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Abstract

A riser is anchored at the floating system in a quasi-vertical configuration, the angle between the tangent and the vertical line at the top end
being, in general, small. As a consequence, the static tension at the touchdown point is also small and the riser usually becomes dynamically
compressed when excited by a moderate sea state. In this paper, a physical argument, coupled with a simple model for the quasi-steady
buckling of a infinitely long curved beam, allows one to obtain a simple estimative for the critical load, namely, the maximum value of the
compression permitted in a given situation. In this context, the total tension should follow nearly the harmonic result predicted by the
algebraic expression derived in Aranha and Pinto [Dynamic tension in risers and mooring lines: an algebraic approximation for harmonic
excitation (2001), submitted] but saturated, in the compressed part, at this critical load, a conclusion suggested by experimental results due to
Andrade [EPSUP (1993)]. Comparison with numerical results, obtained from nonlinear time domain programs, indicate a fairly good
agreement, in the sense that the numerically determined tensions tend, indeed, to ‘saturate’ in compression around the estimated critical

load. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this work a cable structure, anchored at the top end of a
floating system and resting on the sea floor at the other end,
is considered. The cable is statically subjected to its own
submerged weight and, possibly, to an horizontal ocean
current; furthermore, it is supposed to be also excited dyna-
mically by a harmonic motion imposed on its top end. Let
T(s) be the effective static tension on the cable, with s = 0 at
the touchdown point and s = [ at the top, where [ is the
suspended length, and Tp(s) be the amplitude of the dynamic
tension. The situation where Tp(s) > T(s) is not uncommon,
mainly for the almost vertical static configuration used for
risers: in this case, the static tension in the vicinity of the
touchdown point is very small and it can be easily surpassed
by the dynamic tension. Since the dynamic tension changes
cyclically in time, the condition Tp(s) > T(s) implies that
the cable becomes compressed into part of the wave cycle
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and the cable is then said to be dynamically compressed.
The intention of this work is to study this problem.

In the strict sense of the word, a cable does not have a
bending stiffness (EJ = 0) and so it cannot support any
compressive load: in the ‘compressed zone’ the dynamic
tension adjusts its value in such a way that the total tension
TroraL(s,t) remains zero during this part of the wave cycle.
The cable then slackens and folds (infinite curvature) but it
recovers its tightness as soon as the total tension becomes
positive again. This qualitative description has a strong
experimental support. For example, as shown in numerous
experiments done by Andrade [1], the total tension at the
suspended end of a chain can be approximated by
TroraL(l, 1) = (1/2)[1 + sign(T(}) + Tp(l) cos(w)(T(1) +
Tp(l) cos(wt)), with Tp(l) being the harmonic amplitude
of the dynamic tension, see Ref. [3]; this expression
indicates not only the saturation when T(I)+
Tp(l) cos(wt) < 0 but also a strict harmonic behavior
when Trorar(l ) = T(I) + Tp(l) cos(wt) > 0. Fig. 3.1b
in Ref. [3], extracted from Ref. [1], is typical: it shows
the adequacy of the proposed expression for Trorar(l,7)
while displaying clearly the saturation region where the
tension remains zero.

A riser has a bending stiffness (EJ # 0) and so it can
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Nomenclature

List of symbols

q submerged weight per unit of length (N m ™)
m mass per unit of length (kg m ")

m, added mass per unit of length (kg m ")

EJ flexural stiffness (N mz)

EA axial stiffness (N)

Ty static tension (N)

Tp dynamic compression in the saturated

condition (N)

P =Ty — T, total compressive load on the riser (N)

Y(s) static displacement in the transversal direction
(m)

y" = g/T, = x static curvature (m ")

V(s) = y(s) + v(s) total displacement in the trans-
versal direction (m)

v(s) buckling mode (m)

2m/k  wavelength of straight beam buckling mode,
see Eq. (2.1b) (m)

Bo(x) root of Eq. (2.6)
P.(x) buckling load, see Eq. (2.7) (N)
Aa(x) wavelength of the buckled mode, see Eq. (2.7)

(m)

support some compression. By analogy with the cable
result, it is expected here the existence of a positive critical
load P that would play for the riser the same role played by
the load P.. = 0 in the cable case. In particular, it is also
expected, by extension of the observed experimental results
for the cable that the total tension in the riser should be
given by an expression of the form

TrotaL(s,t) = %[1 + sign(T(s) + Tp(s) cos wt + P )(T(s)

+ Tp(s) cos wr) — —[1 — sign(T(s)

N —

+ Tp(s) cos wt + P.)]P, (1.1)

with Tp(s) being, again, the harmonic amplitude of the
dynamic tension. The basic result in Ref. [3] was the deriva-
tion of an algebraic approximation for this amplitude.

