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Abstract The frequency response curves of a non-uniform beam undergoing nonlinear oscillations are deter-
mined analytically by the multiple time scale method, which provides approximate, but accurate results. The
axial inertia in neglected, and so the equations of motion are statically condensed on the transversal displace-
ment only. The nonlinearity due to the stretching of the axis of the beam is considered. The effects of variable
cross-section, of variable material properties and of the distributed axial loading are taken into account in
the formulation. They have been illustrated by means of two examples and are also compared with existing
results. The main result of this work is that the effects of any type of non-uniformity can be detected by simple
formulas.

Keywords Non-uniform beam · Nonlinear curvature · Nonlinear oscillations · Multiple time scale method ·
Frequency response curves

1 Introduction

This paper continues in more detail the discussion on the vibrations in non-uniform beams initiated in [1],
where simple formulas for the determination of the natural frequencies were proposed.

With respect to the formulation introduced in [1], in the present paper the differential equation of motion
for the non-uniform beam—which takes into account the variation of the flexural stiffness and/or the geometric
stiffness (due to normal force variation) and/or the unit mass along the beam length—differs by the addition
(i) of an ad hoc viscous damping, (ii) of longitudinal and transversal loads, which can also resonate with a
certain natural mode, and (iii) of the geometric nonlinear terms. Thus, we investigated also nonlinear forced
vibrations, whereas in [1] only linear free vibrations are considered. Further, instead of the Lindstedt–Poincaré
method, the multiple time scales (MTS) method is used here.

In the free vibration analysis, we here recover the same backbone curve (which describes the nonlinear
relationship between the natural frequencies and the modal amplitudes) which was found in [1], although
following an altogether different approach.
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In the forced vibration analysis under resonant conditions, the influence of each non-uniform beam property
function (flexural stiffness, geometric stiffness and unit mass) is studied, so that its effect can be apprehended
directly from the obtained results.

In order to illustrate the general theory, two examples are addressed in this paper: in the first example, we
assess the influence of the transversal load per unit length (submerged weight) on the linear frequency of a riser,
whereas in the second example the nonlinear effects of a varying cross-section of a tapered beam are studied.

As already mentioned in [1], non-uniform beams are used in helicopter rotor blades, airplane wings and
wind turbine blades, to mention just a few mechanical engineering applications; non-prismatic pylons of
cable-stayed bridges, and beams and columns of varying cross-sections, to mention just a few civil engineer-
ing applications that, besides serving to structural or optimization purposes, nowadays are widely used by
renowned architects due to esthetic reasons. Offshore vertical risers are also within the range of application
of this study, provided the non-uniformity of the beam is mild, especially with respect to the tensile force
variation that affects the riser’s geometric stiffness.

Modal analysis of non-uniform beams has attracted the attention of various researchers from the fifties to
the eighties [2–7]. Subsequently, linearly tapered beams subjected to axial forces were studied by Sato [8];
elastic support of the Winkler type was considered by Filipich et al. [9]; elastic boundary conditions were
introduced by Goel [10] and Lee and Ke [11].

More recently, Dugush and Eisenberg [12] investigated the vibrations of non-uniform beams under moving
loads; Raj and Sujith [13] discussed free longitudinal vibrations; Shahba et al. [14] looked at curved Timo-
shenko beams; Bambill et al. [15] studied rotating Timoshenko beams, a problem of particular interest in
helicopter blade dynamics. Tapered beams of functionally graded materials were also addressed [16,17].

Exact solutions were obtained for some special cases of tapering: Bessel’s functions were used in [10,18]
and hypergeometric functions in [13,19]. Abrate [20] discussed a special class of tapering in rods and beams,
for which the governing equation of motion could fall into the same pattern of a uniform media.

Yet, exact solutions are restricted to a few simple cases that can hardly be applied to more realistic geome-
tries, material properties, boundary conditions or loading.

Searching for approximate solutions is the other approach, followed, for instance, by Grossi and Bhat [21].
Auciello and Nolè [18] used the Rayleigh quotient, while Sato [8] chose the Ritz method. Sakiyama [22] solved
numerically an integral equation that replaced the differential equation of transverse motion of tapered beams of
“any class.” Chen and Xie [23] and Laura et al. [24] also proposed numerical solutions for non-uniform beams.

Approximate solutions for nonlinear oscillations of tapered beams have been investigated, for example,
by Karimpour et al. [25] and by Abdel-Jaber et al. [26], which considered a Galerkin-like reduction on one
mode, and by Katsikadelis and Tsiatas [27], which used the analog equation method that permits to study also
the transient dynamics.

In this paper, an approximate analytical solution is sought for by means of the MTS method [28], in parallel
to the one obtained in [1] by the Poincaré–Lindstedt method [28] for the linear case. It is worth underlining that
we consider together the effects of the non-uniformity and of the nonlinearity, by applying the MTS method
directly to the partial differential equation, and not to the ordinary differential equation ensuing from a prelimi-
nar Galerkin reduction. This permits to have more reliable results, although requiring more mathematical effort.

Nayfeh [29] used the MTS method, but he was concerned with the wave propagation in cables, and not
with the free vibrations of finite-length beams and cables. An asymptotic analysis was developed in [30], but
the chosen smallness parameter was the thickness of the beam and not, as in the present paper, the difference
with respect to a uniform continuum. The WKB and other approximate methods were used in [31] for the rod
(i.e., the cable) problem, while the WKB method was used for beams in [32].

The paper is organized as follows. In Sect. 2, the model is obtained by starting from the Euler–Bernoulli
kinematics hypotheses; a static condensation is used to eliminate the axial displacement, under the hypothesis
that the axial inertia is negligible. In Sect. 3, we apply the MTS method, by considering the first two terms of
the asymptotic expansion. The main findings are illustrated with two examples in Sect. 4, while in Sect. 5 we
state our conclusions and suggestions for further developments.

2 The model

Let us consider a beam-type solid with the following nonlinear Euler–Bernoulli kinematics

εx = εy = γxy = γxz = γyz = 0, εz = U ′ + 1

2
(W ′)2 − Y W ′′, (1)
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where U (Z , T ) and W (Z , T ) are the longitudinal and the transversal displacements, respectively, of the axis
of the beam, and where the primes mean derivative with respect to Z . The axis is the locus of the centroids of
the Z -varying cross-sections, and it is assumed to be straight and of length L . Y is the coordinate in a principal
direction perpendicular to the axis of the beam; the displacements are assumed to be planar.

The elastic energy is given by

Ee = 1

2

∫

V

σzεzdV = 1

2

∫

V

Eε2
z dV, (2)

where E(X, Y, Z) is a variable (non-constant or constant alike) Young modulus, so that (2) becomes

Ee = 1

2

L∫

0

[
E A

(
U ′ + 1

2
W ′2

)2

+ E J W ′′2
]

dZ , (3)

where

E A = (E A)(Z) =
∫

A

EdA, E J = (E J )(Z) =
∫

A

Y 2 EdA. (4)

The following boundary conditions are considered in this work:

U (0, T ) = 0, U (L , T ) = UL(T ),

W (0, T ) = 0, W (L , T ) = 0,

W ′′(0, T ) = 0, W ′′(L , T ) = 0, (5)

where UL(T ) is an imposed displacement, possibly time dependent, in the axial direction.
By taking into account (5), the first variation of (3) becomes

δEe = −
L∫

0

[
E A

(
U ′ + 1

2
W ′2

)]′
δUdZ

−
L∫

0

[
E A

(
U ′ + 1

2
W ′2

)
W ′

]′
δW dZ +

L∫

0

(E J W ′′)′′δW dZ . (6)

The kinetic energy is given by

Ek = 1

2

∫

V

ρ[U̇ 2 + Ẇ 2]dV = 1

2

L∫

0

ρ A[U̇ 2 + Ẇ 2]dZ , (7)

where the dots mean derivative with respect to T, ρ(X, Y, Z) is a variable (non-constant or constant alike)
density, and

ρ A = (ρ A)(Z) =
∫

A

ρdA. (8)

The expressions (4) and (8) allow to consider beams made of composite as well as of any anisotropic
materials.

The virtual work done by the external loads is

δE p =
L∫

0

(QδU + PδW )dZ , (9)

where Q(Z , T ) and P(Z , T ) are the applied loads per unit length of the beam axis in the longitudinal and the
transversal direction, respectively.
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The equations of motion can be obtained by the extended Hamilton’s principle assuming holonomic con-
straints

T2∫

T1

(δEk − δEe + δE p)dT = 0, (10)

which, by assuming

δU (Z , T1) = 0, δU (Z , T2) = 0,

δW (Z , T1) = 0, δW (Z , T2) = 0,
(11)

provides {
ρ AÜ − [

E A
(
U ′ + 1

2 W ′2)]′ − Q = 0,

ρ AẄ − [
E A

(
U ′ + 1

2 W ′2) W ′]′ + (E J W ′′)′′ − P = 0.
(12)

As is usually done, the axial inertia ρ AÜ is neglected, so that (12) gives{
E A

(
U ′ + 1

2 W ′2) = C1 + F,

(E J W ′′)′′ − [(C1 + F)W ′]′ + ρ AẄ − P = 0,
(13)

where

F = F(Z , T ) = −
Z∫

0

Q(ζ, T )dζ. (14)

It is worth to remark that F is known.
Upon integrating (13)1 and considering the boundary conditions (5)1, we have

C1 = C2 + C3

L∫

0

W ′2dZ , (15)

where the C2 and C3 are given by

C2(T ) = UL(T ) − ∫ L
0

F(Z ,T )
E A(Z)

dZ∫ L
0

dZ
E A(Z)

, C3 = 1

2
∫ L

0
dZ

E A(Z)

. (16)

Remark The axial force in the beam is

N (Z , T ) =
∫

A

σzdA =
∫

A

EεzdA = E A

(
U ′ + 1

2
W ′2

)

= C1 + F = C2 + C3

L∫

0

W ′2dZ + F. (17)

By computing this expression for Z = L and by rearranging, we obtain

UL(T ) = NL(T )

L∫

0

dZ

E A(Z)
+

L∫

0

F(Z , T )

E A(Z)
dZ

−1

2

L∫

0

W ′2dZ +
⎛
⎝

L∫

0

dZ

E A(Z)

⎞
⎠

⎛
⎝

L∫

0

Q(Z , T )dZ

⎞
⎠ . (18)

This expression can be used to determine UL(T ) if a known force NL(T ) is given at the boundary instead of
UL(T ). Note that in this case, we have C1 = NL(T ) + ∫ L

0 Q(Z , T )dZ , and the nonlinear effect due to the
stretching of the beam disappears in this model.
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The difference between movable and immovable ends was studied in [33], where it was highlighted that,
when the stretching disappears, the nonlinear curvature remains the unique source of nonlinearity and thus
cannot be omitted. But in our case, due to the considered boundary conditions, the stretching is present. ��

Using (15), the condensed governing equation is finally obtained

(E J W ′′)′′ − (FW ′)′ −
⎛
⎝C2 + C3

L∫

0

W ′2dZ

⎞
⎠ W ′′ + ρ AẄ − P = 0. (19)

It is convenient to cast (19), in dimensionless form. Let E J0, F0 and ρ A0 be the reference bending stiffness,
axial force and unit mass, respectively. They can be, for example, the values of the corresponding functions
at Z = 0, but other choices can be made as well. Let E J (Z) = E J0 + Ẽ J (Z), F(Z , T ) = F0 + F̃(Z , T )
and ρ A(Z) = ρ A0 + ρ̃ A(Z). By introducing the dimensionless space variable, defined by Z = zL , the

dimensionless time, defined by T = t L2
√

ρ A0
E J0

and the dimensionless displacement, defined by W = wL ,
Eq. (19) can be written in the form

{[1 + f1]w′′}′′ − {[α + f2]w′}′ − c3

⎛
⎝

1∫

0

w′2dz

⎞
⎠ w′′

+[1 + f3]ẅ + 2c4ẇ − p = 0, (20)

where

α(t) = F0L2

E J0
+ C2(t)L2

E J0
, c3 = C3L3

E J0
= L2

2 E J0
∫ 1

0
dz

E A(z)

, p(z, t) = P(z, t)L3

E J0
(21)

and where

f1(z) = Ẽ J (z)

E J0
= E J (z) − E J0

E J0
,

f2(z, t) = F̃(z, t)L2

E J0
= [F(z, t) − F0]L2

E J0
,

f3(z) = ρ̃ A(z)

ρ A0
= ρ A(z) − ρ A0

ρ A0
, (22)

are the dimensionless varying parts of the bending stiffness, of the axial force and of the mass per unit length.
A damping term 2c4ẇ(z, t) has been introduced to take into account the dissipation which is always present
in real structures.

The unforced (p = 0) undamped (c4 = 0) linear version of (20) has been studied by the Poincaré–Lindstedt
asymptotic development method in [1].

