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a b s t r a c t

The asymptotic development method is used to obtain approximate analytical expressions for the natural
frequencies of non-uniform cables and beams. By manipulating the first-order terms, we obtain the
mechanical properties (mass, stiffness, etc.) of the equivalent uniform cables and beams having the same
(up to the first order) frequencies of the non-uniform one. The second order terms provide an error
estimation for the previous expressions. Some examples are reported to illustrate the effectiveness and
simplicity of the proposed formulas.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Beams of varying cross-section are largely used in different
branches of mechanical engineering; major examples are helicop-
ter rotor blades, airplane wings, blades in different types of
turbines, wind turbine blades, etc. but many others can be found.
To a minor extent, tapered beams are also encountered in civil
engineering, for example in bridges where pillars and beams may
be non-prismatic, and in architecture, where many important
architects enjoyed designing non-uniform beams in their
realizations.

The determination of natural frequencies of non-uniform
beams is an old issue, which dates back at least to Kirchhoff [17],
who obtained the analytical solutions for wedge-shaped and cone-
shaped beams in terms of Bessel's functions. Other pioneering
works are [41,28,43]. A long series of investigations have followed
these papers [12,5,21], especially during the 70s [25,18] and the
80s [42]. Sato [33] considered the effect of the axial force of
linearly tapered beams, while Filipich et al. [8] studied the effects
of a Winkler soil. Goel [11] and Lee and Ke [21,20] introduced
elastic boundary conditions. Li [23] considered the presence of
several cracks and concentrated masses, while the non-uniform

beam with several attached oscillators is investigated in [29].
Moving loads are considered in [7], while curved non-uniform
beams have been investigated in [22,39,34]. Rotating non-uniform
beams were studied in [3], and composite beams in [38].
In parallel to engineering papers, mathematical oriented works
can also be found [10].

A great impetus to this research came from the field of
structural optimization, where tapering was properly designed to
optimize the dynamical performances of the beam [15,24]. In [14]
the Young's modulus is varied, and the optimal control theory is
applied.

Recently, the investigation of the natural frequencies of non-
uniform beams is undergoing a sort of revival [7,30,36,34,3], also
in connection with the functionally graded material/beam [35,31].

In the literature we can basically find two different approaches.
In the first, exact solutions have been found for some specific cases
of tapering [6], using Bessel's functions [11,17,2] or hypergeo-
metric functions [40,30]. Abrate [1] found the very special class of
tapering for which the governing equation can be transformed in
that of the uniform media. The drawback of exact solution is that
they apply only to specific cases, and cannot be extended.

The second approach consists in looking for approximate
solutions [13]. In [2] the Rayleigh quotient is used, while in [33]
the Ritz method is used. Sakiyama [32] transformed the differ-
ential equation in an integral one, and then solved it numerically.
Purely numerical solutions have also been proposed [4,19]. In [37]
a finite element formulation considering shear deformation and
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rotatory inertia is proposed. The nonlinear regime has been
investigated numerically, too [16].

To the best of the authors' knowledge, no attempt has been
made to obtain solutions which are (i) simple, (ii) analytical,
(iii) accurate and (iv) general enough to be applied to any
situations. This constitutes the goal of this paper, where the
asymptotic development method, in the Poincaré–Lindstedt ver-
sion [27], is applied to obtain accurate analytical approximations
of the natural frequencies. Nayfeh [26] used the multiple-time-
scale method, but he considered the wave propagation in cables,
and not with free vibration of finite-length beams and cables. An
asymptotic analysis is developed in [39], but the smallness para-
meter is the thickness of the beam and not, as in the present paper,
the difference with respect to a uniform continuum. The WKB and
other approximate methods are used in [36] for the rod (i.e. the
cable) problem, while the WKB method is used for beams in [9];
both papers considered a different framework as compared to that
of this work.

The paper is organized as follows. In Section 2 the governing
equations for the undamped free vibrations of taut inextensible
cables and beams are summarized and written in a form con-
venient for the successive developments. An approximate analy-
tical solution of the governing equation is obtained by the
asymptotic development method, by considering terms up to the
second order. Simple formulas, valid up to the second order, are
obtained, and an error estimation is proposed. The general theory
is applied to the case of cables and beams in Sections 3 and 4,
respectively, and it is illustrated with some examples; in particular,
the homogeneous vertical cable and beam of uniform strength are
considered. The paper ends with some conclusions (Section 5).

2. Problem formulation

2.1. The cable

The free vibration of a taut inextensible cable are governed by
the well-known equation:

½NðẑÞu′ðẑ; t̂ Þ�′�ρAðẑÞ €uðẑ; t̂ Þ ¼ 0; ð1Þ

where uðẑ; t̂ Þ is the transversal displacement of the cable, N¼NðẑÞ
is the axial force (positive for traction) and ρA¼ ρAðẑÞ is the mass
per unit length. Prime denotes derivative with respect to the
physical space variable ẑ and dot derivative with respect to the
physical time t̂ . Note that N′ðẑÞ ¼ �qðẑÞ, qðẑÞ being the distributed
load per unit length along the axis of the cable (e.g. the weight for
a vertical cable), so that when qa0 the axial load is not constant,
which is the case we investigate in this work.