The main objective of the present work is to obtain an
estimative of the critical load P.; in reality, as it will be
seen, this critical value changes along the suspended length,
once it is a function of the local static curvature, and so
P.. = P_(s). The total tension should saturate at this critical
value (Ttorar(s,t) = —P.(s)), a result that does have
importance in itself: in one hand, since P.(s) is the maxi-
mum possible compression in a flexible riser, one may
confront this value with the maximum allowable compres-
sion, in general specified by the manufacturer, to check
whether or not the riser would be in safe condition while
in operation; on the other hand, this critical value can define

the maximum permissible dynamic tension in a steel riser in
order to avoid the large curvatures (buckling) that may
appear in the saturated region, where Ttorar (S,1) = —Pg,.

As discussed in Ref. [3], the analytic estimate of P, has
an even greater importance for a single reason: in general,
numerical results seem to be not very precise in the vicinity
of the critical load, in such a way that relatively large
compressions are sometimes numerically observed in a
cable (EJ = 0) despite the fact that these structural elements
cannot support any compression; see, for example, Fig. 3.2b
in Ref. [3]. By extension, again, one should expect possible
numerical problems around the ‘saturation region’ of a riser
(EJ # 0) and a difficulty to interpret the results if a reference
value is not known. In other words: if the critical load P, is
not known a priori it may become awkward to distinguish,
in the numerical output, the real physical response from the
numerical ill behavior.

This work has been organized in the following way: in
Section 2 a mathematical model is proposed and a closed
form expression for the critical load is obtained; in Section 3
the derived expression for P. is compared with some
numerical results, in order to check its adherence to the
observed numerical trend and to qualify, whenever neces-
sary, the detected numerical ill behavior. Section 4 presents
the conclusions.

2. Mathematical model: estimative of the critical load

Consider an infinitely long straight beam with bending
stiffness EJ and a wave mode v(x) = A sin(kx). The classical
Euler buckling load is then given by
P, = EJK>. (2.1a)

Obviously, the basic problem is the yet undetermined wave
number k but the following argument can shed some light on
this point: if the beam is dynamically excited at the frequency
o it naturally assumes a waveform with wave number k
determined from the beam dispersion relation, namely

2 [m~+ m,
= w,
EJ

where m is the mass per unit of length and m, is the added mass.
It seems reasonable to assume that the beam will choose this
wave number to buckle and, in this context, the critical load
can be estimated by Egs. (2.1a) and (2.1b). However, the riser
is a curved beam and the critical load is influenced by the
curvature. The proper model for this case is derived in the
next item.

(2.1b)

2.1. Eigenvalue problem for a curved beam

The equilibrium equation for a beam with bending stiff-
ness EJ, subjected to a compressive load P and to a lateral
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load ¢ is given by
d*v L p dv
ds* ds?
For a straight beam (¢ = 0) the solution of Eq. (2.2a) can
be expressed in the form

EJ —=q. (2.2a)

V(s) = Imag{Ae'**} = A sin(ks) (2.2b)

that placed in Eq. (2.2a) with g = 0 gives the Euler buckling
load (2.1a). The intention here is to obtain a solution of
Eq. (2.2a) that tends to Eq. (2.2b) in the limit ¢ — 0. For
example, if 7 is the static tension in the vicinity of the
touchdown point, the local static curvature' is given by y =
q/Ty and if —Tp is the ‘dynamic tension’, one can write

2

d
V6 =V 3. 3= P=Tp T

(2.2¢)

In Eq. (2.2¢) the force P is the riser total compressive load
in the saturation region and the equilibrium equation (2.2a)
is reduced to (7p > 0 means dynamic compression)

d*y d?v q
EJF +P@ = TD?O. (2.3a)

The inertia term is absent in this model: the dynamic
tension is assumed here to adjust its value in such a way
that the total compression saturates at the critical load; for
example, Tp = T, for a cable (EJ = 0) in order that the
compressive load ‘saturates’ at the critical load P = 0.
The equilibrium equation (2.3a) should be coupled with
the geometric compatibility equation for the axial deforma-
tion (see, for instance, Eq. (4.1b) in Ref. [3])

Tp du(s) q
-2 = + (). :
EA ds T, V) (2.30)

The functions {v(s); u(s)} should satisfy the boundary
conditions consistent with the straight beam problem, in
order that Eq. (2.2b) be recovered in the limit ¢ — 0, and so

v(0) = (k) = v"(0) = v"(7lk) = 0, u(0) = u(m/k).

(2.3¢)
Introducing the auxiliary variables
P
2 q
==, = = 2.4
B 2E] X T (2.42)
Egs. (2.3a) and (2.3b) can be written in the form (5 = ks)
d*y d?y 1
& P X =
(2.4b)
Tp du(3) _
— D — +
EA g X0

' The influence of the bending stiffness in the vicinity of the touchdown
point has been ignored here: the thin bending boundary layer should not
affect the buckling load. The numerical results of Section 3 confirm this
assumption.

with boundary conditions

v(0) =v(m) =0, v'(0) =v"(m) =0, u(0) = u(m).

(2.4¢)

Integrating the geometric compatibility equation (2.4b) in
the interval (0;7r) one obtains

EA 1 m—
= g |0 &

and introducing the parameter (see Eq. (2.1b))

T\? /EA 7\2 / EA 1
Y(X):<5>X k*EJ :(E)X m+ma;' (2.52)

Eq. (2.4b) is reduced to

4 2 5 T
ey g _ _;(E>fzéf V() d5.
0

ds* ds?

(2.5b)

Before the solution of Egs. (2.4¢c), (2.5a) and (2.5b) is
presented it seems worthwhile to establish a relation between
the parameter y(x) and the parameter A, first introduced by
Irvine and Caughey [4] in the dynamic of cables; see Eq. (2.3¢)
in Ref. [3] for the definition of A. In fact, if A = 27/k is the
wavelength, the parameter A can be written as

11
LTS
Ty \ Ty

and then
1 A
=—-—A,
YX) 8 A

where A; = (EJ/T,)"? is the flexural length, see Ref. [2].
The eigenvalue problems (2.4c), (2.5a) and (2.5b) have a
non-trivial solution if and only if 8= B.(x) with B.(x)
being the smallest root of the characteristic equation
o' o

tnma=a+ — — ——, o BCT(X)ﬂ-.
3 YW 2

Observing that tan @ = a + /3 + 2a°/15 when a < 1
it is easy to check that tan & > a + /3 — a’/y* when
0=a <w/2 (0= <1); the smallest root a of Eq. (2.6)
is then in the interval 7/2 = o <37/2 (1 = B.(x) <3).In
the limit y — 0 (y — 0; straight beam) the right-hand side
of Eq. (2.6) tends to —o0 and so a = 7/2 or B (0) = 1; in
this limit the Euler critical load (2.1a) is recovered, see also
Eq. (2.4a). The root a of Eq. (2.6) increases monotonically
with y, it is equal to 7 (B, = 2) when y/7 = 1.517 and
tends to the value 37/2(1 — 0.0055) in the limit when y —
00 (B (0) = 2.984). This result is summarized and further
elaborated in the next item.

3 5

(2.6)

2.2. Critical load and related parameters

The critical load P.(x), the wave number k.(x) and the
wavelength A..(x) = 27k (x) of the related wavemode are
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Fig. 1. (a) Total tension at the TDP. Steel riser, (P = 8 s; A =4 m). (-O-) Theory (1.1) and (2.7); (—) Cable; (- - -) Orcaflex. (b) Total tension at the TOP. Steel
riser, (P =8 s; A =4 m). (-O-) Theory (1.1) and (2.7); (—) Cable; (- - -) Orcaflex. (c) Total tension at the TDP. Steel riser, (P = 8 s; A = 6 m). (-O-) Theory
(1.1) and (2.7); (—) Cable; (- - -) Orcaflex. (d) Total tension at the TOP. Steel riser, (P =8 s; A= 6 m). (-O-) Theory (1.1) and (2.7); (—) Cable; (- - -)
Orcaflex. (e) Total tension at the TDP. Steel riser, (P = 8 s; A = 8 m). (-O-) Theory (1.1) and (2.7); (—) Cable; (- - -) Orcaflex. (f) Total tension at the TOP.
Steel riser, (P =8 s; A =8 m). (-O-) Theory (1.1) and (2.7); (—) Cable; (- - -) Orcaflex.

then given by (see Egs. (2.1b) and (2.4a))

+ 2\ 1/4
ka(X) = Bcr(X)(w) s

EJ
A(y) = 2 _ 2 ( EJ )1/4 2.7)
T T 0 Bal0 \(m + mya? )

Pe(x) = EJke(0) = B&(0(m + m,)EJw,

where y = x(s) is the local static curvature at the riser’s
section s and 1 = B.(x) < 2.984 is the root of the charac-
teristic equations (2.5a) and (2.6). The only purpose in being
specific about the touchdown point was to make more direct
the argument, the final result being general.

The local character of the buckling mode can be easily
visualized if it is recalled that a riser is relatively ‘curved’
near the touchdown point but it has a ‘stretched’ configura-
tion at the suspended end. Formally, this local character is a
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consequence of the fact that the wavelength A.(x) of the
buckling mode is, in general, much smaller than the
suspended length / of the riser, as shown below, and so
the buckling mode can always assume its local wavelength.

Table 1 displays the main buckling parameters of the steel
riser defined in Table 3.2 of Ref. [3]. The water depth is 4 =
840 m and the static configuration is defined by the angle
0g = 70 with the horizontal; (Ty; Ts) are the static tension at
the TDP and TOP, respectively.
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At the touchdown point (TDP) the curvature is so large
that the limit value B (c0)=2.984 is almost reached
irrespective of the wave period; in this case the critical
load decreases linearly with the wave frequency. At the
suspended end (TOP) the riser is relatively stretched and
the value of B changes with the wave period; however,
the decrease of B, with w is attenuated in the final
expression (2.7) of the critical load, that contains also an
increasing factor with w.
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Fig. 2. (a) Total tension at the TDP. Steel riser, (P = 10 s; A = 6 m). (-O-) Theory (1.1) and (2.7); (—) Cable; (- - -) Orcaflex. (b) Total tension at the TOP.
Steel riser, (P =10 s; A = 6 m). (-O-) Theory (1.1) and (2.7); (—) Cable; (- - -) Orcaflex. (c) Total tension at the TDP. Steel riser, (P =10 s; A = 8 m). (-O-)
Theory (1.1) and (2.7); (—) Cable; (- - -) Orcaflex. (d) Total tension at the TOP. Steel riser, (P = 10 s; A = 8 m). (-O-) Theory (1.1) and (2.7); (—) Cable; (- - -)

Orcaflex.
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The results of Table 1 can be useful to check some
features of the proposed model: first, given the relatively
large spread of values in the column P /T, it seems
possible to detect, in the numerical simulations, the varia-
tion of the ‘saturation’ load with the wave period; second,
by observing the difference between Bgr,o and Bﬁm, it also
seems possible to observe numerically the influence of the
static curvature on the critical load. These points are
explored in Section 3.

In a steel riser the non-compression condition Tp < T is
usually imposed to avoid excessive curvature; Table 1 indi-
cates that the milder condition Tp <27, can be taken
instead to avoid buckling. For a flexible riser with EJ =
9.84 kN mz; m + m, = 104 kg m_l, see Table 3.2 of Ref.
[3], one has P, = 7 kN when the wave period is larger than
8 s, indicating that the maximum possible compression is in
fact very small and independent of the wave amplitude.
Both results disclose the practical importance that Eq. (2.7)
should have in the design of a riser.
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Fig. 3. (a) Total tension at the TDP. Steel riser, (P =12 s; A = 8 m). (-O-)
Theory (1.1) and (2.7); (—) Cable; (- - -) Orcaflex. (b) Total tension at the
TOP. Steel riser, (P =12 s; A =8 m). (-O-) Theory (1.1) and (2.7); (—)
Cable; (- - -) Orcaflex.

