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Abstract

A finite differences (FD) solution method is proposed for the numerical treatment of the dynamic equilibrium problem of 2D catenary

risers. The method is based on the so-called Box approximation, which in the scope of the present contribution is applied to the complete

nonlinear model as well as to the reduced linearized formulation. The application of the Box method transforms the original governing

systems into convenient sets of algebraic equations, which in turn are solved efficiently by the relaxation method. Extensive numerical

calculations are presented that describe the dynamic behaviour of the structure and evaluate the amplification in loading due to the

dynamic components. The effect of the geometric nonlinearities is assessed through comparative calculations that concern both

mathematical formulations examined in the present, i.e. the complete nonlinear, and the reduced linearized model. Special attention is

paid to the heave excitations as they amplify significantly the magnitudes of the loading components.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Offshore applications for deepwater drilling, rely, one way
or another, on the proper design and installation of the marine
risers’ system which are used for the transportation of the
material from the seafloor to the storage-offloading vessel.
There is currently a boom in the development of risers from
universities, research institutes, third parties and offshore
industries. The increased interest can be justified by the need in
drilling in deeper waters. In such large depths, catenary risers
are of particular importance due to their lower installation
cost. Nevertheless, as it was expected, several issues came up,
which are of both industry and academic interest. Some
indicative examples include the riser–soil interaction effects in
bottoms of practically unknown contour, the ill-understood
vortex induced vibration (VIV) effects and the floater vortex
induced motion (VIM) induced riser fatigue, extreme dynamic
amplification of bending moments at the touch-down region,
etc. Some of these issues are related to the dynamic response
front matter r 2008 Elsevier Ltd. All rights reserved.
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of the riser under imposed excitation applied at the top of the
structure, which represents the motions of the floating vessel.
Therefore the dynamic analysis is a key issue that requires
deep and comprehensive investigation of the associated
system, proper formulation of the theoretical model and
finally, the use of an efficient solution method. A review on the
existing methods and the analysis techniques can be found in
the works of Jain (1994) and Patel and Seyed (1995).
The great majority of the proposed solution methodol-

ogies rely on the finite elements (FE) method, which
appears to be the most popular. Indicative examples of
relevant research efforts that cover almost two decades are
the works reported by McNamara et al. (1988), Fylling
et al. (1998) and Chai and Varyani (2006). Nowadays, there
are several commercially available computer codes, such as
Deeplines (Principia web: www.principia.fr), Flexcom
(MCS web: www.mcs.com), Riflex (Sintef web: www.sintef.
no) and OrcaFlex (Orcina web: www.orcina.com), which
are all based on the FE approximation. Examples of
alternative formulations for studying the dynamics of
catenary risers can be found in the studies of Pesce et al.
(1999, 2006). The authors applied a semi-analytical
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Fig. 1. Coordinate systems for the 2D dynamic problem of a catenary

riser.
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formulation, which requires the solution of the associated
eigenvalue problem. To this end the classical WKB
approximation was employed.

FE method is not the only unadulterated numerical
method, which can be used for exploring the details of the
dynamic behaviour of catenary risers. Finite differences (FD)
methods, although not so popular as the FE methods, can be
equally efficient for solving the dynamic equilibrium problem
for catenary shaped slender structures. Nevertheless, there are
only few works that make use of FD methods, as it is
admitted in the review reported by Patel and Seyed (1995).
FD methods have been employed mainly for the solution of
the static equilibrium problem (Dareing and Neathering,
1970; Zare and Datta, 1988; Jain, 1994) or as a numerical
scheme for the integration in the time domain, alternative to
Houbolt, Wilson-y and Newmark-b methods (Patel and
Seyed, 1995). The difficulties on the use of the FD methods
arise mainly from the coupled discretization that is required
in time and space, which in turn leads to complicated
algebraic systems. These problems are properly addressed in
the present by extending an existing FD methodology to riser
type slender structures with non-zero bending stiffness. In
particular, the method which is employed is the so-called
Keller Box FD numerical scheme (Hoffman, 1993), known
widely as the Box method.

This method was first introduced in cable dynamics by
Ablow and Schechter (1983) and expanded by Milinazzo
et al. (1987) who introduced a number of modifications in
order to produce a more efficient and stable method of
computing, applied in towed cable systems. The same
method was adopted afterwards by several researchers for
applications involving low tension cables (Howell, 1991),
cable deployment (Burgess, 1993), highly extensible cables
(Tjavaras et al., 1998) and nonlinear dynamics of vertical
slender structures (Chatjigeorgiou, 2004). Here the method
is properly extended for developing an FD numerical
scheme for the solution of the 2D dynamic equilibrium
problem of catenary risers.

The numerical predictions, which are presented in the
sequel, concentrate mainly on the characteristics of the
bending vibration problem. Thus, particular attention is
paid on the transversal motions and the associated bending
moments. The contribution of the nonlinear effects is
assessed through comparative calculations between the
complete nonlinear and the equivalent linearized system.
The numerical treatment of the linearized system is carried
out using a reduced centred differences scheme.

