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A B S T R A C T

This paper investigates the advantages or issues of different reduced-order models (ROMs) for the analysis
of elastic cables hanging between two supports at different height. The cable is considered immersed in still
fluid and under the action of an imposed boundary motion at the upper support. Nine ROMs are explored,
obtained from the combination of three different functions responsible for ensuring the interpolation of the
boundary motion with three possible sets of projection functions associated with the degrees of freedom (DOF).
For the interpolation functions, the possibilities are: (i) a linear interpolation, (ii) a linear interpolation with
a decomposition in axial and transversal directions according to the local angle of each cross-section, or,
(iii) a quasi-static approach using the static displacement of the cable due to a unitary displacement applied at
the moving boundary. Regarding the number of DOFs, the possible functions sets consists of a single mode of
vibration, three modes of vibration, or, a group of five trigonometric functions. The ROMs are then simulated
for different conditions and the results are compared to a reference case obtained from Finite Element Method
(FEM). Additionally to the numerical analysis, a novel semi-analytical solution is proposed for the single DOF
ROMs based on the method of multiple time scales (MMTS). Such solution tackles an issue of using the Morrison
damping since it contains an absolute value function in its formulation which makes it unfeasible to compute
the integrals that appear in the Galerkin method without knowing the response of the structure. The results
show that the choice of the function to interpolate the top motion effects is of top-most importance, since a
poor choice of that set of functions leads to low accuracy in the results that cannot be solved by adding more
DOFs to the ROM. It is also shown that working with more complex functions instead of simple trigonometric
functions leads to a significance enhancement of the computational performance of the simulations.
. Introduction

Cables are very slender structures, presenting negligible flexural
tiffness, with applications to various engineering problems. They can
e found in stayed and suspended bridges, mooring systems of marine
essels and offshore platforms, or as elements to transport payloads or
aw materials across long distances. Due to their slenderness, cables
ay present a rich behaviour under external disturbances from applied

oads, motion prescribed to the support, fluid–structure interaction,
oil–structure interaction, amongst others. Cases of modal coupling,
nternal resonances and chaotic dynamics may arise, pointing out the
eed for a deep understanding of the dynamical responses of this kind
f structure. The first step of any such investigation is obviously the
odelling of the structure. For that matter, the works in [1,2] present
detailed discussion with different modelling approaches together with

uggestions of pathways for the analysis.
An initial point of a well-structured investigation about the linear

ree vibration problem of cables is presented in [3,4]. In those works,
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horizontal cables with a small sag-to-span ratio are considered, and a
detailed study is made analysing the rich linear modal properties that
this type of structure may present. In [5], numerical confirmations with
the Finite Element Method (FEM) are obtained for the predictions made
in [3]. In [6] the linear modal investigation of horizontal cables with
small sag-to-span ratio is extended to the possibility of flexible supports.
Following, a rich analysis of the linear free dynamics of inclined taut
strings is made in [7], with an asymptotic solution presented in [8] and
experimental correlations confirming the findings in [9].

Some initial works on the non-linear free vibrations and the
frequency-amplitude dependency investigation are presented in
[10–12]. In [13], the modal coupling between in-plane and out-of-
plane modes for shallow horizontal cables under free vibrations is
addressed. In turn, forced vibration considering super and subharmonic
resonances are investigated in [14,15], respectively. Notice that those
earlier works considered only the particular conditions of taut strings
ttps://doi.org/10.1016/j.ijnonlinmec.2022.104078
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Fig. 1. Basic model.
Fig. 2. Forces acting on an infinitesimal cable element.

or shallow horizontal cables. Also, there are no considerations regard-
ing fluid–structure interactions or effects of imposed motions at the
supports.

Considering a sagged and inclined configuration together with in-
teractions with the surrounding fluid, in [16] the linear modal shapes
and frequencies of a typical configuration of steel catenary risers for
offshore engineering applications are obtained by means of the WKB
method (see [17]). Also removing the shallow or taut cable conditions,
2

non-linear free vibrations of arbitrarily sagged and inclined cables are
investigated in [18], with modal coupling being investigated in [19].
Those studies are complemented with the analysis of 2:1 internal
resonance investigations made in [20,21]. In [22], the effects of self-
weight of taut inclined cables on the linear free vibrations are explored.
Following, a complete discussion and classification of linear modal
properties in the style of [3] is made for horizontal non-shallow cables
in [23]. This type of study and classification is then extended to non-
shallow inclined cables in [24]. Finally, an approximated solution for
the amplitude dependent modal shapes and frequencies for inclined
cables with small sag-to-span ratio is presented in [25].

Regarding the effects of imposed motion at the supports, the topic
was widely introduced during the 90’s, with works in shallow horizon-
tal cables by [26–28] and also by means of experimental investigations
in [29]. The arising of multiple bifurcations and chaotic dynamics is
demonstrated in [30] when both external forcing and support exci-
tations are considered. An interesting analytical approach to shallow
horizontal cables under out-of-plane support imposed motion is pre-
sented in [31]. In the latter work, the support excitation is deemed
small in a multiple scale expansion, in order for the imposed motion
to appear only on the modulation equations, allowing for a simple
modal solution of the first-order problem. The same approach is applied
in [32], while also considering in-plane vertical motion of the support.
In [33], non-ideal support conditions are considered by means of a
lumped mass–string–damper system and it is shown how a tuning
of those parameters may change the behaviour of symmetric and
antisymmetric modes in the response. Asynchronicity of the imposed
out-of-plane motion is introduced in [34]. The authors are able to
investigate the effect of phase lag between excitations in different
supports in terms of response behaviour and conditions for dynamical
instabilities to arise. In [35], such analysis is extended to the case of in-
plane imposed support motion with phase lag in the motion of different
supports. Finally, the removal of small sag-to-span ratio is made in [36]

for horizontal cables under support excitation.
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For applications on inclined taut strings, a detailed pioneer work is
presented in [37], containing analytical investigations by means of a
solution obtained with the application of the method of multiple time
scales (MMTS) directly to the partial differential equations (PDEs) of
motion of the system, together with experimental correlations. Non-
linear vibrations of an inclined taut string are considered in [38]
together with experimental correlation. In [39], the non-planar motion
of the same type of cable is investigated. Parametric instability of
out-of-plane modes due to support excitation on inclined taut cables
is addressed in [40]. The extension for considering both in and out-
of-plane motions is made in [41] for modal instabilities of chosen
modes. The extension to multi-modal analysis is then made in [42].
It is important to highlight the contribution of readily available ana-
lytical solutions presented in those works. Finally, in [43], the support
excitation on a taut cable is combined with galloping induced by wind
flow.

The consideration of surrounding fluid different from air is made
in [44–46]. Those studies consider the in-plane dynamics of marine
inclined risers without sag-to-span ratio limitations. In [44], the 2:1
internal resonances of this type of structure are addressed by using
the MMTS. The same kind of analysis in then made for the 3:1 case
of internal resonance in [45]. Finally, multi-frequency forcing terms
are considered in [46] to emulate the fluid–structure interactions. It
is important to remark, however, that none of these works considered
the presence of non-linear hydrodynamic damping (quadratic in the
velocity) in the formulation. The main concern is that this type of
damping is of paramount importance in the dynamical response of
slender structures immersed in fluid, as can be seen in [47–49].

Notice that, in the majority of the studies, an order reduction of
the model is made, by considering oscillations with a single frequency
or producing reduced-order models (ROMs) via a discretization pro-
cedure. However, studies regarding those methodologies themselves
and how they affect the obtained results are few. Two main issues
can be highlighted in the process of reduced-order modelling. The
first one consists of the quantitative behaviour of the model. Usually,
discretization procedures are based on projection techniques, such as
the Galerkin projection, and the number of projection functions is
increased until adequate adherence to some reference is achieved.
The issue is that different sets of projection functions can lead to a
different number of such functions to be needed in order to conceive
an adequate model, as shown in [48] for vertical slender structures.
It is worth noticing that the latter work shows that this effect may be
significant even when the geometrical differences between projection
functions are small. The second question is related to the qualitative
behaviour. Although the Galerkin projection ensures that the error of
the ROM will be the smallest possible with relation to the projected
basis, it does not give conditions to ensure that this minimum error
does not interfere with the qualitative behaviour of the system. An
investigation of the effects of reducing techniques is made in [50],
where theoretical comparisons and possible drawbacks are investigated
for the cases of applying the MMTS directly to the PDEs of motion or
formulating ordinary differential equations (ODEs) of motion after a
Galerkin procedure. An analysis comparing two different perturbation
approaches to the problem is made in [51].

In the presented context, the work herein proposed is to investigate
the effects of using different projection basis for obtaining ROMs for
inclined elastic cables, with arbitrary sag-to-span ratio, immersed in
still fluid with significant non-linear dampening effect, subjected to in-
plane imposed motion in the top support. The problem of performing
a detailed investigation of the impacts of different projection functions
goes beyond simple accuracy convergence. As mentioned, qualitative
errors can occur, which cannot always be solved by simply increas-
ing the number of projection functions. Besides, finding a minimal
ROM leads to analysis advantages. Smaller models allow for easier
applications of analytical methods and reduce computational effort for
large simulations campaigns such as obtaining basins of attraction or
3

performing initial design studies to choose a better tuning for certain
structural properties. The main contribution is then to clarify the
issues in choosing projection functions, their limitations and needed
investigation for their future enhancement.

Notice that the investigation herein proposed concerns ROMs ob-
tained via Galerkin projections. This however is not the only possibility
of conceiving ROMs. Other possible ways involve, for example, the use
of Proper Orthogonal Decomposition (POD), Non-linear Normal modes
(NNM) and Spectral Submanifolds (SSM). Each of those methods have
their own advantages and drawbacks, with the choice of which one
to use depending on the particular problem and the desired analysis.
The POD is a statistical method and needs a previously obtained data
to be applied on. The method then furnishes the so called proper
orthogonal modes (POM) which are useful to represent the data using a
small amount of eigenfunctions. A detailed review on the POD with its
history of research, mathematical basis and applications to structural
engineering can be found in [52]. Following, the NNM are an extent
of the concept of linear modes of vibration to the non-linear regime
(see, for example, [53] for a detailed description). The idea is to obtain
manifolds over which the dynamical response of the system can be
captured with a small number of DOFs. The task however can be
very complicated from a mathematical point of view, with different
approaches and techniques being proposed along time, using center
manifold theory [53], Galerkin approximations [54] or the MMTS [55].
For a recent review with discussions on the applications of NNMs and
numerical implementation see [56,57]. For a detailed review of NNMs
and comparisons with other forms to obtain ROMs see [58]. Finally,
the SSM is a recent concept in non-linear dynamics, which has essential
relationship to NNMs. By definition, SSMs are invariant manifolds that
are the smoothest (mathematically speaking) nonlinear continuation
of the spectral components along a given NNM. One of the great
advantages of the SSMs is their demonstrated uniqueness given certain
spectral conditions are satisfied. This uniqueness is not guaranteed in
previous approaches to obtain invariant manifolds to represent NNMs.
The details of the theory behind SSMs can be found in [59] together
with proofs of existence and uniqueness. The application of the SSM
approach to obtain ROMs for can be found in [60].

The article is divided as follows. In Section 2, the formulation
of the PDEs of motion is shown considering a local reference frame.
The reduced-order modelling procedure is then explained in Section 3
together with the definition of the different ROMs investigated in this
work. Then, considering the simplest ROM obtained, a novel semi-
analytical solution using the MMTS is presented in Section 4. The
proposed ROMs are then compared with a higher-order hierarchical
model based on FEM, used as reference, in Section 5, illustrating
the differences between approaches. Finally, the main conclusions are
summarized in Section 6.

2. Partial differential equations of motion

The structure under investigation is presented in Fig. 1, together
with the relevant geometric measures and axes definition. As shown,
the sag-to-span ratio is not necessarily small and the supports can be at
different heights.

As depicted, 𝑋 and 𝑍 are fixed Cartesian axes at the left support.
The 𝑍 direction is considered to be the vertical one, with gravity acting
downwards. A local frame is also defined, with 𝑢 being the tangen-
tial/axial direction and 𝑣 being the normal/transversal direction. The
horizontal and vertical distances between supports are given by 𝑑 and
ℎ respectively. For the sake of illustration, the numerical investigations
carried in this work are made with a cable with 2452.46 m of length,
𝑑 = 1500m and ℎ = 1800m, leading to a non-shallow configuration.
In this work, the fluid is considered to be still and the structure has
negligible flexural stiffness. In order to obtain the equations of motion,
consider the infinitesimal element presented in Fig. 2.

In Fig. 2, 𝑇 is the tension developed in the structure, considering
the effective tension concept (see [1]), 𝜃 is the angle of the local axial
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direction with the Cartesian horizontal direction, 𝛾 is the increment
of such an angle in the dynamical response of the structure and d𝜃
s the increment of 𝜃(𝑠) that occurs in the represented arc span d𝑠.

Let 𝐹𝑢 and 𝐹𝑣 denote the resultant of the internal forces acting in
an infinitesimal element d𝑠 accordingly to the axial and transversal
direction respectively, considering the static configuration for those
directions, with 𝑠 being the arclength coordinate measured from the left
support. By the geometry of the problem, those resultants are written as

𝐹𝑢 = 𝑇 (𝑠 + d𝑠) cos (d𝜃 + 𝛾 (𝑠 + d𝑠)) − 𝑇 (𝑠) cos (𝛾 (𝑠)) , (1)

𝐹𝑣 = 𝑇 (𝑠 + d𝑠) sin (d𝜃 + 𝛾 (𝑠 + d𝑠)) − 𝑇 (𝑠) sin (𝛾 (𝑠)) . (2)

The external forces acting on the element are the net weight (weight
minus buoyancy force) and those resulting from the fluid–structure
interaction. For the latter case, the Morrison non-linear damping is
considered together with the potential added mass. For the non-linear
damping, the direction transversal to each cross-section is taken as the
direction 𝑣 defined in the static configuration. This is an approximation
since the instantaneous transversal direction is, in general, different
from the one in the static configuration. However, this approximation is
suitable while the dynamic displacements around the static configura-
tion are small compared to the wave-length of the vibration modes with
significant participation in the motion. The assumption that this occurs
in the present case is even more suitable considering that this type of
damping significantly reduces the magnitude of the oscillations. Now,
writing Newton’s second law for the infinitesimal element leads to

𝐹𝑢 − 𝛾𝑠d𝑠 sin 𝜃 = 𝑚�̈�d𝑠, (3)

𝐹𝑣 − 𝛾𝑠d𝑠 cos 𝜃 −
1
2
𝜌𝐷𝐶𝐷�̇� |�̇�| d𝑠 = 𝑚𝑡�̈�d𝑠, (4)

here 𝛾𝑠 is the immersed weight per unit length, 𝜌 is the specific
ass of the surrounding fluid, 𝐷 is the structural diameter of the

able, assumed as having a circular cross-section, 𝐶𝐷 is the mean drag
coefficient, 𝑚 is the mass per unit length of the cable and 𝑚𝑡 is the

ass per unit length summed up with the potential added mass. Notice
hat the tangential added mass is not considered in the formulation,
rovided it is much smaller than its transversal counterpart. As usual in
he literature, overdots are used to denote differentiation with respect
o time. To obtain the equations of motion, both Eqs. (3) and (4) are
ivided by d𝑠 and the limit is taken for d𝑠 ↦ 0. For the resultants 𝐹𝑢
nd 𝐹𝑣 it follows that

lim
d𝑠↦0

𝐹𝑢
d𝑠

=

lim
d𝑠↦0

𝑇 (𝑠 + d𝑠) cos (d𝜃 + 𝛾 (𝑠 + d𝑠)) − 𝑇 (𝑠) cos (𝛾 (𝑠))
d𝑠

=

lim
d𝑠↦0

𝑇 (𝑠 + d𝑠) cos (𝛾 (𝑠 + d𝑠)) − 𝑇 (𝑠) cos (𝛾 (𝑠))
d𝑠

−
𝑇 (𝑠 + d𝑠) sin (𝛾 (𝑠 + d𝑠)) d𝜃 + 𝑂(d𝜃2)

d𝑠
=

′ cos 𝛾 − 𝑇
(

𝜃′ + 𝛾 ′
)

sin 𝛾, (5)

lim
d𝑠↦0

𝐹𝑣
d𝑠

=

lim
d𝑠↦0

𝑇 (𝑠 + d𝑠) sin (d𝜃 + 𝛾 (𝑠 + d𝑠)) − 𝑇 (𝑠) sin (𝛾 (𝑠))
d𝑠

=

lim
d𝑠↦0

𝑇 (𝑠 + d𝑠) sin (𝛾 (𝑠 + d𝑠)) − 𝑇 (𝑠) sin (𝛾 (𝑠))
d𝑠

+
𝑇 (𝑠 + d𝑠) cos (𝛾 (𝑠 + d𝑠)) d𝜃 + 𝑂(d𝜃2)

d𝑠
=

′ sin 𝛾 + 𝑇
(

𝜃′ + 𝛾 ′
)

cos 𝛾. (6)

Differentiation with respect to 𝑠 is denoted by primes. The notation
𝑂(d𝜃2) means terms of order equal to or higher than d𝜃2. Notice that
this usage does not imply an approximation since those terms are
indeed null when the limit is taken. Let now the tension to be divided
as 𝑇 = 𝑇𝑠 + 𝑇𝑑 with 𝑇𝑠 being the tension in the static configuration
and 𝑇 any variation over it after the structure starts oscillating. With
𝑑

4

that division, the equations for planar motion written in the static
configuration reference frame read
(

𝑇 ′
𝑠 + 𝑇

′
𝑑
)

cos 𝛾 −
(

𝑇𝑠 + 𝑇𝑑
) (

𝜃′ + 𝛾 ′
)

sin 𝛾

− 𝛾𝑠 sin 𝜃 = 𝑚�̈�, (7)
(

𝑇 ′
𝑠 + 𝑇

′
𝑑
)

sin 𝛾 +
(

𝑇𝑠 + 𝑇𝑑
) (

𝜃′ + 𝛾 ′
)

cos 𝛾 − 𝛾𝑠 cos 𝜃

= 1
2
𝜌𝐷𝐶𝐷�̇� |�̇�| + 𝑚𝑡�̈�. (8)

The static equilibrium of the cable may be recognized in Eqs. (7)
and (8) by setting 𝑇𝑑 = 𝛾 = 0 as well as ruling out the time derivatives.
This leads to the expressions

𝑇 ′
𝑠 − 𝛾𝑠 sin 𝜃 = 0, (9)

𝑇𝑠𝜃
′ − 𝛾𝑠 cos 𝜃 = 0. (10)

Notice that the expressions for the static equilibrium are exactly
the same as for the case of the inextensible cable. The difference is
that, in the former, the unknowns of the problem are 𝑇𝑠 and 𝜃, while
for the extensible case one must use the constitutive and compatibility
relationships to write 𝑇𝑠 and 𝜃 in terms of the unknown static configura-
tion and then solve the problem of finding the two functions necessary
to describe such configuration. The advantage in isolating the static
equilibrium is that it may be solved beforehand, either analytically or
numerically, allowing to reduce the equations of motion to

𝑇 ′
𝑠 (cos 𝛾 − 1) − 𝑇𝑠

(

𝜃′ + 𝛾 ′
)

sin 𝛾 + 𝑇 ′
𝑑 cos 𝛾

− 𝑇𝑑
(

𝜃′ + 𝛾 ′
)

sin 𝛾 = 𝑚�̈�, (11)

𝑇 ′
𝑠 sin 𝛾 − 𝑇𝑠𝜃

′ + 𝑇𝑠
(

𝜃′ + 𝛾 ′
)

cos 𝛾 + 𝑇 ′
𝑑 sin 𝛾

+ 𝑇𝑑
(

𝜃′ + 𝛾 ′
)

cos 𝛾 − 1
2
𝜌𝐷𝐶𝐷�̇� |�̇�| = 𝑚𝑡�̈�. (12)

Now, in order to simplify the model, it is assumed that the deforma-
tions are small, such that the total strain may be written as 𝜀 ≈ 𝜀𝑠 + 𝜀𝑑 ,

ith 𝜀𝑠 being the linear strain in the static configuration and 𝜀𝑑 the
inear strain due to the displacements 𝑢 and 𝑣. By definition, the linear
train 𝜀𝑑 is related to its correspondent quadratic Green strain 𝜀𝑞 by

+ 𝜀𝑑 =
√

1 + 2𝜀𝑞 . (13)

Using now some laborious differential geometry calculations and
he strain definitions for material curves [61], it is find that the
uadratic strain is given by

𝑞 =

⎛

⎜

⎜

⎜

⎝

𝑢′ −
(

𝑣 − 𝑢𝑣′ + 𝑢′𝑣
)

𝜃′ +

(

𝑢′2 + 𝑣′2 +
(

𝑢𝜃′
)2 +

(

𝑣𝜃′
)2
)

2

⎞

⎟

⎟

⎟

⎠

. (14)

In addition, the angle 𝛾 is obtained from geometric relations as

sin 𝛾 =

(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
) , (15)

cos 𝛾 =

(

1 + 𝑢′ − 𝑣𝜃′
)

(

1 + 𝜀𝑑
) , (16)

= arcsin

(
(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
)

)

. (17)

Following [1], disregarding the Poisson effect, the effective tension
is given by

𝑇 = 𝐸𝐴𝜀 + 𝑝𝑒𝐴, (18)

where 𝑝𝑒 is the external fluid pressure and no internal fluid is consid-
ered in the cable. Defining the depth of a cable element in the static
configuration as ℎ , the external pressure is written as
𝑠
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𝑝𝑒 = 𝜌𝑔
(

ℎ𝑠 − 𝑢 sin 𝜃 − 𝑣 cos 𝜃
)

. (19)

Recalling the decomposition of the tension in statical and dynamical
components, it is obtained that

𝑇𝑠 + 𝑇𝑑 =
(

𝐸𝐴𝜀𝑠 + 𝜌𝑔𝐴ℎ𝑠
)

+
(

𝐸𝐴𝜀𝑑 − 𝜌𝑔𝐴 (𝑢 sin 𝜃 + 𝑣 cos 𝜃)
)

, (20)

which leads to

𝑇𝑑 = 𝐸𝐴𝜀𝑑 − 𝜌𝑔𝐴 (𝑢 sin 𝜃 + 𝑣 cos 𝜃) . (21)

From Eq. (17) it is obtained that

′ = 1
cos 𝛾

(
(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
)

)′

=

(

1 + 𝜀𝑑
)

(1 + 𝑢′ − 𝑣𝜃′)

(
(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
)

)′

. (22)

Substituting now Eqs. (15) to (22) in (11) and (12), the equations
f motion are given as

′
𝑠

(

𝑢′ − 𝑣𝜃′ − 𝜀𝑑
1 + 𝜀𝑑

)

+ 𝐸𝐴𝜀′𝑑

(

1 + 𝑢′ − 𝑣𝜃′
)

(

1 + 𝜀𝑑
)

− 𝑇𝑠

(
(

𝑢𝜃′ + 𝑣′
)

𝜃′
(

1 + 𝜀𝑑
) +

(

𝑢𝜃′ + 𝑣′
)

(1 + 𝑢′ − 𝑣𝜃′)

(
(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
)

)′)

− 𝜌𝑔𝐴
((

𝑢′ − 𝑣𝜃′
)

sin 𝜃 +
(

𝑣′ + 𝑢𝜃′
)

cos 𝜃
)

(

1 + 𝑢′ − 𝑣𝜃′
)

(

1 + 𝜀𝑑
)

+

[(
(

𝑢𝜃′ + 𝑣′
)

𝜃′
(

1 + 𝜀𝑑
) +

(

𝑢𝜃′ + 𝑣′
)

(1 + 𝑢′ − 𝑣𝜃′)

(
(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
)

)′)
(

−𝐸𝐴𝜀𝑑

+ 𝜌𝑔𝐴𝑢 sin 𝜃 + 𝜌𝑔𝐴𝑣 cos 𝜃
)

]

− 𝑚�̈� = 0, (23)

′
𝑠

(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
) − 𝑇𝑠𝜃′ + 𝐸𝐴𝜀′𝑑

(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
)

+ 𝑇𝑠

(
(

1 + 𝑢′ − 𝑣𝜃′
)

𝜃′
(

1 + 𝜀𝑑
) +

(
(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
)

)′)

− 𝜌𝑔𝐴
((

𝑢′ − 𝑣𝜃′
)

sin 𝜃 +
(

𝑣′ + 𝑢𝜃′
)

cos 𝜃
)

(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
)

+

[(
(

1 + 𝑢′ − 𝑣𝜃′
)

𝜃′
(

1 + 𝜀𝑑
) +

(
(

𝑢𝜃′ + 𝑣′
)

(

1 + 𝜀𝑑
)

)′)
(

𝐸𝐴𝜀𝑑 − 𝜌𝑔𝐴𝑢 sin 𝜃

− 𝜌𝑔𝐴𝑣 cos 𝜃
)

]

− 1
2
𝜌𝐷𝐶𝐷�̇� |�̇�| − 𝑚𝑡�̈� = 0. (24)

The equations of motion written as in Eqs. (23) and (24) are suitable
or being put in operator form as

𝑢(𝑢, 𝑣) = 0, (25)

𝑣(𝑢, 𝑣) = 0. (26)

For further applications, all the required calculations are made
onsidering terms up to cubic order in 𝑢 and 𝑣 with the aid of symbolic
omputation software to collect these terms.

. Reduced-order modelling approaches

Different approaches may be applied in order to solve the equations
f motion and obtain the dynamical response of the structure. One
f such approaches is the use of reduced-order models obtained via
ransforming the system of partial differential equations into a system
f ODEs. For this purpose, the Galerkin method is particularly useful
iven its formal simplicity while guaranteeing the smallest possible
rror within the projection space adopted. It requires a set of pro-
ection functions that satisfy the essential boundary conditions of the
riginal problem. Although this is usually straightforward to ensure for
roblems where the essential boundary conditions are constant values,

ome issues may appear in the case when those boundary conditions

5

re time-dependent, which are discussed along this work. Initially, in
rder to ensure that the essential boundary conditions are obeyed, the
rojections basis investigated obey the general formulas

= 𝑊𝐿 (𝑡)𝜙𝑠 (𝑠) +
𝑛
∑

𝑘=1
𝐴𝑘 (𝑡)𝜙𝑘 (𝑠) , (27)

= 𝑊𝐿 (𝑡)𝜓𝑠 (𝑠) +
𝑛
∑

𝑘=1
𝐵𝑘 (𝑡)𝜓𝑘 (𝑠) . (28)

Within this proposition, 𝜙𝑠 and 𝜓𝑠 are projection functions respon-
ible for representing the effect of the moving boundary in the axial
nd transversal directions, respectively. Hence, it is necessary that
𝑠(𝐿) = sin 𝜃𝐿 and 𝜓𝑠(𝐿) = cos 𝜃𝐿, with 𝜃𝐿 being the angle the cable
xis makes with the horizontal direction in the static configuration. In
urn, the functions 𝜙𝑘 and 𝜓𝑘 must obey the fixed boundary conditions
𝑘(0) = 𝜙𝑘(𝐿) = 𝜓𝑘(0) = 𝜓𝑘(𝐿) = 0. The problem is then how to
efine the behaviour of 𝜙𝑠 and 𝜓𝑠 along the structural length since no
xplicit conditions about them are posed by the method itself. It is also
orth noticing that these functions will generate forcing terms in the
quations of the ROM, and these resulting terms vary according to the
elected shape functions.

The problem at hand now is how to choose suitable functions.
aturally, the best choice would be a set of functions that generates the
xact solutions of the PDEs given in Eqs. (23) and (24). This solution,
owever, is not available, leading to the necessity of evaluating which
et of functions will present a better representation of said solution,
hich again is the main objective of this paper. Another possibility
ould be to apply the MMTS directly to the PDEs of motion, as done

n [49] for a straight rod. This task however is out of the scope of
he present work and would generate an entire work of its own. As

final possible approach, the choice of functions can be inspired in
he ones employed in similar problems and that furnished suitable
esults (see [43,48] for instance). In the present work, three different
pproaches are made for the functions 𝜙𝑠 and 𝜓𝑠. The first option is
o use a simple linear interpolation of the imposed motion along the
ength, that is,

𝑠,1 =
( 𝑠
𝐿

)

sin 𝜃𝐿, (29)

𝜓𝑠,1 =
( 𝑠
𝐿

)

cos 𝜃𝐿. (30)

The motivation for this trial is that the linear interpolation is a good
interpolation for straight vertical structures subjected to imposed mo-
tion at one support while keeping a simple expression for it (See [48],
where a linear interpolation is implicit in the equations as consequence
of a static condensation). The second set of trial functions for the
imposed motion interpolation is to linearly interpolate the imposed
motion along the length and then project it to each direction according
to the local angle. This differs from the first option in the sense that
the decomposition of the imposed motion in the axial and transversal
directions is made for each cross section. This is a small ansatz over
the previous set of functions, in which the effect of the local angle
of the structure’s axis is taken into account but still keeping a simple
expression. It is important to recall that it is desirable to obtain the
simplest possible ROM, which motivates the trial of using simpler
expressions. The resulting functions are then

𝜙𝑠,2 =
( 𝑠
𝐿

)

sin 𝜃, (31)

𝜓𝑠,2 =
( 𝑠
𝐿

)

cos 𝜃. (32)

Finally, the third possibility herein investigated is to use a quasi-
tatic approach to obtain the functions 𝜙𝑠 and 𝜓𝑠. This approach is

used in [43] and considers that the desired functions are the difference
between two static configurations. The quasi-static approach is implicit
in [48], being it a result of a static condensation procedure applied to
the axial dynamics. The results obtained in the latter work shows that,
at least for straight structures, such approach leads to good results.
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The process of obtaining the desired functions in the present case
consist of applying an unitary displacement in the direction of the
imposed motion and then compute the static configuration of the
cable in this new boundary condition. It is assumed that this change
happens almost instantaneously in the dynamic case. Obviously, this
approach can only furnish readily useable expressions in particular
cases such as taut cables, near parabolic cables or near inextensible
catenary cables. Other applications require the problem to be solved by
numeric means, which however does not pose any meaningful obstacle
for the methodology itself. Considering then 𝑋1(𝑠) and 𝑍1(𝑠) to be,
respectively, the horizontal and vertical coordinates of the cable points
after a unitary displacement is applied in the imposed motion direction,
recalling that 𝜃(𝑠) is the correspondent angle of the cable axis with the
horizontal direction. The top motion interpolation functions are given
as

𝜙𝑠,3 =
(

𝑋1 −𝑋0
)

cos 𝜃 +
(

𝑍1 −𝑍0
)

sin 𝜃, (33)

𝜓𝑠,3 = −
(

𝑋1 −𝑋0
)

sin 𝜃 +
(

𝑍1 −𝑍0
)

cos 𝜃. (34)

Now, the next step is to define a set for the trial functions 𝜙𝑘 and 𝜓𝑘.
Since the main goal of this paper is to show how different projection
functions impact the obtained ROM, three different sets are defined.
The first set, herein called ‘set(i)’ consists of a single mode of vibration
of the structure, obtained directly from the PDEs of motion. This option
is attractive since, if deemed accurate, is the smallest possible ROM,
which results in the smallest mathematical and computational efforts
for any subsequent analysis. Notice that, since the vibration modes
of curved structures have coupled components 𝑢 and 𝑣, it results that
𝐴𝑘 = 𝐵𝑘 in Eqs. (27) and (28). Thus, the ROM with set(i) contains
only one DOF. Following, considering that more modal functions may
be needed for a good representation of the dynamics of the problem,
set(ii) consists of three modes of vibration, also obtained directly from
the PDEs of motion, thus generating a 3-DOF ROM.

Finally, one could want to use simpler functions to build the projec-
tion base, specially if those functions present a closed-form formula. In
that sense, trigonometric functions are commonly used in this kind of
application and will then be the kind of function to compose set(iii).
The use of trigonometric functions as basis for structures which the
actual modes of vibration are not trigonometric can also be seen
in [48], where is also shown that the number of projection functions for
an adequate result results larger than when using the actual modes of
vibration for the case of straight structures. In this case, the amplitudes
of each function are let independent, that is 𝐴𝑘 ≠ 𝐵𝐾 , and five functions
are used for each direction as

𝜙𝑘 = 𝜓𝑘 = sin
(𝑘𝜋𝑠
𝐿

)

, 𝑘 = 1,… , 5. (35)

With all the sets properly defined and chosen, it is possible to
roceed with the Galerkin projection. The equations of motion, as
ritten in Eqs. (25) and (26), leads to a vectorial equation of the form

ℒ𝑢 (𝑢, 𝑣) ,ℒ𝑣 (𝑢, 𝑣)
]

= [0, 0] . (36)

The application of the Galerkin scheme for sets (i) and (ii) leads to
quations of the form
[

ℒ𝑢 (𝑢, 𝑣) ,ℒ𝑣 (𝑢, 𝑣)
]

,
[

𝜙𝑘, 𝜓𝑘
]⟩

= 0, (37)

for each projection mode 𝑘, where ⟨, ⟩ denotes the inner product
etween the left and right side. In turn, for set (iii), since the projection
n each direction is assumed as independent, 5 pairs of equations are
btained as
⟨[

ℒ𝑢 (𝑢, 𝑣) ,ℒ𝑣 (𝑢, 𝑣)
]

,
[

𝜙𝑖, 0
]⟩

= 0, (38)
⟨[

ℒ𝑢 (𝑢, 𝑣) ,ℒ𝑣 (𝑢, 𝑣)
]

,
[

0, 𝜙𝑖
]⟩

= 0. (39)

The resulting ODE of motion for set (i) is then given as

1�̈�1 = 𝑚𝑞�̈�𝐿 + 𝑎1𝐴1 + 𝑎2𝑊𝐿 + 𝑎3𝐴2
1 + 𝑎4𝐴1𝑊𝐿 + 𝑎5𝑊 2

𝐿
3 2 2 3
+ 𝑎6𝐴1 + 𝑎7𝐴1𝑊𝐿 + 𝑎8𝐴1𝑊𝐿 + 𝑎9𝑊𝐿 𝑚

6

− 𝜁 ∫

𝐿

0
𝜓1

|

|

𝜓1�̇�1 + 𝜓𝑠�̇�𝐿
|

|

(

𝜓1�̇�1 + 𝜓𝑠�̇�𝐿
)

d𝑠, (40)

here 𝑚1, 𝑚𝑞 and the 𝑎𝑖’s are constants resulting of the evaluation of
the Galerkin integrals over the length of the structure when performing
the inner product in Eq. (37). In addition, 𝜁 is simply defined as
𝜁 = 𝜌𝐷𝐶𝐷∕2. Notice that, since the amplitude associated with the
rojection mode is unknown at this point, the integral involving the
on-linear Morrison damping cannot be solved beforehand. Instead,
his integral must be calculated on every single step of a numerical
imulation. Following, each equation 𝑘 of the ROM obtained with set

(ii) is given as
( 3
∑

𝑖
𝑚𝑘,𝑖�̈�𝑖

)

= 𝑚𝑘,𝑞�̈�𝐿 +

( 3
∑

𝑖
𝑎𝑘,𝑖𝐴𝑖

)

+ 𝑎𝑘,𝑞𝑊𝐿 + 𝑏𝑘,𝑞𝑊 2
𝐿

+

( 3
∑

𝑖
𝑏𝑘,𝑖𝑊𝐿𝐴𝑖

)

+

( 3
∑

𝑖

3
∑

𝑗
𝑏𝑘,𝑖,𝑗𝐴𝑖𝐴𝑗

)

+ 𝑐𝑘,𝑞𝑊 3
𝐿

+

( 3
∑

𝑖
𝑐𝑘,𝑖𝑊

2
𝐿𝐴𝑖

)

+

( 3
∑

𝑖

3
∑

𝑗
𝑐𝑘,𝑖,𝑗𝑊𝐿𝐴𝑖𝐴𝑗

)

+

( 3
∑

𝑖

3
∑

𝑗

3
∑

𝑙
𝑐𝑘,𝑖,𝑗,𝑙𝐴𝑖𝐴𝑗𝐴𝑙

)

− 𝜁 ∫

𝐿

0
𝜓𝑘

|

|

|

|

|

|

( 3
∑

𝑖
𝜓𝑖�̇�𝑖

)

+ 𝜓𝑠�̇�𝐿

|

|

|

|

|

|

(( 3
∑

𝑖
𝜓𝑖�̇�𝑖

)

+ 𝜓𝑠�̇�𝐿

)

d𝑠, (41)

s in the previous case, 𝑚𝑘,𝑖, 𝑚𝑘,𝑞 and the 𝑎’s, 𝑏’s and 𝑐’s are constants
esulting of performing the inner product in Eq. (37). It is possible to
otice that a small increase in the number of projection functions leads
o a significant increase in the number of terms in each equation, as
ell as it considerably increases the number of integrals to be evaluated
t each time-step of simulation.

. Semi-analytical solution for particular models

As it can be seen from the equations governing the ROMs, the search
or analytical solutions can be a troublesome task due to the non-
inear damping. This is due the impossibility of solving the integral
nvolving the absolute value function without knowing the solution of
he problem. However, an iterative approach may be applied as it is
hown here. For that, only the smallest ROM is considered, that is, the
ne given by Eq. (40). The equations are scaled in a way that all the
onstants 𝑎𝑖 of terms involving 𝑊𝐿, or non-linear terms involving 𝐴1
re mapped as

𝑖 ↦ 𝜖𝑎𝑖, (42)

ith 𝜖 being a small bookkeeping parameter. The solutions are then
ought in the expansion form

1 = 𝐴1,0
(

𝑡0, 𝑡1
)

+ 𝜖𝐴1,1
(

𝑡0, 𝑡1
)

, (43)

ith 𝑡0 and 𝑡1 being two time scales defined as 𝑡𝑖 = 𝜖𝑖𝑡. These definitions
ead to differential operators for the time differentiation that can be
ritten as
d
d𝑡

= 𝜕
𝜕𝑡0

+ 𝜖 𝜕
𝜕𝑡1

= 𝐷0 + 𝜖𝐷1, (44)

d2

d𝑡2
= 𝜕2

𝜕𝑡20
+ 2𝜖 𝜕2

𝜕𝑡0𝜕𝑡1
= 𝐷2

0 + 2𝜖𝐷0𝐷1, (45)

oth correct up to terms of order 𝜖. Applying the differential operators
n Eq. (40), using the trial proposed solution in Eq. (43) and then
ollecting terms of the same order in 𝜖, two equations are obtained,
eing them the equation of order 𝜖0:

1𝐷
2
0𝐴1,0 − 𝑎1𝐴1,0 = 0, (46)

nd the equation of order 𝜖1:

𝐷2𝐴 − 𝑎 𝐴 = −2𝑚 𝐷 𝐷 𝐴 + 𝑚 �̈� + 𝑎 𝑊
1 0 1,1 1 1,1 1 0 1 1,0 𝑞 𝐿 2 𝐿
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𝐷

f

i
e
a
𝑅

+ 𝑎3𝐴2
1,0 + 𝑎4𝐴1,0𝑊𝐿 + 𝑎5𝑊 2

𝐿 + 𝑎6𝐴3
1,0 + 𝑎7𝐴

2
1,0𝑊𝐿

+ 𝑎8𝐴1,0𝑊
2
𝐿 + 𝑎9𝑊 3

𝐿

− 𝜁 ∫

𝐿

0
𝜓1

|

|

𝜓1𝐷0𝐴1,0 + 𝜓𝑠𝐷0𝑊𝐿
|

|

(

𝜓1𝐷0𝐴1,0 + 𝜓𝑠𝐷0𝑊𝐿
)

d𝑠. (47)

From Eq. (46), the solution for 𝐴1,0 is simply given as

𝐴1,0 = 𝐵0𝑒
𝑖𝜔0𝑡0 + 𝐵∗

0𝑒
−𝑖𝜔0𝑡0 = 𝐵0𝑒

𝑖𝜔𝑡0 + 𝑐.𝑐., (48)

where 𝑖 is the imaginary constant, 𝜔0 is the natural frequency of the
obtained linear oscillator with 𝜔0 =

√

𝑎1∕𝑚1, ∗ denotes the complex
onjugate of a term and 𝑐.𝑐. stands for the complex conjugate of all the
erms before it. The case of 1:1 resonance between the structure and
he imposed motion is now considered. Let then 𝑊𝐿 = 𝜂 sin(𝜔0𝑡0). No
etuning is herein considered since it hinders the capability of directly
btaining the steady-state regime amplitude for this particular problem.
he extension of this analysis by means of further application of other
pproximation techniques is thus a suggestion for future works. Now,
ubstituting the solution for 𝐴1,0 in Eq. (47) leads to

1𝐷
2
0𝐴1,1 − 𝑎1𝐴1,1 = −2𝑖𝑚1𝜔0𝐷1𝐵0𝑒

𝑖𝜔0𝑡0

+

(

𝑖𝑚𝑞𝜔2
0𝜂

2
−
𝑖𝑎2𝜂
2

)

𝑒𝑖𝜔0𝑡0 + 𝑎3
(

𝐵2
0𝑒

2𝑖𝜔0𝑡0 + 𝐵0𝐵
∗
0
)

−
𝑖𝑎4𝜂
2

(

𝐵0𝑒
2𝑖𝜔0𝑡0 − 𝐵0

)

−
𝑎5𝜂2

4
(

𝑒2𝑖𝜔0𝑡0 − 1
)

+ 𝑎6
(

𝐵3
0𝑒

3𝑖𝜔0𝑡0 + 3𝐵2
0𝐵

∗
0𝑒
𝑖𝜔0𝑡0

)

−
𝑖𝑎7𝜂
2

(

𝐵2
0𝑒

3𝑖𝜔0𝑡0 +
(

−𝐵2
0 + 2𝐵0𝐵

∗
0
)

𝑒𝑖𝜔0𝑡0
)

−
𝑎8𝜂2

4
(

𝐵0𝑒
3𝑖𝜔0𝑡0 +

(

𝐵∗
0 − 2𝐵0

)

𝑒𝑖𝜔0𝑡0
)

+
𝑖𝑎9𝜂3

8
(

𝑒3𝑖𝜔0𝑡0 − 3𝑒𝑖𝜔0𝑡0
)

+ 𝑐.𝑐.

− 𝜁 ∫

𝐿

0
𝜓1

|

|

𝜓1𝐷0𝐴1,0 + 𝜓𝑠𝐷0𝑊𝐿
|

|

(

𝜓1𝐷0𝐴1,0 + 𝜓𝑠𝐷0𝑊𝐿
)

d𝑠. (49)

The compatibility condition is then given by requiring that the term
on the right-hand side does not belong to the kernel of the operator at
the left-hand side of the equation, which is analogous to require that
the forcing term is non-resonant with the oscillator given by the left
side in the case of ODE. To this end, the terms with frequency 𝜔0 must
vanish, leading to

− 2𝑖𝑚1𝜔0𝐷1𝐵0 +
𝑖𝑚𝑞𝜔2

0𝜂
2

−
𝑖𝑎2𝜂
2

+ 3𝑎6𝐵2
0𝐵

∗
0 +

𝑖𝑎7
2
𝜂𝐵2

0

− 𝑖𝑎7𝜂𝐵0𝐵
∗
0 +

𝑎8
2
𝜂2𝐵0 −

𝑎8
4
𝜂2𝐵∗

0 −
3𝑖𝑎9
8
𝜂3 + 𝐹0 = 0, (50)

with 𝐹0 standing for any components of the non-linear damping that
can lead to terms with frequency 𝜔0, still to be determined. In order to
determine those terms, the unsolved integral is split as

∫

𝐿

0
𝜓1

|

|

𝜓1𝐷0𝐴1,0 + 𝜓𝑠𝐷0𝑊𝐿
|

|

(
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)
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1
|

|

𝜓1𝐷0𝐴1,0 + 𝜓𝑠𝐷0𝑊𝐿
|

|

d𝑠
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𝐿

0
𝜓1𝜓𝑠 ||𝜓1𝐷0𝐴1,0 + 𝜓𝑠𝐷0𝑊𝐿

|

|

d𝑠. (51)

In such way, a Fourier series expansion is applied to each integral,
following the suggestions in [62], allowing to express them as

∫

𝐿

0
𝜓2
1
|

|

𝜓1𝐷0𝐴1,0 + 𝜓𝑠𝐷0𝑊𝐿
|

|

d𝑠 =
∑

𝑗

(

𝑓𝑗𝑒
𝑖𝑗𝜔0𝑡0 + 𝑐.𝑐.

)

, (52)

and

∫

𝐿

0
𝜓1𝜓𝑠 ||𝜓1𝐷0𝐴1,0 + 𝜓𝑠𝐷0𝑊𝐿

|

|

d𝑠 =
∑

𝑗

(

𝑔𝑗𝑒
𝑖𝑗𝜔0𝑡0 + 𝑐.𝑐.

)

. (53)

Applying those results in Eq. (49) and noticing that terms of fre-

quency 𝜔0 are generated by the components of those integrals with t

7

requencies 0 and 2𝜔0 leads to

𝐹0 = −𝜁
(

𝑖𝜔0𝑓0𝐵0 − 𝑖𝜔0𝑓2𝐵
∗
0 +

𝜔0𝑔0𝜂 + 𝜔0𝑔2𝜂
2

)

. (54)

It is important to notice that, while 𝑓0 and 𝑔0 are certainly real
valued parameters, both 𝑓2 and 𝑔2 can be complex, so it is convenient
to define them as 𝑓2 = 𝑓2𝑟+ 𝑖𝑓2𝑐 and 𝑔2 = 𝑔2𝑟+ 𝑖𝑔2𝑐 . Focus is now placed
in obtaining stationary solutions, that is, 𝐷0

1𝐵
0
0 = 0. Considering then

the polar decomposition 𝐵0 = 𝑅0𝑒𝑖𝜑, the compatibility condition given
by Eq. (50) can be decomposed in its real and imaginary parts, leading
to the system of equations

−
𝜔2
0𝜂𝑚𝑞
2

sin𝜑 +
𝑎2𝜂
2

sin𝜑 + 𝜁𝜔0𝑓2𝑟𝑅0 sin 2𝜑

− 𝜁𝜔0𝑓2𝑐𝑅0 cos 2𝜑 −
𝜁𝜔0𝑔0𝜂

2
cos𝜑 −

𝜁𝜔0𝑔2𝑟𝜂
2

cos𝜑

−
𝜁𝜔0𝑔2𝑐𝜂

2
sin𝜑 = 0 (55)

−
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0𝜂𝑚𝑞
2

cos𝜑 +
𝑎2𝜂
2

cos𝜑 − 𝜁𝜔0𝑓0𝑅0

+ 𝜁𝜔0𝑓2𝑟𝑅0 cos 2𝜑 + 𝜁𝜔0𝑓2𝑐𝑅0 sin 2𝜑 +
𝜁𝜔0𝑔0𝜂

2
sin𝜑

+
𝜁𝜔0𝑔2𝑟𝜂

2
sin𝜑 −

𝜁𝜔0𝑔2𝑐𝜂
2

cos𝜑 = 0 (56)

The problem that now arises is to evaluate the constants 𝑓0, 𝑓2,
𝑔0, and 𝑔2 without yet finding the final solution of 𝐴1,0. To do so, an
terative numeric scheme is now proposed. The constants can be readily
valuated if the condition 𝐴1,0 = 0 is considered. Once there constants
re evaluated, Eqs. (55) and (56) can be solved to obtain values for
0 and 𝜑. With these quantities, the new value of 𝐴1,0 is computed

and the constants 𝑓0, 𝑓2, 𝑔0, and 𝑔2 can be re-evaluated. The process
can then be repeated until convergence is achieved for the values of
𝑅0 and 𝜑. Notice that, in order to obtain the steady-state response for
different values of 𝜂, the results can be calculated in an incremental
fashion. To apply this idea, one can use the result for the previous case
as initial guess instead of starting from 𝐴1,0 for each new value of 𝜂,
thus reducing the necessary computational time to converge to the new
solution.

