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Riser-Soil Interaction: Local
Dynamics at TDP and a
Discussion on the Eigenvalue
and the VIV Problems
The eigenvalue problem of risers is of utmost importance, particularly if vortex-induced
vibration (VIV) is concerned. Design procedures rely on the determination of eigenvalues
and eigenmodes. Natural frequencies are not too sensitive to the proper consideration of
boundary condition, within a certain extent where dynamics at the touchdown area (TDA)
may be modeled as dominated by the dynamics of the suspended part. However, eigen-
modes may be strongly affected in this region because, strictly speaking, this is a non-
linear one-side (contact-type) boundary condition. Actually, we shall consider a nonlin-
ear eigenvalue problem. Locally, at TDA, riser flexural rigidity and soil interaction play
important roles and may affect the dynamic curvature. Extending and merging former
analytical solutions on touchdown point (TDP) dynamics and on the eigenvalue problem,
obtained through asymptotic and perturbation methods, the present work critically ad-
dress soil and bending stiffness effects a little further. As far as linear soil stiffness and
planar dynamics hypotheses may be considered valid, it is shown that penetration in the
soil is small and that its effect does not change significantly the bending loading that is
mainly caused by the cyclic excursion of the TDP and corresponding dynamic tension. A
comparison of the analytical results with a full nonlinear time-domain simulation shows
a remarkable agreement for a typical steel catenary riser. The WKB approximation for
the eigenvalue problem gives good estimates for TDP excursion. As the dynamic tension
caused solely by VIV is very small, the merged analytical solution may be used as a first
estimate of the curvature variation at TDP in the cases of current perpendicular to the
“riser plane.” �DOI: 10.1115/1.2151205�

Keywords: riser dynamics, eigenvalue, eigenmodes, WKB, asymptotic methods, soil
interaction, TDP, VIV
Introduction
Dynamics of risers still demands research efforts. An extensive,

though not so recent, review on modeling and analysis methods
can be found in Patel and Seyed �1� who pointed out a number of
research topics that should deserve special consideration. One of
them is related to the riser-soil contact modeling. This topic
“awaits a comprehensive and consistent treatment, where nonlin-
ear effects would be properly taken into account. Embedding,
trenching or shocking should be cited as some of important phe-
nomena not yet properly incorporated in most design procedures,
deserving much more investigations,” Pesce and Martins �2�.

Recently, a major research effort has been completed in soil-
riser interaction modeling, particularly with emphasis on such
highly nonlinear effects, combining experimental, analytical, and
numerical methods �see, e.g., �3–5��. CARISIMA �3,4� is a compre-
hensive empirical model based on extensive experimental work,
considering vertical suction, lateral resistance, pipe penetration,
and trenching. Particularly, those authors point out that the “ap-
plication of the model has a strong effect on the computed fatigue
lifetimes.” Actually, this effect is more related to trenching, suc-
tion, and embedding than to the vertical �elastic� response of the
soil.
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Despite those highly complex nonlinear mechanisms, numerical
riser-soil interaction modeling is usually restricted to springs �lin-
ear or not�, sometimes taking into account the strongly nonlinear
one-side �contact-type� boundary condition. In this context, the
usual “beam on a linearly elastic foundation” approximation
would be certainly questionable. However, as far as linear soil
stiffness and planar dynamics hypotheses may be considered
valid, the present analysis will show that the soil penetration effect
does not significantly change the bending loading caused by the
cyclic excursion of the touchdown point �TDP�. Embedding and
other effects apart, the TDP excursion may be said to be the most
important factor in the fatigue damage of steel catenary risers
�SCR�. In this sense, the quasi-static analytical solution provided
in the present paper will prove to be quite valuable and not only as
a benchmark for numerical schemes. Questionable as it may be,
the linear elastic foundation approximation might be said to be
valid at least for relatively stiff soils. As pointed out by Fontaine
et al. �5� “for cycling loading, high values for the averaged verti-
cal stiffness have been observed, despite the soil cohesion being
low.”

Common design practices make extensive use of numerical
methods to account for the soil effect on riser dynamics, at TDA.
On the other hand, asymptotic and perturbation methods have
been used to deal with the riser-soil interaction problem. Based on
previous works by Triantafyllou et al. �6� and Irvine �7�, Aranha et
al. �8� derived an analytical solution to represent the nonlinear
dynamic behavior of a riser at TDA. Although experimentally
confirmed in Pesce et al. �9�, this work was restricted to the �im-

portant� rigid-soil case. The soil rigidity effect on the static con-
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figuration of a catenary riser was addressed analytically in Pesce
et al. �10�. Although it was relatively straightforward, the exten-
sion of that analysis to the dynamic case has not yet been pre-
sented.

Another very important subject in riser dynamics is the eigen-
value problem. The eigenvalue problem turns out to be of utmost
importance when design tasks concern vortex-induced vibrations
�VIV�. Because direct nonlinear numerical simulations are ex-
tremely time-consuming, modern design practices make extensive
use of frequency-domain methods.