2. Mathematical formulation

The 2D nonlinear dynamic problem of a catenary riser is
considered. The riser is modelled as a hinged–hinged
slender structure (Fig. 1). The mass, the added mass and
the submerged weight per unit unstretched length are
denoted by m, ma and w0, respectively, while EA and EI are
the elastic stiffness and the flexural rigidity. The governing
system that describes the 2D dynamic behaviour of a
catenary riser is composed by the following six nonlinear
partial differential equations (Trianrafyllou, 1994):
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where s is the unstretched Lagragian coordinate and t is the
time. The cross-sectional area A and the moment of inertia I,
are calculated in terms of the unstretched inner and outer
diameters. The vector of the unknowns Y ¼ [T,Q,u,v,O,f]T is
composed of the velocities u and v in the tangential ~t
and transversal direction ~n, respectively (see Fig. 1), the
tension T, the angle f which is formed between the tangent on
the structure and the horizontal, the shear force Q and the
curvature O. Here, T, f, Q and O represent total quantities,
i.e. the summation of the static and the dynamic components.
The last terms in the right-hand side of Eqs. (1) and (2) are the
quadratic drag forces parallel to ~t and ~n and they are
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expressed in terms of the relative velocities ur and vr when a
steady current is presented. In the present work no current
was considered and consequently ur and vr are directly
replaced by u and v. In the adopted Morison’s formula, d

denotes the unstretched external diameter of the riser,
r=1025kg/m3 is the seawater density while Cdt and Cdn are
the drag coefficients in the tangential and normal direction,
respectively. Eq. (3) assumes a linear stress–strain relation. In
most of the cases, catenary risers are made from steel.
Although a nonlinear stress–strain relation has no physical
essence for steel catenary risers, the above formulation
can be easily extended in order to incorporate relevant
contributions.

3. Nonlinear problem—solution in the time domain

Eqs. (1)–(6) are treated without applying any additional
assumption regarding the contribution of the various
terms. This system is solved by employing the Keller Box
FD method. The Box approximation is implicit, two level,
single step, unconditionally stable and convergent. The
major advantage of this method is that the physical grid
spacing can be non-uniform. Nevertheless, this capability is
not used in the present formulation as the configuration of
the structure does not involve any geometrical disconti-
nuities, which would require denser grid.

First, the original system (1)–(6) is rewritten in the
following convenient vectorial form:
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Next, Eq. (7) is evaluated at [k�1/2, j+1/2] where the
indexes k and j are used to denote the discretization in
space and time, respectively. Thus, Eq. (7) obtains the
following algebraic form:
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(11)
The complete algebraic expansions of Eqs. (1)–(6) are given
in Appendix A. In Eq. (11), j+1 denotes the time step in
which the solution is required. The moment j is the
previous step where the time dependent variables are
already known and in addition they were used as the first
guess in the iterative process. At t ¼ 0, Y

j
k is replaced by the

static values.
Assuming that the unstretched suspended length of the

catenary is discretized using n equally spaced points, the
system of algebraic equations represented by Eq. (11) is
evaluated at all points from k ¼ 2 through k ¼ n, providing
a system of 6(n�1) algebraic equations. This system is
supplemented by the six boundary conditions, which must
be enforced at the ends of the riser. Due to the implicit
nature of the FD equations, the final 6n system must be
solved simultaneously. This is carried out by the relaxation
method (Press et al., 1986). The boundary conditions
associated with riser’s operation should guarantee that the
bending moments, or alternatively the curvatures, at both
ends are zero. In addition, it is considered that the lower
attachment point is fixed while the velocities at the top are
expressed as predefined functions of time. Using the
notations adopted before, the boundary conditions are
expressed as

Ojþ1
1 ¼ 0; Ojþ1

n ¼ 0; u
jþ1
1 ¼ 0; v

jþ1
1 ¼ 0,

ujþ1
n ¼ uaðtÞ; vjþ1

n ¼ vaðtÞ. (12)

4. Linear system—solution in the frequency domain

Although the solution of the equivalent linearized
problem seems easier, it involves several practical difficul-
ties as the employed numerical methodology should be
applied to 12 differential equations instead of the six
equations of the complete nonlinear system. The funda-
mental assumption that enables the derivation of the
equivalent linearized system is that the vector of the
unknowns is composed of a static and a dynamic part.
Thus,

Yðs; tÞ ¼ YðsÞ þ eYðs; tÞ, (13)

where the static and the dynamic terms of the right-hand
side of Eq. (13) are given by

YðsÞ ¼ ½TðsÞ;QðsÞ; 0; 0;OðsÞ;fðsÞ�T, (14)

eYðs; tÞ ¼ ½ eTðs; tÞ; eQðs; tÞ; pðs; tÞ; qðs; tÞ; eOðs; tÞ; efðs; tÞ�T. (15)

Here the displacements along the structure are expressed as
motions instead of velocities as it was carried out for the
complete nonlinear system. In Eq. (15) p(s,t) and q(s,t)
denote the axial and transversal motions, respectively,
given by u(s,t) ¼ qp(s,t)/qt and v(s,t) ¼ qq(s,t)/qt. Next,
Eqs. (13)–(15) are introduced into the governing set of
Eqs. (1)–(6). From the resulting system we ignore all
nonlinear terms, except the equivalent linearized form of
the drag force in transversal direction. The terms that
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describe the static equilibrium problem are also omitted.
Thus, the original system is reduced to
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qeO
qs

, (20)

eO ¼ qef
qs
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In Eq. (17), o denotes the frequency of the response,
which in the scope of the linear problem is equal to the
excitation frequency. Furthermore b0 ¼ 4/(3p)rCdnd is the
linearized damping coefficient which is determined through
the linearization process.
The solution in the frequency domain requires that the
vector of the unknown dynamic components ~Yðs; tÞ should
be expressed as

Yðs; tÞ ¼ fRe eyðsÞeiotg,

~yðsÞ ¼ ½ eTðsÞ; eQðsÞ; pðsÞ; qðsÞ; eOðsÞ; efðsÞ�T, (22)

where the spatial vector eyðsÞ is given by the following
complex form:

eyðsÞ ¼ eyðrÞðsÞ þ ieyðiÞðsÞ. (23)

Apparently, the indexes (r) and (i) denote the real and
imaginary part, respectively. After introducing Eqs. (22)
and (23) into Eqs. (16)–(21), the original linearized system
is transformed into a reduced spatially dependent system
which after separating real and imaginary parts is recast
into the following matrix form:
Eq. (24) represents a system of 12 ordinary differential
equations, which can be treated by employing a reduced
centred differences scheme. According to this scheme all
equations are evaluated at all n�1 discetization points
along the catenary, from k ¼ 2 to k ¼ n, and a system that
consists of 12(n�1) algebraic equations is derived. This
system must be supplemented by the 12 boundary
conditions, which must be enforced at the ends of the
structure. The solution of the final 12n algebraic equations
is carried out using the relaxation method (Press et al.,
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1986). The boundary conditions associated with the linear
problem are expressed mathematically as

pðrÞn ¼ pa0; pðiÞn ¼ 0; qðrÞn ¼ qa0,

qðiÞn ¼ 0; eOðrÞn ¼ 0; eOðiÞn ¼ 0, (25)

p
ðrÞ
1 ¼ 0; p

ðiÞ
1 ¼ 0; q

ðrÞ
1 ¼ 0; q

ðiÞ
1 ¼ 0,

eOðrÞ1 ¼ 0; eOðiÞ1 ¼ 0, (26)

where pa0 and qa0 are the amplitudes of the axial and
transversal harmonic motions which are imposed at the top
of the structure. The algebraic expansion of Eq. (24) is
given in Appendix B.
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Fig. 2. Results from the static equilibrium problem: static tension and

static bending moment.
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Fig. 3. Results from the static equilibrium problem: configuration of the

catenaries for the 1800 and 1200m depth models.
5. Numerical results

The numerical results, which are presented and discussed
in this section, concern a riser which has an outer diameter
42.0 cm, 2.2 cm wall thickness and thus an inner diameter
38.5 cm, approx. 15 in. An outer coating of slight buoyant
material was added along the riser while its contents have a
density of 200 kg/m3, corresponding to gas. The properties
of the structures, which are investigated in the present are
given in Table 1. The two first models were taken from the
work of Passano and Larsen (2006), while the third is used
for exploring the effect of small depths on the contributions
that originate from the geometric nonlinear terms. This is
discussed at the end of the paper. The first two models
correspond to nearly vertical configurations as can be
easily seen by the sufficiently small angles, which are
formed between the tangent of the risers at the top, and the
perpendicular. Results from the static equilibrium pro-
blems are given in Figs. 2 and 3. Fig. 2 shows the variation
of the static tension and the static bending moment as a
function of the unstretched Lagragian coordinate s and
Fig. 3 depicts the catenary configurations with respect to
the inertia coordinate system (x–z) fixed on the touch-down
point. The static tension curves (Fig. 2) have been divided
Table 1

Riser properties

Model no. 1 Model no. 2 Model no. 3

Suspended length L (m) 2022 1400 316

Outer diameter do (m) 0.429 0.429 0.429

Inner diameter di (m) 0.385 0.385 0.385

Mass per unit length M (kg/m) 262.933 262.933 262.933

Added mass coefficient Ca 1.0 1.0 1.0

Weight per unit length w0 (N/m) 915.56 915.56 915.56

Elastic stiffness EA (N) 0.5823� 1010 0.5823� 1010 0.5823� 1010

Bending stiffness EI (Nm2) 0.1209� 109 0.1209� 109 0.1209� 109

Normal drag coefficient Cdn 1.0 1.0 1.0

Tangential drag coefficient Cdt 0.0 0.0 0.0

Depth D (m) 1800 1200 100

Pretension at the top Tp (kN) 1860 1297 500

Angle at the top with respect to

perpendicular

6.21 8.81 55.71
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by 5 in order to fit into the plot. In fact, the majority of the
calculations presented in the sequel correspond to the
second riser of Table 1 while the first is used mainly for
validating the efficacy of the present FD formulation in
providing reliable numerical predictions. The second
model, which consumes the greater part of the discussion,
was purposely selected for investigating the impact of the
heave motions, which are of particular importance in
practical applications. The small angle, which is formed at
the top of the structure (8.81), implies that the motions
imposed in vertical direction can be regarded with sufficient
accuracy as axial excitations. As mentioned in API
standards, axial motions are known to stimulate extreme
dynamic phenomena in catenary moorings. As far as the
riser type structures are concerned, axial motions are very
effective on the dynamic amplification of the bending
moment especially at the touch-down region. The correla-
tion between the velocity component of the axial motions
and the extreme bending moments that occur very close to
the lower end of catenary risers, was studied recently by
Passano and Larsen (2006). Therefore, it is interesting to
investigate how the impact of the very important heave
motions is reflected on the global dynamic behaviour of the
riser when they act as an axial excitation. An equally
critical point that requires attention is the study of the
relative significance of the ordinary source of bending
vibrations, namely, the conditions that generate displace-
ments in surge direction. All these problems are properly
addressed in Section 5.2.

5.1. Validation of the solution method

The results obtained by the present FD formulation have
been validated against the numerical predictions of the
linear module of the FE computer code RIFLEX.
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Fig. 4. Comparative results for the horizontal motion along the riser

under axial excitation with amplitude pa ¼ 5m and period 60 s. Snapshots

where obtained using the present FD method. The envelope curves (heavy

black lines) depict the maximum and minimum values calculated by

RIFLEX.
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−8

s (m)

Fig. 6. Comparative results for the vertical motion along the riser under

axial excitation with amplitude pa ¼ 5m and period 60 s. Snapshots where

obtained using the present FD method. The envelope curves (heavy black

lines) depict the maximum and minimum values calculated by RIFLEX.
Additional comparative calculations with RIFLEX can
be found in the work reported by Chatjigeorgiou et al.
(2007). Figs. 4–9 show dynamic calculations for the first
structural model of Table 1. The numerical predictions
depict the horizontal motion (Figs. 4 and 5), the vertical
motion (Figs. 6 and 7) and the bending moment (Figs. 8
and 9) along the structure, for two different conditions
of axial loading, namely, 5m amplitude with period
60 s (Figs. 4, 6 and 8) and 2m amplitude with period 12 s
(Figs. 5, 7 and 9). The snapshots were obtained by the
nonlinear FD formulation and correspond to successive
time steps that fall into a period of the steady-state
response, while the envelope curves depict the numerical
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Fig. 7. Comparative results for the vertical motion along the riser under

axial excitation with amplitude pa ¼ 2m and period 12 s. Snapshots where

obtained using the present FD method. The envelope curves (heavy black

lines) depict the maximum and minimum values calculated by RIFLEX.
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Fig. 8. Comparative results for the total bending moment along the riser

under axial excitation with amplitude pa ¼ 5m and period 60 s. Snapshots

where obtained using the present FD method. The envelope curves (heavy

black lines) depict the maximum and minimum values calculated by

RIFLEX.
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Fig. 9. Comparative results for the total bending moment along the riser

under axial excitation with amplitude pa ¼ 2m and period 12 s. Snapshots

where obtained using the present FD method. The envelope curves (heavy

black lines) depict the maximum and minimum values calculated by

RIFLEX.

Table 2

Comparative results between the present FD method and RIFLEX

pa ¼ 5m, T ¼ 60 s pa ¼ 2m, T ¼ 12 s

RIFLEX FD RIFLEX FD

Max tension (kN) 1895 1894 2193 2261

Min tension (kN) 1825 1825 1542 1451

Max bending moment (kNm) 542 517 575 555

Min bending moment (kNm) 428 401 406 374

I.K. Chatjigeorgiou / Ocean Engineering 35 (2008) 616–636622
data calculated by RIFLEX. The FD method was applied
using 400 discretization points and the time step for the
solution of the problem in the time domain was set equal to
0.2 s. It is immediately apparent that the comparison of the
results is very favourable. The favourable coincidence is
demonstrated also in Table 2, which compares explicitly
the max and min values of the bending moment and the
tension at specific locations of the catenary riser and for
two different conditions of axial excitation. The bending
moment corresponds to the location of the maximum static
bending moment which for the 2022m long model occurs
at approximately s ¼ 74.2m, where s denotes the arc length
from the touch-down point along the catenary. On the
other hand, the tension values given in Table 2 refer to the
top of the structure. The small discrepancies observed in
Table 2 are most probably due to the fact that the RIFLEX
predictions were obtained using the linear module.
The fast convergence of the FD method is proven by the

relatively low CPU time that is required for running the
computer code. For the first model of Table 1 for instance,
and for a lateral excitation with amplitude 5m and exci-
tation period 60 s, the fully nonlinear module of RIFLEX
with 600 discretization elements required 89.94 s CPU to
simulate 900 s of dynamic response. The time step for this
application was 0.4 s (Passano, 2007). The corresponding
CPU time for the present FD method using 600 nodes and
the same time step was 107.3 s in a PC. This figure drops to
31.9 s when the code runs in a powerful HP Alpha server
ES45 UNIX machine.
With regard to the properties of the excitation, it is

evident that the condition that corresponds to the higher
axial velocity, i.e. pa ¼ 2m with period 12 s, causes a
heavier amplification of the dynamic components although
the imposed amplitude is smaller. This is easily seen in the
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wider area of the variation of the total bending moment
just after the touch-down point (Fig. 9).

5.2. Discussion on the dynamic behaviour of catenary risers

The calculations and the discussion that follow refer to
the second catenary riser (Model No 2) of Table 1. The
details of its dynamic response are investigated extensively
using two different amplitudes and two directions for the
top imposed excitation. More specifically, the amplitudes
were set equal to 1 and 2m for both the horizontal and the
vertical direction. The numerical predictions that concern
all dynamic components that govern the dynamic beha-
viour of the riser are shown in Figs. 10–35. All calculations
were performed using 400 discretization points which
correspond to a node spacing DsE3.5m, while particular
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Fig. 11. Dynamic shear force eQ at the location of the maximum static

bending moment near the touch-down point for heave excitation.

Fig. 12. Axial motion p at the location of the maximum static bending

moment near the touch-down point for heave excitation.
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Fig. 10. Dynamic tension eT at the location of the maximum static

bending moment near the touch-down point for heave excitation.
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Fig. 13. Transverse motion q at the location of the maximum static

bending moment near the touch-down point for heave excitation.

0 0.5 1 1.5
0

20

40

60

80

100

120

140

160

180

200

excitation frequency (rad/s)

D
yn

am
ic

 b
en

di
ng

 m
om

en
t (

kN
m

)

Linear problem, z=1m
Linear problem, z=2m
Nonlinear problem, z=1m
Nonlinear problem, z=2m

Fig. 14. Dynamic bending moment EI eO at the location of the maximum

static bending moment near the touch-down point for heave excitation.
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Fig. 15. Dynamic angle ef at the location of the maximum static bending

moment near the touch-down point for heave excitation.
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Fig. 16. Dynamic tension eT at the location of the maximum static

bending moment near the touch-down point for surge excitation.
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Fig. 17. Dynamic shear force eQ at the location of the maximum static

bending moment near the touch-down point for surge excitation.
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Fig. 18. Axial motion p at the location of the maximum static bending

moment near the touch-down point for surge excitation.
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attention is paid at the location of the maximum bending
moment which for the specific structure occurs at the 21st
node, at approximately s=70m, from the touch down.
With regard to the time step that was used for the solution
of the equivalent algebraic system of the nonlinear partial
differential equations, it was varying from Dt =1 s for the
lowest frequency considered, i.e. 0.1 rad/s, to Dt=0.1 s for
the highest frequency, i.e. 1.4 rad/s. The strong stability
characteristics and the convergence properties of the
Box method allow the use of higher values for Ds and
Dt, enabling very fast solutions with negligible loss in
accuracy. The afore-mentioned values were chosen rather
for practical reasons, namely for producing smoother t
ime histories for the description of the variation of the
dynamic components along the catenary. The stability
characteristics of the Box method are discussed briefly
through comparative calculations in Section 5.3 of the
present.

5.2.1. Vertical excitation

The dynamic behaviour of the second model under
forced excitation in heave direction is examined with the
aid of Figs. 10–15. The figures depict the transfer functions
of all dynamic components that form the associated
dynamic equilibrium problem. The transfer functions were
obtained using the above-described frequency domain
solution technique. For direct comparison and for asses-
sing the contribution of the nonlinear effects, the linear
calculations have been plotted against the numerical
predictions of the complete nonlinear problem (see
Eqs. (1)–(6)). The depicted data correspond to the location
where the maximum static bending moment occurs, namely
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Fig. 19. Transverse motion q at the location of the maximum static

bending moment near the touch-down point for surge excitation.
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Fig. 20. Dynamic bending moment EI eO at the location of the maximum

static bending moment near the touch-down point for surge excitation.
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Fig. 21. Dynamic angle ef at the location of the maximum static bending

moment near the touch-down point for surge excitation.
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at the 21st node from the bottom. The persistence on this
point is due to the importance of the magnitude of the
maximum bending moment on the safe operation of a
marine riser.

From a quick inspection of Figs. 10–15 it is easily seen
that both solution methodologies provide comparable
results. Noteworthy differences are observed at the end of
the frequency range, which in turn implies that the relative
contribution of the nonlinear effects is increased for fast
excitations and for larger top end displacements. The latter
remark complies with the findings of Passano and Larsen
(2006) who reported that the dynamic amplification of the
bending moment is correlated with the velocity of the
forced excitation. The differences are more detectable in
the loading components, i.e. tension (Fig. 10), shear force
(Fig. 11) and bending moment (Fig. 14). Fig. 10 shows that
the variation of the dynamic tension follows a catenary
path with increasing slope at the end of the frequency
range. On the contrary, the shear force and the bending
moment exhibit a different trend, which is characterized by
the smaller incremental tendency for high excitation
frequencies. Apparently, the above discussion concerns
only the results from the linear problem while the
numerical predictions that have been derived using the
complete nonlinear model imply that the linearization of
the system underestimate the magnitude of the loading
components.

5.2.2. Horizontal excitation

Details on the variation of the dynamic components
for horizontal top imposed excitation are depicted in
Figs. 16–21. The plotted data show the magnitudes of the
dynamic amplification at the location of the maximum
static bending moment. It is reminded that the static
configuration of the riser is almost vertical and as a result,
the surge excitation can be regarded with sufficient
accuracy as a transversely imposed motion.
The first conclusion that can be drawn is that the

magnitudes of the dynamic components due to surge
excitation are relatively insignificant when compared to the
heave excitation cases for the same excitation properties.
By comparing the tension curves in Figs. 10 and 16 for
heave and surge excitation, respectively, we can easily
deduce that the tension values are approximately 10 times
smaller when the riser is excited in surge direction.
Furthermore, the dynamic bending moment at the location
of interest rises up to 180 kNm for heave motions (Fig. 14)
while the maximum amplification for surge excitation is
only 40 kNm (Fig. 20). The extreme difference in tension is
a logical sequent, which originates from the extensibility of
the structure. On the other hand, although the difference in
bending moment is not so profound, the specific variable is
more illustrative of the severity of the heave motions on the
dynamic behaviour of the riser. Taking into account the
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Fig. 22. Comparative results for the riser’s dynamic behaviour under heave excitation with za ¼ 2m amplitude. Snapshots where obtained using the

nonlinear solution model and envelope curves through the linearized formulation. Left column corresponds to circular frequency o ¼ 0.6 rad/s and right

column to o ¼ 1.2 rad/s. Subplots show from top to bottom: axial velocity u, transversal velocity v, total tension T and total bending moment EIO.
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Fig. 23. Comparative results for the riser’s dynamic behaviour under surge excitation with amplitude xa ¼ 2m. Snapshots where obtained using the

nonlinear solution model and envelope curves through the linearized formulation. Left column corresponds to circular frequency o ¼ 0.5 rad/s and right

column to o ¼ 1.2 rad/s. Subplots show from top to bottom: axial velocity u, transversal velocity v, total tension T and total bending moment EIO.

I.K. Chatjigeorgiou / Ocean Engineering 35 (2008) 616–636 627



ARTICLE IN PRESS

N=600, dt=0.02sec
N=100, dt=0.20sec

20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

8

10

time (sec)

D
yn

am
ic

 s
he

ar
 fo

rc
e 

(k
N

)

Fig. 25. Convergence of Box method. Comparative calculations for the

dynamic shear force amplification at the location of the maximum static
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Dt ¼ 0.20 s. Riser excited by heave motions with za ¼ 2m and o ¼ 1.2 rad/s.
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static configuration of the structure, it is reasonable to
consider that the extreme increase in bending moment is
the outcome of actions that resemble buckling.

Nevertheless, although the excitation in surge direction is
not important with respect to magnitude, the associated
dynamic behaviour of the riser, as demonstrated in
Figs. 16–21, exhibits very interesting characteristics. In
particular, all dynamic terms demonstrate strong variations
that cover the complete range of frequencies for both
excitation amplitudes. The characteristic wavy trend is less
observable in the transfer function of tension and
disappears at the end of the range. Furthermore, the
agreement between the linear and the nonlinear results is
favourable, which in turn implies that the contribution of
the geometric nonlinearities to the global behaviour of the
structure is relatively insignificant. Small, but noteworthy
differences are observed in an unexpected area of excitation
frequencies on either side of 0.5 rad/s. The latter finding,
however, does not concern all dynamic components
examined in the present. Significant discrepancies are
detected on the shear force (Fig. 17) and on the angle
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Fig. 28. Axial velocity u along the structure during one simulation period after a steady-state response has been established. Excitation properties: heave

excitation at the top with amplitude za ¼ 2m and circular frequency o ¼ 1.4 rad/s.

Fig. 29. Transversal velocity v along the structure during one simulation period after a steady-state response has been established. Excitation properties:

heave excitation at the top with amplitude za ¼ 2m and circular frequency o ¼ 1.4 rad/s.
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(Fig. 21), which are not reflected, however, on the transfer
functions for the most important variable that influences
the safe operation of the riser, i.e. the bending moment
(Fig. 20). The pattern for the variation of the dynamic
bending moment is provided by the transfer function of the
transversal motion (Fig. 19). It is interesting to highlight
that contrary to the heave excitation, the maximum
bending moment does not follow a steadily increasing
path for higher excitation frequencies as the maximum
calculated value is in the middle of the range (around
0.8 rad/s).
5.3. Effect of geometric nonlinearities

In general, the contribution of the nonlinear terms
becomes substantial for fast motions and large amplitudes.
Figs. 22 and 23 correspond to vertical and horizontal
excitation, respectively, and show comparative calculations
for various dynamic components. These are, the axial
velocity u(s,t), the transversal velocity v(s,t), the tension
T(s,t) and the bending moment EIO(s,t). The loading
components depict total quantities, namely, the summation
of the static and the dynamic terms. Two frequencies were
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Fig. 30. Total tension T along the structure during one simulation period after a steady-state response has been established. Excitation properties: heave

excitation at the top with amplitude za ¼ 2m and circular frequency o ¼ 1.4 rad/s.

Fig. 31. Total bending moment EIO along the structure during one simulation period after a steady-state response has been established. Excitation

properties: heave excitation at the top with amplitude za ¼ 2m and circular frequency o ¼ 1.4 rad/s.
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considered for each orientation; one in the middle and the
other at the end of the investigated range, while the
amplitude was kept constant and equal to 2m in both
directions. Figs. 22 and 23 have been plotted using the
results from both solution models proposed in the present.
The snapshots were obtained through nonlinear time
domain simulations and show the variation of u, v, T and
EIO along the unstretched length of the structure, for one
period of the output signals after a steady-state response
has been established. The envelope curves demonstrate the
amplitude of the response at each point s along the
structure. The graphical representation of any envelope
curve demonstrates the upper boundary line, which
according to the linear approach should not be exceeded
by any dynamic component.
According to the data depicted in Figs. 22 and 23 that

correspond to slow motions (left columns) the agreement
between the linear and the nonlinear calculations is
favourable. The envelope curves capture with excellent
accuracy the upper variation boundary of the investigated
quantities. In addition, the velocity curves in both
directions exhibit a symmetric variation with respect to
zero (Figs. 22a,b and 23a,b). The latter remarks attest the
small to marginal contribution of the nonlinear terms for
slow imposed motions. With regard to the severity of
loading, it is immediately apparent that the motions in
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Fig. 32. Axial velocity u along the structure during one simulation period after a steady-state response has been established. Excitation properties: surge

excitation at the top with amplitude xa ¼ 2m and circular frequency o ¼ 1.4 rad/s.