Table 1

Parameters of the buckling mode. Steel riser (EJ =9241kN; m + m, =
108.6kgm™'; ¢=0307kNm™"). Static configuration: 65 =70;
h=840m;[=1196 m

Period (s) TDP TOP
/\cr,()/l (%) Bgr.O Pcr.O/TO /\cr.S/l (%) BEr,S Pcr,S/TS
8 0.54 890 1.65 0.96 285 0.18
10 0.60 890 133 0.92 3.87 0.20
12 0.66 890 1.10 0.87 5.11  0.22

3. Numerical results

Both the steel riser (SR) and the flexible riser (FR)
defined in Table 3.2 of Ref. [3] have been numerically
simulated by the programs CABLE and ORCAFLEX under a
variety of conditions, summing a total of 36 simulations
for each riser. The results to be shown here are typical
although the choice was not arbitrary: the cases where
dynamic compression occurred also at the top end have
been singled out since they display better than the influence
of the local curvature on the critical load. By the same
reason, the results from the steel riser were selected,
since the relation P /Ty is larger there and can be
more easily seen in the figures. At the end of this section
an example of a flexible riser in random excitation is
discussed.

All results to be shown refer to the same static configura-
tion: a steel riser placed in a water depth 7 = 840 m with an
angle 05 = 70" with the horizontal at the top, see Table 1. A
circular harmonic motion at the suspended end was imposed
to the riser and the following simulations, characterized by
the period P and amplitude A, will be discussed here:
(P=8s; A=4, 6, 8m), (P=10s; A=6, 8m) and
(P=12s; A=8m). For example, the case (P=12s;
A = 6 m) was not chosen since the total tension was always
positive at the suspended end and no compression could be

40 — T T T T

30}

o} ‘\/_,__/\ P
A ) cr

Tension (kN)

864 866 868 870 872 874 876 878 880
Time (s)

860 862

Fig. 4. Flexible riser under random excitation. 65 = 85. (---)
EJ = 9.8 kN m?% (—) EJ = 0 (Orcaflex).
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observed. Figs. la—f, 2a—d and 3a,b present the comparison
between the ftofal tension obtained from the programs
CABLE, ORCAFLEX and the analytic solution (1.1), with
Tp(s) computed from the algebraic approximation derived
in Ref. [3]; in accordance with the notation introduced in
Table 1, (P.o; Tp) represent, respectively, the critical load
and the static tension at the TDP and (P,s; Ts) the same
values at the TOP.

Fig. 1a,b refers to the case (P = 8 s; A = 4 m) at the TDP
and TOP. At the TDP a relatively fair adherence between
the three results is observed, although the Orcaflex result
seems to be off around the saturation region; however, the
Cable result shows a tendency for saturation at the level
predicted theoretically. The comparison at the TOP shows
a more wild discrepancy between the numerical results, as
already pointed in Ref. [3], although the Cable result is
somewhat closer to the analytic expression (1.1); further-
more, the saturation of the total tension in Cable’s result, at
the level predicted by Eq. (2.7), is now quite evident, see
also Table 1. In the same figure the line P /Ts gives
the saturation value at the TDP, showing the difference

caused by the local static curvature of the riser on the
critical load. Apparently Eq. (2.7) is able to predict well
how the critical load is modified along the riser, a result
supported by the other numerical simulations to be
discussed below.

Fig. 1c,d refers to the case (P=8s; A =6 m). Cable’s
result shows a clear saturation at the theoretical level but
Orcaflex result displays a ‘wavier’ tendency around the
saturation value. This behavior is similar to the one
observed for a cable, see Ref. [3], where the tension
oscillates around the critical load P, =0 in spite of
the fact that no compression can be supported then.
At the TOP the saturation of Cable’s result is also
clear and the wavy tendency of Orcaflex result can also be
observed; the difference between P.s and P, is again
evident.

Again, Fig. le,f refers to the case (P=28s; A=8m) at
the TDP and TOP. The same general comments made before
also apply here but there is one point that must be stressed: if
the cases (P=8s; A=4m) and (P=8s; A=8 m) are
compared, the maximum total tension increases, as it should,