Design procedures rely on the determination of eigenvalues and
eigenmodes. Strictly, we should consider a nonlinear eigenvalue
problem, taking into account the whole pipe, from the anchor to
the floating unit and, properly, the contact problem. Or else, an
effective participation length on the soil might be considered.

If, instead, only the suspended part is analyzed, the soil inter-
action must be accounted for separately. As the actual TDP dis-
placement is small compared to the suspended length L�t�, eigen-
frequencies are not expected to be too sensitive on boundary
condition at the TDA, if the soil rigidity is considered large
enough.

Furthermore, in VIV analysis, lock-on usually occurs for high
values of eingenfrequencies. In typical deep-water SCR cases,
eigenmodes higher than the 20th are likely to be excited. In these
situations, the global dynamics, due to motions imposed by the
floating unit, is relatively slow, such that eigenvalues could be
considered modulated in time, due to the variation in span and
tension. This could be formalized through the classical method of
multiple scales �see, e.g., �11��.

Moreover, as for the suspended part the riser bending stiffness
effect is only dominant inside a small boundary layer at TDA, an
asymptotic solution for the eigenvalue problem of a curved and
tensioned string can be applied �see, e.g., �12��. This solution was
first derived by Triantafyllou �13� for taut inclined cables and, in
the specific area of riser dynamics, by Pesce et al. �14�. In this
latter work the riser was considered nonextensible. A simple ana-
lytical �WKB� closed-form solution was obtained, given the func-
tion describing the static effective tension along the riser length.
Such an analytical solution does not take into account either the
bending stiffness of the riser or the soil rigidity, which locally
affects the dynamic curvature, at TDA. These effects must be
incorporated.

Two paths could then be followed. The first one would consist
of linearizing the eigenvalue problem around the static configura-
tion, matching the solution on the soil with the asymptotic solu-
tion, valid on the suspended part, through a standard boundary
layer technique.

A second path is chosen, however. The static boundary layer
solution in elastic soil, presented in Pesce et al. �10� is extended to
construct a quasi-static nonlinear solution, similar to that pre-
sented in Aranha et al. �8� for the rigid-soil case. This local quasi-
static solution is driven by relatively slow1 functions that describe
dynamic tension and TDP excursion, which can be easily evalu-
ated from the asymptotic approximation.

Local Subcritical Dynamics of a Catenary Riser Laid on
Linear Elastic Soil

For simplicity, consider the planar problem of a free-hanging
catenary riser laid on a linear elastic soil �Fig. 1�. Let k be the soil
rigidity per unit length and penetration. Let also y�s , t� be the local
solution for the elastica such that yr=−q /k; s /�→−� is the static
offset �penetration in the soil� far away from the TDP. The im-
mersed weight per unit length is q, �=�EI /T0 is the flexural
boundary layer length scale, and T0 is the static tension at TDP. A
local analytical solution was derived by Pesce et al. �10� for the
static problem. There, the solution on the soil is matched to the

1
If compared to the dynamics of the supported part.
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boundary layer solution valid for the suspended part, enforcing
continuity on shear. This result can be extended to a subcritical
dynamic regime, i.e., under the hypothesis of no impact against
the soil.

Quasi-Static Equation on the Soil. As said before, we restrict
ourselves to the planar problem. Consider the dynamic solution
for the corresponding problem of a heavy cable to be known. Let
�0=q /T0 be the static curvature of the cable at TDP. Note that all
static information is contained in the static tension T0 and all
dynamic information in the dynamic tension, �0�t� and in the ex-
cursion of the cable TDP, x0�t�. Now, let the coordinate sK�t�
define the actual TDP position, here taken as the point where the
elastica touches the bottom, i.e., y�sK�=0. For simplicity we con-
sider a nondetachment condition from the soil, for s�sK. If the
soil is not too soft, we can locally take, ��dy /dx and with a
second-order error in �, s�x and ��s����x��d2y /dx2.

Consider now the local nondimensional coordinates �=x /�,
��� , t�=y�s , t� /� and the �rapidly varying� nondimensional local
time scale t̂=tc0 /�, being c0=�T0 / �m+ma� the local cable trans-
versal wave celerity, where m and ma, are mass and added mass
per unit length. Note that �K�t̂�=sK�t̂� /� defines the actual instan-
taneous TDP position. Let, also, K be the nondimensional soil
rigidity parameter,

K =
kEI

T0
2 =

k�2

T0
=

k�4

EI
= �0�

k�

q
�1�

With no loss of generality, we may disregard the nondimen-
sional static penetration in the soil, far away from the TDP, given
by �r=yr /�=−q /k�=−�0� /K. Therefore, the dynamic equilib-
rium equation for a bar, acted by dynamic tension and laid on a
linear elastic soil, can be written in nondimensional form as

�4�

��4 − f�t̂�
�2�

��2 + K� = −
�2�

�t̂2
�2�

where, f�t̂�=1+�0�t̂� /T0, �0�t̂�=��0, t̂� is the local nondimensional
dynamic tension function, which will be considered to be positive,
precluding compression.2

Let us now consider that the dynamics of the suspended part
governs the local dynamics. In other words, a global �slow� time
scale, related to the geometric rigidity of the suspended part, can
be defined as t=tc0 /L=	t̂, being 	=� /L a small quantity and L
the cable suspended length in the static configuration. Equation
�2� may be written

2

Fig. 1 Two-dimensional catenary riser problem. Displace-
ments exaggerated
For dynamic compression, see �15,16�.
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�4�

��4 − f�t�
�2�

��2 + K� = − 	2�2�

�t2 �3�

Therefore, with an error of order 	2, a quasi-static approximate
equation, in the slow time scale t, reads3

�IV − f�t��II + K� = 0 �4�

Taking f�t�
0, Eq. �4� has a standard homogeneous solution,

���,t� = �
j=1

4

Aje
�j�t���−�K�t��; � � �K�t� �5�

with complex eigenvalues

� j�t� = ± ��f�t� ± �f�t� − 4K�1/2

2
	1/2

�6�

However, under relatively small variations of tension, we have
f�t�
O�1�. Additionally, we take a sufficiently rigid soil, such
that K�1. This, in fact, corresponds to typical situations for steel
catenary risers leading, for the boundary conditions ���K�t��=0;
lim�→−� ����=0, to a simple approximate quasi-static solution

���,t� = C�t�exp�K1/4

�2
�� − �K�t��	sin�K1/4

�2
�� − �K�t��	

valid for �� − �K�t�� � 0 �7�

Note that there are two unknowns, C�t� and �K�t�, that must be
determined by matching the soil solution with the suspended part
�local� solution.

Subcritical Dynamic Solution in the Suspended Part. It was
shown by Triantafyllou et al. �6� that a shock condition for a cable
against the soil holds whenever the local Mach number, M
= ẋ0 /c0 is 
1. This assertion can be physically interpreted as the
lack of time for the cable to properly adjust its geometric form.
Conversely, the condition M 1 is said to be a subcritical dy-
namic regime. For this latter situation, it has also been shown by
Aranha et al.,�8�, that the inertia terms can be locally disregarded,
with an error of the order of M2�1.

For convenience, we take �=0 as the static TDP position of the
corresponding cable case. Therefore, �0�t�=x0�t� /�. Let X���
=����� be the nondimensional curvature. X0=�0� is the cable
static curvature at TDP, usually a small quantity, of order 5
�10−3 for a SCR.

Merging the reasoning presented in Aranha et al. �8� and Pesce
et al. �10�, the local �boundary layer� quasi-static nondimensional
solution for the curvature, valid in the suspended part, ��−�K�t��
�0, may be written

�II��,t� =
X0

f�t�
�1 − A1�t�exp�− b�t��� − �K�t���� �8�

such that angle and elastica nondimensional functions are given,
respectively, by

�I��,t� =
X0

f�t���� − �0�t�� +
A1�t�
�f�t�

exp�− �f�t��� − �K�t���	 �9�

���,t� =
X0

f�t� �2 − �K
2 �t�

2
− �0�t��� − �K�t���

+
X0

f�t�
�−

A1�t�
f�t�

exp�− �f�t��� − �K�t��� + A2�t�	 �10�

and the nondimensional shear force by

3 I
� indicates derivative with respect to the local coordinate �.
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�III��,t� =
X0

�f�t�
A1�t�exp�− �f�t��� − �K�t��� �11�

Note that there are two additional unknown nondimensional
functions, namely, A1�t� and A2�t�. However, enforcing
���K�t� , t��0, we obtain from �10�

A2�t� =
A1�t�
f�t�

�12�

Matching Solutions. The solutions given in Eqs. �7� and �10�
can be matched by equating derivatives up to third-order at �
=�K�t�. The following set of linear algebraic equations is then
obtained:

K1/4

�2
C�t� =

X0

f�t���K�t� − �o�t� +
A1�t�
�f�t�

	
K1/2C�t� =

X0

f�t�
�1 − A1�t��

K3/4

�2
C�t� = X0

A1�t�
�f�t�

�13�

Solving Eqs. �12� and �13� the unknowns �C�t� ,A1�t� ,A2�t� ,�K�t��
are readily determined as

C�t� =
X0

�f�t�

�2

K1/2

1

K1/4 + �2f�t�

A1�t� =
K1/4

K1/4 + �2f�t�

A2�t� =
1

f�t�
K1/4

K1/4 + �2f�t�
�14�

and

�K�t� = �0�t� −
K1/4

K1/4 + �2f�t�
� 1

�f�t�
−

�f�t�
K1/2 	 �15�

Therefore, closing the present local quasi-static analytical solution
at TDA, we have

���,t� =
X0

�f�t�

�2

K1/2

1

K1/4 + �2f�t�
exp�K1/4

�2
�� − �K�t��	

� sin�K1/4

�2
�� − �K�t��	

valid for �� − �K�t�� � 0

and

���,t� =
X0

f�t� �2 − �K
2 �t�

2
− �0�t��� − �K�t���

+
X0

f�t�� 1

f�t�
K1/4

K1/4 + �2f�t�
�1 − exp�− �f�t��� − �K�t�����

valid for �� − �K�t�� � 0 �16�

By taking �0�t��0 and f�t��1, it can be easily shown that this
solution recovers the static case, presented in Pesce et al. �10�. On
the other hand, in the rigid-soil limit case, where K→�, the
present solution recovers the dynamic solution derived in Aranha
et al. �8� and experimentally confirmed and presented in revised
form in Pesce et al. �9�.