5. Comparison between approaches

Aiming at illustrating the differences between the studied
approaches for the ROM conception without restricting the study to
specific simplified cases, an example of an inclined cable with sig-
nificant sag is investigated. The results are compared to numerical
solutions obtained from FEM. For that, the in-house software Gi-
raffe [63] is used. Amongst other usages, Giraffe has been successfully
employed for dynamical analysis of catenary risers. The submerged
weight, added mass and Morrison drag forces are implemented in the
software with the same hypotheses used in the mathematical modelling
herein presented, reducing the sources of possible discrepancies be-
tween the ROMs and the FEM simulations. Another important feature is
that Giraffe allows for the imposed motion at the top end to be applied
as a prescribed displacement varying with time, which also matches
the modelling hypothesis adopted for the ROMs. The formulation of the
elements used in Giraffe for the present example is presented in [64].
Further details regarding the software’s usage and analysis capabilities
can be found in [63,65].

Consider then a cable with horizontal and vertical distances be-
tween supports of 1500 m and 1800 m respectively. The relevant struc-

ural data and hydrodynamic parameters are shown in Table 1.
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Table 1
Structural and hydrodynamical properties for the model.

Property Description Value

𝜇 Mass per length 108 kg/m
𝛾𝑠 Immersed weight per length 727 N/m
𝐸𝐴 Axial stiffness 2314.0 × 106 N
𝐿 Length 2452.46 m
𝜌 Fluid density 1025 kg/m3

𝐷 Structural diameter 0.2032 m
𝐶𝐷 Mean drag coefficient 1.2000
𝐶𝑎 Added mass coefficient 1.0737

Table 2
Comparison of the natural frequencies obtained for the structure
considering the FEM or a direct obtaining from the PDEs.

Mode Model Freq. [rad/s] Rel. diff. %

1 FEM 0.1983 –
1 PDE 0.1998 0.76
2 FEM 0.3147 –
2 PDE 0.3167 0.64
3 FEM 0.4402 –
3 PDE 0.4431 0.66
4 FEM 0.5522 –
4 PDE 0.5557 0.63
5 FEM 0.6719 –
5 PDE 0.6762 0.64

Table 3
Comparison of the natural frequencies obtained for the structure
considering the FEM and the ROMs.

Mode Model Freq. [rad/s] Rel. diff. %

1 FEM 0.1983 –
1 ROM(i) 0.1996 0.66
1 ROM(ii) 0.1995 0.61
1 ROM(iii) 0.1885 −4.94
2 FEM 0.3147 –
2 ROM(i) – –
2 ROM(ii) 0.3170 0.76
2 ROM(iii) 0.3351 6.48
3 FEM 0.4402 –
3 ROM(i) – –
3 ROM(ii) 0.4435 0.76
3 ROM(iii) 0.5610 27.44

With the presented data the static configuration is shown in Fig. 3,
here it can be confirmed that the case in consideration does not
ssume simplified conditions such as small sag.

In order to validate the presented mathematical model, the natural
requencies obtained with the FEM are compared to those obtained
sing the native PDE eigensystem solver of Mathematica® applied to
he presented equations of motion in Table 2. Complementing the
esult, the natural frequencies obtained with the ROMs are compared
ith the FEM result in Table 3. The native solver of Mathematica® uses
n internal finite element scheme to discretize the furnished equations
n the domain and then solves for the eigenvalues and eigenvectors for
he obtained discretized system. The maximum length of the element
n the solver for this case was set as 10m, since further refinement
id not impact on the obtained frequencies. The convergence of the
atural frequencies using the Mathematica® solver is shown by the
ata in Table 4. Regarding the FEM used within the Giraffe software,
discretization in 100 elements was adopted. This number allows

btaining of smooth displacement shapes, which is specially important
or the fluid–structure interaction evaluation, and is within the range
here the natural frequencies up to the fifth mode do not depend on

urther refinements of the mesh, as can be seen in Table 5. The modal
hapes are compared in Fig. 4.
8

Table 4
Natural frequencies (rad/s) obtained for the first five modes of vibration using the
Mathematica® eigensystem solver over the PDEs of motion as a function of the
maximum element size set for the software (in metres).

Mode Maximum element size [m]

1000 500 100 10 1

1 0.2740 0.2184 0.2000 0.1998 0.1998
2 0.6042 0.3630 0.3172 0.3167 0.3167
3 0.9051 0.5541 0.4441 0.4431 0.4431
4 1.3733 0.8416 0.5575 0.5558 0.5558
5 2.1746 1.1399 0.6791 0.6762 0.6762

Table 5
Natural frequencies (rad/s) obtained for the first five modes of vibration using the
Giraffe in-house software as function of the number of elements along the cable length

Mode Number of elements

10 25 50 100 200

1 0.1984 0.1983 0.1983 0.1983 0.1983
2 0.3150 0.3147 0.3147 0.3147 0.3147
3 0.4419 0.4402 0.4402 0.4402 0.4402
4 0.5570 0.5524 0.5522 0.5522 0.5522
5 0.6838 0.6723 0.6719 0.6719 0.6719

Notice that there is no visible difference between modal shapes
obtained with either method and that the relative differences between
natural frequencies are all below 1% (see Table 2). Next, the ability of
set (iii) to recover the modal shapes is represented in Fig. 5.

It is possible to see that the recovery of the modal shapes is good
but not flawless. The effects of those differences can be noticed on the
obtained frequencies, as seen in Table 3, with the magnitude of the
relative difference largely increasing with the respective error in the
recovered modal shape (see the third mode in Fig. 5). It is reasonable
then to expect that this difference will induce some discrepancies on
the obtained results, which is discussed further on. Notice, however,
that the comparisons of time responses are focused on excitations of the
first mode. If the third mode would be the interest, further refinement
of set(iii) would certainly be necessary.

With the model verified by means of the comparison of the modal
properties, the results of simulations can now be addressed. The simula-
tions are carried out during 1000 s, which demonstrated to be enough
time for eliminating the initial transitories. The ROMs are integrated
with a Runge–Kutta method using the native Matlab® ode45 function.
For initial comparisons, an imposed motion of 1 metre (around 5 struc-
tural diameters) is considered. In order to shorten the specifications
of the analysed ROMs, they are each named as ROM𝑖,𝑗 with 𝑖 being
he number of the projection functions set used (set i, ii or iii) and 𝑗

is the number of the pair of functions used for the imposed motion
interpolation (Eqs. (29) to (34)). Notice that, with the proposed basis,
9 possible different ROMs are defined, combining each of the three sets
with each of the three possibilities for imposed motion interpolation.
The first comparison is made for ROMs1,𝑗 , whose simulations results
are presented in Fig. 6 in the form of scalograms.

The results from the FEM simulation (Fig. 6(a)) are not recovered
by ROM1,1 or ROM1,2, as can be seen in Figs. 6(b) and 6(c) respectively.
The amplitudes are significantly different from the FEM results as well
as the shape of the wave pattern presented in the scalograms. In turn,
analysing Fig. 6(d), it is possible to say that ROM1,3 leads to results very
similar to the FEM solution both in terms of developed amplitudes of
motion as well as in the shape of the wave pattern of the displacements
along the structure. The results highlight that there are key effects
dependent on how the imposed motion is taken into account during
the discretization process. For a greater clarity and better quantitative
evaluation, the time-series and phase-space portraits for 4 different
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Fig. 3. Calculated static configuration for the data in Table 1.

Fig. 4. Comparison between transversal modal shapes obtained by the FEM and a
direct application over the PDEs of motion. Blue lines are used for the FEM while red
lines are used for the direct solution. First mode indicated by circles, second mode by
crosses and third mode by diamonds. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Comparison between transversal modal shapes obtained by a direct application
over the PDEs of motion and the recovery achieved by the trigonometric shape functions
of set (iii). Red lines are used for the direct solution while black lines are used for the
recovery by trigonometric function. First mode indicated by circles, second mode by
crosses and third mode by diamonds. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Table 6
Comparison between the FEM and ROM1,3 results
for the maximum amplitude of motion at different
cross-sections. Results in metres.
𝑠∕𝐿 FEM ROM1,3

0.2 1.5165 1.4452
0.4 1.2470 1.0795
0.6 0.9074 0.9652
0.8 0.5570 0.6801

cross-sections are compared between the FEM and ROM1,3 results. This
is not made for the other two options since the lack of agreement is
already clear by the qualitative correlation shown in Fig. 6. The chosen
cross-sections are at 𝑠∕𝐿 values of 0.2, 0.4, 0.6 and 0.8, being presented
in Fig. 7.

It is clear that the response along the length is well recovered
by ROM1,3 based on the results shown in Fig. 7, with some minor
differences present. Note also that the frequency is well recovered,
with the phase shift between the different responses being due to the
very small difference in the frequencies obtained for each model when
accumulated along the simulated time. For the sake of comparison,
the maximum amplitude at the explored cross sections are shown in
Table 6. Complementing the analysis, three snapshots of the structure
are shown in Fig. 8. In order to remove the effect of the phase shift
between responses, the reference instant of time is took as the one when
a peak of the response of the cross-section at 𝑠∕𝐿 = 0.2 occurs for each
model. The snapshots are then taken at a minimum peak as described,
and at instants after it corresponding to 1/8 and 1/4 of the period of
the structural response.

As it can be seen from the snapshots in Fig. 8 and from the values in
Table 6, the results are in qualitatively good agreement, however some
enhancement can still be done.

In order to verify if the results can be enhanced by incrementing the
number of functions in the projection basis, Fig. 9 shows the scalograms
for the FEM and ROMs2,𝑗 solutions.

Again, the ROMs based on the pairs of functions 1 and 2 for
the interpolation of the top motion effects are not able to achieve
a proper adherence with the taken reference. In Figs. 9(b) and 9(c)
it is noticeable that the amplitudes of motion are in a significant
disagreement with the reference and the wave pattern, although closer
to the reference than ROM1,1 and ROM1,2, is also quite different. On
the other hand, the results in Fig. 9(d) are remarkably adherent to
the numerical reference. As made for ROM1,3, a set of complementary
results are furnished for a clearer analysis. Time-series and phase-space
portraits for the same cross-sections already defined, now comparing
ROM2,3, are presented in Fig. 10. The maximum amplitudes for each
cross-section are reported in Table 7, while the snapshots, using the
same time instant definition as before, are shown in Fig. 11.

