrate the effects of the non-linearities, preserved in the presented formulation,168

consider a cable with axial stiffness E A = 22970 kN, diameter D = 1.57 cm and169

μ = 1.29 kg/m. This cable is hanged such as h = 200 m and d = 100 m, and l =170

223.73 m. The length refers to the static equilibrium configuration length. In Fig. 23.2,171

the superposition of linear and non-linear modes is presented for the mode with172

n = 20, for a modal amplitude An = 3D. The modal shape functions are presented173

in dimensionless form, normalized by the maximum value of itself. As can be seen,174

there is no appreciable change in modal shape, since the modal amplitude is small.175

Now, in Figs. 23.3 and 23.4, the superposition of linear and non-linear modes176

is presented for modes with n = 10 and n = 20 respectively, considering for the177

non-linear mode a modal amplitude of An = 20D. The change in modal shape now178

is visible, altering the position of nodal points and rate of change of the vibration179

amplitude along the cable. Those figures also show that higher modes are more180

affected by non-linearities compared to lower ones.181

The effects of the non-linearities over the natural frequencies are shown in182

Table 23.1. The natural frequencies for some modal amplitude values and modes183

are shown. The modes are listed by the number of half-waves n in the modal shape.184

It is possible to conclude that the non-linearities have a hardening effect over the185

cable vibrations, and cause an increase in the natural frequencies. Such an increase186

is more significant for higher modes and for larger modal amplitude. Table 23.1 is187

graphically summarized in the backbone curves presented in Fig. 23.5. Those curves188
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8 G. J. Vernizzi et al.

Fig. 23.2 Mode n = 20, linear solution in red and non-linear in blue with An = 3D

Fig. 23.3 Mode n = 10, linear solution in red and non-linear in blue with An = 20D

Fig. 23.4 Mode n = 20, linear solution in red and non-linear in blue with An = 20D
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23 Non-linear Free Vibrations of a Hanging Cable with Small Sag 9

Table 23.1 Frequencies comparison (rad/s)

n Linear An = 1D An = 3D An = 5D An = 10D An = 20D

2 2.617 2.626 2.627 2.628 2.635 2.665

3 3.926 3.980 3.983 3.988 4.013 4.109

5 6.543 6.556 6.568 6.593 6.706 7.141

10 13.086 13.098 13.196 13.389 14.260 17.310

15 19.629 19.670 19.998 20.639 23.406 32.169

20 26.171 26.269 27.041 28.521 34.619 52.317

30 39.257 39.587 42.135 46.812 64.338 109.205

Fig. 23.5 Backbone curves
for the cable in study, being
ωn0 the natural frequency of
the linear problem

were numerically obtained by applying the proposed model to some values of modal189

amplitude in the range presented in the figure.190

23.4 Conclusions191

A closed-form solution for the non-linear modes and natural frequencies of a hang-192

ing cable with small sag was obtained. The results showed the dependence of the193

frequencies on the amplitude of motion and the change in the modal shape, resulting194
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10 G. J. Vernizzi et al.

in a shift of nodal points, changing the amplitude variation along the length. It is195

important to highlight the increasing in natural frequencies due to the preserved non-196

linearities, which may be significant for fatigue analysis for example. Finally, besides197

giving intrinsic characteristics of the system, closed-form solutions for modal shapes198

also allow for further direct implementations of projection methods in dynamic anal-199

ysis, such as the Galerkin projection. Further work includes the search for non-linear200

modes of hanging cables with arbitrary sag, and the application of non-linear modes201

in Galerkin schemes to obtain reduced order models for problems of interest such202

as cables subjected to vortex-induced vibrations or under the action of parametric203

excitation.204

Acknowledgements The first author acknowledges São Paulo Research Foundation (FAPESP)205

for his PhD scholarship, grant 2016/25457-1. The second and the third author are grateful to206

the Brazilian National Research Council (CNPq) for the research grants n. 310595/2015-0 and207

308990/2014-5.208

References209

1. Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164,210

85–124 (1993)211

2. Pesce, C.P., Fujarra, A.L.C., Simos, A.N., Tannuri, E.A: .Analytical and closed form solutions212

for deep water riser-like eigenvalue problem. In: Chung, J.S., Matsui, T., Koterayama W. (eds).213

Proceedings of the Ninth (9th) International Offshore and Polar Engineering Conference, Brest,214

France, pp. 255–264 (1999)215

3. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers.216

McGraw-Hill, New York (1978)217

4. Mazzilli, C.E.N., Lenci, S., Demeio, L.: Non-linear free vibrations of tensioned vertical risers.218

In: Ecker, H., Steindl, A., Jakubek S. (eds.) ENOC Proceedings of the 8th European Nonlinear219

Dynamics Conference, Vienna, Austria (2014)220
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under character

over character

new character 

new characters 

through all characters to be deleted

through letter   or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character    or

where required

between characters or

words affected

through character    or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you  

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly




