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ABSTRACT

The andyticd solution of the suspended heavy cable eigenvadue problem, given in terms of
Besd functions, has been known for a long time. Also well known and superbly discussed
by Irvine & Caughey (1974) is the physcd inadeguacy concerning the inextenghbility
hypothess. Eventhough, firdly motivaeted by desgn procedures and by VIV and Mathieu
like ingabiliies andyss, which demand indght and expeditious evdudions, this work
recovers the Bessd solution gpproach, presenting some dementary but useful solutions for
non-vertical risrs. Also, an andyticd ad cdossd foom WKB  gpproximate solution is
derived for the generd riser-like problem, given the tenson function dong the length. A
ample formula for the naturd frequencies and eigenmodes of a catenary riser under no
current is then derived from WKB generd solution. Compared to Bess's approximations
and to numericd results obtained by a dandard Finite Element Method formulaion, where
extenghility is taken into account, the present solution shows a rather good agreement for
typica free-hanging catenary risers. The effect of extenghility isillustrated and discussed.
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INTRODUCTION

This is a dgmple work on a dasdcd and wdl-known méter in offshore enginegring: the
riser-like eigenvalue problem Those who have been involved with the desgn of risars
(umbilical cables, flexible pipes, ded caenary risers), jumpers TLP tethers or any other
kind of cable dructures cetanly have faced this egenvdue problem. Vortex-Induced
Vibrations and lock-in andyss (eg., Lyons & Pad, 1986, Matins, 1989), Mathieu
ingabilities problems (eg., Pad & Pak, 1991, Smos & Pesce, 1997) or inverse desgn
procedures (Bernitsas et d., 1985) are some examples where the eigenvadue problem plays
a fundamentd role Such a problem, however, is sandard enough to induce little atention
from Patdl & Seyed, 1995, in ther review paper on Flexible Riser Modelling and Analysis
Techniques, where other important topics ae discussed as fundamental research points.
Neverthdess, though most numerical codes on risars andyss have an eigenproblem solver,
comparisons among ther respective results show, sometimes, poor results (Larsen, 1992).
However, to the authors knowledge (or, eventudly, ignorance), despite some smplicity of
this linearised problem, compared, for indance, to the complexity of full nonlinear
goproaches (see, eg., Lessa & Sead, 1994), or to specific topics as tangentid resonant
mechanisms driven by transversd excitetion (Newberry & Perkins (1997)), no systematic
atempts have been done through andyticd gpproaches, aming to present precticd results



on typicd eigenvdue problems in offshore engineering. On the other hand, andyticd
results are often presented for static problems (eg., Langer, 1985). Recently, risar's
dynamic problems have recdved some atention from the andytica point of view.
Examples are the frequency-domain andyticd solution for the dynamic tenson (Aranha &
d, 1993) or the andyticd formula for the dynamic curveture a the touchdown point (TDP)
of catenary risers (Aranha e d., 1997), both experimentdly verified (Andrade, 1995 and
Pesce e d., 1998). Within the fidd of andyticad approaches, perturbation techniques and
asymptotics are methods which fit best, of course.

It is worthwhile to mention that dl these recent andyds have been pioneered by the works
of Burridge & d., 1982 and Triantafyllou et d., 1985, after the fundamenta paper by
Irvine & Caughey, 1974. In this thorough andyss a number of interesting physcd and
mathematicd questions are discussed. One of mogt importance is the effect of axid
deformation on transversaly dominated modes and 0 to the mahemdticd ill-posedeness
of the problem when this effect is not propely taken into account. Inextengbility
hypothesis is physicdly inadequate, as pointed out by Irvine & Caughey, (1974), axid
digolacement boundary conditions being then logt. As dealy shown by those authors the
mog intriguing conssquence of properly conddering  extenshility is that the firg
'symmetric’ égenmode may present two internd nodes, depending on the vaue teken by a
non-dimensiond parameter that meesures the rdio of axid to geometric rigidities. To the
axid deformation effect, within the context of marine cables Chuchespsskul & Huang,
1997, have dedicate an entire dudy, by formulaing the twodimensond problem on a
virtuakwork principle bads, but solving it numericaly.