Instead of dealing with (1), it is useful to work with a
dimensionless equation. Let N0 and ρA0 be the reference axial
force and mass per unit length; they will be chosen in due course.
Let NðẑÞ ¼N0þ ~NðẑÞ and ρAðẑÞ ¼ ρA0þ ~ρAðẑÞ, and let L be the length
of the cable. By introducing the dimensionless space variable,
defined by

ẑ ¼ zL; ð2Þ

and dimensionless time, defined by

t̂ ¼ tL

ffiffiffiffiffiffiffiffi
ρA0

N0

s
: ð3Þ

Eq. (1) can be rewritten in the form (note that u is not dimension-
less)

f½1þg1ðzÞ�u′ðz; tÞg′�½1þg2ðzÞ� €uðz; tÞ ¼ 0; ð4Þ

where

g1ðzÞ ¼
~NðzÞ
N0

and g2ðzÞ ¼
~ρAðzÞ
ρA0

ð5Þ

are the dimensionless varying parts of the axial force and of the
mass per unit length. Prime and dot now mean derivative with
respect to z and t, respectively.

Looking for classical linear oscillations of (4) entails assuming
uðz; tÞ ¼ sin ðωtÞvðzÞ, obtaining
f½1þg1ðzÞ�v′ðzÞg′þω2½1þg2ðzÞ�vðzÞ ¼ 0; ð6Þ
and solving the associated eigenvalue problem.

Associated to the governing equation (6) there are the bound-
ary conditions at z¼0 and z¼1:

v¼ 0: ð7Þ

Remark. The same Eq. (6) holds also for the axial vibration of a
beam. In this case we have g1ðzÞ ¼ ~EAðzÞ=EA0, EA being the axial
stiffness, and boundary conditions different from (7) can be
considered.

2.2. The beam

We consider the Euler–Bernoulli beam with space dependent
bending stiffness EJ ¼ EJðẑÞ, normal force N¼NðẑÞ and mass per
unit length ρA¼ ρAðẑÞ. The governing equation of the free linear
vibrations is classical:

½EJðẑÞu″ðẑ; t̂ Þ�″�½NðẑÞu′ðẑ; t̂ Þ�′þρAðẑÞ €uðẑ; t̂ Þ ¼ 0: ð8Þ
As it has been done for the cable, it is useful to work with a

dimensionless equation. Let EJ0, N0 and ρA0 be the reference
bending stiffness, normal force and mass per unit length. Let
EJðẑÞ ¼ EJ0þ ~EJ ðẑÞ, NðẑÞ ¼N0þ ~NðẑÞ and ρAðẑÞ ¼ ρA0þ ~ρAðẑÞ. By
introducing the dimensionless space variable, defined by ẑ ¼ zL,
and the dimensionless time, defined by t̂ ¼ tL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρA0=EJ0

p
, Eq. (8)

can be rewritten in the form

f½1þ f 1ðzÞ�u″ðz; tÞg″�f½αþ f 2ðzÞ�u′ðz; tÞg′þ½1þ f 3ðzÞ� €uðz; tÞ ¼ 0; ð9Þ
where

α¼ N0L
2

EJ0
ð10Þ

is the dimensionless reference axial force, and where

f 1ðzÞ ¼
~EJ ðzÞ
EJ0

; f 2ðzÞ ¼
~NðzÞL2
EJ0

; f 3ðzÞ ¼
~ρAðzÞ
ρA0

; ð11Þ

are the dimensionless varying parts of the bending stiffness, of the
axial force and of the mass per unit length.

Looking for classical linear oscillations of (9) entails assuming
uðz; tÞ ¼ sin ðωtÞvðzÞ, obtaining
f½1þ f 1ðzÞ�v″ðzÞg″�f½αþ f 2ðzÞ�v′ðzÞg′�ω2½1þ f 3ðzÞ�vðzÞ ¼ 0: ð12Þ

As opposed to what happens for the cable, here different
boundary conditions should be considered. Each boundary can
be hinged ðv¼ v″¼ 0Þ, fixed ðv¼ v′¼ 0Þ or free
ðv″¼ v‴�ðαþ f 2Þv′¼ 0Þ, although more complex cases (e.g. elastic
boundaries) can be analyzed.