3 The MTS solution

In this section, we study the nonlinear oscillations of (20) by the multiple time scale asymptotic expansion
method. With this goal, a small book-keeping parameter ε is introduced and Eq. (20) becomes

{[1 + ε f1]w′′}′′ − {[α + ε f2]w′}′ − εc3

⎛
⎝

1∫

0

w′2dz

⎞
⎠ w′′

+[1 + ε f3]ẅ + ε2c4ẇ − εp = 0, (23)

which reduces to (20) for ε = 1. Using a perturbation method for solving differential equations with weakly
variable coefficients, like (23), has been previously done both in mathematical and in engineering literature,
see for example [34].
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We also assume that the dimensionless transversal load has the form of a harmonic excitation, namely

p(z, t) = p0(z) sin(	t). (24)

Furthermore, we assume that f2 and C2 (and therefore α) do not depend on time. Since we are interested in ana-
lyzing the response of the system near resonance, we introduce a detuning parameter σ so that 	 = 	0 + εσ ,
where 	0 is a natural frequency (to be determined later), and σ measures the frequency shift of the excitation
with respect to the natural frequency 	0. Equation (24) then becomes

p(z, t) = p0(z)[sin(	0t0) cos(σ t1) + cos(	0t0) sin(σ t1)], (25)

where ti = εi t, i ∈ N, are the various time scales.
As prescribed by the MTS method, the solution is sought in the form

w(z, t) = w0(z, t0, t1) + εw1(z, t0, t1) + · · · (26)

Before we proceed, a comment on the choice of the smallness parameters is in order. Actually, in our prob-
lem, the unique smallness parameter that appears “naturally” is the one taking into account the non-uniformity.
The smallness of damping and forcing is straightforward and commonly used.

The main hypothesis, indeed, is that of assuming the nonlinear term to be small. We do this because we
wish to start with a ε0 term in the expansion (26), i.e., the zero-order solution is not necessarily small. We
could have assumed that the nonlinear term is not small, but in this case we had to start with ε1 term in (26),
i.e., we had to assume that the oscillation amplitude is small, otherwise the first-order equation would not be
linear, which is unpleasant.

The second strong hypothesis is that we use the same smallness parameter for the non-uniformity and for
nonlinearity, while we could have used two different parameters. This would need a two-term expansion that
could possibly lead to different results, and which would be far too much involved in our opinion. From a
mechanical point of view, we are assuming that non-uniformity and nonlinearity have the same order of (small)
magnitude, and we are aware that different conclusions could possibly be reached should different orders of
smallness parameters be adopted. This is left for future works.

3.1 Zero-order solution

The zero-order equation of motion is

∂4w0

∂z4 − α
∂2w0

∂z2 + ∂2w0

∂t2
0

= 0, (27)

and the periodic zero-order solution satisfying the boundary conditions is given by

w0(z, t0, t1) = sin(kz)[w0s(t1) sin(	0t0) + w0c(t1) cos(	0t0)], (28)

where

k = nπ, 	0 = k
√

α + k2. (29)

3.2 First-order solution

The first-order equation of motion is

∂4w1

∂z4 − α
∂2w1

∂z2 + ∂2w1

∂t2
0

+ g = 0, (30)
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where

g = sin(kz)

{
sin(	0t0)

[
f2k2w0s + 3c3k4

8
w0s(w

2
0s + w2

0c) − f ′′
1 k2w0s

− 2
∂w0c

∂t1
	0 − f3w0s	

2
0 − 2c4w0c	0 + f1k4w0s

]

+ cos(	0t0)

[
f2k2w0c + 3c3k4

8
w0c(w

2
0s + w2

0c) − f ′′
1 k2w0c

+ 2
∂w0s

∂t1
	0 − f3w0c	

2
0 + 2c4w0s	0 + f1k4w0c

]

+ sin(3	0t0)

[
−c3k4

8
w0s(w

2
0s − 3w2

0c)

]

+ cos(3	0t0)

[
−c3k4

8
w0c(3w2

0s − w2
0c)

]}

+ cos(kz){− sin(	0t0)[ f ′
2k + 2 f ′

1k3]w0s

− cos(	0t0)[ f ′
2k + 2 f ′

1k3]w0c}. (31)

Accordingly, the solution w1 is sought in the form

w1(z, t0, t1) = sin(	0t0)w11s(z, t1) + cos(	0t0)w11c(z, t1)

+ sin(3	0t0)w13s(z, t1) + cos(3	0t0)w13c(z, t1). (32)