For simplicity, TDP excursion is taken as �0�t�=x0�t� /�
=a0 cos �t and the dynamic tension, in anti-phase, as f�t�=1

−�0�t� /T0=1−�0 cos �t. Soil is considered relatively soft, with
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K=10. Figures 2–5 show local envelopes of normalized elastica,
angle, curvature, and shear. Snapshots along a half cycle of har-
monic excitation are presented.

Observe from Figs. 3–5 that, at a given section x /�, angle,
curvature, and shear vary cyclically, while the TDP oscillates and
the line penetrates into the linear elastic soil, as shown in Fig. 2.
The variation observed in the shear force peak is due to dynamic
tension oscillation. Figure 6 presents TDP and dynamic tension
oscillation during two complete cycles.

Figure 7 shows the corresponding curvature oscillation for sev-
eral sections, x /�=−6,−5, . . .5 ,6. Note that, in this particular ex-

Fig. 2 Normalized elastic curve, K=10.
=2��−1. a0=1, �0=0.2.

Fig. 3 Normalized angle, K=10. Snapshot

=1, �0=0.2.
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ample, curvature amplitude attains two maxima, at two distinct
sections. The first section, at x /��−0.7 �curve with maximum
�0.6�, penetrates the soil cyclically, with a curvature variation
���0.6�0. This is the maximum curvature amplitude. The sec-
ond section, at x /��6, for which ���0.4�0, does not touch the
soil.

Actually, the position where dynamic curvature attains maxi-
mum amplitude values depends on the amplitudes and relative
phases of TDP excursion and dynamic tension oscillation. An il-
lustrative example is shown in Fig. 8–11. Only the tension ampli-

apshots for t /T=0,0.1,0.2,0.3,0.4,0.5; T

or t /T=0,0.1,0.2,0.3,0.4,0.5; T=2��−1. a0
Sn
s f
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tude was modified, to a somewhat large value, �0=0.7. Relative
phases were kept the same. This caused the actual TDP position
�K�t� to be deviated from a single harmonic, provoking the inter-
lacing aspect shown in Fig. 10, in the elastic curve envelope.
Observe also, from Fig. 9 and 11, that the section where curvature
attains the maximum amplitude is no longer the same, having
moved upward.

The quasi-static solution preserves some nonlinear aspects of
the one-sided contact boundary condition. It should be also em-
phasized that the examples shown represent typical situations
when a riser is driven cyclically at the top by the floating unit.

Before numerical comparisons are shown in the next section,
Fig. 12–14 address the effect of soil rigidity by taking a very rigid
soil, with K=10,000. Note that curvature variation, the most im-

Fig. 4 Normalized curvature, K=10. S
=2��−1. a0=1, �0=0.2.

Fig. 5 Normalized shear force, K=10.
−1
=2�� . a0=1, �0=0.2.

Journal of Offshore Mechanics and Arctic Engineering
portant issue in fatigue analysis, is not too sensitive to soil rigid-
ity, being dominated by global dynamic quantities: the TDP ex-
cursion and the dynamic tension.

The curvature variation attains a maximum ���0.7�0, at
x /��−0.2. Obviously, negative curvature is small, as the riser
barely penetrates the soil, as shown in Figs. 13 and 14.

Comparison to Full Nonlinear Time-Domain Simulations.
The present quasi-static analytical solution has been compared to
full nonlinear simulation results, showing a remarkable agree-
ment. In fact, this analytical solution can be viewed as a bench-
mark for nonlinear simulations, as far as the underlined hypoth-
eses are fulfilled, namely, subcritical planar dynamics and linear
elastic soil. Note that the two dynamic inputs to the analytical

shots for t /T=0,0.1,0.2,0.3,0.4,0.5; T

pshots for t /T=0,0.1,0.2,0.3,0.4,0.5; T
nap
Sna
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solution, x0�t� and �0�t�, respectively, the TDP excursion and the
dynamic tension at TDP, are not restricted to be sinusoidal. As a
matter of fact, they are general and represent the global nonlinear
dynamics.

We took a typical 1800 m water depth �a real case� SCR, given
in Table 1. The nonlinear simulation code used is specifically
dedicated to riser analysis.4 For simplicity, the nonlinear code was

4

Fig. 7 Normalized curvature in time at v
�0=0.2; K=10

Fig. 6 Normalized TDP excursion and
=10
ORCAFLEX®, version 8.6.