In the present work, a standard perturbation anadysis is conducted. In some sensg, it can be
s$en & an exerdse on goplied mathematics. Though aware of the physcd  inadequecy
concerning the inextenghility hypothess, we decided to work upon this bass The
purposes ae twofold. Frdly, this assumption dradicdly smplifies the mathematica
andyss. Secondly, we intend to evauate the error this hypothess causes, in typicd riser
cases. Degpite the amplifications, the results showed themsdves interesting and practica
enough to give rise to a piece o work on this pecific subject.

The andyss shows that the inextensible tensioned-and-curved-heavy-string eguations
aoply farly wel to represent the riser-like eigenvadue problem. Equetions are written in the
Frenét-Saret intrindc coordinates, i.e, dong the normd and tangentid directions, around
the datic equilibrium configuration. This choice of coordinates will be shown to be crucid
in the andyticd derivation. The dynamic equations are coupled through curvature. Tendon
and angle functions fully represent the datic configuration, giving ‘support’ to the
dynamics. Obsarving that curvature is usudly a smdl quantity, coupling is week and the
norma disdlacement dynamic equation dominates the ovedl behaviour. Not congdering
extenshility, the tangentid digplacement is written as a linear operdion on the normd
digplacement. As previoudy pointed out, axid displacement boundary conditions are log,
however.

In the dasscd verticd riser case, the tendon is a linear function of the length (see, eg.,
Bowman, 1958), and a modified Bessd's equation represents such a paticular case, the
solution being given in tems of Besd's functions of fird kind and zeroorder. Further
obsarving that, for risrs and cables problems tenson is usudly a quas-linear function of
the archtlength, a 'naiveé liner agpproximetion of the actud tendon function leads as



pointed out by Irvine & Caughey, to a dmila Bessd form solution. This is
sraightforward, in fact, and is shown afterwards, at the end of the paper.

Ingtead, fird we search for an agpproximate solution for the generd riser-like eigenvaue
problem, given a tenson function. By looking a the pure caienary problem, written in the
Frené coordinates, a non-dimengona archlength varidble is introduced, z =tanq, beng
q(s) the angle with respect to the horizontd. This dlows one to write the inextensble
tensioned-and-curved-heavy-<ring equation in a rather familiar form,
j & (F¢F)j o+ (L?/F)i =0, where F(z) is the tension function. Such a form is very well
auited to the WKB method, a dasscd perturbation technique see, eg., Bender & Orszag,
1978. The egenvdue problem solution is then draghtforward, the egenfunctions being
gven, as it should be expected, as a dnusoidd function, modulaed in amplitude and
phase. These modulation functions are respectivdy F¥4(z) and F7%(z), ad the
olution tekes a very dmple form for the catenary case. Paticulaly, a formula for the
naurd frequencies and a cdosad form solution for the modes of a catenary-riser are

presented. These formulae can be eadly gpplied in precticd dtudions, when the desgner
(or the field engineer) searchesfor aquick evauation.

Few examples are shown, comparing WKB to the modified Bes's equation solution. The
agreement is very good, as it should be expected. Not only egenvdues but aso
eigenfunctions predicted by these two gpproximate solutions agree to a very high degree.
Both, high-order and low-order eigenmodes, are wdl predicted. Findly a typicd red
flexible-pipe risr case is taken, in order to exemplify the comparison of the WKB
solution, derived for the (inextensble) tensoned-and-curved-cable equetion, to numericd
results obtaned by a dandard finite dement method formulaion, where extenshility is
taken into account. The comparison results help to ducidate some important aspects
concerning amplifying assumptions. For indance, as axid rigidity is rather lage in this
typicd case, the firg numericdly cdculaed mode is the fird ‘assymmetric one in
accordance to Chuchegpsakul & Huang, 1997 andyss. The effect of the extenshility is
addresed. Neverthdesss WKB solution proves to be a farly good approximation to the
red problem, with the advantage of, snce purdy andyticd, beng eadly incorporaed in
design oriented codes.