Fig. 33. Transversal velocity v along the structure during one simulation period after a steady-state response has been established. Excitation properties:

surge excitation at the top with amplitude xa ¼ 2m and circular frequency o ¼ 1.4 rad/s.
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heave direction require particular attention as they result in
larger tensions and moments while at the same time the
areas which are covered by the snapshots become wider
(Figs. 22c,d and 23c,d). For slow horizontal excitations, the
effect of any dynamic contribution, both linear and
nonlinear, is practically zero as the associated variation
curves can be approximated with sufficient accuracy by the
static values (see Fig. 2).

The situation deteriorates when faster motions are
considered (right columns in Figs. 22 and 23). Never-
theless, differences between the linear and the nonlinear
calculations are observed only for the vertical excitation
case (Fig. 22). In addition to the increased values of the
loading variables, which originate from the fast vertical
excitation, there are also several interesting issues which are
detected by inspecting Figs. 22f–22h and they deserve
further discussion. These are: (a) the strong variation of
the transversal velocity (Fig. 22f) at the upper portion of
the catenary, which in turn is reflected on the snapshots
of the bending moment (Fig. 22h); (b) the snapshots for the
tension values go beyond the envelope curve which
approximates the linear boundary of the solution; (c) the
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Fig. 34. Total tension T along the structure during one simulation period after a steady-state response has been established. Excitation properties: surge

excitation at the top with amplitude xa ¼ 2m and circular frequency o ¼ 1.4 rad/s.

Fig. 35. Total bending moment EIO along the structure during one simulation period after a steady-state response has been established. Excitation

properties: surge excitation at the top with amplitude xa ¼ 2m and circular frequency o ¼ 1.4 rad/s.
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tension along the structure (Fig. 22g) varies excessively
during one period of the steady-state response and there
are instances where the tension becomes negative and
(d) the previous remark is valid also with respect to
the variation of the bending moment; nevertheless, the
phenomenon is less important and it is confined to the
upper segment of the structure.

The cause of the above is the extreme values of tension
which are developed due to the orientation of the
excitation. The mechanism that enables these impacts is
the coupling between the transversal and the axial motions
of the structure. From the mathematical point of view, the
nonlinear term, which is primarily responsible for relevant
effects, is the tension–curvature geometric nonlinearity TO
(see Eq. (2)).
The horizontal excitation case appears to be less effective

in terms of the dynamic loading. It should be noted,
however, that the specific orientation of the excitation
causes a slight wavy variation of the bending moment
along the lower-half of the catenary (Fig. 23h) and in
addition, the maximum dynamic bending moment occurs
just before the top end of the structure and not in the



ARTICLE IN PRESS
I.K. Chatjigeorgiou / Ocean Engineering 35 (2008) 616–636 633
vicinity of the maximum static bending moment close to
the touch-down point.

The conditions, which cause extreme responses where the
nonlinear terms play a predominant role, are the most
demonstrative for verifying the efficiency of the present
solution method. To this end, the stability and the
convergence characteristics of the Box approximation are
shown through comparative calculations that refer to a
relatively heavy loading (za ¼ 2m and o ¼ 1.2 rad/s). The
associated numerical results that correspond to two
different pairs of spatial and time discretization, i.e.
Ds ¼ 2.337m, Dt ¼ 0.02 s and Ds ¼ 14.141m, Dt ¼ 0.2 s
are shown in Figs. 24–27. Figs. 24–26 depict the output
signals of the dynamic tension, the dynamic shear force and
the dynamic bending moment, respectively, at the location
of the maximum static bending moment. Fig. 27 shows the
variation of the total bending moment along the structure
at three indicative time steps. As can be seen the
coincidence of the results is excellent which in turn
demonstrates the reliability of the solution method
even with relatively few discretization elements and
relatively large values of Dt. It should be noted, however,
that the use of large time steps effectively filters out the
higher frequency responses which could lead to loss of
important information with regard to the contribution
of the geometric nonlinearities. The later remark is
immediately apparent in the time histories of the shear
force (Fig. 25).

The 3D plots in Figs. 28–35 provide a more descriptive
depiction for the dynamics of the continuum system
examined in the present subjected to heave (Figs. 28–31)
and surge (Figs. 32–35) motions. The variables, which are
used for showing the particulars of the dynamic behaviour,
are again, the velocities u and v, the tension T and the
bending moment EIO. These are depicted as functions of
independent variables s and t, at all 400 discretization
points along the structure and for one period of the steady-
state response. The relevant calculations were performed
using a sufficiently high frequency (1.4 rad/s) in order to
enable stimulation of nonlinear impacts.