44 / Vol. 128, FEBRUARY 2006
run in the absence of waves and current, in order to generate
typical x0�t� and �0�t� time series, which are shown in Figs. 15 and
16. Only a clockwise5 circular motion was imposed to the riser
top with an amplitude radius A=1.5 m and period T=10 s.

Curvature time-histories are compared in Figures 17–19. The

5As shown in Aranha et al. �8�, the nonlinear hydrodynamic damping along the
riser length causes clockwise and anti-clockwise motions to provoke quite different

ous sections: x /�=−6,−5, . . . ,5 ,6; a0=1;

amic tension in time: a0=1, �0=0.2, K
ari
dyn
responses in the dynamic curvature at TDP.
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agreement of the numerical simulation with the analytical solution
is indeed remarkable. The nonlinear response caused by the �one-
side� contact boundary condition is completely captured by the
analytical solution. Figure 17 refers to a section just at what we
call a ‘critical section,’ where the curvature dynamic amplitude
attains the maximum value amongst all sections that just touch the
soil cyclically. Figures 18 and 19 refer to another typical section
�x /�=−3�, that rests on the soil cyclically. The difference is the
soil rigidity, soft in the first case �K=10�, Fig. 18, and relatively

Fig. 9 Normalized curvature in time at v
�0=0.7; K=10

Fig. 8 Normalized TDP excursion and
=10
rigid, in the second �K=1000�, Fig. 19.

Journal of Offshore Mechanics and Arctic Engineering
Figure 20 shows, for the studied case, the minimum value at-
tained by the dynamic curvature. Figure 20�a� presents the mini-
mum curvature as a function of x /�, parametrized by the soil
rigidity coefficient K. Figure 20�b� shows the minimum value at-
tained along the whole length at TDA, as a function of log K. As
can be seen, the minimum curvature is of order of 5%�0, for a
very soft linear elastic soil, with K=1. The sensitivity with respect
to soil rigidity is, therefore, very small. It causes insignificant
differences in the main curvature variation that is driven by the

ous sections: x /�=−6,−5, . . . ,5 ,6; a0=1;

amic tension in time: a0=1, �0=0.7, K
ari
dyn
dynamic tension and the TDP excursion.
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Addressing the Eigenvalue and the VIV Problem (See
Fig. 20)

As pointed out before, we could consider a nonlinear eigen-
value problem,6 taking into account the whole pipe, from the an-
chor to the floating unit. Or else, an effective participation length
on the soil, LK�t�, could be considered and evaluated to be smaller
than 10�. If, instead, only the suspended part is analysed under a

6

Fig. 11 Normalized curvature. K=10. S
=2��−1. a0=1; �0=0.7.

Fig. 10 Normalized elastic curve. K=10
T=2��−1. a0=1; �0=0.7.
See, e.g., Burridge et al. �17� for the treatment of a similar problem.

46 / Vol. 128, FEBRUARY 2006
cable dynamics approach, riser flexural rigidity and soil interac-
tion effects must be incorporated. This can be pursued through Eq.
�15�, given the dynamic tension and the TDP excursion of a cor-
responding cable. A simple way to evaluate these variables is to
use an asymptotic eigenmode solution.

Solution in the Suspend Part. The linear eigenvalue problem
of taut inclined cables was thoroughly addressed by Triantafyllou
�13�, who points out that “…In the case of a taut wire, stretching

pshots for t /T=0,0.1,0.2,0.3,0.4,0.5; T

napshots for t /T=0,0.1,0.2,0.3,0.4,0.5;
na
. S
is of second order, but the elastic stiffness must be finite, other-
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wise is geometrically impossible to have any vibrations at all. In
the case of a sagging cable the elastic stiffness can be infinite,
because the cable admits transverse displacements causing
second-order tangential displacements by readjusting its curvature
and with no stretching.” Triantafyllou considers two basic
asymptotic solutions. The first one is “weakly varying” in space,7

compared to the static tension, stretching being mandatory. This
solution is given in terms of Airy functions. The dynamic tension

7

Fig. 13 Normalized elastic curve, K=10,0
T=2��−1. a0=1; �0=0.2.

Fig. 12 Normalized curvature in time at v
�0=0.2; K=10,000
Triantafyllou uses the terms “slowly” and “fast” varying in space.

Journal of Offshore Mechanics and Arctic Engineering
is also weakly varying in space and strongly dependent on elastic
stiffness �axial rigidity�. The second solution is “strongly varying”
in space and given as a WKB approximate solution, consistent
with assuming an infinite elastic stiffness, i.e., a nonextensible
wire. The total solution is a linear combination of both. In the
weakly varying solution, elastic stiffness dominates the upper part
and curvature the lower part. This fact causes modes to be hybrid,
neither symmetric nor anti-symmetric. In fact, a turning point
close to the upper end exists in the Airy function solution. Con-

Snapshots for t /T=0,0.1,0.2,0.3,0.4,0.5;

ious sections: x /�=−6,−5, . . . ,5 ,6; a0=1;
00.
ar
cerning VIV of deep-water steel catenary risers, modes of order
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20th or higher are likely to occur. Locally, at TDA, kinematics
will be dominated by the strongly varying solution in space, the
WKB approximation.