The results show that the enrichment of the projection basis in rela-
tion to ROM1,3 leads to a significant enhance of the results, with a fine
adherence between the time-series results, maximum amplitudes and
instantaneous configurations. Notice however that such qualitatively
good results are obtained only for the case of the quasi-static approach
for the interpolation of the top motion effects. These results show that
the choice of projection functions for the Galerkin scheme go beyond
a simple necessity of a convergence study on the minimum required
number of functions in such basis to achieve the desired accuracy. To
highlight that, consider the results in Fig. 12 obtained with ROMs3,𝑗 .

It is clear that, although the increased number of projection func-
tions leads to better results in terms of amplitudes when using the top
motion interpolation sets 1 and 2, the wave pattern is still noticeably
different from the reference. One of the main visible indicators for
that is the position along the length where the largest displacements
occur. While in Figs. 12(b) and 12(c) it is located at ≈ 35% of the
length of the cable, the reference (Fig. 12(a)) indicates that it should

occur at ≈ 25% of the length. Analysing now Fig. 12(d), it is possible
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(

Fig. 6. Scalograms of the transversal response of the structure in steady-state regime. (a) FEM solution. (b) Numerical integration of ROM1,1. (c) Numerical integration of ROM1,2.
d) Numerical integration of ROM1,3.
Table 7
Comparison between the FEM and ROM2,3 results
for the maximum amplitude of motion at different
cross-sections. Results in metres.
𝑠∕𝐿 FEM ROM2,3

0.2 1.5165 1.4553
0.4 1.2470 1.2579
0.6 0.9074 0.8998
0.8 0.5570 0.5656

to verify a satisfactory accuracy, although the wave pattern obtained
is not as adherent to the numerical reference as the one presented in
Fig. 9(d). This reassures the observations made regarding the ROMs2,𝑗
results, that is, the set of projection functions that are responsible for
incorporating the effects of the top motion carries some features that
are not recovered by simply adding more functions to the projection
basis. Thus, the first conclusion can be drawn: the importance of a
careful discussion and selection of the projection functions responsible
for taking into account the prescribed motion at the boundary, since
a poor selection can lead to inaccurate results and this problem is not
solved by simply adding more functions to the remaining set, that obeys
the fixed boundary condition. It is also of importance the highlight of
the bad recovery that ROM3,3 presented for the wave pattern along the
cable. In order to further illustrate this flaw, the same types of results
presented for the other ROMs are adopted. In Fig. 13, the time-series
and phase-space portraits for selected cross-sections are shown, while
Table 8 brings the maximum amplitudes obtained for each cross-section
in consideration, and Fig. 14 presents the snapshots of instantaneous
configurations as already defined.

It is clear that the results using set(iii) presents an spacial incoher-
ence with the dynamics of the problem, even though the maximum
amplitudes of motion are obtained with a similar value (however in
the wrong position along the cable span). This sets another drawback in
10
Table 8
Comparison between the FEM and ROM3,3 results
for the maximum amplitude of motion at different
cross-sections. Results in metres.
𝑠∕𝐿 FEM ROM3,3

0.2 1.5165 1.4553
0.4 1.2470 1.2579
0.6 0.9074 0.8998
0.8 0.5570 0.5656

the use of simpler functions for the projection basis, since, even with a
greater effort using more DOFs, the results are adequate to the reference
as expressed by simpler models, such as ROM2,3. This highlights yet
again the importance of a careful choice of the projection basis. Note
also that the vibrations are mainly composed of the top motion effect
interpolation function and the first mode of vibration, whose shape was
well recovered by the ROMs based on set(iii). This means that, being
able to recover modal shapes involved is not always enough to ensure
a good quality of the obtained results.

Moving on to further investigations, only ROMs of the form ROM𝑖,3
are now considered since the third set of functions for the top motion
interpolation is the only one deemed suitable to furnish acceptable
results. The spectral content obtained from the FEM simulation and the
results furnished by the different ROMs are shown in Figs. 15, 16, 17
and 18.

It is possible to notice that all spectra are concentrated in the region
with frequency equal to the natural frequency of the first mode, 𝑓0.
This is expected considering that the 1:1 resonance with the first mode
was imposed as simulation scenario. Notice however that the spectrum
for the FEM simulations has a broad band of contributions in other
frequencies that is not present in the simulations using the ROMs. This
is likely due to the assumption of a quasi-static approach for dealing
with the top motion effects on the structure since it disregards any
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Fig. 7. Time-series and phase-space portraits comparison between ROM1,3 (Red lines with crosses markers) and the FEM (blue line without markers) solution for a top motion
amplitude of 1 m. (a) Time-series for the cross-section at 𝑠∕𝐿 = 0.8. (b) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.8. (c) Time-series for the cross-section at 𝑠∕𝐿 = 0.6. (d)
Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.6. (e) Time-series for the cross-section at 𝑠∕𝐿 = 0.4. (f) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.4. (g) Time-series
for the cross-section at 𝑠∕𝐿 = 0.2. (h) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

11
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Fig. 8. Snapshots of the structural configuration for a reference instant correspondent
to the occurrence of a peak in the response of the cross-section at 𝑠∕𝐿 = 0.2 (lines
without markers), an instant occurring 1/8 of the period of the structural response
(lines with diamond markers) after the reference, and an instant occurring 1/4 of the
period of the structural response (lines with diamond markers) after the reference.
Comparison between FEM solution (blue continuous line) with ROM1,3 (red dashed
line). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

the travel time needed for the wave input at the top boundary to
reach the lower portions of the cable. This difference however does not
significantly impact the accuracy of the obtained results, as shown in
the scalograms presented in Figs. 6 to 12.

Following with the analysis, larger amplitudes are now considered
for the imposed top motion. Given all the discussion made so far, only
the results using the quasi-static interpolation functions are shown, that
is, ROMs𝑖,3. In Figs. 19, 20, 21 and 22, the results from simulations with
3 m of imposed top motion are shown, while in Figs. 24, 25, 26 and
27 the condition of 5 m of top motion amplitude is used. The results
are complemented by time-series and phase-space portraits on selected
cross-sections for the ROM with the best results in previous analysis
(ROM2,3), presented in Fig. 23 for the top motion amplitude of 3 m,
and in Fig. 28 for the top motion amplitude of 5 m.

It is possible to notice that all the different ROMs obtain results
that are in quite good agreement with the reference, with ROM2,3
certainly furnishing the closest result, and with ROM3,3 presenting
the weakest spacial reconstruction of the desired response, although
the maximum displacement is compatible with the reference. It is
importance to notice that all ROMs present some difference in wave
pattern with respect to the reference, which can be partially credited
to the interpolation functions for the top motion. Note also that for
ROM2,3, the agreement of the displacements along the cable length
are in quite good agreement with the reference, even though some
small differences may be observed in the scalogram. It is expected that,
for larger amplitudes, the results may lose adherence to the reference,
requiring a further enrichment of the interpolation set. This is already
out of the scope of this work and is left as suggestion for future studies.

Complementing the scalograms shown in Figs. 19 to 27, Fig. 29
shows the maximum transversal response amplitude as a function of
the amplitude of the top motion for the different models. It must be
kept in mind though that the position where the maximum amplitude
occurs is not necessarily the same amongst the different models, with

better quality being obtained with ROM1,3 and ROM2,3. The figure also
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Table 9
Time spent for the numerical sim-
ulation of one single scenario for
each approach investigated.

Model Time spent [s]

FEM 744.95
ROM1,3 0.14
ROM2,3 0.43
ROM3,3 8.20

brings a curve obtained with the MMTS solution with its novel iterative
approach presented in this work.

It is possible to see that all ROMs are in good agreement with
the reference for all the simulated range of top motion amplitudes,
as long as only the maximum value of the amplitude is of concern.
Regarding the MMTS solution presented, it is possible to see in Fig. 29
that it closely follows the amplitudes obtained by the ROM it is meant
to represent, that is, ROM1,3. This shows that the iterative procedure
suggested works. However, the necessity of using a numerical iteration
scheme brings a drawback to the method, being that it loses the
capability of obtaining unstable branches of solution. The tool retains
its usefulness in terms of presenting accurate results for the structural
response, however, its capability of investigating phenomenons such
as bifurcations is hindered. Finally, since the MMTS was applied to
the ordinary differential equation that rules ROM1,3, all the conclusions
drawn for such ROM can be extended to the MMTS solution. This can
be done considering that the proposed MMTS solution focuses on the
steady-state solution, which is the type of response obtained by the
ROM. The advantage is that such amplitude can be computed with
the iterative approach with fewer operations than the amount required
to integrate the equation of motion until the steady-state regime is
achieved. This is particularly useful in cases where a large number of
simulations may be required. The iterative process however becomes
computationally more expensive than the numerical integration as the
number of DOFs is increased, being it interesting only for ROMs with
a small number of DOFs. This reinforces the importance of refining the
process of generating a ROM, using more detailed projection functions,
which leads to smaller ROMs with better accuracy.

Considering that all ROMs presented suitable results in terms of
amplitudes, with some points that need attention on the spatial distri-
bution of such amplitude, the question that now rises is if there is one
ROM preferable to the others. One way to decide that is to evaluate
the computational time needed for the integration of each ROM. This
comparison is able to furnish how faster the ROMs are in comparison
to the FEM solutions, as well as the expected time for each of them
to perform a large number of simulations that may be required in a
detailed engineering analysis. To that aim, the simulation times are
shown in Table 9. All the simulations where carried out in the same
standard microcomputer with a 7th generation i7 processor.

Finally, in order to evaluate the behaviour around the 1:1 reso-
nance, the simplest accurate ROM, that is ROM1,3, is used for simu-
lations with some pairs of top motion amplitude and frequency. The
results are compared with FEM solutions and are shown in Fig. 30.