2.3. Asymptotic development

Looking for a perturbative solution around the reference case of
a homogeneous cable and beam, we assume (with an abuse of
notation)

g1ðzÞ ¼ ɛg1ðzÞ; g2ðzÞ ¼ ɛg2ðzÞ;
f 1ðzÞ ¼ ɛf 1ðzÞ; f 2ðzÞ ¼ ɛf 2ðzÞ; f 3ðzÞ ¼ ɛf 3ðzÞ; ð13Þ
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and, following the Poincaré–Lindstedt method [27], we look for a
solution in the form

ω¼ω0þɛω1þɛ2ω2þ…;

vðzÞ ¼ v0ðzÞþɛv1ðzÞþɛ2v2ðzÞþ… : ð14Þ
These expressions are inserted in the governing equations (6) and
(12) and in the boundary conditions, and then expanded in a
ɛ-series. Equating to zero the coefficients of these series provides a
sequence of problems for the unknowns ωi and vi(z).

3. The cable

3.1. Zero-order solution

Equating to zero the leading order coefficient of the series
expansion of the cable provides the equation:

v″0ðzÞþω2
0v0ðzÞ ¼ 0 ð15Þ

and the boundary conditions v0 ¼ 0 for z¼0 and z¼1. The solution
of this problem, which clearly corresponds to an uniform cable
having reference traction and unit mass, is simple and it is given by

ω0 ¼ nπ;
v0ðzÞ ¼ c sin ðnπzÞ; ð16Þ
where nAN is the modal number and c is an arbitrary amplitude.

3.2. First-order solution

Equating to zero the first-order coefficient of the series expan-
sion provides the equation:

v″1ðzÞþω2
0v1ðzÞþh1ðzÞþ2ω1ω0v0ðzÞ ¼ 0; ð17Þ

where

h1ðzÞ ¼ g′1ðzÞv′0ðzÞþω2
0v0ðzÞ½g2ðzÞ�g1ðzÞ�: ð18Þ

The boundary conditions are v1 ¼ 0 for z¼0 and z¼1.
The solution of (17) exists if and only if the solvability conditionZ 1

0
½h1ðzÞþ2ω1ω0v0ðzÞ�v0ðzÞ dz¼ 0 ð19Þ

is satisfied. This gives, after integration by parts

ω1 ¼ �
R 1
0 h1ðzÞv0ðzÞ dz
2ω0

R 1
0 v20ðzÞ dz

¼
R 1
0 g1ðzÞ½v′0ðzÞ�2 dz�ω2

0

R 1
0 g2ðzÞv20ðzÞ dz

2ω0
R 1
0 v20ðzÞ dz

:

ð20Þ
Eq. (20) shows that the arbitrary amplitude c of v0ðzÞ does not

influence ω1, which is the first-order correction of the natural
frequency ω0 corresponding to a uniform cable.

Once (19) is satisfied, v1ðzÞ can be computed by solving (17).
An explicit formula obtained by the method of variation of constants is

v1ðzÞ
c

¼ � sin ðnπzÞ
2

Z z

0
g′1ðζÞ½1þ cos ð2nπζÞ�þnπ½g2ðζÞ

�
�g1ðζÞ� sin ð2nπζÞ� dζ þ cos ðnπzÞ

2

Z z

0
g′1ðζÞ sin ð2nπζÞ�

þnπ½g2ðζÞ�g1ðζÞ�½1� cos ð2nπζÞ�� dζ

þω1 z cos ðnπzÞ� sin ðnπzÞ
nπ

� �
: ð21Þ

As usually done, the part of v1ðzÞ proportional to v0ðzÞ is neglected
without loss of generality.

By definition we have that

g1ðzÞ ¼
~NðzÞ
N0

¼ NðzÞ�N0

N0
; ð22Þ

so thatZ 1

0
g1ðzÞ½v′0ðzÞ�2 dz¼

1
N0

Z 1

0
NðzÞ½v′0ðzÞ�2 dz�

Z 1

0
½v′0ðzÞ�2 dz: ð23Þ

Choosing the arbitrary reference axial force equal to

N0 ¼
R 1
0 NðzÞ½v′0ðzÞ�2 dzR 1

0 ½v′0ðzÞ�2 dz
ð24Þ

we have that the integral on the left hand side of (23) vanishes.
Analogously, choosing

ρA0 ¼
R 1
0 ρAðzÞv20ðzÞ dzR 1

0 v20ðzÞ dz
ð25Þ

gives
R 1
0 g2ðzÞv20ðzÞ dz¼ 0.

The conclusion is that with the choices (24) and (25), we have
ω1 ¼ 0. These values are the properties of the equivalent uniform
cable having the same frequency (at least up to the first order) of
the given non-uniform cable.

Hence, the physical natural frequency of the cable is

f̂ ¼ 1
L

ffiffiffiffiffiffiffiffi
N0

ρA0

s
f ¼ 1

L

ffiffiffiffiffiffiffiffi
N0

ρA0

s
ω0

2π
¼ n

2L

ffiffiffiffiffiffiffiffi
N0

ρA0

s
: ð26Þ

From (24) and (25) we have that

N0

ρA0
¼

R 1
0 ½v0ðzÞ�2 dzR 1

0 ρAðzÞ½v0ðzÞ�2 dz

R 1
0 NðzÞ½v′0ðzÞ�2 dzR 1

0 ½v′0ðzÞ�2 dz
¼ 1

n2π2

R 1
0 NðzÞ½v′0ðzÞ�2 dzR 1
0 ρAðzÞ½v0ðzÞ�2 dz

:

ð27Þ
Thus,

f̂ ¼ 1
2πL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1
0 NðzÞ½v′0ðzÞ�2 dzR 1
0 ρAðzÞ½v0ðzÞ�2 dz

vuut ; ð28Þ

which is a simple formula providing the natural frequencies of the
non-uniform cable. It is worth to underline that, since ω1 ¼ 0, this
formula is valid up to the first order.

An equivalent expression of (28) is

f̂ ¼ n
2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1
0 NðzÞ½1þ cos ð2nπzÞ� dzR 1
0 ρAðzÞ½1� cos ð2nπzÞ� dz

vuut ; ð29Þ

which gives the classical expression f̂ ¼ ðn=2LÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
N=ρA

p
for constant

values of the mechanical properties.

Remark. It is not difficult to recognize that (28) is the Rayleigh
quotient. The advantage of the proposed method is that of
suggesting a given, and easy indeed, trial function in the quotient
(i.e. v0ðzÞ) which guarantees that the expression is correct up to the
first order. Furthermore, in the following section we will be able to
provide a more detailed error estimation.

3.3. Second-order solution

With the double aim of improving the approximation of ω and
of estimating the error of the expression (28), we compute the
second order term.

Equating to zero the second-order coefficient of the series
expansion provides the equation

v″2ðzÞþω2
0v2ðzÞþh2ðzÞþ2ω2ω0v0ðzÞ ¼ 0; ð30Þ

where

h2ðzÞ ¼ω2
1v0ðzÞþ2ω1ω0f½g2ðzÞ�g1ðzÞ�v0ðzÞþv1ðzÞg

þfg′1ðzÞv′1ðzÞþω2
0v1ðzÞ½g2ðzÞ�g1ðzÞ�g

þfω2
0g1ðzÞ½g1ðzÞ�g2ðzÞ�v0ðzÞ�g1ðzÞg′1ðzÞv′0ðzÞg: ð31Þ

The boundary conditions are v2 ¼ 0 for z¼0 and z¼1.
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The solution of (30) exists if and only if the solvability conditionZ 1

0
½h2ðzÞþ2ω2ω0v0ðzÞ�v0ðzÞ dz¼ 0 ð32Þ

is satisfied. This gives

ω2 ¼ �
R 1
0 h2ðzÞv0ðzÞ dz
2ω0

R 1
0 v20ðzÞ dz

: ð33Þ

Integrating by parts we have thatZ 1

0
h2ðzÞv0ðzÞ dz¼ω2

1

Z 1

0
v20ðzÞ dzþ2ω1ω0

Z 1

0
½g2ðzÞv20ðzÞ

þv1ðzÞv0ðzÞ� dzþðg1v′1v0Þj10�
Z 1

0
½g1ðzÞv′1ðzÞv′0ðzÞ

�ω2
0g2ðzÞv1ðzÞv0ðzÞ� dz: ð34Þ

The previous expression is general. In the case ω1 ¼ 0, and by
taking into account the boundary conditions for v0, it provides

ω2 ¼
R 1
0 g1ðzÞv′1ðzÞv′0ðzÞ dz�ω2

0

R 1
0 g2ðzÞv1ðzÞv0ðzÞ dz

2ω0
R 1
0 v20ðzÞ dz

: ð35Þ

We have that

f̂
real ¼ f̂ þɛ2

ω2

ω0
f̂ þ⋯ ð36Þ

where f̂ is given by (28). From the previous expression the error
can be easily estimated:

f̂
real� f̂

f̂
¼ ɛ2

ω2

ω0
þ⋯ ð37Þ

3.4. An example

As an illustrative example, we consider a case in which the
exact solution is known, so that we can assess the reliability of the
proposed method.

We consider the homogeneous heavy vertical cable of uniform
strength, i.e. that having a constant stress NðzÞ=AðzÞ ¼ s. It is
possible to show that AðzÞ ¼ Ae�xz , where

x¼ ρgL
s

; ð38Þ

and where ρ is the constant density (mass per unit volume), g
the gravity acceleration and A is the area of the cable for z¼0
(z positive downwards), so that sA is the traction in the upper end
of the cable and NðzÞ ¼ sAe� xz .

From (24) and (25) we have

N0 ¼ sA
1�e� x

x

� �
2x2þ4n2π2

x2þ4n2π2

� �
; ð39Þ

ρA0 ¼ ρA
1�e� x

x

� �
4n2π2

x2þ4n2π2

� �
; ð40Þ

so that from (26) we have

f̂ ¼ n
2L

ffiffiffi
s
ρ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
x
nπ

	 
2
r

; ð41Þ

where the second square root is the correction due to the non-
uniformity of the cable. Note that for large mode number n this
correction becomes negligible, according to the fact that in this
case the wavelength is small and it finds the cable as “piecewise
constant”.

Furthermore we have

ω2

ω0
¼ � tanhðx=2Þ

64

� �
x3ðx2þ4π2Þ2

ðx2þπ2Þðx2þ2π2Þ2

" #
; ð42Þ

which provides an error estimation for (41). It is illustrated in
Fig. 1. Note that for x-0 we have ω2=ω0C�x2=ð8π2Þ.

The dimensional equation of motion in the present case is

½sAe� x̂ ẑ u′ðẑ; t̂ Þ�′�ρAe� x̂ ẑ €uðẑ; t̂ Þ ¼ 0; ð43Þ
where x̂ ¼ x=L, so that x̂ẑ ¼ xz. The general solution of (43) is

uðẑ; t̂ Þ ¼ sin ðω̂; t̂ Þexz=2 c1 sin
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2þ 4ρω̂2L2

s

s0
@

1
A

2
4

þc2 cos
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2þ 4ρω̂2L2

s

s0
@

1
A
3
5; ð44Þ

from which, imposing the boundary conditions, we find that

f̂
real ¼ n

2L

ffiffiffi
s
ρ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
x
nπ

	 
2
r

: ð45Þ

Note that in [30] much more complex exact solutions are obtained
using the Kummer's hypergeometric function.

Comparing (45) with (41) we find that the approximate solu-
tion has a 2 instead of a 4 in the second square root. With (41) and

(45) it is possible to compute the real error function ðf̂ real� f̂ Þ=f̂ ,
which is also reported in Fig. 1. Note that both curves have exactly
the same asymptotic development for x-0.

4. The beam

In this section we apply to the beam the same approach
developed for the cable in the previous section.

4.1. Zero-order solution

Equating to zero the zero-order coefficient of the series expan-
sion of the beam provides the equation

v⁗0 ðzÞ�αv″0ðzÞ�ω2
0v0ðzÞ ¼ 0: ð46Þ

The general solution of (46) is

v0ðzÞ ¼ c1 sin ðazÞþc2 cos ðazÞþc3 sinhðbzÞþc4 coshðbzÞ; ð47Þ

Fig. 1. The real error function and the approximate error function ω2=ω0 for
the cable.
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where

a¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2αþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þ4ω2

0

qr
; b¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þ4ω2

0

qr
: ð48Þ

Note that ω0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þα

p
and b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þα

p
¼ω0=a.

4.1.1. Hinged–hinged beam
For the hinged–hinged beam the boundary conditions are

vð0Þ ¼ v″ð0Þ ¼ vð1Þ ¼ v″ð1Þ ¼ 0. They provide

a¼ nπ;

ω0 ¼ nπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2π2þα

p
;

v0ðzÞ ¼ c1 sin ðnπzÞ; ð49Þ

where nAN is the modal number and c1 is an arbitrary amplitude.

4.1.2. Fixed–fixed beam
For the fixed–fixed beam the boundary conditions are

vð0Þ ¼ v′ð0Þ ¼ vð1Þ ¼ v′ð1Þ ¼ 0. In this case the first-order natural
circular frequencies ω0 are the solutions of the transcendental
equation:

α sin ðaÞ sinhðbÞþ2ω0½1� cos ðaÞ coshðbÞ� ¼ 0: ð50Þ
In this case
c2 ¼ �c4 ¼ �c1ðb sin ðaÞ�a sinhðbÞÞ=ðb½ cos ðaÞ�coshðbÞ�Þ and
c3 ¼ �c1a=b.

4.1.3. Fixed-free beam
For the fixed-free beam the boundary conditions are

vð0Þ ¼ v′ð0Þ ¼ v″ð1Þ ¼ v‴ð1Þ�αv′¼ 0. In this case the first-order
natural circular frequencies ω0 are the solutions of the transcen-
dental equation:

2ω2
0þαω0 sin ðaÞ sinhðbÞþðα2þ2ω2

0Þ cos ðaÞ coshðbÞ ¼ 0; ð51Þ

In this case
c2 ¼ �c4 ¼ �c1aða sin ðaÞþb sinhðbÞÞ=ða2 cos ðaÞþb2 coshðbÞÞ and
c3 ¼ ð�c1Þa=b.

The functions ω0ðαÞ for different boundary conditions are
reported in Fig. 2 for the first natural frequency. Similar curves
can be obtained for higher-order frequencies.

4.2. First-order solution

Equating to zero the first-order coefficient of the series expan-
sion provides the equation:

v⁗1 ðzÞ�αv″1ðzÞ�ω2
0v1ðzÞþh1ðzÞ�2ω1ω0v0ðzÞ ¼ 0: ð52Þ

where now

h1ðzÞ ¼ 2f ′1ðzÞv‴0ðzÞþ½f ″1ðzÞþαf 1ðzÞ� f 2ðzÞ�v″0ðzÞ
� f ′2ðzÞv′0ðzÞþω2

0½f 1ðzÞ� f 3ðzÞ�v0ðzÞ: ð53Þ
We note that both h1ðzÞ and v1ðzÞ are linear with respect to v0ðzÞ.

The solution of (53) exists if and only if the solvability conditionZ 1

0
½h1ðzÞ�2ω1ω0v0ðzÞ�v0ðzÞ dz¼ 0 ð54Þ

is satisfied. This gives

ω1 ¼
R 1
0 h1ðzÞv0ðzÞ dz
2ω0

R 1
0 v20ðzÞ dz

: ð55Þ

Since h1ðzÞ is linear with respect to v0ðzÞ, the previous equations
show that the arbitrary amplitude of v0ðzÞ does not influence ω1.
It gives the first order correction of the natural frequency ω0

corresponding to a uniform beam.
Integrating by parts we getZ 1

0
h1ðzÞv0ðzÞ dz¼ ðf ′1v″0v0þ f 1v

‴
0v0� f 1v

″
0v

′
0� f 2v

′
0v0Þj10

þ
Z 1

0
ff 1ðzÞ½v″0ðzÞ�2þ f 2ðzÞ½v′0ðzÞ�2�ω2

0f 3ðzÞv20ðzÞg dz: ð56Þ

Note that for a fixed or a hinged constraint the boundary terms
vanish in (56). This does not occur for a free constraint (unless
αf 1 ¼ f 2 at that boundary).

Proceeding as done for the cable, we see that if we choose

EJ0 ¼
ðEJ′v″0v0þEJv‴0v0�EJv″0v

′
0Þj10þ

R 1
0 EJðzÞ½v″0ðzÞ�2 dz

ðv‴0v0�v″0v
′
0Þj10þ

R 1
0 ½v″0ðzÞ�2 dz

;

N0 ¼
ð�Nv′0v0Þj10þ

R 1
0 NðzÞ½v′0ðzÞ�2 dz

ð�v′0v0Þj10þ
R 1
0 ½v′0ðzÞ�2 dz

;

ρA0 ¼
R 1
0 ρAðzÞv20ðzÞ dzR 1

0 v20ðzÞ dz
; ð57Þ

we have that ω1 ¼ 0. These values are the properties of the
equivalent uniform beam having the same frequency (at least up
to the first order) of the given non-uniform beam.

We have that ω0ðαÞ (see Fig. 2). Furthermore, apart from the
hinged–hinged beam, we also have that v0ðzÞ depends on α,
namely v0ðz;αÞ. This means that Eqs. (57) provide EJ0ðαÞ, N0ðαÞ
and ρAðαÞ. From (10) we then have

α¼ N0ðαÞL2
EJ0ðαÞ

; ð58Þ

which is a transcendental equation permitting to compute α, and
then all the other quantities of interest.

The physical natural frequency of the beam is

f̂ ¼ 1

L2

ffiffiffiffiffiffiffiffi
EJ0
ρA0

s
f ¼ 1

L2

ffiffiffiffiffiffiffiffi
EJ0
ρA0

s
ω0

2π
; ð59Þ

where all the required expressions have been computed above.
This is a simple formula providing the natural frequencies of the
non-uniform beam. It is worth underlining that, since ω1 ¼ 0, this
formula is valid up to the first order.

Remark. Contrarily to what happens for the case of the cable, now
(59) does not come from a Rayleigh quotient (unless NðzÞ ¼ 0).Fig. 2. The functions ω0ðαÞ for the different boundary conditions and for n¼1.

S. Lenci et al. / International Journal of Mechanical Sciences 77 (2013) 155–163 159



Author's personal copy

Choosing NðzÞ ¼ βNðzÞ and noting that N0 is linear with respect
to N(z), we have that N0 ¼ βN0, so that from (58) we have αðβÞ, and
then ω0½αðβÞ� ¼ω0ðβÞ. Solving ω0ðβÞ ¼ 0 with respect to β pro-
vides the buckling load of the non-uniform beam.

4.3. Second-order solution

Equating to zero the second-order coefficient of the series
expansion provides the equation:

v⁗2 ðzÞ�αv″2ðzÞ�ω2
0v2ðzÞþh2ðzÞ�2ω2ω0v0ðzÞ ¼ 0; ð60Þ

where

h2ðzÞ ¼ �ω2
1v0ðzÞ�2ω1ω0f½f 3ðzÞ� f 1ðzÞ�v0ðzÞþv1ðzÞg

þf2f ′1ðzÞv‴1ðzÞþ½f ″1ðzÞþαf 1ðzÞ� f 2ðzÞ�v″1ðzÞ� f ′2ðzÞv′1ðzÞ
þω2

0½f 1ðzÞ� f 3ðzÞ�v1ðzÞg
þf�2f ′1ðzÞf 1ðzÞv‴0ðzÞ� f 1ðzÞ½f ″1ðzÞþαf 1ðzÞ� f 2ðzÞ�v″0ðzÞ
þ f 1ðzÞf ′2ðzÞv′0ðzÞ�ω2

0f 1ðzÞ½f 1ðzÞ� f 3ðzÞ�v0ðzÞg: ð61Þ

We note that both h2ðzÞ and v2ðzÞ are linear with respect to v0ðzÞ.
The solution of (61) exists if and only if the solvability conditionZ 1

0
½h2ðzÞ�2ω2ω0v0ðzÞ�v0ðzÞ dz¼ 0 ð62Þ

is satisfied. This gives

ω2 ¼
R 1
0 h2ðzÞv0ðzÞ dz
2ω0

R 1
0 v20ðzÞ dz

: ð63Þ

Since h2ðzÞ is linear with respect to v0ðzÞ, the previous equations
show that the arbitrary amplitude of v0ðzÞ does not influence ω2.
It gives the second order correction of the natural frequency ω0

corresponding to a uniform beam.
Integrating by parts we have that the numerator of (63) becomes

Z 1

0
h2ðzÞv0ðzÞ dz

¼ �ω2
1

Z 1

0
v20ðzÞ dz�2ω1ω0

Z 1

0
½f 3v20ðzÞþv1ðzÞv0ðzÞ� dz

þðf ′1v″1v0þ f 1v
‴
1v0� f 1v

″
1v

′
0� f 2v

′
1v0Þj10

þ
Z 1

0
½f 1ðzÞv″1ðzÞv″0ðzÞþ f 2ðzÞv′1ðzÞv′0ðzÞ�ω2

0f 3ðzÞv1ðzÞv0ðzÞ� dz:

ð64Þ
In the case ω1 ¼ 0 we have that

f̂
real ¼ f̂ þɛ2

ω2

ω0
f̂ þ…; ð65Þ

where f̂ is given by (59), so that the error is again given by

f̂
real� f̂

f̂
¼ ɛ2

ω2

ω0
þ⋯ ð66Þ

It is worth noting that in correspondence to the buckling load
we have ω0-0, and so the error becomes unbounded.

4.4. An example

We consider the same example used for the cable (see Section
3.4). In particular, we consider the hinged–hinged homogeneous
heavy vertical beam of uniform strength. We have AðzÞ ¼ Ae� xz (x
is given by (38); note that now x can be also negative, since a beam
can carry compressive axial load), so that EJðzÞ ¼ EJe�2xz,
NðzÞ ¼ sAe� xz and ρAðzÞ ¼ ρAe�xz . E is the Young modulus, J is
the moment of inertia for z¼0. It is worth remarking that the
bending stiffness is assumed to be proportional to the square of
the area.

From (57) we have

EJ0 ¼ EJ
1�e�2x

2x

� �
n2π2

x2þn2π2

� �
; ð67Þ

N0 ¼ sA
1�e�x

x

� �
2x2þ4n2π2

x2þ4n2π2

� �
; ð68Þ

ρA0 ¼ ρA
1�e� x

x

� �
4n2π2

x2þ4n2π2

� �
; ð69Þ

so that from (58) we have

α¼ α
4

1þe�x

� � ðx2þn2π2Þðx2þ2n2π2Þ
n2π2ðx2þ4n2π2Þ

� �
; α ¼ sAL2

EJ
; ð70Þ

while from (59) we have

f̂ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2π2þα

p

2L2

ffiffiffiffiffiffiffi
EJ

ρA

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe�x

8

� �
x2þ4n2π2

x2þn2π2

� �s
: ð71Þ

The last square root, which is illustrated in Fig. 3, is the correction
due to the non-uniformity of the beam. Note that for large mode
numbers, n-1, it gets closer to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þe�xÞ=2

p
.

From Eq. (71) we see that f̂ ¼ 0 if and only if α¼ �n2π2, i.e., if
and only if

α ¼ αcr ¼ �n2π2 n2π2ðx2þ4n2π2Þ
ðx2þn2π2Þðx2þ2n2π2Þ

� �
1þe� x

4

� �
; ð72Þ

which corresponds to the buckling load for the considered non-
uniform beam. Note that for x¼0 we recover the Euler critical
value αcr ¼ �n2π2 for uniform beams. The product of the terms
between brackets in (72) is thus the correction term due to the
non-uniformity of the beam. Note that for large values of the mode
number n, it becomes equal to ð1þe� xÞ=2.

The ratio ω2=ω0, which permits to detect the error, can be
computed in closed form. However, its expression is so involved
that cannot be reported. It is depicted in Fig. 4 for different values
of α0. Its asymptotic behavior for x-0 is γðα0Þx2, where the
function γðα0Þ is depicted in Fig. 5.

Fig. 3. The correction term for the natural frequency. From the lower to the upper
curve: n¼ 1;2;3;4;5;1.
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4.5. Comparison with an exact solution

To check the effectiveness of the proposed approximate solu-
tion, we compare it with an exact one.

We consider the beamwith width and thickness varying linearly
along the axis. In the absence of axial load, when the mass per unit
length is constant, and when both the taper ratios are equal, the
governing equation of the free harmonic vibrations is

½ð1þɛzÞ4v″ðzÞ�″�ω2vðzÞ ¼ 0; ð73Þ

where ɛ¼ ðhL�h0Þ=h0 ¼ ðbL�b0Þ=b0 is the (unique) taper ratio, h is
the thickness and b the width of the beam. This is mainly a
theoretical problem, however it has been largely studied in the
literature (see for example [11,25]) because it has an exact solution,

which is

vðzÞ ¼ c1 zþ 1
ɛ

� ��ð1=2Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þω2=ɛ4

pp
Þ

þc2 zþ 1
ɛ

� ��ð1=2Þð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þω2=ɛ4

pp
Þ

c3 zþ 1
ɛ

� ��ð1=2Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þω2=ɛ4

pp
Þ
þc4 zþ 1

ɛ

� ��ð1=2Þð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þω2=ɛ4

pp
Þ
:

ð74Þ
It is a simpler expression of the same solution obtained in [11,25] by
Bessel functions.

By imposing the four appropriate boundary conditions (see
Section 4.1) we obtain linear homogeneous systems in the four
unknowns c1, c2, c3 and c4. Setting equal to zero the determinant of
the associate matrix, and solving it with respect to ω, permits to
obtain the exact frequencies ωðɛÞ. The first and the second natural
frequencies are reported by thick lines in Fig. 6 for different
boundary conditions.

Noting that ð1þɛzÞ4 ¼ 1þɛð4zÞþ… we applied the asymptotic
development method developed early by considering f 1ðzÞ ¼ 4z,
α¼ f 2ðzÞ ¼ f 3ðzÞ ¼ 0. Thus, we neglect terms higher that the first,
and accordingly we compute only the first-order correction term ω1.
It is exactly (55), which however is not set to zero now to facilitate
the comparison with the exact solution.

The results are reported in Table 1 for different boundary
conditions. The exact and the approximate solutions are compared
in Fig. 6, from which we see a very good agreement, well beyond
small values of ɛ, which confirms the reliability of the proposed
solution, especially if we recall that the second-order asymptotic
terms are not considered.

5. Conclusions and further developments

The free-vibration problem of non-uniform cables and beam
has been addressed by means of the asymptotic development
method in order to have simple formula to detect the natural
frequencies. The stiffness (for the beam), the normal force and the
mass per unit length are allowed to vary along the axis.

After writing the equations in dimensionless form, the Poin-
caré–Lindstedt method is applied by considering a small variation
of the mechanical parameters. The first-order term corresponds to
the classical solution for uniform media. The first-order term
provides the mechanical properties of the equivalent uniform
cable/beam, from which simple formulas for the natural frequen-
cies are obtained. Since they come from the vanishing of the
first-order frequency correction, they provided an approxima-
tion valid up to the first-order. The error was detected by
computing the second-order frequency correction of the asymp-
totic development.

The theoretical results have been illustrated by means of some
examples. The vertical heavy cable and beam of constant strength
have been considered. They have an exponential variation of the
area and of the bending stiffness. Their natural frequencies have
been determined, and an error estimation has been provided.

The case of linearly varying width and thickness has also been
considered for the beam, since in this case the exact solution is
known. Comparison of the exact with our approximate results
shows the effectiveness of the proposed method, which stands up
to large values of the smallness parameters.

The present work proposes a methodological approach which,
at least in principle, can be extended to other cases. For example,
different beam models (Timoshenko beam, rotatory inertia, etc.) as
well as 2D or 3D continuum models can be considered. It can also

Fig. 4. The error function ω2=ω0 for the hinged–hinged beam.

Fig. 5. The function γðα0Þ for n¼1.
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been extended to the nonlinear case. Another possible develop-
ment consists in assuming also a time variation of the mechanical
properties, thus extending, for example, the problem of a time-
varying mass oscillator addressed in [44] or time-varying stiffness
oscillators, such as those subjected to parametric excitation of the
Mathieu type. It is also expected that some applications in the field
of optimization can be found.
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