THE GENERAL TWO-DIMENSIONAL RISER-LIKE DYNAMIC
EQUATIONS

Condder the generd two-dimendond riserlike problem. The datic configuraion is
supposed to be known, given by the functions, q(s) ad T(s), respectively the angle with
the horizontal and the datic tenson dong the arclength coordinate s, that can be measured
from a convenient (but otherwise abitrary pogdtion, eg. the touchdown point (TDP)).
Under smdl perturbation assumption, let u(st)andv(s,t) be the tangential and normal
diglacements a s. We assume dandard dructurd mechanics theory and the usud
conditutive equations, neglecting geomericdly and dynamicdly nonlinear tems
disconsgdering hydrogatic terms and congdering only the case of a inextensble ling i.e,
the dynamic tenson variaion! is not conddered a this moment. As previoudy pointed out,

1 (eventually responsible for Mathieu-like instahilities)



we ae awvae of the fact that disconddering axia deformation, being physcdly
inadequate, leeds to a mathematicd ill -posedeness, since axid boundary conditions cannot
be enforced anymore. A proper account of this subject is given, for amdl sagged cables, by
Irvine & Caughey, 1974 and, for maine cables, by Triantafyllou e d., 1985. Under this
redtrictive assumptions the following dynamic equilibrium equations can be derived,
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In Eq. (1), BEJ is the bending diffness m is the mass and v, (St) represent the dynamic

parcds of the hydrodynamic forces acting on the line, due the rdaive motion with respect
to the current and wave flow, dl per unit length.

Notice that equations (1) are coupled through datic curvaiure. In the particular case of a
inextendble and pefectly verticd line under no current action, equaion (18 has no
meaning and we get the familiar beamunder -tension equation,
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Indead, if a ided heavy cable (inextendgble and infinitdy flexible EJ=0)) is consdered we
obtain the fallowing smplified coupled linear equations
" 2
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Globdly neglecting flexible rigidity can be presented in a more proper way. By defining
x=9L,u=uy/L, h=v/Landt =tc,/L asnondmensond quantities where

_To
(m+m,)
is the trensversal cable wave cderity and T, the détic tension a the TDP (or any other
convenient section) andm, is the added mass per unit length (corresponding to the inertia

pat of the hydrodynamic force v ), and if terms of order e.2 = (EJ/T,)L"> and viscous
teems ae neglected (see, Appendix or Pesce e d, 1998), we get the asociae non-
dimensond and non-damped form of Eq. (3) (the inextensble and non-damped outer
equation that dominates the overdl dynamic behaviour),
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where a =m, /m is here defined as the added mass coefficient,

F(x)=¥

0

is the tension function. Notice that F(x) and the non-dimensiond curvaiure c(x) = dg/dx
cary information about the datic configuration. For a caenary riser, for example,
curvature is maximum a TDP and tekes the non-dimensond vauec, = gL/T, , where L is
the suspendend length and q the immersed weigth for unit length. We cdl Eq. (5) the linear
(inextensble) tensoned-and-curved-gring equations, which can be conddered as a good
firs-order gpproximation (outer problem) for the riser-like problem andyss If we take
now, u(x,t) =y (x)e" ad h(x,t)=j (x)e", the eigenvaue problem, associated  with
eguation (5), is

©

2ysdly Cy, =m, /my , where My isthe displaced mass, istaken.
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Eq. (7) can be written in the following form,
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Notice that Eq. (8b) is, drictly spesking, the eigenvdue eguation. Equation (8a) gives the
tangentia displacement y (x), as a direct linear operation on j (x). This is a direct result
for not conddering extenshbility, what leeds to the imposshbility of saisfying any generd
axia boundary condition that would be physcdly imposed (actudly this a first red
drawback of the present andyds). Therefore, close to extremities we should expect poor
results for the longitudind displacement function y (x). This will be numercaly
confirmed later on. More important than this point: depending on the actud vadue taken by
the non-dimensond axid-to-geomeric-ratio rigidity parameter, as defined by Irvine &
Caughey, the inextenshility hypothess can lead to a complee misnterpretation
concening the fird egenmode (as probably has occurred in Larsen, 1992, when
comparing neturd periods determined by a number of program codes).

Notice dso that approximation (8) gets worse as higher is the eigenmode, such that the
typica corresponding wavdength is of same order of megnitude of the flexurd length
paameter. In such cases, bending diffness effect would not be confined to smal
boundary-layers anymore.

If quadratic termsin curvature could be neglected, Eq. (8) would then be written,

y (x) = V%[(l+ a)F ()¢ ()] &)
©).
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This could be done, for a free-hanging catenary, eg., where c(x) = ¢, cos®*q(x), but only
far from TDP.

