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ABSTRACT 
The analytical solution of the suspended heavy cable eigenvalue problem, given in terms of 
Bessel functions, has been known for a long time. Also well known and superbly discussed 
by Irvine & Caughey (1974) is the physical inadequacy concerning the inextensibility 
hypothesis. Eventhough, firstly motivated by design procedures and by VIV and Mathieu-
like instabilities analysis, which demand insight and expeditious evaluations, this work 
recovers the Bessel solution approach, presenting some elementary but useful solutions for 
non-vertical risers. Also, an analytical and closed form WKB approximate solution is 
derived for the general riser-like problem, given the tension function along the length. A 
simple formula for the natural frequencies  and eigenmodes of a catenary riser under no 
current is then derived from WKB general solution. Compared to Bessel's approximations 
and to numerical results obtained by a standard Finite Element Method formulation, where 
extensibility is taken into account, the present solution shows a rather good agreement for 
typical free-hanging catenary risers. The effect of extensibility is illustrated and discussed. 
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INTRODUCTION 
This is a simple work on a classical and well-known matter in offshore engineering: the 
riser-like eigenvalue problem. Those who have been involved with the design of risers 
(umbilical cables, flexible pipes, steel catenary risers), jumpers, TLP tethers or any other 
kind of cable structures, certainly have faced this eigenvalue problem. Vortex-Induced 
Vibrations and lock-in analysis (e.g., Lyons & Patel, 1986, Martins, 1989), Mathieu 
instabilities problems (e.g., Patel & Park, 1991, Simos & Pesce, 1997) or inverse design 
procedures (Bernitsas et al., 1985) are some examples where the eigenvalue problem plays 
a fundamental role. Such a problem, however, is standard enough to induce little attention 
from Patel & Seyed, 1995, in their review paper on Flexible Riser Modelling and Analysis 
Techniques, where other important topics are discussed as fundamental research points. 
Nevertheless, though most numerical codes on risers analysis have an eigenproblem solver, 
comparisons among their respective results show, sometimes, poor results (Larsen, 1992). 
However, to the authors knowledge (or, eventually, ignorance), despite some simplicity of 
this linearised problem, compared, for instance, to the complexity of full nonlinear 
approaches (see, e.g., Leissa & Saad, 1994), or to specific topics as tangential resonant 
mechanisms driven by transversal excitation (Newberry & Perkins, (1997)), no systematic 
attempts have been done through analytical approaches, aiming to present practical results 
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on typical eigenvalue problems in offshore engineering. On the other hand, analytical 
results are often presented for static problems (e.g., Langer, 1985). Recently, riser's 
dynamic problems have received some attention from the analytical point of view. 
Examples are the frequency-domain analytical solution for the dynamic tension (Aranha et 
al, 1993) or the analytical formula for the dynamic curvature at the touchdown point (TDP) 
of catenary risers (Aranha et al., 1997), both experimentally verified (Andrade, 1995 and 
Pesce et al., 1998). Within the field of analytical approaches, perturbation techniques and 
asymptotics are methods which fit best, of course.  

It is worthwhile to mention that all these recent analysis have been pioneered by the works 
of Burridge et al., 1982 and Triantafyllou et al., 1985, after the fundamental paper by 
Irvine & Caughey, 1974. In this thorough analysis a number of interesting physical and 
mathematical questions are discussed. One of most importance is the effect of axial 
deformation on transversally dominated modes and so to the mathematical ill-posedeness 
of the problem when this effect is not properly taken into account. Inextensibility 
hypothesis is physically inadequate, as pointed out by Irvine & Caughey, (1974), axial 
displacement boundary conditions being then lost. As clearly shown by those authors, the 
most intriguing consequence of properly considering extensibility is that the first 
'symmetric' eigenmode may present two internal nodes, depending on the value taken by a 
non-dimensional parameter that measures the ratio of axial to geometric rigidities. To the 
axial deformation effect, within the context of marine cables, Chucheepsakul & Huang, 
1997, have dedicate an entire study, by formulating the two-dimensional problem on a 
virtual-work principle basis, but solving it numerically. 