After some algebra, the solvability conditions for (30) are:

dw0c

dt1
+ c4 w0c − 	1w0s − d w0s(w

2
0c + w2

0s) + l cos(σ t1) = 0, (33)

dw0s

dt1
+ c4 w0s + 	1w0c + d w0c(w

2
0c + w2

0s) − l sin(σ t1) = 0, (34)

where

d = 3c3k4

16	0
, (35)

l = 1

	0

1∫

0

[sin(kz)p0(z)]dz,

	1 = 1

	0

⎧⎨
⎩−	2

0

1∫

0

[sin(kz)2 f3(z)]dz + k4

1∫

0

[sin(kz)2 f1(z)]dz + k2

1∫

0

[cos(kz)2 f2(z)]dz

⎫⎬
⎭ . (36)

Note that, as expected, only the projection of the load p0(z) along the (first order) modal shape sin(kz) appears
in the equations.

To proceed further, we look for solutions of Eqs. (33) and (34) that correspond to steady-state oscillations.
To this aim, we first express w0c and w0s in polar coordinates,

w0c(t1) = �(t1) cos β(t1)

w0s(t1) = �(t1) sin β(t1), (37)

and then substitute these expressions into (33) and (34), thus obtaining

d�

dt1
cos β − �

dβ

dt1
sin β + c4 � cos β − 	1� sin β − d �3 sin β = −l cos(σ t1),

d�

dt1
sin β + �

dβ

dt1
cos β + c4 � sin β + 	1� cos β + d�3 cos β = l sin(σ t1), (38)
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where we have dropped the arguments in the functions � and β for brevity. The steady-state oscillations are
then obtained by setting d�/dt1 = 0, thus obtaining

�

[(
dβ

dt1
+ 	1 + d �2

)
sin β − c4 cos β

]
= l cos(σ t1), (39)

�

[
c4 sin β +

(
dβ

dt1
+ 	1 + d�2

)
cos β

]
= l sin(σ t1). (40)

Two new equations are then obtained by (i) multiplying (39) by cos β and (40) by sin β and subtracting them
from each other and by (ii) squaring (39) and (40) and adding them up. This gives:

� c4 = −l cos(σ t1 + β),

�2

[(
dβ

dt1
+ 	1 + d �2

)2

+ c2
4

]
= l2, (41)

Note that the condition ∣∣∣∣� c4

l

∣∣∣∣ ≤ 1 (42)

must be fulfilled for the existence of steady-state oscillations. This introduces an upper bound on �, �max =
l/c4, and results in closed resonance curves. The left-hand side of (41)1 is constant with respect to time, so
the right-hand side must also be constant, namely σ t1 + β = θ0 = constant and dβ/dt1 = −σ . Substituting
into (41)2, we then have

σ = σ(�) = 	1 + 3c3k4

16	0
�2 ±

√
l2

�2 − c2
4, (43)

whose solutions exist if and only if (42) is satisfied. The inverse, �(σ), of the previous function σ(�) gives
the nonlinear resonance response curves.

The stability of the previous solution can be studied as done in Sect. 4.1 of [35].
For better visualization, we rescale the curves of �(σ). By defining σ = d1s and � = (l/d1)γ , where

d1 = 1

4
3

√
12l2k4c3

	0
, (44)

equation (43) simplifies to

s = 	1

d1
+ γ 2 ±

√
1

γ 2 −
(

c4

d1

)2

. (45)

The effects of the parameters 	1/d1 and c4/d1 on the function γ (s) are described in Fig. 1.
From Eq. (28) we have, up to the first order and after some algebra,

w(z, t) = sin(kz)�(σ ) cos(	t − θ0), (46)

which shows that the first-order nonlinear oscillation has the same frequency 	 of the excitation, but a
frequency-dependent amplitude �(σ) = �(	 − 	0) given by the inverse of (43).

In the free vibration case (c4 = 0 and l = 0), instead, 	 is unknown, and we get that the amplitude-
dependent nonlinear frequency is given by

	nl = 	0 + ε	1 + ε
3c3k4

16	0
�2. (47)

After appropriate rescaling, these are the dashed curves reported in Fig. 1, and they are called “backbone”
curves. The fact that the coefficient of �2 is positive means that we have a hardening system, namely that the
natural frequency increases by increasing the amplitude of the oscillation.