In the next section we shdl return to equations (7) and (8) in order to derive a generd
WKB gpproximate solution, vaid for generd dtatic configurations.



THE 'CATENARY' RISER-LIKE CASE: A WKB CLOSED FORM
SOLUTION AND AN ANALYTICAL APPROXIMATION

We turn our dtention to the 'catenary’ riser-like eingenvdue cass®. We focus on the
inextensible tensioned-and-curved-heavy-string equation, Eq. (7) (or (8)). Firs we obsarve
that tenson is usudly dominated by geometric (or caenay) rigidity, unless a srong
current is present. In this latter case tenson fuction is supposed to be previoudy known. In
the particular but important case of a free-hanging and pure catenary (no current) the (non-
dimengond) tendon function can be easily shown to be

F.(x)= 1/1+ tan®q, (x) (10),

where ¢ sandsfor catenary. This suggests usto introduce anew variable,

z = tanq(x) (12).
Noticethat z = tanq, , &t the upper end, wherex =1.
In the pure catenary case,

F.(z)=41+27 12

Notice thet, in this particular case, F, (z)»z ,for z >>1, i.e, in the region dose to the
upper end, for top angles q, >p/4,and F, (z)» 1 in the touchdown point (TDP) region,
where z <<1. On the other hand, for very low vaues of g, (very tight cables), the tenson
function can be written F,(z) @+ O(z?). Figure 3 show the tendon function F.(z).
Notice thet the curveis amogt linear. It should aso be noticed thet

(13),

where c(z) =./T(z )/im+mai is the locd transversal wave celerity. Naturdly, if a linear
goproximation (of the leest square type, for example) is taken, a modified Bessd eguation
is got and an gpproximate solution can be obtained. This is draightforward, however, and
will be done latter on.

Ingeed, motivated by the above dtated condderations, we shdl proceed with the ‘generd’
two-dimensond tendonedand-curved-dring eigenvdue eguation, aming to condruct a
dosad form solution, givenF (z) . We shdl goply the well-known WKB technique.

3 We should distinguish the purecatenary, when no current exists, from the ‘catenary*like case.
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Figure 2 Non-dimensional tension function, F (z ) , along afree-hanging catenary.

A WKB closed form solution for the inextensible tensioned-and-curved-
heavy-string equation

WKB technique can be gpplied eesly; see, eg. Bender & Orszag, chapter 10. Let
M= tanq, . Equation (8) transforms, under the variable subdtitution given by (11), into

v )= ég(z) 1gﬁjq)
(14
i 1 &l 2ce® giz) UFe¢ . L2,
1+ = 7 ¢+—j =0
i o) 1{)] S R sl - F )
where
L2 1
9(z) = 3
1+aF(z)c“(z) (15)
L=%
m

Obvioudy, a sngular problem would aise wherever F(z) =0, for any paticular z . This
means a section where wave cdlenity is zero; see Eqg. (13). Though tractable, we can take
F(z)! 0, for dl z, in the present problem. On the other hand, a ‘turning-point’ problem
would arise whenever L2 / F hes a zero; Abramowitz & Stegun, Eq. 10.4.108. Such cases,
whereturning pointswould exist, will not be trested here, either.

The folowing reasoning is drictly vdid for finte m=tanq, and large w (higher-order
eingenmodes), such that we can assume L >>1. Surprigngly4, the approximate WKB
lution will show to be rather good, even for low-order eigenmodes. Equation (14) is
dmog in the form shown in a number of dasscd text books on goplied mathematics, as in

4 Not redlly surprising, as shown in Bender & Orszag, by means of a standard eigenvalue problem.



Bender & Orszag's, page, 490. In this circumstances, when L >>1, we get from Egs. (14-
15), with an error of order O(L "?) , the following Smple equation,
1+a .
v @)= Fe)e@) @)
(16).
2
Sk L
F F
Notice that this is exactly the form that would be obtained from Eq. (9), where quadratic
terms in curvature were neglected.
A dasscd WKB exponentid series solution is taken,

. é1¥ .. U
j @)»expa-a d S(2) 17),
& 5 u

ad placed directly into Eq. (16), with e=1/L a smdl quantity. After the Standard
‘dominant balance argument is used (dlowing to teke d =e), we come up, to firg-order
in e=1/L , with

i @) @F"/“(z)gcls'ng_ OF P(WaubrC,oosft F'l/z(u)du%’g (18),

a raher farly form. Equatiion (18) gives a generd closad form solution for the inextensble
tensioned-and-curvedtheavy-dring problem (not only for the rise-like problem but dso for
jumpers, for ingance). Notice that eigenmodes ae Snusoidd functions, modulated in
phese and amplitude and resembling Bessd's functions Also, from Eqg. (18), being

f(z) :L(‘)ZF‘VZdz , the phase angle, the locd non-dimensond wave-number is given by

k =i= L . Hence, from Eq. (13), we get cz) =£, as should be expected, since
dz JF(2) Co k

this is a cdasscd result tha tels us locd wave length is linearly proportiond to wave-

cdeity (phese veocity); see eg. Whitham, p. 365. (The corresponding dispersion relaion
2

is given by k* +FF¢k - L? =0). Notice that if F(z) =F,, a congtant, there would be no

disperson a dl, Eq (16) being trandformed into the dasdcd dring equation under
condant tenson.

Applying, eg., a pinnedpinned boundary condition, such thet, j (0)=j (m)=0, we get
CZ :O aqd
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Therefore, the (dimensiond) naturd frequencies are given by
o T,
W =L mZ2 tanq, | —2— 20).
n n |_ @‘ n qL (m+ ma)L ( )

If a free-hanging catenary with a touch-down point® is taken, Eq. (12) applies. Then, by
using Eqg. (11),

9, @ s sni L § -y
@

L,=L.@.) %
9 Teosq )™

and, from the wdl-known caenary rdationship, T, =qL/tanq, =qL/m, where T, is the
tenson a TDP, we get the following smple form for the naturd frequencies,

qtang,
vm1@@Ln1/ZH;;;;;;[ (22).

Further obsarving thet, for a circular section, m, @r pD2/4, where r is the water mass
dengty and D the externd diameter, we can write g @m- m,)g and, defining the 'added
meass coefficient’ a = m, /m, Eq. (22) can be written in the following form,

/ l-a) |9
VVn @L n tanQL (1+ a)\/g (23):

being g the acceleration of gravity. Notice thet for a neutraly buoyant line (q=0;a=1),
geometric rigidity (the only source here conddered) is null, bresking down the proposed
eigenvaue problem. Recovering, from catenary equations, that L =Hsng, /(1-cox, ),
where H is the waterdepth, we findly get

5 1t has been formally shown, Aranha et d., 1997, that in the dynamic problem of a free-hangng cable, with
a smple touchdown point, and correct to first-order in a,c,, beng a, the TDP non-dimensond excurson
amplitude and  Co, =qL/T, the non-dimensional static curvature a TDP, boundary condition & TDP can be

properly modeled as a hinge. The loca bending iffness effect (and proper null curvature and tangency
boundary conditions at TDP) can be incorporated by means of boundary-ayer technique.

10



(L- cosq,) [A-3) [g
W“@L”\/ cosq. \/(1+a) H @

that gives a formula for evaduating the natura frequencies of a caenary line, written soley
in terms of waterdgpth H and of the upper end angle with respect to horizontd, g, . For

practicd and immediate usage of formula (24), Fg. 3 gives (Ln/n)J(l- cosq, )/cosq, as
afunctionof ¢ . Numerica exampleswill be shown in the next two sections,
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Figure3 Eigenvalues (L n/I‘l)\/(l- C0SQ), )/Ccoy,  for acatenary-riser under no current asa
function of (, , theangle at the upper end, with respect to the horizontal.

An analytical approximation for the 'catenary' riser-like problem

A draghtforward andyticd <olution can be derived from Eqg (16) with a linear
goproximation for the tenson function, in the foom F(z)»a®+bz . Then, Eq. (16)
trandforms into a modified Bessd equation, as in the classicd case of a verticd line (seg,
eg., Bowman, 1958). For, let b =b/a?, z> =1+ bz and Eq. (9b) reads,

73 @+ 7 ¢+ 4K 2%z =0

(29),
_L_w
ab abm
solution being given in terms of Bessd's functions of firgt kind and zero ordkr,
j (2) =C,3,(2K2) + C,Y, (2K2) (26)
or, intemsof z ,
. L 0 L 0]
2)=C,J, 02— (1+bz 22+ C,Y,fo— (1+ bz )¥?2 2
j @) 1°gab( )B 2ogab( )B (27),

11



or dsg intemsof x == ; m=tanq, ,

m

) =C a2 arbmg 22+, B @+ bxy#22 28).
j (x) 10% abm( ) : 2og abm( ) z (28)

For a hinged-hinged boundary condition, eigenvaues satisfy the characteristic equation,

w_ pQ & WO j®w Qe w 2O
JO§2abm(1+bm) ;Y"?abm* JO? fvogéabm(ubm) =<0 (2

,'3 abmg
the corresponding eigenfunctions being then written,
3 Eezw" 2
" 0 - L.
. w o] abmg w o]
) = 3.2 Y014+ ) V2 2+ Y oM 1+ bm)¥22  (30).
J0) = Jof2 2 )QY w, 0 apm ™) (30
%8 abmy

Again we take the case of a catenary riser (no current), such that F(z) = F,(z) =+/1+z 2.
If a dandard least-square eror goproximation is used, with the additiond condition
F(0) =1, such that tenson a TDP is preserved, we get for this particular case a’=1,
b=0.4789 (m=2) or b=0.7395 (n+5.7), such that b=0.4789 or 0.7395.

Fgures 4 and 5 show a comparison between WKB (Eq. (21)) and Bessd's (Least Square
Approximation - Eq. 30) solutions We took m=tanq, =0.2 and 5.7, corresponding to
upper end angle values q, =p/3=60° ad q, =4p/9=80°. The agreement is very good,
indeed. Notice that (non-dimendond) naturd frequencies vaues agree up to three digits
and resllts get even better for higher eigenmodes, as predicted when gpplying WKB
technique. Notice that the ‘tangentid' digplacement function, y (x), is determined from Eq,

(168), being dq/dz =c(@z)=c @z)=c,/A+z?)=c,/F2(z) the corresponding ddic
curvature. As anticipated, by not conddering axid deformaion we miss the boundary
condition for the tangentid diglacement, leading to poor rexults for the axid
displacement, paticulaly cose to a extremity where tenson is low and curvature is
somewhat large, as TDP, in this case. More than that, according to Irvine & Caughey’s
(1974) andyss the fundamentd (inextensble) eigenmode (no internd nodes) determined
from both goproximate olutions of the inextengble tendgoned-and-curvedheavy-dtring
equations, can be physcaly incongruous For this reeson we cdl such a fundamenta mode
the zeroth-mode in figures 5 and 6, redefining amode counter k=n- 1.

12
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Numerical Comparison

Fgure 6 and 7 show WKB goproximations for eigenmodes and corresponding eigenvaues
for a free-hanging catenary riser. Table 1 presents generd data A standard flexible pipe in
785 meters depth has been teken. Agan we took metang =02 and 5.7,
corresponding to upper end angle vaues q, =p/3=60° and g, = 4p/9=280". Notice that
bending diffness is smdl wheress axid rigidity is very large. Solutions are compared to
the numericd results cdculaed with POLIFLEX, Matins 1998, an in-house made
computer code, that tekes extendhbility into account. WKB <olution was goplied
conddering riser hinged a TDP. Actudly it can be verified (see Appendix) that the axia
to-geometric rigidity ratio parameter of Irvine & Caughey is rather large in the present
andyss teking the vaues | =14.35 and 9.37, corresponding to g, =p/3=60° ad
q. =4p/9=80°. According to those authors andysis for a smilar case but symmetric
cax, fird ‘symmeric mode is expected to occur with two internd nodes whenever
| 3 2p. So, the firg POLIFLEX eigenmode showed, as it should, as an ‘anti-symmetric’
one. The fundamentd WKB mode (no nodes) should be disegarded. On ancther hand, as
pointed out earlier, the approximate WKB solution gives poor results concerning the axid
displacement, snce axid boundary conditions ae log in virtue of the inextenghility
hypothesis. Shape, however, is preserved.