In the present work, a standard perturbation analysis is conducted. In some sense, it can be 
seen as an exercise on applied mathematics. Though aware of the physical inadequacy 
concerning the inextensibility hypothesis, we decided to work upon this basis. The 
purposes are twofold. Firstly, this assumption drastically simplifies the mathematical 
analysis. Secondly, we intend to evaluate the error this hypothesis causes, in typical riser 
cases. Despite the simplifications, the results showed themselves interesting and practical 
enough to give rise to a piece of work on this specific subject. 

The analysis shows that the inextensible tensioned-and-curved-heavy-string equations 
apply fairly well to represent the riser-like eigenvalue problem. Equations are written in the 
Frenét-Serret intrinsic coordinates, i.e., along the normal and tangential directions, around 
the static equilibrium configuration. This choice of coordinates will be shown to be crucial 
in the analytical derivation. The dynamic equations are coupled through curvature. Tension 
and angle functions fully represent the static configuration, giving 'support' to the 
dynamics. Observing that curvature is usually a small quantity, coupling is weak and the 
normal displacement dynamic equation dominates the overall behaviour. Not considering 
extensibility, the tangential displacement is written as a linear operation on the normal 
displacement. As previously pointed out, axial displacement boundary conditions are lost, 
however. 

In the classical vertical riser case, the tension is a linear function of the length (see, e.g., 
Bowman, 1958), and a modified Bessel's equation represents such a particular case, the 
solution being given in terms of Bessel's functions of first kind and zero-order. Further 
observing that, for risers and cables problems, tension is usually a quasi-linear function of 
the arch-length, a 'naive' linear approximation of the actual tension function leads, as 
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pointed out by Irvine & Caughey, to a similar Bessel form solution. This is 
straightforward, in fact, and is shown afterwards, at the end of the paper. 

Instead, first we search for an approximate solution for the general riser-like eigenvalue 
problem, given a tension function. By looking at the pure catenary problem, written in the 
Frenét coordinates, a non-dimensional arch-length variable is introduced, θζ tan= , being 

)(sθ  the angle with respect to the horizontal. This allows one to write the inextensible 
tensioned-and-curved-heavy-string equation in a rather familiar form, 

( ) ( ) 02 =ϕΛ+ϕ′′+ϕ ′′ FFF , where )(ζF  is the tension function. Such a form is very well 
suited to the WKB method, a classical perturbation technique; see, e.g., Bender & Orszag, 
1978. The eigenvalue problem solution is then straightforward, the eigenfunctions being 
given, as it should be expected, as a sinusoidal function, modulated in amplitude and 
phase. These modulation functions are respectively )(41 ζ−F  and )(21 ζ−F , and the 
solution takes a very simple form for the catenary case. Particularly, a formula for the 
natural frequencies and a closed form solution for the modes of a catenary-riser are 
presented. These formulae can be easily applied in practical situations, when the designer 
(or the field engineer) searches for a quick evaluation. 

Few examples are shown, comparing WKB to the modified Bessel's equation solution. The 
agreement is very good, as it should be expected. Not only eigenvalues but also 
eigenfunctions predicted by these two approximate solutions agree to a very high degree. 
Both, high-order and low-order eigenmodes, are well predicted. Finally a typical real 
flexible-pipe riser case is taken, in order to exemplify the comparison of the WKB 
solution, derived for the (inextensible) tensioned-and-curved-cable equation, to numerical 
results obtained by a standard finite element method formulation, where extensibility is 
taken into account. The comparison results help to elucidate some important aspects 
concerning simplifying assumptions. For instance, as axial rigidity is rather large, in this 
typical case, the first numerically calculated mode is the first 'assymmetric' one, in 
accordance to Chucheepsakul & Huang, 1997 analysis. The effect of the extensibility is 
addressed. Nevertheless, WKB solution proves to be a fairly good approximation to the 
real problem, with the advantage of, since purely analytical, being easily incorporated in 
design oriented codes. 

THE GENERAL TWO-DIMENSIONAL RISER-LIKE DYNAMIC 
EQUATIONS 
Consider the general two-dimensional riser-like problem. The static configuration is 
supposed to be known, given by the functions, θ( )s  and T s( ) , respectively the angle with 
the horizontal and the static tension along the arc-length coordinate s, that can be measured 
from a convenient (but otherwise arbitrary position, e.g. the touchdown point (TDP)). 
Under small perturbation assumption, let ),( and ),( tsvtsu  be the tangential and normal 
displacements at s. We assume standard structural mechanics theory and the usual 
constitutive equations, neglecting geometrically and dynamically nonlinear terms, 
disconsidering hydrostatic terms and considering only the case of a inextensible line, i.e., 
the dynamic tension variation1 is not considered at this moment. As previously pointed out, 
                                                 
1 (eventually responsible for Mathieu-like instabilities) 
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we are aware of the fact that disconsidering axial deformation, being physically 
inadequate, leads to a mathematical ill-posedeness, since axial boundary conditions cannot 
be enforced anymore. A proper account of this subject is given, for small sagged cables, by 
Irvine & Caughey, 1974 and, for marine cables,  by Triantafyllou et al., 1985. Under this 
restrictive assumptions the following dynamic equilibrium equations can be derived, 

Θ(s,t)
v u

y x
 

Figure 1 Two-dimensional problem 
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(1). 

In Eq. (1), EJ is the bending stiffness, m is the mass and ϖu v s t, ( , )  represent the dynamic 
parcels of the hydrodynamic forces acting on the line, due the relative motion with respect 
to the current and wave flow, all per unit length. 

Notice that equations (1) are coupled through static curvature. In the particular case of a 
inextensible and perfectly vertical line, under no current action, equation (1a) has no 
meaning and we get the familiar beam-under-tension equation, 

2

2

4

4

t

v
m

s
v

T
ss

v
EJ v ∂

∂
ϖ

∂
∂

∂
∂

∂
∂

=+





+−

      (2). 



5 

Instead, if a ideal heavy cable (inextensible and infinitely flexible (EJ=0)) is considered we 
obtain the following simplified coupled linear equations 

2

2

2

2

t

v
m

ds
d

u
s
v

T
s

t
u

m
ds
d

u
s
v

ds
d

T

v

u

∂
∂

ϖ
θ

∂
∂

∂
∂

∂
∂ϖθ

∂
∂θ

=+











 +

=+





 +−

      (3). 

Globally neglecting flexible rigidity can be presented in a more proper way. By defining 
Ls=ξ , Lu=υ , Lv=η and Lct 0=τ  as non-dimensional quantities, where 

 
)(

0
0

amm

T
c

+
=         (4) 

is the transversal cable wave celerity and 0T  the static tension at the TDP (or any other 

convenient section) and am  is the added mass per unit length (corresponding to the inertial 

part of the hydrodynamic force vϖ ), and if terms of order ( ) 2
0

2 −= LTEJFε  and viscous 
terms are neglected (see, Appendix or  Pesce et al, 1998), we get the associate non-
dimensional and non-damped form of Eq. (3) (the inextensible and non-damped outer 
equation that dominates the overall dynamic behaviour), 
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where mma a=  is here defined as the added mass coefficient2, 

 
0

)()(
T

T
F

ξξ =          (6) 

is the tension function. Notice that )(ξF  and the non-dimensional curvature ξθξχ dd=)(  
carry information about the static configuration. For a catenary riser, for example, 
curvature is maximum at TDP and takes the non-dimensional value 00 TqL=χ , where L is 
the suspendend length and q the immersed weigth for unit length. We call Eq. (5) the linear  
(inextensible) tensioned-and-curved-string equations, which can be considered as a good 
first-order approximation (outer problem) for the riser-like problem analysis. If we take 
now, tt ωξψξυ ie)(),( =  and tt ωξξη ie)(),( ϕ= , the eigenvalue problem, associated  with 
equation (5), is 

                                                 
2 Usually daM mmC = , where dm  is the displaced mass, is taken. 
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Eq. (7) can be written in the following form, 
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Notice that Eq. (8b) is, strictly speaking, the eigenvalue equation. Equation (8a) gives the 
tangential displacement )(ξψ , as a direct linear operation on )(ξϕ . This is a direct result 
for not considering extensibility, what leads to the impossibility of satisfying any general 
axial boundary condition that would be physically imposed (actually this a first real 
drawback of the present analysis). Therefore, close to extremities we should expect poor 
results for the longitudinal displacement function )(ξψ . This will be numerically 
confirmed later on. More important than this point: depending on the actual value taken by 
the non-dimensional axial-to-geometric-ratio rigidity parameter, as defined by Irvine & 
Caughey, the inextensibility hypothesis can lead to a complete misinterpretation 
concerning the first eigenmode (as probably has occurred in Larsen, 1992, when 
comparing natural periods determined by a number of program codes).  

Notice also that approximation (8) gets worse as higher is the eigenmode, such that the 
typical corresponding wavelength is of same order of magnitude of the flexural length 
parameter. In such cases, bending stiffness effect would not be confined to small 
boundary-layers anymore. 

If quadratic terms in curvature could be neglected, Eq. (8) would then be written, 
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This could be done, for a free-hanging catenary, e.g., where )(cos)( 2
0 ξθχξχ = , but only 

far from TDP. 

In the next section we shall return to equations (7) and (8) in order to derive a general 
WKB approximate solution, valid for general static configurations. 
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THE 'CATENARY' RISER-LIKE CASE: A WKB CLOSED FORM 
SOLUTION AND AN ANALYTICAL APPROXIMATION 
We turn our attention to the 'catenary' riser-like eingenvalue case3. We focus on the 
inextensible tensioned-and-curved-heavy-string equation, Eq. (7) (or (8)). First we observe 
that tension is usually dominated by geometric (or catenary) rigidity, unless a strong 
current is present. In this latter case tension fuction is supposed to be previously known. In 
the particular but important case of a free-hanging  and pure catenary (no current) the (non-
dimensional) tension function can be easily shown to be 

)(tan1)( 2 ξθξ ccF +=        (10), 

where c stands for catenary. This suggests us to introduce a new variable, 

 )(tan ξθζ =          (11). 

Notice that Lθζ tan= , at the upper end, where 1=ξ . 

In the pure catenary case, 

 21)( ζζ +=cF         (12) 

Notice that, in this particular case, ζζ ≈)(cF , for 1>>ζ , i.e., in the region close to the 
upper end, for top angles 4πθ >L , and 1)( ≈ζcF  in the touchdown point (TDP) region, 

where 1<<ζ . On the other hand, for very low values of Lθ  (very tight cables), the tension 
function can be written )(O1)( 2ζζ +≅cF . Figure 3 show the tension function )(ζcF . 
Notice that the curve is almost linear. It should also be noticed that 
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where ( )ammTc += )()( ζζ  is the local transversal wave celerity. Naturally, if a linear 
approximation (of the least square type, for example) is taken, a modified Bessel equation 
is got and an approximate solution can be obtained. This is straightforward, however, and 
will be done latter on.  

Instead, motivated by the above stated considerations, we shall proceed with the 'general' 
two-dimensional tensioned-and-curved-string eigenvalue equation, aiming to construct a 
closed form solution, given )(ζF . We shall apply the well-known WKB technique.  

 

                                                 
3 We should distinguish the pure catenary, when no current exists, from the 'catenary'-like case. 
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Figure 2 Non-dimensional tension function, )(ζF ,  along a free-hanging catenary. 

A WKB closed form solution for the inextensible tensioned-and-curved-
heavy-string equation 
WKB technique can be applied easily; see, e.g. Bender & Orszag, chapter 10. Let 
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where 
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Obviously, a singular problem would arise wherever 0)( =ζF , for any particular ζ . This 
means a section where wave celerity is zero; see Eq. (13). Though tractable, we can take 

0)( ≠ζF , for all ζ , in the present problem. On the other hand, a 'turning-point' problem 

would arise whenever F2Λ  has a zero; Abramowitz & Stegun, Eq. 10.4.108. Such cases, 
where turning points would exist, will not be treated here, either.  

The following reasoning is strictly valid for finite Lθµ tan=  and large ω  (higher-order 
eingenmodes), such that we can assume 1>>Λ . Surprisingly4, the approximate WKB 
solution will show to be rather good, even for low-order eigenmodes. Equation (14) is 
almost in the form shown in a number of classical text books on applied mathematics, as in 

                                                 
4 Not really surprising, as shown in Bender & Orszag, by means of a standard eigenvalue problem. 
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Bender & Orszag's, page, 490. In this circumstances, when 1>>Λ , we get from Eqs. (14-
15), with an error of order )O( 2−Λ , the following simple equation, 
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Notice that this is exactly the form that would be obtained from Eq. (9), where quadratic 
terms in curvature were neglected. 

A classical WKB exponential series solution is taken, 
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and placed directly into Eq. (16), with Λ=1ε  a small quantity. After the standard  
‘dominant balance’ argument is used (allowing to take εδ = ), we come up, to first-order 
in Λ= 1ε , with 
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a rather fairly form. Equation (18) gives a general closed form solution for the inextensible 
tensioned-and-curved-heavy-string problem (not only for the riser-like problem but also for 
jumpers, for instance). Notice that eigenmodes are sinusoidal functions, modulated in 
phase and amplitude and resembling Bessel's functions. Also, from Eq. (18), being 

∫ −Λ=
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ζζφ dF 21)( , the phase angle, the local non-dimensional wave-number is given by 
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c , as should be expected, since 

this is a classical result that tells us local wave length is linearly proportional to wave-
celerity (phase velocity); see, e.g. Whitham, p. 365. (The corresponding dispersion relation 

is given by 0
2

2 =Λ−
′

+
FF

F κκ ). Notice that if 0)( FF =ζ , a constant, there would be no 

dispersion at all, Eq. (16) being transformed into the classical string equation under 
constant tension. 

Applying, e.g., a pinned-pinned boundary condition, such that, 0)()0( =ϕ=ϕ µ , we get 

02 =C  and 
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Therefore, the (dimensional) natural frequencies are given by 
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If a free-hanging catenary with a touch-down point5 is taken, Eq. (12) applies. Then, by 
using Eq. (11), 
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and, from the well-known catenary relationship, µθ qLqLT L == tan0 , where 0T  is the 
tension at TDP, we get the following simple form for the natural frequencies, 
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       (22). 

Further observing that, for a circular section, 42Dma πρ≅ , where ρ  is the water mass 

density and D the external diameter, we can write gmmq a )( −≅  and, defining the 'added 
mass coefficient' mma a= , Eq. (22) can be written in the following form, 

 
L
g

a
a

Lnn )1(
)1(tan

+
−Λ≅Ω θ        (23), 

being g the acceleration of gravity. Notice that for a neutrally buoyant line ( 1;0 == aq ), 
geometric rigidity (the only source here considered) is null, breaking down the proposed 
eigenvalue problem. Recovering, from catenary equations, that )cos-(1sin LLHL θθ= , 
where H is the waterdepth, we finally get 
                                                 
5 It has been formally shown, Aranha et al., 1997, that  in the dynamic problem of a free-hanging cable, with 
a simple touchdown point, and correct to first-order in 00χa , being 0a  the TDP non-dimensional excursion 

amplitude and 00 TqL=χ  the non-dimensional static curvature at TDP, boundary condition at TDP can be 
properly modeled as a hinge. The local bending stiffness effect (and proper null curvature and tangency 
boundary conditions at TDP) can be incorporated by means of boundary-layer technique.  
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that gives a formula for evaluating the natural frequencies of a catenary line, written solely 
in terms of waterdepth  H and of the upper end angle with respect to horizontal, Lθ . For 

practical and immediate usage of formula (24), Fig. 3 gives ( ) LLn n θθ cos)cos1( −Λ  as 
a function of Lθ . Numerical examples will be shown in the next two sections. 

 

 

 

Figure 3 Eigenvalues ( ) LLn n θθ cos)cos1( −Λ   for a catenary-riser under no current as a 

function of Lθ , the angle at the upper end, with respect to the horizontal. 

An analytical approximation for the 'catenary' riser-like problem 
A straightforward analytical solution can be derived from Eq. (16) with a linear 
approximation for the tension function, in the form ζαζ bF +≈ 2)( . Then, Eq. (16) 
transforms into a modified Bessel equation, as in the classical case of a vertical line (see, 
e.g., Bowman, 1958). For, let 2αβ b= , βζ+= 12z  and Eq. (9b) reads, 

 

αβµ
ω

αβ
=

Λ
=Κ

=ϕΚ+ϕ′+ϕ ′′ 04 222 zzz

       (25), 

solution being given in terms of Bessel's functions of first kind and zero order, 

 ( )KzYCzJCz 2)2()( 0201 +Κ=ϕ       (26) 

or, in terms of ζ , 
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ζ YCJC    (27), 
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or else, in terms of Lθµ
µ
ζξ tan   ; == ,  




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
++
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+=ϕ 21
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αβµ
ωξ YCJC   (28). 