It is shown that the ROM is able to maintain adherence to the
numerical reference even with variations in the top-motion frequency.
With this, it is possible to summarize the conclusions from the present
analysis:

∙ The careful choice of the function responsible for interpolating
the effects of the imposed top motion along the structural length
is essential for the success of the ROM;

∙ The choice of projection sets go beyond a simple convergence
problem, since, as shown, a larger number of projection functions
is not necessarily able to overcome problems identified with

selecting a poor function for the top motion interpolation;
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Fig. 9. Scalograms of the transversal response of the structure in steady-state regime. (a) FEM solution. (b) Numerical integration of ROM2,1. (c) Numerical integration of ROM2,2.
d) Numerical integration of ROM2,3.
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∙ Although the actual modes of vibration for this case are more
troublesome to work with than trigonometric functions, mostly
due to the lack of an analytical expression for them, their use
leads to accurate ROM with the use of a smaller number of projec-
tions functions. This results in a smaller system to be solved which
translates itself into easiness of analysis and lesser computational
effort for the same amount of numerical integrations.

. Final remarks

This work focused on the analysis of the quality of different reduced-
rder models (ROMs) in order to discuss the advantages of different
pproaches when conceiving such models as well as aspects that may
inder their accuracy. The problem investigated is that of an elastic
able hanging between two supports, at different heights, immersed
n still fluid and subjected to an imposed top motion at one of the
upports.

The mathematical modelling of the elastic cable is somewhat new,
y writing the equations of motion in a suitable fashion for problems
f investigating the dynamics as a perturbation around a static configu-
ation while using a local reference frame in a Lagrangian system. The
sual approaches in the literature involve either a Lagrangian approach
n Cartesian coordinates or the Eulerian approach. Nine different ROMs
ere then conceived by combining three possible sets to interpolate

he effects of the moving boundary condition with three different sets
btained from the problem with fixed boundaries. This is done in order
13
hat the composition of the solution rigorously follows the imposed
oving boundary condition in order for the Galerkin method to be
roperly applied. For the particular case of ROMs with a single degree
f freedom (DOF), a novel semi-analytical solution was developed by
ixing the method of multiple time scales (MMTS) with a numerical

terative procedure. This is done in order to deal with the absolute value
unction that appears due to the Morrison damping adopted which do
ot allow for the computing of the integrals in the Galerkin scheme
ithout knowing the response amplitude.

It is shown that, by means of numerical simulations and comparison
ith an adopted reference based on the finite element method (FEM),

he set of functions chosen to interpolate the effect of the top motion
long the structure play an important role in the quality of the results. It
s also demonstrated that it is not possible to achieve a good adherence
o the desired result by simply adding more projection functions to the
OM depending on the shape adopted for such interpolating functions.
his is a novel result showing that the choice of the functions to obtain
ROM deserves a qualitative investigation, going beyond a problem of
nly numerical convergence. The presented results also show that by
nriching the functions on the projection basis, such as using the actual
odes of vibration instead of trigonometric functions, allows the use of

maller ROMs which translates itself in smaller computational effort to
erform simulations. This can be of topmost importance in conditions
here a large number of simulations of the same system are required

for example, in the early stages of design). Another finding is that the
pectral compositions of the response of the ROMs are narrow-banded
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Fig. 10. Time-series and phase-space portraits comparison between ROM2,3 (Black lines with circle markers) and the FEM (blue line without markers) solution for a top motion
amplitude of 1 m. (a) Time-series for the cross-section at 𝑠∕𝐿 = 0.8. (b) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.8. (c) Time-series for the cross-section at 𝑠∕𝐿 = 0.6.
(d) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.6. (e) Time-series for the cross-section at 𝑠∕𝐿 = 0.4. (f) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.4. (g) Time-series
for the cross-section at 𝑠∕𝐿 = 0.2. (h) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 11. Snapshots of the structural configuration for a reference instant correspondent to the occurrence of a peak in the response of the cross-section at 𝑠∕𝐿 = 0.2 (lines without
markers), an instant occurring 1/8 of the period of the structural response (lines with diamond markers) after the reference, and an instant occurring 1/4 of the period of the
structural response (lines with diamond markers) after the reference. Comparison between FEM solution (blue continuous line) with ROM2,3 (black dotted line). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Scalograms of the transversal response of the structure in steady-state regime. (a) FEM solution. (b) Numerical integration of ROM3,1. (c) Numerical integration of ROM3,2.
(d) Numerical integration of ROM3,3.

15



G.J. Vernizzi, S. Lenci and G.R. Franzini International Journal of Non-Linear Mechanics 145 (2022) 104078

Fig. 13. Time-series and phase-space portraits comparison between ROM3,3 (Magenta lines with square markers) and the FEM (blue line without markers) solution for a top motion
amplitude of 1 m. (a) Time-series for the cross-section at 𝑠∕𝐿 = 0.8. (b) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.8. (c) Time-series for the cross-section at 𝑠∕𝐿 = 0.6.
(d) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.6. (e) Time-series for the cross-section at 𝑠∕𝐿 = 0.4. (f) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.4. (g) Time-series
for the cross-section at 𝑠∕𝐿 = 0.2. (h) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 14. Snapshots of the structural configuration for a reference instant correspondent
to the occurrence of a peak in the response of the cross-section at 𝑠∕𝐿 = 0.2 (lines
without markers), an instant occurring 1/8 of the period of the structural response
(lines with diamond markers) after the reference, and an instant occurring 1/4 of the
period of the structural response (lines with diamond markers) after the reference.
Comparison between FEM solution (blue continuous line) with ROM3,3 (magenta dash-
dot line). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 15. Spanwise amplitude spectra along the cable length considering the FEM
solution for a top motion amplitude of 1 m, with the frequency normalized by the
natural frequency of the first vibration mode 𝑓0.

while the FEM solution presents a broad-band of contributions around
the investigated resonance frequency. This is likely due to the quasi-
static approach considered in the interpolation of the effects of the top
motion along the structure.

For further works, three main suggestions are made. First, the
problem can be tackled directly over the PDEs by means of the MMTS.
Notice that the equations of motion are proposed in this work in a
fashion suitable for the task since the dynamics is written as a per-
turbation over the static configuration. The second suggestion involves
the search of a more general function for the top motion interpolation
rather than relying on a quasi-static approach. One possible way to
tackle the matter is to find a wave solution for this effect that takes
into account the travelling time of the effects of the imposed top
motion. Finally, the third suggestion is to use the ideas herein exposed
 n

17
Fig. 16. Spanwise amplitude spectra along the cable length considering the ROM1,3
olution for a top motion amplitude of 1 m, with the frequency normalized by the
atural frequency of the first vibration mode 𝑓0.

Fig. 17. Spanwise amplitude spectra along the cable length considering the ROM2,3
olution for a top motion amplitude of 1 m, with the frequency normalized by the
atural frequency of the first vibration mode 𝑓0.

Fig. 18. Spanwise amplitude spectra along the cable length considering the ROM3,3
olution for a top motion amplitude of 1 m, with the frequency normalized by the

atural frequency of the first vibration mode 𝑓0.
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Fig. 19. Scalogram of the transversal response of the structure in steady-state regime
considering a top motion amplitude of 3 m, FEM solution.

Fig. 20. Scalogram of the transversal response of the structure in steady-state regime
considering a top motion amplitude of 3 m, ROM1,3 solution.
18
Fig. 21. Scalogram of the transversal response of the structure in steady-state regime
considering a top motion amplitude of 3 m, ROM2,3 solution.

Fig. 22. Scalogram of the transversal response of the structure in steady-state regime
considering a top motion amplitude of 3 m, ROM3,3 solution.
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Fig. 23. Time-series and phase-space portraits comparison between ROM2,3 (Black lines with circle markers) and the FEM (blue line without markers) solution for a top motion
amplitude of 3 m. (a) Time-series for the cross-section at 𝑠∕𝐿 = 0.8. (b) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.8. (c) Time-series for the cross-section at 𝑠∕𝐿 = 0.6.
(d) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.6. (e) Time-series for the cross-section at 𝑠∕𝐿 = 0.4. (f) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.4. (g) Time-series
for the cross-section at 𝑠∕𝐿 = 0.2. (h) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 24. Scalogram of the transversal response of the structure in steady-state regime
considering a top motion amplitude of 5 m, FEM solution.

Fig. 25. Scalogram of the transversal response of the structure in steady-state regime
considering a top motion amplitude of 5 m, ROM1,3 solution.
20
Fig. 26. Scalogram of the transversal response of the structure in steady-state regime
considering a top motion amplitude of 5 m, ROM2,3 solution.

Fig. 27. Scalogram of the transversal response of the structure in steady-state regime
considering a top motion amplitude of 5 m, ROM3,3 solution.
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Fig. 28. Time-series and phase-space portraits comparison between ROM2,3 (Black lines with circle markers) and the FEM (blue line without markers) solution for a top motion
amplitude of 5 m. (a) Time-series for the cross-section at 𝑠∕𝐿 = 0.8. (b) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.8. (c) Time-series for the cross-section at 𝑠∕𝐿 = 0.6.
(d) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.6. (e) Time-series for the cross-section at 𝑠∕𝐿 = 0.4. (f) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.4. (g) Time-series
for the cross-section at 𝑠∕𝐿 = 0.2. (h) Phase-space portrait for the cross-section at 𝑠∕𝐿 = 0.2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 29. Comparison of the maximum transversal displacement along the cable length for the case of 1:1 resonance as a function of the imposed motion amplitude. All curves
consider the third type of top motion interpolation (quasi-static solution).
Fig. 30. Comparison of the maximum transversal displacement along the cable length
between the FEM and the ROM1,3 solutions as a function of the imposed motion
frequency for three different top motion amplitudes.

for obtaining an automated software capable of generating the ROMs
following the presented guidelines and performing the large number
of simulations required for problems such as determining basins of
attraction or performing design optimization.
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