Notice that POLIFLEX was run under three conditions:

()] Riser hinged a TDP, with hinge mounted on a linearly dadic horizonta pring,
whose rigidity is the same as for the effective length of cable lad on the sea flooar,
assuming a Coulomb friction law, with friction coefficient 04. Actud vdue for the
axid rigidity istaken.

(i) Riser hinged a& TDP, but with the actud vaue for the axid rigidity.

(i)  Riser hinged a TDP, teking the axid rigidity 100 times larger then the actud vaue
(here referred to as 'infinite axid rigidity).

Totd length (the sum of suspended and supported-onrthe soil parts) is 3000 m, and that is
the reason why eigenmodes are plotted dong the arch-length coordinate, from the TDP to
the top; Figure 6 and 7 refer to condition (jii).

Foures 8 and 9 present egenvaues cdculaed for each upper end angle condition,
nmFtang, =02 and 5.7, compaing WKB (inextensble) solution to POLIFLEX results
obtained under conditions (i), (i) and (iii). The agreement is good, for both upper angle
conditions paticulaly for ‘low-order' egenmodes, dthough, drictly gspesking, WKB
technique assumes brge eigenvaues. We can see that naturd frequencies are lower as we
condder axid extenshility in POLIFLEX solution (conditions (i) and (ii)). Paticularly, if
we condder an effective length lad on the sea floor (condition (i)), extenshility effect is
even greater, as would be expected. For both conditions (i) and (i) WKB results agree
worse the larger the mode order. When we condder condition (iii), in which we teke, in
POLIFLEX, a vdue for the axid rigidity that is 100 times larger than the actud rigidity,
results maich nicdy with WKB (inextensble) gpproximate results, as they should,
therefore verifying POLIFLEX code. Also, comparing figures 8 and 9, extenshility effect
is larger for taught risers, asit should be expected.
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Figure 10, a last, presents an example of a high-order mode, the 29" eigenmode, for both
cassswhere m=tang =02 and 5.7.

Table 1 Flexiblepiperiser data

EA (kN) 312500
EJ (kNm?) 49.61
g (kN/m) 0.914
m (t/m) 0.218
D (m) 0.3934
H (m) 785
Total length (m) 3000
L (m) for g, =80° 9355
L (m) for g, = 60° 1359.6
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Figure 10 WKB approximate solution compared to numerical results obtained by a sandard Finite
Element A high-order eigenmode: k=29. Finite Element Method Formulation: POLIFLEX code. Free-

hanging catenary-riser. M= tanqp = 2.0;5.7.

CONCLUSIONS

Though being aware of the physcd inadequacy concerning the inextendhbility assumption,
a shown by Irvine & Caughey, the two-dimensond rise-like problem have been
addressed on this bass. The corresponding eigenvaue problem has been posed and
discussed, dthough tangentid boundary condition is missed in this goproximation. An
andyticd and cdosed form WKB gpproximate solution has been derived for the generd
(inextensble) eigenvdue riser-like problem. Such solution is given, as it should, in the
form of gnusoidd functions, modulated in amplitude and phese,

i@) @F'“(Z)gClS'n?- d F']/z(u)dug+ Czcosg_ o F'Vz(u)du%.

20



These modulation functions are, respectively, F¥(z) ad F¥%(z), where F(z) is the
non-dimensond tengon dong the archlength z . The solution tekes a very smple form for
the catenary case Paticulaly, a formula for the naturd frequencies and a closed form
solution for the modes of a caenary-riser have been presented. These formulae can be
eadly gpplied in practica Stuations, when the desgner (or the field engineer) searches for
a quick evdudion. Two smple formulag, given only in teems of locd depth and angle a
upper end, have dso been derived, from WKB generd solution, for the natura frequencies
and eigenmodes of a catenary riser under no current. A free-catenary riser has been taken
as example. Care mugt be taken, however, as the (inextensble cable) WKB solution dways
provides the fundamentd 'symmetric mode (no internd nodes), that might not appear for
typicd risers.