For a hinged-hinged boundary condition, eigenvalues satisfy the characteristic equation, 

 0)1(222)1(2 21
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the corresponding eigenfunctions being then written, 

 







+















+







+=ϕ 21

0

0

0
21

0 )1(2
2

2

)1(2)( βµξ
αβµ
ω

αβµ
ω

αβµ
ω

βµξ
αβµ
ω

ξ n

n

n

n
n Y

Y

J

J  (30). 

Again we take the case of a catenary riser (no current), such that 21)()( ζζζ +== cFF . 
If a standard least-square error approximation is used, with the additional condition 

1)0( =F , such that tension at TDP is preserved, we get for this particular case 12 =α , 
b=0.4789 (µ=2) or b=0.7395 (µ=5.7), such that β=0.4789 or 0.7395. 

Figures 4 and 5 show a comparison between WKB (Eq. (21)) and Bessel's (Least Square 
Approximation - Eq. 30) solutions. We took 5.7   and   2.0tan == Lθµ , corresponding to 
upper end angle values o

L 603 ==πθ  and o
L 8094 == πθ . The agreement is very good, 

indeed. Notice that (non-dimensional) natural frequencies values agree up to three digits 
and results get even better for higher eigenmodes, as predicted when applying WKB 
technique. Notice that the 'tangential' displacement function, )(ξψ , is determined from Eq. 

(16a), being )()1()()( 2
0

2
0 ζχζχζχζχζθ cc Fdd =+===  the corresponding static 

curvature. As anticipated, by not considering axial deformation we miss the boundary 
condition for the tangential displacement, leading to poor results for the axial 
displacement, particularly close to a extremity where tension is low and curvature is 
somewhat large, as TDP, in this case. More than that, according to Irvine & Caughey’s 
(1974) analysis, the fundamental (inextensible) eigenmode (no internal nodes) determined 
from both approximate solutions of the inextensible tensioned-and-curved-heavy-string 
equations, can be physically incongruous. For this reason we call such a fundamental mode 
the zeroth-mode in figures 5 and 6, redefining a mode counter 1−= nk . 
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Bessel’s WKBµ=2

 

Figure 4 WKB approximate solution compared to modified Bessel's  equation  solution. Mode counter 
redefined as 1−= nk . Free-hanging catenary riser with 2.0tan == Lθµ  
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Bessel’s WKBµ=5.7

 

Figure 5 WKB approximate solution compared to modified Bessel's equation  solution. Mode counter 
redefined as 1−= nk . Free-hanging riser with 5.7tan == Lθµ . 
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Numerical Comparison 
Figure 6 and 7 show WKB approximations for eigenmodes and corresponding eigenvalues 
for a free-hanging catenary riser. Table 1 presents general data. A standard flexible pipe in 
785 meters depth has been taken. Again we took 5.7   and   2.0tan == Lθµ , 
corresponding to upper end angle values o

L 603 == πθ  and o
L 8094 == πθ . Notice that 

bending stiffness is small whereas axial rigidity is very large. Solutions are compared to 
the numerical results, calculated with POLIFLEX, Martins, 1998, an in-house made 
computer code, that takes extensibility into account. WKB solution was applied 
considering riser hinged at TDP. Actually it can be verified (see Appendix) that the axial-
to-geometric rigidity ratio parameter of Irvine & Caughey is rather large in the present 
analysis, taking the values 9.37  and  35.14=λ , corresponding to o

L 603 == πθ  and 
o

L 8094 == πθ . According to those authors’ analysis for a similar case but symmetric 
case, first ‘symmetric’ mode is expected to occur with two internal nodes whenever 

πλ 2≥ . So, the first POLIFLEX eigenmode showed, as it should, as an ‘anti-symmetric’ 
one. The fundamental WKB mode (no nodes) should be disregarded. On another hand, as 
pointed out earlier, the approximate WKB solution gives poor results concerning the axial 
displacement, since axial boundary conditions are lost in virtue of the inextensibility 
hypothesis. Shape, however, is preserved.  

Notice that POLIFLEX was run under three conditions: 

(i)  Riser hinged at TDP, with hinge mounted on a linearly elastic horizontal spring, 
whose rigidity is the same as for the effective length of cable laid on the sea floor, 
assuming a Coulomb friction law, with friction coefficient 0.4. Actual value for the 
axial rigidity is taken. 

(ii) Riser hinged at TDP, but with the actual value for the axial rigidity. 

(iii) Riser hinged at TDP, taking the axial rigidity 100 times larger than the actual value 
(here referred to as 'infinite' axial rigidity). 

Total length (the sum of suspended and supported-on-the soil parts) is 3000 m, and that is 
the reason why eigenmodes are plotted along the arch-length coordinate, from the TDP to 
the top; Figure 6 and 7 refer to condition (iii). 

Figures 8 and 9 present eigenvalues calculated for each upper end angle condition, 
5.7   and   2.0tan == Lθµ , comparing WKB (inextensible) solution to POLIFLEX results 

obtained under conditions (i), (ii) and (iii). The agreement is good, for both upper angle 
conditions, particularly for 'low-order' eigenmodes, although, strictly speaking, WKB 
technique assumes large eigenvalues. We can see that natural frequencies are lower as we 
consider axial extensibility in POLIFLEX solution (conditions (i) and (ii)). Particularly, if 
we consider an effective length laid on the sea floor (condition (i)), extensibility effect is 
even greater, as would be expected. For both conditions (i) and (ii) WKB results agree 
worse the larger the mode order. When we consider condition (iii), in which we take, in 
POLIFLEX, a value for the axial rigidity that is 100 times larger than the actual rigidity, 
results match nicely with WKB (inextensible) approximate results, as they should, 
therefore verifying POLIFLEX code. Also, comparing figures 8 and 9, extensibility effect 
is larger for taught risers, as it should be expected. 
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Figure 10, at last, presents an example of a high-order mode, the 29th eigenmode, for both 
cases where 5.7   and  2.0tan == Lθµ . 

 

Table 1 Flexible-pipe riser data 

EA (kN) 312500 

EJ (kNm2) 49.61 

q (kN/m) 0.914 

m (t/m) 0.218 

D (m) 0.3934 

H (m) 785 

Total length (m) 3000 

L (m) for o
L 80=θ  935.5 

L (m) for o
L 60=θ  1359.6 

 



17 

Poliflex µ=2 WKB

 

Figure 6  WKB approximate solution compared to numerical results obtained by a standard Finite 
Element Three first eigenmodes. Finite Element Method Formulation: POLIFLEX code. Free-hanging 

catenary-riser. 2.0tan == Lθµ . 

 



18 

WKBµ=5,7Poliflex

 

Figure 7 WKB approximate solution compared to numerical results obtained by a standard Finite Element 
Three first eigenmodes. Finite Element Method Formulation: POLIFLEX code. Free-hanging catenary-

riser. 5.7tan == Lθµ  
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µµ==tanθθL == 2.0
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Figure 8 Eigenvalues for a catenary (flexible-pipe) riser. Inextensible WKB approximate solution 
compared to POLIFLEX results. 2.0tan == Lθµ .. 

µµ==tanθθL = = 5.7
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Figure 9 Eigenvalues for a catenary (flexible-pipe) riser. Inextensible WKB approximate solution 
compared to POLIFLEX results. 5.7tan == Lθµ  
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Poliflex WKB
µ=2.0

µ=5.7

 

Figure 10 WKB approximate solution compared to numerical results obtained by a standard Finite 
Element A high-order eigenmode: k=29. Finite Element Method Formulation: POLIFLEX code. Free-

hanging catenary-riser. 5.7 2.0;tan == Lθµ . 

CONCLUSIONS 
Though being aware of the physical inadequacy concerning the inextensibility assumption, 
as shown by Irvine & Caughey, the two-dimensional riser-like problem have been 
addressed on this basis. The corresponding eigenvalue problem has been posed and 
discussed, although tangential boundary condition is missed in this approximation. An 
analytical and closed form WKB approximate solution has been derived for the general 
(inextensible) eigenvalue riser-like problem. Such solution is given, as it should, in the 
form of sinusoidal functions, modulated in amplitude and phase, 
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These modulation functions are, respectively, )(41 ζ−F  and )(21 ζ−F , where )(ζF  is the 
non-dimensional tension along the archlength ζ . The solution takes a very simple form for 
the catenary case. Particularly, a formula for the natural frequencies and a closed form 
solution for the modes of a catenary-riser have been presented. These formulae can be 
easily applied in practical situations, when the designer (or the field engineer) searches for 
a quick evaluation. Two simple formulae, given only in terms of local depth and angle at 
upper end, have also been derived, from WKB general solution, for the natural frequencies 
and eigenmodes of a catenary riser under no current. A free-catenary riser has been taken 
as example. Care must be taken, however, as the (inextensible cable) WKB solution always 
provides the fundamental 'symmetric' mode (no internal nodes), that might not appear for 
typical risers.  