Equation (47) clearly shows how the term 	1 measures the linear shift of the natural frequency due to the
non-uniformity of the beam (see Fig. 1). It is the same value obtained, with a different technique and with a
different notation, in [1].
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(a) (b)

Fig. 1 Frequency response curves γ (s) for a c4 = 0 and b 	1 = 0

It is important to underline that the non-uniformity of the beam appears also in the nonlinear parameter

c3 = L2

2E J0
∫ 1

0
dz

E A(z)

. (48)

Since it is always positive, we conclude that we can never eliminate the nonlinear effects (at least up to the
first order) by properly tapering the beam. On the other hand, this can be done for the linear correction 	1. In
fact, for f1(z), f2(z) and f3(z) satisfying

(α + k2)

1∫

0

[sin(kz)2 f3(z)]dz = k2

1∫

0

[sin(kz)2 f1(z)]dz +
1∫

0

[cos(kz)2 f2(z)]dz, (49)

we have 	1 = 0. In this case, the frequency 	0 is accurate up to the second order.

4 Examples

4.1 Risers

We initially consider risers, i.e., beams with a constant cross-section, lying in a vertical direction, so that their
constant weight per unit length Q induces a non-constant axial load. We have f1 = f3 = 0, F = −Q Z and
f2 = −L2 (F0 + QLz)/E J , which in turn implies that

	1 = k√
α + k2

1∫

0

[cos(kz)2 f2(z)]dz = − L2

2E J

k√
α + k2

(
F0 + QL

2

)
. (50)

From (50), we see that, if we choose F0 = −QL/2, we have 	1 = 0, namely the first-order correction vanishes
and 	0 = nπ

√
α + n2π2 is valid up to the second order, i.e., even for moderately large values of ε. With this

choice of F0, we obtain

α = E A

E J
UL L . (51)

We now distinguish two different situations. In the first one, the riser is statically stretched in the vertical
position up to reaching a given axial force N static

L at the top. This provides
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Table 1 Characteristics of the risers considered in [36,37]

Riser length L = 2,000 m
Flexural stiffness E J = 318.6 × 106 Nm2

Linear weight Q = −3433.5 N/m
Bottom tension N0 = 0.6867 × 106 N
Virtual mass (riser mass + added mass) ρ A = 1,200 kg/m
The cross-section is a circular tube with external diameter equal to 0.5588 m and with thickness equal to 0.0254 m

Table 2 Natural periods in (s)

Mode (n) 	0
2π L2

	0

√
ρ A
E J From [37] Difference (%)

1 714.59 68.26 77.5 13.5
2 1429.59 34.12 38.7 13.4
3 2145.41 22.73 25.8 13.5
4 2862,45 17.04 19.3 13.3
5 3581.12 13.62 15.4 13.0
6 4301.83 11.34 12.8 12.9
8 5759.98 8.48 9.5 12.0
10 7213.07 6.76 7.6 12.4
15 10945.48 4.46 4.9 9.9
20 14825.74 3.29 3.54 7.6
30 23203.23 2.10 2.21 5.1
35 27777.50 1.76 1.83 4.2
40 32653.27 1.49 1.54 3.1
45 37858.78 1.28 1.32 2.4
50 43418.48 1.12 1.15 2.4

Fig. 2 The function 	1(r) for n = 1 (lower), 2, 3, 4, 5 (upper)

α = L2

E J

(
N static

L + QL

2

)
, (52)

to be used in 	0 = nπ
√

α + n2π2. Then, the beam is constrained in the axial direction, and so UL remains
fixed in time while NL in general varies during the nonlinear oscillations.

In the second situation, we suppose that a given, fixed, value NL of the axial force is applied at the top,
while the associated top displacement UL is allowed to vary during the oscillations. In this case, as noted in
the previous remark, the nonlinearity due to stretching disappears, and we have linear oscillations. Neglecting
the nonlinear term in (18), we still get (52).
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(a)

(b)

(c)

r = 1/2

r = 1

r = 2

Fig. 3 Frequency response curves �(	) for different mode number n. R0 = 3 cm, RL = 4 cm, L = 50 cm, c4 = 0.1, l = 1, ε = 1.
a r = 1/2, b r = 1, c r = 2
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r = 1/2

r = 1

(c)

(b)

(a)

r = 2

Fig. 4 Comparison of MTS (dashed, thin) and numerical (continuous, thick) backbone curves �(	). n = 1, R0 = 3 cm,
RL = 4 cm, L = 50 cm, ε = 0.1. a r = 1/2, b r = 1, c r = 2
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The conclusion is that the linear frequency is the same, but in the first case the system is expected to undergo
nonlinear oscillations, while in the second case only linear oscillations are expected (unless different types of
nonlinearities are considered, which is not the case in this paper).