WKB Solution (Nonextensible String). Consider a small per-
turbation around a given static configuration, defined by the func-
tions T�s� and ��s�. Let u�s , t� and v�s , t� be perturbed tangential
and normal displacements at s. Let also ��s , t�, ��s , t� be, respec-
tively, small perturbations of effective tension and angle �with
respect to horizontal�.

Define �̆=s /L=	�, ŭ=u /L, v̆=v /L, and t=tc0 /L=	t̂ as �global�
nondimensional quantities. Let then a harmonic solution be given
by ŭ�� , t�=����ei�t and v̆�� , t�=����ei�t, where �=�L /c0=	−1�̂.
Neglecting viscous and quadratic terms in curvature, as well as
the dynamic tension variation, the planar linear eigenvalue prob-
lem for the nonextensible string can be written

�F��̆����� + �2� = 0 �17a�

Fig. 14 Normalized curvature, K=10,000.
=2��−1. a0=1; �0=0.2.

Table 1 Typical SCR data, no current

Axial Rigidity, EA �kN� 2.314�106

Bending Stiffness, EI �kN m2� 9915
Immersed weight, q �kN/m� 0.727
m �kg/m� �filled with water� 108.0
External diameter, D �m� 0.2032
Thickness �mm� 19.05
Depth H �m� 1800
Total length �m� 5047
Angle at top, �L �deg� �no current� 70 �with respect

to horizontal�
Soil Rigidity, k �kN/m/m� 466.37
Suspended length, L �m� 2571
Static tension at TDP, T0 �kN� 680.55
Flexural length, ��m� 3.82
Curvature at TDP, �0 �m−1� 1.077�10−3

Nondimensional curvature at TDP, X0=�0� 4.114�10−3

Local scale, 	=� /L 1.486�10−3

Nondimensional soil rigidity parameter, K=kEI /T0
2 10
48 / Vol. 128, FEBRUARY 2006
���̆� = �−2��1 + a�F��̆�L���̆������̆� �17b�

where a=ma /m,

F��̆� = T��̆�/T0 = �c��̆�/c0�2 �18�

is the static nondimensional effective tension function and c��̆�

=�T��̆� / �m+ma� is the transversal wave celerity of a cable at �̆.
Equation �17a� is, strictly speaking, the eigenvalue equation.

Equation �17b� gives the tangential displacement ���̆�, as a direct

linear operation on ���̆�, a consequence of not considering exten-
sibility. To first order in �−1, considered a small quantity, WKB
technique applied to �17� leads to a general asymptotic form

���̆� � F−1/4��̆��C1 sin����̆

F−1/2�u�du	
+ C2 cos����̆

F−1/2�u�du	� �19�

As pointed out in Pesce et al. �14�, these eigenmodes are sinu-
soidal functions, modulated in phase and amplitude and resemble

Bessel’s functions. Being ���̆�=���̆F−1/2du, the phase angle, the

nondimensional wave number is given by �=d� /d�̆=��F��̆�. In

other words, c��̆� /c0=� /�, a classical result in dispersive waves
theory �see, e.g., �18�, p. 365�. If F���=F0, a constant, there would
be no dispersion at all.

Applying, e.g., a pinned-pinned boundary condition, such that
��0�=��1�=0, we get

�n��̆� � AnF−1/4��̆�sin��n�
0

�̆

F−1/2�u�du	
�n��̆� � �−1�1 + a�AnL���̆�F1/4��̆�cos��n��̆

F−1/2�u�du	

apshots for t /T=0,0.1,0.2,0.3,0.4,0.5; T
Sn
0
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�n � n���
0

1
d�̆

�F��̆�
	−1

�20�

In this case, the �dimensional� natural frequencies are given by

�n = �n
c0

L
= �n

1

L
� T0

�m + ma�
�21�

Figures 21 and 22 present the WKB approximate solution cor-
responding to a typical SCR compared to a finite element method

Fig. 16 Nonlinear numerical simulation. No
a typical SCR.

Fig. 15 Nonlinear numerical simulation. N
SCR.
solution. General data is found in Table 1. Figure 21 shows the

Journal of Offshore Mechanics and Arctic Engineering
25th eigenmode and Fig. 22 presents the corresponding natural
frequencies, numerically assessing the extensibility8 effect. As ex-
pected, for relatively high-order modes, the WKB solution
�strongly varying in space� approximates the solution quite well in
TDA region.