The dasscd andyticd solution of the suspended heavy cable egenvaue problem, based
on a BesH's modified eguation agpproximation, and given in tems of Bessd functions of
zero order, has been dso derived for the caenary riser case and some dementary but
ussful solutions have been exemplified. Comparison of WKB solution and BesH's
goproximation to numerica results obtaned by a dandad Finite Element Method
formulation showed very good agreement. Extenghility effect has been addressed through
a typicd flexible pipe riser case in 785 meters depth. The examples have shown that, from
a practicd point of view, WKB gpproximation gives a good and expeditious esimate for
the egenvdues and eigenfunctions of a catenary riser. The present mathematica andyss
agoplies not only to condruct paradigms for numerica solutions but, particulaly, enables
one to properly address the vdidity of other phydcd intuitive arguments that are usudly
assumed, such as the gmdl globd effect of flexurd rigidity. Corrections, cdose to
extremities, would be necessary, however. The WKB solution is somewhat generd and can
be gpplied draghtforwardly for jjumpers and can be promptly adgpted to teke into account
other risers shapes, as 'l azy-wave, 'steepwave or multi-leg configurations.
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APPENDIX A: DISCONSIDERING GLOBAL EFFECT OF
FLEXURAL RIGIDITY

In nondimensond form, Eqg. (1) iswritten,

» 12 6h  dq 0dq

T dx g

»dqegh ~dgé ,dg Tah dgo_ 1 T7

-gF(x)-eF

O i Vax g F ds? TsEm  Vdx g 1raft ?
(3D).
e di@h  dap,  odig@h  dagda,
x ° &fx dx g dx ~ g1x X gds

2

(I ®ah |, daoo_ 1

x g‘ﬂx dx gg 1t

where

e =F 2
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isthe smdl flexurd non-dimensond parameter, being

_[E
=2 @

the locd (here a& TDP) flexurd length (see Aranha et d., 1997) that gauges the bending
diffness importance with respect to geomelric rigidity. Equation (31) is a sngular
perturbation problem, of the beam-gtring type (see, eg., Kevorkian & Cole, 1981). It tel us
that bending diffness effect is important only indde smdl regions of length O(l ), i.e
boundary-layers, ether externd (at the ends) or internd ones, around sections where
curvature atains locad maxima (TDP, for ingance). Boundary-ayer technique has been
goplied in order to dudy the dynamic curvaure a the extremities (TDP and top end) of a
caenary riser; Aranha e d., 1997, Pesce, 1997. Notice that in Eq. (31) we took the viscous
damping terms off. If tems of order e ® ae neglected, we get the associate non
dimensond and non-damped form of Eq. (3) (the inextensble and non-damped outer
equaion that dominates the overd| dynamic behaviour), Eq. (5).

APPENDIX B: IRVINE & CAUGHEY ‘SRIGIDITY PARAMETER
In Irvine & Caughey’'s paper a smila (actudly a geomdricdly symmetric case) is
andysed. An axid-to-geometric rigidity parameter is defined as

2-g8do |
&1 o (TL./EA)
where, d is the sag, | the span, T is the horizontd tenson (exactly the tenson a
midsection in thelr andyss), and L, isaform length parameter given by,

(34)

L. = e d (35).

They showed that the fird symmetric eégenmode has no internd nodes, whenever | £ 2p .
Otherwise, the fird symmetric mode hes two internd nodes and the firsg antisymmetric
mode gppears as the lowest one, with one internd node. If the definition above were

goplied to the present catenary riser problem, teking T =T, =T, secq, (refer to the figure
below), we essly would get from classcd catenary equations
.2 3
L=L+ga2 b

Too 2 >
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Table 2 vaues cdculated for both exemplified cases.

m [xe(M |ys(@M| LM [ I (M | d@Mm) | TokN)| To (kN) | Le(m) | 2
2 9168 | 78 1270 | 1207 | 16738 580 T64KN 2963 20611
57 | 403 | 785 934.7 881 1188 150 320KN 11058 87.85

APPENDIX C: CONSDERING VIRTUAL WORK DONE BY
HYDROSTATIC TERMS

Notice that if the (virtud) work done by hydrodatic pressure were conddered, (as in
Chuchegpsskul & Huang (1997)), in the manner explained by means of the usua concept
of 'effectivé tendon in maine cables and risers, the inextensble dynamic eguatiion would
be written,
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is the nondimensond 'effectivé hydrodatic effect per unit length, being r , the dendty of
water, r; the dendty of a possble intend fluid, S, and S; the outer and inner cross
sectiond aress, repectively. The gpproximeate eigenva ue problem would then be written,
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