According to Figs. 28 and 32 the variation of the axial
velocity exhibits the same fashion for both directions of the
excitation. The large axial motions, which are encountered
in the vertical excitation case, are directly reflected in the
function of tension (Fig. 30), which varies between positive
and negative value ranges. On the contrary, when the
motions are imposed horizontally, the variation of tension
is practically insignificant as demonstrated by the level
inclined surface that represents T(s,t) (Fig. 34). In the
vertical excitation case the geometric nonlinearities become
substantial and consequently the coupling between the
axial and the transversal oscillations, forces the latter to
exhibit the strong fluctuations depicted in Fig. 29.
Apparently, the pattern for the bending moment is
provided by the transversal motion as can be easily seen
by inspecting Figs. 29 and 31 and Figs. 33 and 35. Here, the
stronger variation of the bending moment is due to the
higher excitation frequency that was used for the calcula-
tions. For the vertical excitation case (Fig. 31) the output
signal for the bending moment is governed by a sort of
abnormal waveforms at the upper part of the structure,
while the corresponding response due to motions imposed
horizontally is characterized by the almost harmonic
configuration as manifested in Fig. 35.

5.4. Nonlinear contributions for small depths

The effect of nonlinearities is known to reduce with
increasing water depth. In order to examine the validity of
the later remark, additional numerical tests were performed
for 100m water depth. The installation characteristics that
determine the static configuration of the shallow water
catenary, namely, the pretension, the suspended length and
the angle at the top are given in the last column of Table 1
(Model No 3). Fig. 36 shows indicative numerical results
that highlight the effect of the nonlinear terms for the
reduced water depth of 100m. The depicted results
show the impact of both surge and heave excitation, with
a harsh loading according to the imposed amplitude and
the frequency of the excitation (xa, za ¼ 2m and
o ¼ 1.2m/s). Figs. 36a and d do not indicate any
profound impact of the nonlinear terms on the transversal
motions as the linearized formulation approximates with
satisfactory accuracy the actual nonlinear behaviour
of the structure. Nevertheless, the tension and the bending
moment along the structure appear to be very affected by
the nonlinear components of the dynamic equilibrium
system. The later remark is more easily seen in Figs. 36b, c,
e and f, which show the variation of the tension and
the bending moment. The subplots exhibit large dif-
ferences between the linearized and the actual nonlinear
behaviour of the structure. In addition, one can easily
observe the long interval where compression loading
occurs (Figs. 36b and e), which is responsible for the
strong amplification of the bending moment (Figs. 36c and
f). It should be mentioned that the differences in the
calculated results for the same excitation properties
between the linear and the nonlinear model for the long
(1400m length in 1200m water depth) catenary riser
investigated in Section 5.3 were definitely smaller (see
Figs. 22 and 23). In addition, for the smaller water depth
case examined herein, the absolute maximum of the total
bending moment rises up to 1400 kNm for the surge
excitation and just before the upper end, and up to
600 kNm for the heave excitation very close to the
lower end. These extreme phenomena originate explicitly
from the contribution of the geometric nonlinearities the
effect of which is distinctly stronger for smaller water
depths. Here the surge motion is more important than
the heave motion in terms of the development of max
bending moments. This is due to the static configuration
of the catenary, which for the surge excitation case
leads to larger axial components compared to the heave
excitation.
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Fig. 36. Comparative results for the riser’s dynamic behaviour under surge and heave excitation in 100m water depth. Pretension 500 kN, suspended

length 316m, angle at the top 55.71. Excitation amplitude 2m and excitation frequency 1.2 rad/s. Snapshots where obtained using the nonlinear solution

model and envelope curves through the linearized formulation. Line discretization N ¼ 400. Time domain solution achieved using time step Dt ¼ 0.05 s.

Left column corresponds to surge excitation and right column to heave excitation. Subplots depict from top to bottom: transversal velocity v, total tension

T and total bending moment EIO.
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6. Conclusions

This paper dealt with the dynamic equilibrium problem
of 2D catenary risers. The method that was proposed for
the solution of the associated mathematical formulation
was based on a FD scheme that was applied to both the
nonlinear and the simplified linear model. The FD method
employed for the purposes of the present contribution is
unconditionally stable and provides very fast convergence.
This was demonstrated through comparative calculations
using different physical grid spacing. In addition the
proposed solution method does not require the application
of a special numerical integration method in the time
domain as the equivalent algebraic system is solved
simultaneously in terms of the two independent variables
of the partial differential equations.

A great part of the numerical predictions concerned the
location of the maximum static bending moment. It was
found that the heave excitations lead to an incremental
amplification of the loading components for increased
excitation frequencies while the motions in surge direction
cause the strong variation of the same components along
the whole frequency range. The contribution of the
nonlinear terms appears to be very important for fast
displacements in heave direction. Under these conditions
the structure is subjected to compression loading due
to the fact that the dynamic part of the tension exceeds
the static counterpart and there are instances where the
total tension becomes negative. This action is subse-
quently reflected on the total bending moment, which
exhibits a strong variation along the upper half of
the structure and an excessive increase at the location of
the maximum static bending moment in the vicinity of the
touch-down point.
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Appendix B. Algebraic expansion for the equivalent

linearized formulation of the dynamic equilibrium problem
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