Note from �20� that at the lower pinned end, dynamic curvature
is really small, of second-order, as should be expected. The WKB
approximation predicts that the largest dynamic curvature occurs

8

alized dynamic tension, �0„t… /T0, at TDP of

alized TDP excursion, x0„t… /�, of a typical
rm
orm
See, also, �19�.
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at a suspended section of the riser where the eigenmode first
peaks. The open point is to evaluate the dynamic curvature at
TDA, by locally correcting the WKB solution under the effects of
bending stiffness and soil rigidity.

Local Flexural Rigidity Effect at TDA on a Linear Elastic
Soil: A Quasi-Static Approach. We follow the reasoning pre-

Fig. 18 Curvature time histories at x /�=−
Analytical and numerical solutions, K=10.

Fig. 17 Curvature time histories at x /�=4
merical solutions, K=10.
sented before by considering the dynamics of the supported part

50 / Vol. 128, FEBRUARY 2006
on the soil dominated by the dynamics of the suspended part. In
other words, the dynamic response of the supported part is con-
sidered quasi static. For this we must restrict ourselves to the case
where K��; K=kEI /T0

2 and �=�L /c0=	−1�̂.
Under this hypothesis, consider the riser vibrating in a particu-

lar high-order mode. No motion is imposed at the upper extremity.
Apart the transition region in the TDA, the suspended part dynam-

a section that rests on the soil cyclically.

at the critical section. Analytical and nu-
3,
.0,
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ics is considered globally, described by the asymptotic approxi-
mation, with a hinge placed at the static TDP of the corresponding
string, as given by Eq. �20�. If a real tangency condition is con-
sidered, the excursion of the TDP might be evaluated from the
pinned case, to first order in X0=�0�, as x0�t����0, t� /�0. In
nondimensional form, at space and time scales �� , t�, we could
then write, �0�t����� , t� / ��0��. Locally, the dynamics of the sus-
pend part is represented through x0�t� and ��0, t� or, in nondimen-
sional form, through �0�t� and f�t�. Therefore, if K�max�f�t��
and an impact against the soil is precluded, such that M = �ẋ0 /c0�
1, i.e.,

	�d�0/dt�  1 �22�

then the quasi-static approximation �Eqs. �15� and �16�� apply,
given �0�t� and f�t�. To evaluate �0�t� and f�t�, recall the classical
dynamic equations for a suspended string

Fig. 19 Curvature time histories at x /�
=1000.
Fig. 20 Normalized curvature. Minimum value: „a… along the le

Journal of Offshore Mechanics and Arctic Engineering
��

�s
− �T�s���s� = m

�2u

�t2

�
d�

ds
+

�

�s
��T� = �m + ma�

�2v
�t2

�u

�s
− v��s� = e

�v
�s

+ u��s� = � �23�

where e=e�s , t� is the dynamic axial deformation. Let u=u /�

=	−1ŭ and �=v /�=	−1�̆ be the nondimensional displacements in
local coordinates. If the string is considered nonextensible, such

. Analytical and numerical solutions, K
=−3
ngth and „b… as a function of the soil rigidity parameter K.
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Fig. 21 WKB approximate solution compared to numerical results obtained by a standard finite element
method. Free-hanging SCR. No current. � =70 deg. Assessing the extensibility effect.
L
Fig. 22 Natural frequencies of a SCR. Assessing the extensibility effect. Numerical solution, with three different

values of axial rigidity, compared to the WKB analytical approximation. No current; �L=70 deg.
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that e�s , t��0, then the following nondimensional equations are
obtained for ��� , t�, �0�t�, and f�t�:

���,t� =
�v
��

+
1

1 + a�0

�

X�������d� �24�

�0�t� �
1

X0
����,t���→0+ �25�

f�t� � 1 −
1

X0
� ���F�

��
− 	2�2�

�t2 �
�→0+

�26�

Note that, if extensibility had been taken into account, the dy-
namic tension would follow the weakly varying Airy solution,
being strongly dependent on the elastic stiffness, such that
��s , t��EAe. Therefore, Eq. �26� gives a poor estimate for the
dynamic tension. Nevertheless, as kinematics at TDA is domi-
nated by the WKB solution, Eq. �25� is a good estimate for the
TDP excursion. Let the transversal displacement be given by �
=���� , t�cos �t, where �=A /� is the nondimensional modal am-
plitude. Observe that

�I��� =
d�

d�
= 	

d�

d�̆

�II��� =
d2�

d�2 = 	2d2�

d�̆2
�27�

and that, for a catenary riser, F�������sec ����. Now, using the
WKB approximation given by �20�, such that, to first order in �−1,

d�

d�̆
� ��F��̆��−3/4 cos���̆

�F��̆�−1/2�d�̆	
d2�

d�̆2
� − �2���̆� �28�

Fig. 23 Normalized elastic curve, K=10.
=2��−1. a0=2.08; �0ÉO„10−6

….
a first-order approximation is obtained for �0�t� and f�t�, as
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�0�t� � 	�X0
−1� cos �t �29�

and

f�t� � 1 − 	�X0� cos �t �30�

Observe that the dynamic amplitude of �0�t� is X0
−2 larger than

the dynamic amplitude of f�t�. This is a direct consequence of not
considering extensibility.9 Note also that the non-impact condition
�22� restricts the present analysis to

M = 	2�2X0
−1�  1 �31�

Equations �29� and �30� may now be applied to the local quasi-
static solution, given by Eqs. �15� and �16�.