As a practical example, we consider the riser analyzed in [36,37], whose characteristics are reported in
Table 1. Using these values in (52), we get α = 51729, from which we compute the natural periods reported
in Table 2. When compared with “exact” values taken from [37] (where also finite elements are used), we see
that the difference is about 13 % for lower modes, and rapidly decreases for increasing mode number.

The error in the lower modes is due to the assumption that the longitudinal load (submerged weight) p is of
order ε. Yet, in practice, p is far from being small. Even so, for preliminary analysis purposes, the possibility of
computing the riser’s natural periods “by hand” is very attractive. Furthermore, the accuracy greatly increases
as the upper modes are considered.

The error can be reduced by considering higher-order terms in the asymptotic expansion (26).

4.2 Tapered beams

We now consider beams without axial force (α = f2 = 0) but with a varying cross-section. More precisely,
we consider the beam with a circular cross-section whose radius has a power law tapering:

R(Z) = R0 + aZr ; a = RL − R0

Lr
, (53)

where r ∈ R is a real number governing the tapering ratio (r = 1 corresponds to linear tapering), and R0 and
RL are the radius for Z = 0 and Z = L , respectively. The expression of 	1 can be computed in closed form.
However, it involves hypergeometric functions and it is very complicated, so we do not report it here explicitly.

Assuming E J0 = E J (0) = Eπ R4
0/4 and ρ A0 = ρ A(0) = ρπ R2

0, and for R0 = 3 cm, RL = 4 cm,
L = 50 cm, we have that the function 	1(r) is reported in Fig. 2 for different values of the mode number n.
This figure clearly shows that the increment of the tapering ratio reduces the linear corrections of 	0, accord-
ing to the fact that for large values of r the beam tends to have the radius R0 almost everywhere except for a
neighborhood of Z = L , and so the non-uniformity of the beam tends to become negligible.

Some frequency response curves are reported in Fig. 3 for different values of the tapering ratio r and for
different values of the mode number n. From these figures, we see that increasing the mode number increases
the bending of the backbone curve, namely the effect of the nonlinearity. On the contrary, increasing r tends
to reduce the bending of the curves, so reducing the nonlinear effects, although to a minor extent.

To check the reliability of the proposed MTS approximate solution, a comparison with a numerical solu-
tion is reported in Fig. 4. The dashed (analytical) backbone curve is obtained by (47), while the continuous
(numerical) backbone curve is obtained by a Galerkin approximation w(z, t) = ∑3

i=0 q2i+1(t) sin[(2i +1)π z]
of the solution of (23). This provides a system of 4 ordinary differential equations, which has been integrated
numerically by means of the Runge–Kutta method.

Figure 4 shows a very good agreement between our solution and the numerical results, even for “large”
values of �. We note that the accuracy (very slightly) decreases from r = 2 to r = 1/2, according to the fact
that decreasing r the non-uniformity becomes more and more important, as noted above.

5 Conclusions and further developments

The nonlinear oscillations of a non-uniform beam have been investigated by means of the multiple time scale
method, which yields an analytical (and simple, indeed) expression for the quantities of interest. The frequency-
response curves are obtained, and the frequency-dependent amplitude of the nonlinear oscillation is determined.

The results of the present work show that the non-uniformity of the beam largely influences the linear
natural frequency of the beam, while it is less important for the nonlinear behavior.

The general theory has been illustrated by means of two alternative examples. In the first one, the riser, the
beam has constant cross-section but varying axial load. In the second one, the tapered beam, the axial force
vanishes, but the cross-section varies according to a power law.

In the present analysis, we have reported only the first-order term of the asymptotic expansion, which entails
having the linear spatial mode shape only. Thus, the first development that can be conceived is that of considering
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also the second-order term, with the aim of both having a better approximation to the nonlinear frequency, and
of having a nonlinear correction to the spatial mode shape, i.e., obtaining the nonlinear normal modes.

Another possible development consists in considering a parametric instead of an external excitation, which
entails assuming a different detuning parameter. Finally, it would be interesting to investigate the case in which
non-uniformity and nonlinearity have different order of smallness, a hypothesis that would require a two-term
asymptotic expansion. These developments are left for future works.
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