The classical analytical solution of the suspended heavy cable eigenvalue problem, based 
on a Bessel's modified equation approximation, and given in terms of Bessel functions of 
zero order, has been also derived for the catenary riser case and some elementary but 
useful solutions have been exemplified. Comparison of WKB solution and Bessel’s 
approximation to numerical results obtained by a standard Finite Element Method 
formulation showed very good agreement. Extensibility effect has been addressed through 
a typical flexible pipe riser case in 785 meters depth. The examples have shown that, from 
a practical point of view, WKB approximation gives a good and expeditious estimate for 
the eigenvalues and eigenfunctions of a catenary riser. The present mathematical analysis 
applies not only to construct paradigms for numerical solutions but, particularly, enables 
one to properly address the validity of other physical intuitive arguments that are usually 
assumed, such as the small global effect of flexural rigidity. Corrections, close to 
extremities, would be necessary, however. The WKB solution is somewhat general and can 
be applied straightforwardly for 'jumpers' and can be promptly adapted to take into account 
other risers shapes, as 'lazy-wave', 'steep-wave' or multi-leg configurations. 
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APPENDIX A: DISCONSIDERING GLOBAL EFFECT OF 
FLEXURAL RIGIDITY 
In nondimensional form,  Eq. (1) is written, 
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 (31). 

where  
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λ

ε =          (32) 
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is the small flexural non-dimensional parameter, being 

 
0T

EJ
F =λ          (33) 

the local (here at TDP) flexural length (see Aranha et al., 1997) that gauges the bending 
stiffness importance with respect to geometric rigidity. Equation (31) is a singular 
perturbation problem, of the beam-string type (see, e.g., Kevorkian & Cole, 1981). It tell us 
that bending stiffness effect is important only inside small regions of length )(O λ , i.e. 
boundary-layers, either external (at the ends) or internal ones, around sections where 
curvature attains local maxima (TDP, for instance). Boundary-layer technique has been 
applied in order to study the dynamic curvature at the extremities (TDP and top end) of a 
catenary riser; Aranha et al., 1997, Pesce, 1997. Notice that in Eq. (31) we took the viscous 
damping terms off. If terms of order 2

Fε  are neglected, we get the associate non-
dimensional and non-damped form of Eq. (3) (the inextensible and non-damped outer 
equation that dominates the overall dynamic behaviour), Eq. (5). 

APPENDIX B: IRVINE & CAUGHEY ‘S RIGIDITY PARAMETER 
In Irvine & Caughey’s paper a similar (actually a geometrically symmetric case) is 
analysed. An axial-to-geometric rigidity parameter is defined as  
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where, d is the sag, l the span, T  is the horizontal tension (exactly the tension at 
midsection in their analysis), and eL is a form length parameter given by, 
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They showed that the first symmetric eigenmode has no internal nodes, whenever  πλ 2≤ . 
Otherwise, the first symmetric mode has two internal nodes and the first antisymmetric 
mode appears as the lowest one, with one internal node. If the definition above were 
applied to the present catenary riser problem, taking DoD TTT θsec==  (refer to the figure 
below), we easily would get from classical catenary equations 
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Table 2 values calculated for both exemplified cases. 

µ xB (m) yB (m) L (m) l (m) d (m) T0 (kN) TD (kN) Le (m) λ2 

2 916.8 785 1270 1207 167.8 580 764KN 2963 206.11 

5.7 400.3 785 934.7 881 118.8 150 329KN 11058 87.85 

APPENDIX C: CONSIDER ING VIRTUAL WORK DONE BY 
HYDROSTATIC TERMS 
Notice that if the (virtual) work done by hydrostatic pressure were considered, (as in 
Chucheepsakul & Huang (1997)), in the manner explained by means of the usual concept 
of 'effective' tension in marine cables and risers, the inextensible dynamic equation would 
be written, 
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   (37), 

where 
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is the nondimensional 'effective' hydrostatic effect per unit length, being aρ  the density of 

water, iρ  the density of a possible internal fluid, oS  and iS  the outer and inner cross 
sectional areas, respectively. The approximate eigenvalue problem would then be written, 
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