Consider the typical deep water SCR, shown in Table 1. An
out-of-plane current is considered and an approximate dynamic
solution is taken, such that VIV occurs in the catenary plane.10 We
take the modal amplitude as A=1.0D, a common peak value en-
countered in VIV analysis of flexible cylinders in water �see, e.g.,
�20��. In the present case, �=A /�=0.053 and M =0.288
�10−6�2. Then, from Fig. 16, we obtain, �25�2.9 rad/s and
�25= �L /c0���25=37.038��25�107.4. It can be easily verified
that mode 25th locks-on �actually peaks� at a current speed11 U
=0.5 m/s. The nonimpact condition is not violated, since M
=0.33 in this case. Moreover, under the WKB approximation, Eq.
�20� shows, explicitly, that eigenfrequencies increase linearly with
mode number. Actually, Fig. 21 shows that if the extensibility
were considered, the increasing rate would depart from the linear
rate. From Eq. �31�, the nonimpact condition is violated if �2

�	−2X0�−1. In the present case, this would happen from mode
44th on. Figures 23–25 present for mode 25th snapshots �t /T
=0,0.1,0.2,0.3,0.4,0.5; T=2��−1� of the local elastica, curva-
ture, and shear. Figure 26 shows curvature with time.

Curvature variation attains a maximum, ����0, at �=x /�
�0.4, as shown in Figs. 24 and 25. Moreover, from Eqs. �27�,

9Though relatively poor, this estimate is generally in the safe side, as dynamic
tension usually reduces dynamic curvature.

10Actually, the transverse current makes the elastica to depart from the vertical
plane.

11 25

apshots for t /T=0,0.1,0.2,0.3,0.4,0.5; T
Sn
In fact, the reduced velocity takes the value Vr=2�U /�25D�5.3.
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�28�, and �20� it can be easily shown that the nondimensional

amplitude of dynamic curvature at the section ��*=	−1�̆*


� / �2	���, where the WKB eigenmode approximation has a first
anti-node, is of order XWKBmax


O�MX0�. In the present case, the
corresponding curvature variation is ��WKBmax


O�2M�0�
=0.66�0, at �*
10, a value lower than that evaluated at TDA.
Observe also that, as WKB solution underestimates the dynamic
tension, the values of shear force peaks do not vary along the
cycle.

Conclusions
This paper addressed the riser-soil interaction problem and ex-

tended previous results, obtaining a quasi-static analytical solution
for the local dynamics of a catenary riser at touchdown region.
The present solution is quasi static in the sense that the local

Fig. 24 Snapshots of the normalized
Fig. 25 Snapshots of the normalized she
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dynamics is governed by the relatively slow dynamics of the sus-
pended part. This is valid if soil rigidity is sufficiently large and if
the motion is not so fast as to provoke impact of the riser against
the soil. Even though the soil was modeled as linear elastic, the
main features of the nonlinear nature of the contact was preserved,
by properly considering the oscillatory excursion of the TDP and
the dynamic tension.

The local response is given in time domain and depends only
on one static parameter, the static tension at TDP, and on two
global dynamic functions: the tension and the TDP excursion. The
analytical solution was then compared to numerical results ob-
tained from full nonlinear time-domain simulations for a real SCR
case. The agreement is remarkably good, showing not only the
benchmark value of the present analytical solution. As far as lin-
ear soil stiffness and planar dynamics hypotheses may be consid-
ered valid, it also shows that penetration in the soil is small and

rvature, K=10. a0=2.08; �0ÉO„10−6
….

−6
cu
ar force, K=10. a0=2.08; �0ÉO„10 ….

Transactions of the ASME



that its effect does not change significantly the bending loading
that is mainly caused by the cyclic excursion of the TDP and
corresponding dynamic tension.

The quasi-static analytical approximation was then merged with
an eigenvalue WKB approximate solution, asymptotically valid
for a nonextensible suspended cable, providing an analytical tool
to deal with the evaluation of the local dynamics, as that possibly
caused by vortex-induced vibration in a particular locked-on
mode. The WKB approximation gives good estimates for TDP
excursion. As the dynamic tension caused solely by VIV is very
small, the merged approximate solution may be used as a first
estimate of the curvature variation at TDP in the cases of current
perpendicular to the riser plane.

The present result can be improved by considering extensibility
effects on the dynamic tension. The weakly varying solution in
space, given in terms of Airy functions �13�, should be
considered.12 Additionally, many other issues remain to be ex-
plored further as nonlinear riser-soil interaction phenomena, in-
cluding embedding, suction, and shocking—all of them outside
the present underlined hypotheses.
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